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Chapter 1

Introduction

1.1 Low vs. High Dynamic Range Imaging

The majority of existing digital imagery and video materialcapture only a fraction
of the visual information that is visible to the human eye andare not of sufficient
quality for reproduction by the future generation of display devices. The limiting factor
is not the resolution, since most consumer level digital cameras can take images of
higher number of pixels than most of displays can offer. The problem is the limited
color gamut and even more limited dynamic range (contrast) captured by cameras and
stored by the majority of image and video formats. To emphasize these limitations of
traditional imaging technology it is often calledlow-dynamic rangeor simplyLDR.

For instance, each pixel value in the JPEG image encoding is represented using three
8-bit integer numbers (0-255) using theYCrCb color space. This color space is able to
store only a small part of visible color gamut (although containing the colors most of-
ten encountered in the real world), as illustrated in Figure1.1-left, and an even smaller
part of the luminance range that can be perceived by our eyes,as illustrated in Fig-
ure 1.1-right. The reason for this is that the JPEG format wasdesigned to store as
much information as can be displayed on the majority of displays, which were at that
time Cathode Ray Tube (CRT) monitors or TV sets. This assumption is no longer valid,
as the new generations of LCD and Plasma displays can depict amuch broader color
gamut and dynamic range than their CRT ancestors. Every new generation of displays
offers better color reproduction and requires higher precision of image and video con-
tent. The traditional low contrast range and limited color gamut imaging (LDR imag-
ing), which is confined to three 8-bit integer color channels, cannot offer the precision
that is needed for the upcoming developments in image capture, processing, storage
and display technologies.

High Dynamic Range Imaging (HDRI) overcomes the limitationof traditional imaging
by performing operations on color data with much higher precision. Pixel colors are
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Figure 1.1: Left: the standard color gamut frequently used in traditional imaging
(CCIR-705), compared to the full visible color gamut. Right: real-world luminance
values compared with the range of luminance that can be displayed on CRT and LDR
monitors. Most digital content is stored in a format that at most preserves the dynamic
range of typical displays.

specified in HDR images as a triple of floating point values (usually 32-bit per color
channel), providing accuracy that exceeds the capabilities of the human visual system
in any viewing conditions. By its inherent colorimetric precision, HDRI can represent
all colors found in real world that can be perceived by the human eye.

HDRI does not only provide higher precision, but also enables the synthesis, storage
and visualization of a range of perceptual cues that are not achievable with traditional
imaging. Most of the LDR imaging standards and color spaces have been developed to
match the needs of office or display illumination conditions. When viewing such scenes
or images in such conditions, our visual system operates in amixture of day-light and
dim-light vision state, so called the mesopic vision. When viewing out-door scenes,
we use day-light perception of colors, so called the photopic vision. This distinction
is important for digital imaging as both types of vision shows different performance
and result in different perception of colors. HDRI can represent images of luminance
range fully covering both the photopic and the mesopic vision, thus making distinction
between them possible. One of the differences between mesopic and photopic vision is
the impression of colorfulness. We tend to regard objects more colorful when they are
brightly illuminated, which is the phenomenon that is called Hunt’s effect. To render
enhanced colorfulness properly, digital images must preserve information about the
actual level of luminance of the original scene, which is notpossible in the case of
traditional imaging.

Real-world scenes are not only brighter and more colorful than their digital reproduc-
tions, but also contain much higher contrast, both local between neighboring objects,
and global between distant objects. The eye has evolved to cope with such high con-
trast and its presence in a scene evokes important perceptual cues. Traditional imaging,
unlike HDRI, is not able to represent such high-contrast scenes. Similarly, traditional
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images can hardly represent common visual phenomena, such as self-luminous sur-
faces (sun, shining lamps) and bright specular highlights.They also do not contain
enough information to reproduce visual glare (brighteningof the areas surrounding
shining objects) and a short-time dazzle due to sudden increase of the brightness of a
scene (e.g. when exposed to the sunlight after staying indoors). To faithfully represent,
store and then reproduce all these effects, the original scene must be stored and treated
using high fidelity HDR techniques.

1.2 Device- and Scene-referred Image Representations

To accommodate all discussed requirements imposed on HDRI acommon format of
data is required to enable their efficient transfer and processing on the way from HDR
acquisition to HDR display devices. Here again fundamentaldifferences between im-
age formats used in traditional imaging and HDRI arise, which we address in this
section.

Commonly used LDR image formats (JPEG, PNG, TIFF, etc.) contain data that is tai-
lored to particular display devices: cameras, CRT or LCD displays. For example, two
JPEG images shown using two different LCD displays may be significantly different
due to dissimilar image processing, color filters, gamma correction, and so on. Obvi-
ously, such representation of images vaguely relates to theactual photometric proper-
ties of the scene it depicts, but it is dependent on a display device. Therefore those
formats can be considered asdevice-referred(also known asoutput-referred), since
they are tightly coupled with the capabilities and characteristic of a particular imaging
device.

ICC color profiles can be used to convert visual data from one device-referred format
to another. Such profiles define the colorimetric propertiesof a device for which the
image is intended for. Problems arise if the two devices havedifferent color gamuts
or dynamic ranges, in which case a conversion from one formatto another usually
involves the loss of some visual information. The algorithms for the best reproduction
of LDR images on the output media of different color gamut have been thoroughly
studied [1] and CIE technical committee (CIE Division 8: TC8-03) have been started
to choose the best algorithm. However, as for now, the committee has not been able
to select a single algorithm that would give reliable results in all cases. The problem
is even more difficult when an image captured with an HDR camera is converted to
the color space of a low-dynamic range monitor (see a multitude of tone reproduction
algorithms discussed in Chapter 6). Obviously, the ICC profiles cannot be easily used
to facilitate interchange of data between LDR and HDR devices.

Scene-referredrepresentation of images offers a much simpler solution to this prob-
lem. The scene-referred image encodes the actual photometric characteristic of a scene
it depicts. Conversion from such common representation, which directly corresponds
to physical luminance or spectral radiance values, to a format suitable for a particu-
lar device is the responsibility of that device. This shouldguarantee the best possible
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rendering of the HDR content, since only the device has all the information related
to its limitations and sometimes also viewing conditions (e.g. ambient illumination),
which is necessary to render the content properly. HDR file formats are examples of
scene-referred encoding, as they usually represent eitherluminance or spectral radi-
ance, rather than gamma corrected and ready to display “pixel values”.

The problem of accuracy of scene-referred image representation arises, for example
the magnitude of quantization error and its distribution for various luminance levels in
the depicted scene. For display-referred image formats theproblem of pixel accuracy
is easy to formulate in terms of the reproduction capabilities of target display devices.
For scene-referred image representations the accuracy should not be tailored to any
particular imaging technology and, if efficiency of storingdata is required, should be
limited only by the capabilities of the human visual system.

To summarize, the difference between HDRI and traditional LDR imaging is that HDRI
always operates on device-independent and high-precisiondata, so that the quality of
the content is reduced only at the display stage, and only if adevice cannot faithfully
reproduce the content. This is contrary to traditional LDR imaging, where the content
is usually profiled for particular device and thus stripped from useful information as
early as at the acquisition stage or latest at the storage stage. Figure 1.2 summarizes
these basic conceptual differences between LDR and HDR imaging.

Camera Dynamic Range

Display Contrast

Image Representation

Fidelity

Quantization

50 dB 120 dB

1:200 1:15,000

floating point or variable8-bit or 16-bit

scene-referreddisplay-referred

display-limited as good as the eye can see

Standard (Low) Dynamic Range High Dynamic Range

Figure 1.2: The advantages of HDR compared to LDR from the applications point
of view. The quality of the LDR image have been reduced on purpose to illustrate a
potential difference between the HDR and LDR visual contents as seen on an HDR
display. The given numbers serve as an example and are not meant to be a precise
reference.
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1.3 HDR Revolution

HDRI has recently gained momentum and is affecting almost all fields of digital imag-
ing. One of the breakthroughs responsible for this burst of interest in HDRI was the
development of an HDR display, which proved that the visualization of color and the
luminance range close to real-world scenes is possible [2].One of the first to adopt
HDRI were video game developers together with graphics cardvendors. Today most
of the state-of-the art video game engines perform rendering using HDR precision to
deliver more believable and appealing virtual reality imagery. Computer generated im-
agery used in special effect production uses HDR techniquesto achieve the best match
between synthetic and realistic objects. High-end cinematographic cameras, both ana-
log and digital, already provide significantly higher dynamic range than most of the
displays today. This dynamic range can be retained after digitalization only if a form
of HDR representation is used. HDRI is also a strong trend in digital photography,
mostly due to the multi-exposure techniques that allow an HDR image to be made
using a consumer level digital camera. HDR cameras that can directly capture higher
dynamic range are available, for exampleSheroCamHDRfrom SheronVR, HDRCfrom
IMS Chips, Origin R©from Dalsa or Viper FilmStreamTM from Thomson. Also, major
display vendors experiment with local dimming technology and LED-based backlight
devices, which significantly enhances the dynamic range of offered by them LCD dis-
plays. To catch up with the HDR trend, many software vendors announce their support
of the HDRI, takingAdobeR© PhotoshopR© CS3andCorel R© Paint Shop ProR© Photo
X2 as examples. Also, commercial packages supporting multi-exposure blending and
tone reproduction such asPhotomatixor FDRToolstargeted mostly for photographers
become available.

Besides its significant impact on existing imaging technologies that we can observe
today, HDRI has the potential to radically change the methods by which imaging data
is processed, displayed and stored in several fields of science. Computer vision algo-
rithms can greatly benefit from the increased precision of HDR images, which do not
have over- or under-exposed regions and which are often the cause of the algorithms
failure. Medical imaging has already developed image formats (e.g. the DICOM for-
mat) that partly cope with the shortcomings of traditional images, however they are
supported only by specialized hardware and software. HDRI gives the sufficient preci-
sion for medical imaging and therefore its capture, processing and rendering techniques
can be used also in this field. HDR techniques can also find applications in astronomi-
cal imaging, remote sensing, industrial design and scientific visualization.

All these exciting developments in HDRI as well as huge potential of this technology
in multiple applications suggest that imaging is on the verge of HDR revolution. This
revolution will have a profound impact on devices that are used for image capture and
display, as well as on image and video formats that are used tostore and broadcast vi-
sual content. Obviously, during the transition time some elements of imaging pipeline
may still rely on traditional LDR technology. This will require backward compatibility
of HDR formats to enable their use on LDR output devices such as printers, displays,
and projectors. For some of such devices the format extensions to HDR should be trans-
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parent, and standarddisplay-referredcontent should be directly accessible. However,
more advanced LDR devices may take advantage of HDR information by adjusting
scene-referredcontent to their technical capabilities through customized tone repro-
duction. Finally, the legacy images and video should be upgraded when displayed on
HDR devices, so that the best possible image quality is achieved (the so-called inverse
tone mapping). In this book we address all these important issues by focusing mostly
on the state-of-the-art techniques. An interesting account of historical developments
on dynamic range expansion in the art, traditional photography, and electronic imaging
has been recently presented by one of the pioneers in HDRI John McCann [3].

1.4 Organization of the Book

The book presents a complete pipeline for HDR image and videoprocessing from ac-
quisition, through compression and quality evaluation, todisplay (refer to Figure 1.3).
At the first stage digital images are acquired, either with cameras or computer rendering
methods. In the former case pixel values calibration in terms of photometric or radio-
metric quantities may be required in some technically oriented applications. At the
second stage, digital content is efficiently compressed andencoded either for storage
or transmission purposes. Here backward compatibility with existing formats is an im-
portant issue. Finally, digital video or images are displayed on display devices. Tone
mapping is required to accommodate HDR content to LDR devices, and conversely
LDR content upgrading (the so-called inverse tone mapping)is necessary for display-
ing on HDR devices. Apart from considering technical capabilities of display devices,
the viewing conditions such as ambient lighting and amount of light reflected by the
display play an important role for proper determination of tone mapping parameters.
Quality metrics are employed to verify algorithms at all stages of the pipeline.

Figure 1.3: Imaging pipeline and available HDR technologies.

Additionally, the book includes successful examples of theuse of HDR technology
in research setups and industrial applications involving computer graphics. Whenever
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needed short background information on human perception isgiven, which enables
better understanding of the design choices behind the discussed algorithms and HDR
equipment.

The goal of this book is to present all discussed components of the HDR pipeline with
the main focus on HDR video. For some pipeline stages HDR video solutions are not
well established or do not exist at all, in which case we describe techniques for single
HDR images. In such cases we attempt to select the techniques, which can be extended
into temporal domain.

1.4.1 Why HDR Video?

Our focus in this book on HDR video stems from the fact that while HDR images are
visually compelling and relatively common (over 125,000 photographs tagged as HDR
is available on Flickr), the key applications that will drive further HDRI development
in coming years require some form of HDR video or uncompressed temporal image
sequences. It can be envisioned that the entertainment industry with computer games,
digital cinema, and special effects will be such an important driving force. In games
due to HDR-enabled (floating point) graphics pipelines HDR image sequences can be
readily generated as an output from modern GPU cards. In the near future, games
will use more often HDR video of real world scenes for virtualscenes relighting or
as realistic video textures. In digital cinema applications the lack of desirable contrast
and luminance range are the main current drawbacks, whose prompt improvement can
be expected in the quest for a better visual quality than it ispossible with traditional
film projectors. In terms of HDR content for digital cinema this does not look like
a real problem. Modern movies have often been shot with cameras featuring higher
dynamic range, and legacy movies can be upgraded even if manual intervention would
be required for some frames (as this happened in the past withblack&white films’
upgrade to color). Also, special effects, especially thosein which real and synthetic
footage are seamlessly mixed, require both HDR shooting andrendering. HDR video
is also required in all applications in which capturing temporal aspects of changes in
the scene is required with high accuracy. This is in particular important in monitoring
of some industrial processes such as welding, predictive driver assistance systems in
automotive industry, surveillance systems, to name just a few possible applications.
HDR video can be also considered to speedup the image acquisition in all applications,
in which a large number of static HDR images are required, as for example in image-
based techniques in computer graphics. Finally, with the spread of TV sets featuring
enhanced dynamic range, broadcasting of HDR video signal will be important, which
may take long time before it actually happens due to standardization issues. For this
particular application, enhancing current LDR video signal to HDR by intelligent TV
sets seems to be a viable solution in the nearest future.
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1.4.2 Chapter Overview

The book is organized as follows: Chapter 2 gives backgroundinformation on the
digital representation of images and the photometric and colorimetric description of
light and color. Chapter 3 reviews the HDR image and video capture techniques and
describes the procedure of their photometric calibration,so that the pixel values are
directly expressed in luminance units. Chapter 4 presents aperception-based image
quality metric, which enables the prediction of differences between a pair of HDR
images. Such metrics are important to judge the quality of HDR content for example
as the result of lossy compression. Chapter 5 discusses the issues of HDR image and
video compression. At first HDR pixel format and color spacesare reviewed and then
existing formats of HDR image and video encoding are presented. Special attention
is paid to backward-compatible compression schemes. Chapter 6 presents a synthetic
overview of state-of-the-art tone mapping operators and discusses the problem of their
evaluation using subjective methods with human subjects and objective computational
models. Also, temporal aspects of tone reproduction are investigated. Chapter 7 briefly
surveys HDR display and projection technologies that appeared in recent years. The
problem of upgrading legacy images and video (inverse tone mapping), so that they can
be displayed on HDR devices with the best visual quality, is discussed in Chapter 8.
Chapter 9 surveys cross-correlations between developments in computer graphics and
HDRI. At first, computer graphics rendering as a rich source of high quality HDR
content is presented. Then, HDR images and video captured inthe real-world as the
input data for image-based rendering and modeling are discussed. Finally, Chapter 10
demonstrates software packages for processing of HDR images and video that have
been made available by the authors of this book as open-source projects.



Chapter 2

Representation of an HDR
Image

This chapter explains several physical and perceptual quantities important for digital
imaging, such as radiance, luminance, luminance factor, and color. It does not give
a complete or exhaustive introduction to radiometry, photometry or colorimetry, since
these are described in full extent elsewhere [4, 5, 6]. The focus of this chapter is on the
concepts that are confusing or vary in terminology between disciplines, and also those
that are used in the following chapters.

2.1 Light

[rgb]0,0,0θ

[rgb]0,0,0dω

[rgb]0,0,0dA

[rgb]0,0,0Φ(λ )

Figure 2.1: Spectral radiance. Spectral radiance is a differential measure, defined for
infinitely small areadA, infinitely small solid angledω, radiant fluxΦ and an angle
between the rays and the surfaceθ .

The physical measure of light that is the most appropriate for imaging systems is either
luminance(used in photometry) orspectral radiance(used in radiometry). This is
because both measures stay constant regardless of the distance from a light source to a
sensor (assuming no influence of the medium in which the lighttravels). The sensor can

13
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Figure 2.2: CIE spectral luminous efficiency curve for photopic (day light) and scotopic
(night) vision. Data downloaded fromhttp://www.cvrl.org/.

be either camera’s CCD chip or a photoreceptor in the eye. Thequantities measured
by photoreceptors or digital sensors are related to either of these measures.

Spectral radianceis a radiometric measure, defined by:

L(λ ) =
d2Φ(λ )

dω·dA·cosθ
(2.1)

whereL(λ ) is spectral radiance for the wavelengthλ , Φ is radiant flux flowing through
a surface per unit time,ω is the solid angle,θ is the angle between the rays and the
surface, andA is the area of the surface, as illustrated in Figure 2.1. Although spectral
radiance is commonly used in computer graphics, images are better defined with pho-
tometric units ofluminance. Luminanceis spectral radiance integrated over the range
of visible wavelengths with the weighting functionV(λ ):

Y =
∫ 770nm

380nm
L(λ )V(λ )dλ (2.2)

The functionV(λ ), which is called thespectral luminous efficiency curve[7], gives
more weight to the wavelengths, to which the human visual system (HVS) is more
sensitive. This way luminance is related (though non-nonlinearly) to our perception
of brightness. The functionV for the daylight vision (photopic) and night vision (sco-
topic) is plotted in Figure 2.2. The temporal aspects of daylight and night vision will
be discussed in more detail in Section 6.4. Luminance,Y, is usually given in cd/m2 or
equivalentnit units.

Since the most common multi-exposure technique for acquiring HDR images (refer to
Chapter 3.1.1) cannot assess the absolute luminance level but only a relative luminance
values, most HDR images do not contain luminance values but rather the values of
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Figure 2.3: Cone photocurrent spectral responsivities. After [9].

luminance factor. Such luminance factor must be multiplied by a constant number,
which depends on a camera and lens, to get actual luminance. Such constant number
can be easily found if we can measure the luminance of a photographed surface (refer
to Chapter 3.2).

2.2 Color

Colors are perceptual phenomena rather than physical. Although we can precisely
describe colors using physical units of spectral radiance,such description does not
give immediate answer whether the described color is green or red.Colorimetryis the
field that numerically characterizes colors and provides a link between the human color
perception and the physical description of the light. This section introduces the most
fundamental aspects of colorimetry and introduces color spaces, which will be used in
later chapters. More detailed introduction to colorimetrycan be found in [8] and [6],
while two handbooks, [5] and [4], are more exhaustive sourceof information.

The human color perception is determined by three types of cones: L, M and S, and
their sensitivity to wavelengths. The light in the visible spectrum is in fact multi-
dimensional variable, where each dimension is associated with particular wavelength.
However, the visible color is a projection of this multi-dimensional variable to three
primaries, corresponding to three types of cones. Such projection is mathematically
described as a product of the spectral power distribution,φ(λ ), and the spectral re-
sponse of the type of cones,CL(λ ), CM(λ ) andCS(λ ):

R=
∫

λ
φ(λ )CL(λ )dλ (2.3)
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G=
∫

λ
φ(λ )CM(λ )dλ (2.4)

B=
∫

λ
φ(λ )CS(λ )dλ (2.5)

The spectral responsivities of cones are shown in Figure 2.3.

As the result of three-dimensional encoding of color in the HVS, the number of distin-
guishable colors is limited. Also, two stimuli of differentspectral power distributions
can be seen as having the same color if only their R, G, and B projections match. The
latter property of the HVS is calledmetamerism.

To uniquely describe visible color gamut, CIE standardizedin 1931 a set of primaries
for the standard colorimetric observer. Since the cone spectral responsivities were
not known at that time, the primaries were based on color matching experiment, in
which monochromatic stimuli of particular wavelength was matched with a mixture of
the three monochromatic primaries (435.6 nm, 546.1 nm, and 700 nm). The values of
color-matching mixture of primaries for each wavelength gave theR, G andB primaries
shown in Figure 2.4. The drawback of this procedure was that it resulted in negative
value ofR primary. The negative part represents out of gamut colors, which are too
saturated to be within visible or physically feasible range. To bring those colors into
the valid gamut, the colors must be desaturated by adding monochromatic light. Since
adding monochromatic light results in increasing the values of all R, G andB com-
ponents, there is a certain amount of the added light that would make all components
positive.

To avoid negative primaries and to connect colorimetric description of the light with
photometric measure of luminance (see previous section), CIE introducedXYZ pri-
maries in 1931. The primaries, shown in Figure 2.5, were designed so that primary
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Y represents luminance and its spectral tristimulus values are equal the luminous effi-
ciency function (see Figure 2.2). Although the standard hasbeen established over 70
years ago, it is still commonly used today, especially as a reference in color conversion
formulas.

For a convenient two-dimensional representation of the color, chromaticity coordinates
are often used:

x=
X

X+Y+Z
(2.6)

y=
Y

X+Y+Z
(2.7)

Such coordinates must be accompanied by the corresponding luminance value,Y, to
fully describe the color.

The visible differences between colors are not well described by chromaticity coordi-
natesx andy. For better representation of perceptual color differences, CIE defined
uniform chromaticity scales (UCS) in 1976, which are known as CIE 1976 Uniform
Chromacity Scales:

u′ =
4X

X+15Y+3Z
(2.8)

v′ =
9Y

X+15Y+3Z
(2.9)

Note thatu′, v′ chromaticity space only approximates perceptual uniformity and a unit
Cartesian distance can denote from 1 JND1 to 4 JND units.

1JND – Just Noticeable Difference is usually defined as a measure of contrast at which a subject has 75%
chance of correctly detecting visual difference in a stimulus.
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The Uniform Chromacity Scales do not incorporate luminancelevel in their description
of color. This is a significant limitation, as color difference can strongly depend on
actual luminance level. Uniform color spaces have been introduced to address this
problem. The first color space, CIE 1976L∗a∗b∗, is defined by:

L∗ = 116(Y/Yn)
1/3−16 (2.10)

a∗ = 500
[

(X/Xn)
1/3− (Y/Yn)

1/3
]

(2.11)

b∗ = 200
[

(Y/Yn)
1/3− (Z/Zn)

1/3
]

(2.12)

and the second color space, CIE 1976L∗u∗v∗, by:

L∗ = 116(Y/Yn)
1/3−16 (2.13)

u∗ = 13L∗(u′−u′n) (2.14)

v∗ = 13L∗(v′−v′n) (2.15)

The coordinates with then subscript denote the color of thereference white, which is
the color that appears white in the scene. For color print this is usually the color of a
white paper under given illumination. Both color spaces have been standardized as the
studies did not show that the one is definitely better over another and each one has its
advantages.

Both CIE 1976L∗a∗b∗ and CIE 1976L∗u∗v∗ color spaces have been designed for low
dynamic range color range, available on print or typical CRTdisplays and cannot be
used for HDR images. In Section 5.1 we address in more detailsand in particular we
derive an (approximately) perceptually uniform color space for HDR pixel values.

The uniform color spaces are the simplest incarnations of color appearance models.
Color appearance models try to predict not only the colorimetric properties of the light,
but also its appearance under given viewing conditions (background color, surround
ambient light, color adaptation, etc.). CIECAM02 [10] is anexample of such a model
that has been standardized by CIE. The discussion of color appearance models would
go beyond scope of this book, therefore reader should refer to [4] and [8] for more
information.

2.3 Dynamic Range

In principle, the termdynamic rangeis used in engineering to define the ratio between
the largest and the smallest quantity under consideration.With respect to images, the
observed quantity is the luminance level and there are several measures of dynamic
range in use depending on the applications. They are summarized in Table 2.1.

Thecontrast ratiois a measure used in display systems and defines the ratio between
the luminance of the brightest color it can produce (white) and the darkest (black).
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name formula example context

contrast ratio CR= 1 : (Ypeak/Ynoise) 1:500 displays

log exposure range D= log10(Ypeak)− log10(Ynoise) 2.7 orders HDR imaging,

L = log2(Ypeak)− log2(Ynoise) 9 f-stops photography

signal to noise ratio SNR= 20· log10(Ypeak/Ynoise) 53 [dB] digital cameras

Table 2.1: Measures of dynamic range and their context of application. The example
column illustrates the same dynamic range expressed in different units.

In case the luminance of black is zero, as for instance in HDR displays [2], the first
controllable level above zero is considered as the darkest to avoid infinity. The ratio is
usually normalized by the black level for clarity.

The log exposure rangeis a measure commonly adopted in high dynamic range imag-
ing to measure the dynamic range of scenes. Here the considered ratio is between the
brightest and the darkest parts of a scene given in luminance. The log exposure range
is specified in orders of magnitude, which permits the expression of such ratios in a
concise form using the logarithm base 10 and is usually truncated to one floating point
position. It is also related to the measure of allowed exposure error in photography –
exposure latitude. Theexposure latitudeis defined as the luminance range the film can
capture minus the luminance range of the photographed sceneand is expressed using
logarithm base 2 with precision up to1/3. The choice of logarithmic base is motivated
by the scale of exposure settings, aperture closure (f-stops) and shutter speed (seconds),
where one step doubles or halfs the amount of captured light.Thus the exposure lati-
tude tells the photographers how large a mistake they can make in setting the exposure
parameters while still obtaining a satisfactory image. This measure is mentioned here,
because its units,f-stop stepsor f-stopsin short, are often perhaps incorrectly used in
HDR photography to define the luminance range of a photographed scene alone.

Thesignal to noise ratio(SNR) is most often used to express the dynamic range of a
digital camera. In this context, it is usually measured as the ratio of the intensity that
just saturates the image sensor to the minimum intensity that can be observed above
the noise level of the sensor. It is expressed in decibels [dB] using 20 times base-10
logarithm.

The actual procedure to measure dynamic range is not well defined and therefore the
numbers vary. For instance, display manufacturers often measure the white level and
the black level with a separate set of display parameters that are fine-tuned to achieve
the highest possible number which is obviously overestimated and no displayed image
can show such a contrast. On the other hand, HDR images often have very few light
or dark pixels. An image can be low-pass filtered before the actual dynamic range
measure is taken to assure reliable estimation. Such filtering averages the minimum
luminance thus gives a reliable noise floor, and smoothes single pixels with very high
luminance thus gives a reasonable maximum amplitude estimate. Such a measurement
is more stable compared to the non-blurred maximum and minimum luminance.
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The last remaining aspect is the dynamic range that can be perceived by the human
eye. The light scattering on the optic of the eye can effectively reduce the maximum
luminance contrast that can be projected onto to retina to 2–3 log-10 units. However,
since the eye is in fact a highly active sensor, which can rapidly change the gaze and
locally adapt, people are believed to be able to perceive simultaneously the scenes of 4
or even more log-10 units [6, Section 6.2] of dynamic range.



Chapter 3

HDR Image and Video
Acquisition

In recent years several new techniques have been developed that are capable of captur-
ing images with a dynamic range of up to 8 orders of magnitude at video frame rates.
Such a range is practically sufficient to accommodate the full range of light present in
the real world scenes. Together with the concept of the scene-referred representation of
HDR contents this motivates that the HDR acquisition techniques output pixel intensi-
ties in well calibrated photometric values. The varied techniques used in HDR capture
require, however, careful characterization. In this chapter, we review the HDR capture
techniques in the following section and describe the procedure for characterization of
such cameras in terms of luminance in Section 3.2.

3.1 Capture Techniques Capable of HDR

In principle, there are two major approaches to capturing high dynamic range: to de-
velop new HDR sensors or to expose LDR sensors to light at morethan one exposure
level and later recombine these exposures into one high dynamic range image by means
of a software algorithm. With respect to the second approach, the variation of exposure
level can be achieved in three ways. The exposure can change in time, meaning that
for each video frame a sequence of images of the same scene is captured, each with
a different exposure. The exposure can change in space, suchthat the sensitivity to
light of pixels in a sensor changes spatially and pixels in one image are non-uniformly
exposed to light. Alternatively, an optical element can split light onto several sensors
with each having a different exposure setting. Such software and hardware solutions to
HDR capture are summarized in Sections 3.1.1-3.1.4.

21
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Luminance [cd/m2]

exposure t1 exposure t2 exposure t3 HDR frame

1 100 10000

t1

t2
t3

HDR

Figure 3.1: Three consecutive exposures captured at immediate time stepst1, t2, t3
contain different luminance ranges of a scene. The HDR framemerged from these
exposures contains the full range of luminance in this scene. HDR frame tone mapped
for illustration using a lightness perception inspired technique [14].

3.1.1 Temporal Exposure Change

This is probably the most straightforward and the most popular method to capture
HDR with a single low dynamic range sensor. Although such a sensor captures at
once only a limited range of luminance in the scene, its operating range can encompass
the full range of luminance through the change of exposure parameters. Therefore a
sequence of images, each exposed in such a way that a different range of luminance is
captured, may together acquire the whole dynamic range of the scene, see Figure 3.1.
Such captures can be merged into one HDR frame by a simple averaging of pixel
values across the exposures, after accounting for a camera response and normalizing
by the exposure change [11, 12, 13] (for details on the algorithm refer to Section 3.2).
Theoretically, this approach allows to capture scenes of arbitrary dynamic range, with
an adequate number of exposures per frame, and exploits the full resolution and capture
quality of a camera.

HDR capture based on the temporal exposure change has, however, certain limitations
especially in the context of video. Correct reconstructionof HDR from multiple im-
ages requires that each of the images capture exactly the same scene at a pixel level
accuracy. This requirement cannot be practically fulfilled, because of camera motion
and motion of objects in a scene, and pure merging techniqueslead to motion arti-
facts and ghosting. To improve quality, such global and local displacements in images
within an HDR frame must be re-aligned using for instance optical flow estimation.
Further, alignment of images that constitute one frame has to be temporarily coherent
with adjacent frames. A complete solution that captures twoimages per frame and
allows for real-time performance with 25 fps HDR video capture is described in [15].
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An alternative solution that captures a much wider dynamic range of about 140dB, but
does not compensate for motion artifacts is available from [16].

The temporal exposure change requires a fast camera, because the effective dynamic
range depends on the amount of captures per frame. For instance a 200Hz camera is
necessary to have a 25fps video with 8 captures per frame thatcan give an approximate
dynamic range of 140dB [16]. With such a short time per image capture, the camera
sensor must have a sufficiently high sensitivity to light to be able to operate in low light
conditions. Unfortunately, such a boosted sensitivity usually increases noise.

3.1.2 Spatial Exposure Change

To avoid potential artifacts from motion in the scene, the exposure parameters may
also change within a single capture [17], as an alternative to the temporal exposure
change. The spatial exposure change is usually achieved using a mask which has a per
pixel variable optical density. The number of different optical densities can be flexibly
chosen and they can create a regular or irregular pattern. Nayar and Mitsunaga [17]
propose to use a mask with a regular pattern of four differentexposures as shown in
Figure 3.2. Such a mask can be then placed directly in front ofa camera sensor or in
the lens between primary and imaging elements.

mask with optical densities

varying per pixel 

scene capture without the mask scene capture through the mask

(varying pixel exposures)
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Figure 3.2: Single exposure using a standard image sensor cannot capture full dynamic
range of the scene (left). The mask with per pixel varying optical densitiese3 = 4e2 =
16e1 = 64e0 (middle) can be put in front of a sensor. Using such a mask at least one
pixel per four is well exposed during the capture (right). The right image is best viewed
in the electronic version of the book.

For the pattern shown in Figure 3.2, the full dynamic range can be recovered either by
aggregation or by interpolation. The aggregation is performed over a small area which
includes a capture of that area through each optical density, thus at several different
exposures. The different exposures in the area are combinedinto one HDR pixel by
means of a multi-exposure principle explained in the previous section, at the cost of
reduced resolution of the resulting HDR frame. To preserve the original resolution,
HDR pixel values can also be interpolated from adjacent pixels in a similar manner
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as colors from the Bayer pattern. Depending on the luminancelevels, aliasing and
interpolation artifacts may appear.

The effective dynamic range in this approach depends on the number of different op-
tical densities available in the pattern. A regular patternof 4 densities, as shown in
Figure 3.2, such thate3 = 4e2 = 16e1 = 64e0 gives a dynamic range of about 85dB
for an 8-bit sensor [17]. The quantization step in the reconstructed HDR frame is non-
uniform and increases for high luminance levels. The size ofthe step is, however,
acceptable, because it follows the gamma curve.

An alternative implementation of spatial exposure change,Adaptive Dynamic Range
Imaging (ADRI), utilizes an adaptive optical density mask instead of a fixed pattern
element [18, 19]. Such a mask adjusts its optical density perpixel informed by a
feedback mechanism from the image sensor. Thus saturated pixels increase the density
of corresponding pixels in the mask, and noisy pixels decrease. The feedback, however,
introduces a delay which can appear as temporal over- or under-exposure of moving
high contrast edges. Such a delay, which is minimally one frame, may be longer if the
mask with adapting optical densities has high latency.

Another variation of spatial exposure change is implemented in a sensor whose pixels
are composed of more than one light sensing element each of which has a different
sensitivity to light [20]. This approach is, however, limited by the size of the sensing
element per pixel, and practically only two elements are used. Although in such a
configuration, one achieves only a minor improvement in the dynamic range, so far
only this implementation is applied in commercial cameras (Fuji Super CCD).

3.1.3 Multiple Sensors with Beam Splitters

Following the multi-exposure approach to extending dynamic range, one can capture
several exposures per video frame at once using beam splitters [21, 22]. The idea,
so called split aperture imaging, is to direct the light fromthe lens to more than one
imaging sensor. Theoretically this allows to capture HDR without making any quality
trade-offs and without motion artifacts. In practice, however, the effective dynamic
range depends on the number of sensors used in the camera and such a solution may
become rather costly when a larger dynamic range is desired.Further, splitting the light
requires an increased sensitivity of the sensors.

3.1.4 Solid State Sensors

There are currently two major approaches to extend the dynamic range of an imag-
ing sensor. One type of sensor collects charge generated by the photo current. The
amount of charge collected per unit of time is linearly related to the irradiance on the
chip (similar to a standard CCD chip [23]), the exposure timeis however varying per
pixel (sometimes called “locally auto-adaptive”) [24, 25,26]. This can for instance
be achieved by sequentially capturing multiple exposures with different exposure time
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settings or by stopping after some time the exposure of the pixels that would be overex-
posed during the next time step. A second type of sensor uses the logarithmic response
of a component to compute the logarithm of the irradiance in the analog domain. Both
types require a suitable analog-digital conversion and generate typically a non-linearly
sampled signal encoded using 8–16 bits per pixel value. Several HDR video cameras
based on these sensors are already commercially available.Such cameras allow to cap-
ture dynamic scenes with high contrast, and compared to software approaches, offer
considerably wider dynamic range and quality independent of changes in the scene
content as frame-to-frame coherence is not required. The properties of two of such
cameras: HDRC VGAx from IMS-CHIPS [27] and Lars III from Silicon Vision are
studied in detail in Section 3.2.4.

3.2 Photometric Calibration of HDR Cameras

Ideally, in a photometrically calibrated system the pixel value output by a camera would
directly inform about the amount of light that this camera was exposed to. However,
in view of display-referred representation it has become important to obtain a visually
pleasant image directly from a camera rather than such a photometric image. With the
advance of high dynamic range imaging, however, the shift ofemphasis in require-
ments can be observed. Many applications such as HDR video, capture of environment
maps for realistic rendering, image-based measurements require photometrically cal-
ibrated images with absolute luminance values per pixel. For instance, the visually
lossless HDR video compression (Chapter 5) is based on a model of human vision per-
formance in observing differences in absolute luminance. An incorrect estimation of
such performance due to the uncalibrated input may result invisible artifacts or less
efficient compression. The capture technologies, however,especially in the context of
HDR, are very versatile and a simple solution to obtain the photometric output from all
types of cameras is not possible.

This section explains how to perform the absolute photometric calibration of HDR
cameras and validates the accuracy of two HDR video cameras for applications re-
quiring such calibration. For camera response estimation,an existing technique by
Robertson et al. [28] is adapted to the specific requirementsof HDR camera systems
[29]. To obtain camera output in luminance units the absolute photometric calibration
is further determined. The achieved accuracy is estimated by comparing the measure-
ments obtained with the absolute photometric calibration to measurements performed
with a luminance meter and is discussed in the light of possible applications.

3.2.1 Camera Response to Light

An image or a frame of a video is recorded by capturing the irradiance at the cam-
era sensor. At each pixel of the sensor, photons collected bya light sensitive area are
transformed to an analog signal (electric charge) which is in turn read and quantized by
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i – image index

j – pixel position index

ti – exposure time of imagei

yi j – pixel value of input imagei at positionj

I(·) – camera response function

x j – estimated irradiance at pixel positionj

w(·) – weighting function from certainty model

m – pixel value from a set of possible camera output values

Table 3.1: Symbols and notation in formulas for response estimation.

a controller. Such a quantized signal is further processed to reduce noise, interpolate
color information from the Bayer pattern, or enhance image quality, and is finally out-
put from a camera. The camera response to irradiance, or light, describes the relation
between incoming light and produced output value. The details of the capture process
are often unknown thus the camera response is conveniently analyzed as a black box,
which jointly describes the sensor response and built-in signal processing. In principle,
the estimation of a camera response can be thought of as reading out the camera values
for each single light quantity, although this is practically not feasible.

The camera response to light can be inversed to retrieve original irradiance value. Di-
rectly, the inverse model produces values that are only proportional (linearly related)
to the true irradiance. The scale factor in this linear relation depends on the exposure
settings and has to be estimated by additional measurements.

The HDR cameras have a non-linear and sometimes non-continuous response to light
and their output range exceeds 8 bit. Our choice of the framework for response esti-
mation explained in the following section is motivated by its generality and the lack of
restricting assumptions on the form of the response.

3.2.2 Mathematical Framework for Response Estimation

The camera response is estimated from a set of input images based on the expectation
maximization approach [28]. The input images capture exactly the same scene, with
correspondence at the pixel level, but the exposure parameters are different for each
image. The exposure parameters have to be known and the camera response is observed
as a change in the output pixel values with respect to a known change in irradiance. For
the sake of clarity, in this section the exposure time is assumed to be the only parameter,
but in general case it is necessary to know how many times moreor less energy has
been captured during each exposure. Since the exposure timeis proportional to the
amount of light captured in an image sensor, it serves well asthe required factor. The
mathematical formulas below follow the notation given in Table 3.1 and consider only
images with one channel.
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There are two unknowns in the estimation process. The primary unknown, the camera
response functionI , models the relation between the camera output values and the
irradiance at the camera sensor, or luminance in the scene. The camera output values
for a scene are provided as input images, but the irradiancex coming from the scene
is the second unknown. The estimation process starts with aninitial guess on the
camera response function, which for instance can be a linearresponse, and consists of
two steps that are iterated. First, the irradiance from the scene is computed from the
input images based on the currently estimated camera response. Second, the camera
response is refined to minimize the error in mapping pixel values from all input images
to the computed irradiance. The process is terminated when the iteration step does not
improve the camera response any more. The details of the process are explained below.

Estimation of Irradiance

Assuming that the camera response functionI is correct, the pixel values in the input
images are mapped to the relative irradiance by using the inverse functionI−1. Such
relative irradiance is proportional to the true irradiancefrom the scene by a factor in-
fluenced by the exposure parameters (e.g. exposure time), and the mapping is called
linearization of camera output. The relative irradiance isfurther normalized by the ex-
posure timeti to estimate the amount of energy captured per unit of time in the input
imagesi at pixel positionj:

xi j =
I−1(yi j )

ti
. (3.1)

Each of thexi images contains a part of the full range of irradiance valuescoming
from the scene. This range is determined by the exposure settings and is limited by the
dynamic range of the camera sensor. The complete irradianceat the sensor is estimated
from the weighted average of this partial captures:

x j =
∑i wi j ·xi j

∑i wi j
. (3.2)

The weightswi j are determined for camera output values by the certainty model dis-
cussed later in this section. Importantly, the weights for the maximum and minimum
camera output values are equal to 0, because the captured irradiance is bound to be
incorrect in the pixels for which the sensor has been saturated or captured no energy.

Refinement of Camera Response

Assuming that the irradiance at the sensorx j is correct, one can recapture the camera
output valuesy′i j in each of the input imagesi by using the camera response:

y′i j = I(ti ·x j). (3.3)

In the ideal case when the camera responseI is perfectly estimated, they′i j is equal to
yi j . During the estimation process, however, the camera response function needs to be
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optimized for each camera output valuemby averaging the recaptured irradiancex j for
all pixels in the input imagesyi j that are equal tom:

Em = {(i, j) : yi j = m}, (3.4)

I−1(m) =
1

Card(Em)
∑

i, j∈Em

ti ·x j . (3.5)

Certainty model

The presence of noise in the capture process is convenientlyneglected in the capture
model in equations (3.1, 3.3). A complete capture model would require characteriza-
tion of possible sources of noise and incorporation of appropriate noise terms to the
equation. This would require further measurements and analysis of particular capture
technology in the camera, thus is not practical. Instead, the noise term can be accounted
for by an intuitive measure of confidence in the accuracy of captured irradiance. In typ-
ical 8-bit cameras, for instance, one would expect high noise in the low camera output
values, quantization errors in the high values, and good accuracy in the middle range.
An appropriate certainty model can be defined by the following Gaussian function:

w(m) = exp

(

−4·
(m−127.5)2

127.52

)

. (3.6)

The certainty model can be further extended with knowledge about the capture process.
Normally, longer exposure times, which allow to capture more energy, tend to exhibit
less random noise than short ones. Therefore an improved certainty model for input
imagesyi j can be formulated as follows:

wi j = w(yi j ) · t
2
i . (3.7)

Such weighting function minimizes the influence of noise on the estimation of irradi-
ance in equation (3.2). This happens apart from noise reducing properties of the image
averaging process itself.

Minimization of Objective Function

After the initial assumption on the camera responseI , which is usually linear, the re-
sponse is refined by interactively computing equations (3.2) and (3.5). At the end of
every iteration, the quality of estimated camera response is measured with the follow-
ing objective function:

O= ∑
i, j

w(yi j ) · (I
−1(yi j )− ti ·x j)

2. (3.8)

The objective function measures the error in the estimated irradiance for input images
yi j when compared to the simulated capture of the true irradiance x j . The certainty
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model requires that the camera output values in the range of high confidence give more
accurate irradiance estimates. The estimation process is terminated as soon as the
objective functionO falls below predetermined threshold.

The estimation process requires an additional constraint,because two dependent un-
knowns are calculated simultaneously. Precisely, the values ofx j depend on the map-
ping of I and the equations are satisfied by infinitely many solutions to I which differ
by a scale factor. Convergence to one solution is enforced, in each iteration, through
normalization of the inverse camera responseI−1 by the irradiance causing the medium
camera output valueI−1(mmed).

3.2.3 Procedure for Photometric Calibration

In the following sections a step-by-step procedure for photometric calibration of HDR
cameras is outlined.

Scene Setup for Calibration

The response estimation algorithm requires that each camera output value is observed
in more than one input image. Moreover, frequent observations of the value reduce
the impact of noise. Therefore, an ideal scene for calibration is static, contains a range
of luminance wider than the expected dynamic range of the camera, and smoothly
changing illumination which gives a uniform histogram of output values. Additionally,
neutral colors in the scene can minimize the possible impactof color processing in a
color camera.

When calibrating HDR cameras, a static scene with a sufficiently wide dynamic range
may not be feasible to create. In such a case, it is advisable to prepare several scenes,
each covering a separate but partially overlapping luminance range, and stitch them
together into a single image.

Capture of Images for Calibration

Input images for the calibration process capture exactly the same scene with varying
exposure parameters. A steady tripod and remote control of acamera are essential
requirements. A slight out-of-focus reduces edge aliasingdue to sensor resolution and
limits potential sharpening in a camera, thus makes the estimation process more stable.

HDR cameras often do not offer any adjustment of exposure parameters or available
adjustments are not bound to have a linear influence on captured energy. The aperture
value cannot be changed to adjust the exposure, because it modifies the depth-of-field,
vignetting, and diffraction pattern, thus practically changes the scene between input
images. Instead, the optical filters, such as neutral density (ND) filters, can be mount
in front of the lens to limit the amount of irradiance at the sensor at a constant exposure
time. The ND filters are characterized by their optical density which defines the amount
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of light attenuation in logarithmic scale. In the response estimation framework, such
optical density can be used to calculate a simulated exposure time of captured images:

ti = t0 ·10Di , (3.9)

whereti is simulated exposure time of imagei captured through an optical filter of
densityDi calculated with respect to the true exposure timet0. If t0 is not known from
the camera specifications, it can be assumed equal to 1. One should make sure that
the optical filters are spatially uniform and equally reducethe intensity of all captured
wavelengths.

Following the analysis in [30], it can be suggested to acquire two images that are ex-
posed similarly and one that is considerably different. Additionally, when calibrating
a video camera one may capture a larger number of frames for each of the exposures.
Such a superfluous number of input images will reduce the influence of image noise on
the response estimation.

Absolute Photometric Calibration

The images of the calibration scene are input to the estimation framework from Sec-
tion 3.2.2 to obtain a camera response. For an RGB or multi-spectral camera, the
camera response has to be estimated for each color channel separately. Here, a camera
that captures monochromatic images with spectral efficiency corresponding to lumi-
nance is assumed. In case of an RGB camera, an approximation of luminanceY can be
calculated from color channels using RGB to XYZ color transform.

The relative luminance values obtained from the estimated response curve are linearly
proportional to the absolute luminance with a scale factor dependent on the exposure
parameters and the lens system. Absolute calibration is based on the acquisition of a
scene containing patches with known luminanceY. The scale factorf is determined
by minimizing relative error between known and captured luminance values:

Y = f · I−1(m). (3.10)

3.2.4 Example Calibration of HDR Video Cameras

The photometric calibration is demonstrated in this section on two HDR video cam-
eras: the Silicon Vision Lars III camera and the HDRC VGAx camera. The Jenop-
tik C14, a high-end, CCD based LDR camera (see Figure 3.3), isalso included for
comparison purposes. The Lars III sensor is an example of a locally auto-adaptive im-
age sensor [26]: the exposure is terminated for each individual pixel after one out of
12 possible exposure times (usually powers of 2). For every pixel, the camera returns
the amount of charge collected until the exposure was terminated as a 12-bit value and
a 4-bit time-stamp. The HDRC sensor is a logarithmic-type sensor [31] and the camera
outputs 10-bit values per pixel [27].
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Figure 3.3: Cameras used in our experiment: HDRC VGAx (lowerleft), Silicon Vision
Lars III (center), Jenoptik C14 (lower right), and Minolta LS-100 luminance meter
(top).

Estimation of Camera Response

To cover the expected dynamic range of calibrated cameras, in the presented case it
was necessary to acquire three scene setups with varied luminance characteristic (see
Figure 3.4): a scene with moderate illumination, the same scene with a strong light
source, and a light source with reflector shining directly towards the cameras. Stitch-
ing these three images together yields an input for the response estimation algorithm
covering a dynamic range of more than 8 orders of magnitude. Each scene setup has
been captured without any filter and with a×1.5 ND filter and a×10 ND filter. The
response of C14 camera was estimated using a series of 13 differently exposed images
of a GretagMacbeth ColorChecker.

The estimated responses of the three cameras are shown in Figure 3.5. The certainty
functions have been modeled using equation (3.6) such that maximum confidence is
assigned to the middle of operational luminance range and limits to zero at the camera
output levels dominated by noise. A single response curve has been estimated for the
monochromatic Lars III camera and separate curves have beendetermined for the three
color channels of the other cameras. As the raw sensor valuesof the HDRC camera
before Bayer interpolation have been available, the response curve for each channel
has been directly estimated from corresponding pixels in order to avoid possible inter-
polation artifacts.

Figure 3.5 shows that the response curves of the two HDR cameras both cover a con-
siderably wider range of luminance than the high-end LDR camera that covers a range
of about 3.5 orders of magnitude. The different shapes of theHDR response curves are
caused by their respective sensor technology and the encoding. The logarithmic HDRC
VGAx camera has the highest dynamic range (more than 8 ordersof magnitude), but
an offset in the A/D conversion makes the lower third of the 10-bit range unusable.
The multiple exposure values of the locally auto-adaptive Lars III camera are well vis-
ible as discontinuities in the response curve. Note that theluminance range is covered
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Figure 3.4: Three scene setups for the estimation of response curves (tone mapped for
presentation). The histogram shows the luminance distribution in the stitched images
for acquisition without filter, and using ND filters with×1.5 and×10 optical density.
This setup covers 8 orders of luminance magnitude.

continuously and gaps are only caused by the encoding. The camera covers a dynamic
range of about 5 orders of magnitude. Noise at the switching points between exposure
times is well visible.

Results of Photometric Calibration

The inverse of the estimated responses convert the camera output values into relative lu-
minance values. To perform an absolute calibration, the GretagMacbeth ColorChecker
chart has been acquired under 6 different illumination conditions. The luminance of
the gray patches was measured using a Minolta LS-100 luminance meter yielding a
total of 36 samples and an optimal scale factor was determined for each camera. The
accuracy of the absolute calibration for the 36 patches can be seen in Figure 3.6. The
calibrated camera luminance values are well aligned to the measured values proving
that the response curve recovery was accurate. The average relative error for these data
points quantifies the quality of the absolute calibration. For the HDRC camera, rel-
ative error in the luminance range of 1–10,000 cd/m2 is 13% while the relative error
for the Lars III camera in the luminance range of 10–1,000 cd/m2 amounts to 9.5%.
Note that these results can be obtained with a single acquisition. Using multiple expo-
sures, the C14 camera is capable of an average relative errorof below 7% in the range
0.1–25,000 cd/m2, thus giving the most accurate results.
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3.2.5 Quality of Luminance Measurement

The described procedure for photometric calibration of HDRcameras proved to be
successful, however the accuracy obtained for example HDR cameras is not very high.
Although one should not expect to match the measurement quality of a luminance
meter, still the relative error of the LDR camera is lower than of HDR cameras. Besides,
both HDR cameras keep the error below 10% only in the range of luminance that is
much narrower than their operational range. The low accuracy in low illumination is
mostly caused by noise in the camera and can be hardly improved in the calibration
process. On the other hand, the low accuracy in high luminance range can be affected
by the calibration process: a very bright scene was requiredto observe high camera
output values. The only possibility to get a bright enough scene was to directly capture
a light source, but the intensity of the light source might not have been stable during
the capture and an additional noise have been introduced to the estimation process.

To improve the results, the estimated response can be fit to ana priori function ap-
propriate for the given HDR sensor. Thus, for the HDRC camerathe parameters of
a logarithmic functiony j = a∗ log(x j)+ b are fit and for the decoded values1 of the
Lars III camera a linear functiony j = a∗ x j +b is used. The relative errors achieved
by the pure response estimation including absolute calibration and the function fit are
compared in Figure 3.7. The average relative error is equal to about 6% for the HDRC
camera and luminance values above 1 cd/m2. For the Lars III camera it is also about
6% for luminance values above 10 cd/m2. Especially for high luminance values above
10,000 cd/m2, the calibration via function fitting provides more accurate results. In
addition, the fitting approach allows to extrapolate the camera response for values
beyond the range of the calibration scene. To verify this, anextremely bright patch
(194,600 cd/m2 in the presented case) can be acquired using the calibrated response
of the HDR cameras and compared to the measurement of the light meter. Only the
readout from the HDRC camera derived via function fitting is reliable while the HDRC
response curve seems to be bogus in that luminance range. TheLars III camera reached
the saturation level and yielded arbitrary results. Likewise, this patch could not be
recorded with the available settings of the LDR camera.

3.2.6 Alternative Response Estimation Methods

In principle, three different approaches can be used to estimate the response of 8-bit
cameras ([6] provides a good survey, [32] gives a theoretical account of ambiguities
arising in the recovery of camera response from images takenat different exposures).
The method of Robertson et al. [28] has been selected, because of its unconstrained ap-
plicability to varied types of sensors in cameras. For completeness, the remaining two
methods are briefly discussed in view of possible application to photometric calibration
of HDR cameras.

1according to the data sheet, the 16-bit output value of Lars III camera is in fact a composite of a 12-bit
mantissam and a 4-bit exponent valuee; i.e. y j = m·2e.
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The algorithm developed by Debevec and Malik [12] is based onthe concept that a
particular pixel exposure is defined as a product of the irradiance at the film and the
exposure time, transferred by the camera response function. This concept is embedded
in an objective function which is minimized to determine thecamera response curve.
The objective function is additionally constrained by the assumption that the response
curve is smooth, which is essential for the minimization process. Whereas this assump-
tion is generally true for LDR cameras based on CCD technology, the response curve
is normally not smooth in locally autoadaptive HDR sensors.Furthermore, the process
of recovering the response curve is based on solving a set of linear equations. While
the size of the matrix representing these linear equations is reasonable for 8-bit data,
memory problems may occur for arbitrary precision data typical to HDR acquisition so
that extensive sub-sampling is required.

The method proposed by Mitsunaga and Nayar [13] computes a radiometric response
function approximated using a high-order polynomial without precise knowledge of the
exposures used. The refinement of the exposure times during the estimation process is
major advantage, however the process itself is limited to computation of the order of
the polynomial and its coefficients. The authors state that it is possible to represent vir-
tually any response curve using a polynomial. This fact is true for LDR cameras based
on a CCD sensor, however it is not possible to approximate thelogarithmic response
of some CMOS sensors in this manner. Polynomial approximation also assumes that
the response curve is continuous, which depends on the encoding.

Grossberg and Nayar [32] show how the radiometric response function can be related to
the histograms of non-registered images with different exposures. This enables to deal
with the scene and camera motion while the images are captured, under the condition
that the distribution of scene radiance does not change significantly between images.

3.2.7 Discussion

The ability to capture HDR data has a strong impact on variousapplications, because
the acquisition of dynamic sequences that can contain both very bright and dark lu-
minance (such as sun and deep shadows) at the same moment is unprecedented. Pho-
tometrically calibrated HDR contents offer further benefits. Perceptually enabled al-
gorithms employed in compression or tone mapping can appropriately simulate the
behavior of human visual system. Dynamic environment maps can be captured in real
time to faithfully convey the illumination conditions of the real world to rendering al-
gorithms. Some of such applications are discussed in Section 9.2. The results of global
illumination solutions can than be directly compared to thereal world measurements as
illustrated in Figure 9.1 in Section 9.1. The calibrated HDRvideo cameras can further
increase the efficiency of measuring appearance of complex materials in the form of
bi-directional reflectance distribution function (BRDF),Section 9.2.2.

With respect to the presented calibration methods, while the relative error achieved by
the function fitting approach is lower, the response estimation algorithm is useful to
obtain the exact shape of the camera response and to give confidence that the chosen
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a priori function is correct. It can also help to understand the behavior of the sensor,
especially if the encoding is unknown. The low precision of the measurements in
the luminance range below 10 cd/m2 is a clear limitation which can be explained by
the high noise level in the sensors. The quality of a high-endCCD camera such as
the Jenoptik C14 combined with traditional HDR recovery algorithms still cannot be
achieved consistently over the whole dynamic range of the HDR cameras.

The function fitting approach has strong advantages in the quality of the results and
the ability to extrapolate from the calibration data. The confidence in extrapolated
measurements is however limited and the error cannot be predicted because the ex-
act shape of the response function in this range is unknown. Finally, the accuracy of
the photometric calibration is not the only important quality measure. Depending on
the application, other issues such as the quantization of the luminance values might
have an important influence on the quality of the measurements and need to be further
investigated.

In Chapter 10 we provide more information on thepfscalibrationsoftware package
[33], which can be used for photometric calibration of both LDR and HDR cameras.
The package is available under the URL:
http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html
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Figure 3.5: The estimated response curves and corresponding weighting functions from
the certainty model (value 1.0 represents the full confidence in capture accuracy, 0.0
represents no confidence). The peaks of the weighting functions are centered at the
middle of the operational range of each camera.
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Figure 3.6: The results of absolute calibration. The estimated response curves were
fitted to the measurements of 6 gray patches of GretagMacbethColorChecker chart
under 6 different illumination conditions.
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Figure 3.7: Comparison of the relative errors in luminance measurement achieved by
the pure response estimation including absolute calibration and by the function fit.
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Chapter 4

HDR Image Quality

The performance of many imaging algorithms, such as image compression, is often a
function of visual quality. The visual quality can be most reliably measured in subjec-
tive studies, in which a group of people assigns quality scores to the presented video
or images. Such studies, however, are both tedious and expensive and often result
in high variance between observers. In many areas it is much more practical to use
instead objective quality metrics, which can estimate perceived quality without subjec-
tive judgements. This chapter gives a short classification of the available metrics and
describes in more detail a metric designed for comparing high dynamic range images.

4.1 Visual Metric Classification

Although numerous image comparison algorithms are classified as quality metrics, it
does not mean that they compute the same quality measure. Some metrics are better
suited for estimating quality of low-bandwidth video transmission, where large distor-
tions are common and acceptable, and other for compression of medical images, where
visual distortions must be avoided. Therefore, it is important to distinguish between all
kinds of visual metrics, and choose the one that is appropriate for a particular applica-
tion.

A high-level classification of the visual metrics is shown inFigure 4.1. Depending
whether a metric requires a non-distorted reference image,some limited statistics of
such an image or no image at all, it can be classified as a full-reference, limited-
reference and no-reference. Although there are extensive studies on the limited-reference
and no-reference metrics, majority of quality metrics require a reference image. No-
reference metrics are usually limited to a single type of distortion, such as JPEG blocky
artifacts or blurring, and cannot match in accuracy the full-reference metrics.

The simplest kind of the full-reference metrics are arithmetical measures, such as the
Peak-Signal-to-Noise Ratio (PSNR) or Mean-Squared-Error(MSE). Despite their sim-
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Figure 4.1: Classification of quality metrics.

plicity and known cases when they fail, these are the most commonly used metrics in
estimating performance of video compression. In fact the PSNR can give quite accu-
rate estimates of quality for video compression, comparable with much more complex
perceptually weighted metrics, mostly because video compression itself is driven by
visual models. The structural similarity metrics, such as SSIM [34], offer a trade-off
between a complexity of the perceptually-weighted metricsand the simplicity of the
arithmetic metrics. They combine local statistical measures of an image to compute
a quality estimate that achieves a good correlation with thequality measures found in
subjective studies.

The potentially most accurate metrics are those that model the human visual system
to predict perceivable distortions. Most of them are quite accurate at predicting just
noticeable distortions which are near the discrimination threshold of the human visual
system. The near-threshold metrics, such as VDP [35] or HDR-VDP, can quite pre-
cisely predict whether a human observer will spot any difference between two images
shown, but they cannot make a difference between the distortions that are far above the
threshold. For example they make little distinction between poor and extremely poor
quality video. This task is more suitable for the super-threshold metrics, which can
estimate not only presence, but also the magnitude of distortion [36, 37].

The metrics can be further divided into those that produce a single quality measure
(e.g., a numerical value) for an image or a video sequence andthose that produce a
distortion map, which estimates the local magnitude of distortion or probability of de-
tection (usually for each pixel). The performance of a metric that computes a single
quality measure is usually evaluated in comparison with thesubjective data, for exam-
ple from the LIVE image quality assessment database [38].
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This chapter does not cover the area of quality metrics in general, but focus on a par-
ticular metric designed especially for high dynamic range images.

4.2 A Visual Difference Predictor for HDR Images

Most of the objective quality metrics have been designed to operate on video and im-
ages that are to be displayed on CRT or LCD displays. While thisassumption seems to
be clearly justified in case of low-dynamic range images, it poses problems as new ap-
plications that operate on HDR data become more common. A perceptual HDR quality
metric could be used for the validation of the HDR image and video encodings. An-
other application may involve steering the computation in arealistic image synthesis
algorithm, where the amount of computation devoted to a particular region of the scene
would depend on the visibility of potential artifacts.

The HDR-VDP extends a well-known Visual Difference Predictor [35] to better cope
with high contrast images and a broad range of luminance conditions. The extensions
focus on the accurate modeling of visibility threshold under the assumption that an
observer can locally adapt to luminance levels of a scene. This makes the predictor
more conservative but also more reliable when scenes with significant differences of
luminance are analyzed. Such local adaptation is essentialfor a good reduction of
contrast visibility in HDR images, as a single HDR image can contain both dimly
illuminated interior and strong sunlight.

The data flow diagram of the HDR-VDP is shown in Figure 4.2. TheHDR-VDP re-
ceives a pair of images as an input (original and distorted, for example by image com-
pression) and generates a map of probability values, which indicates how likely the
differences between those two images are perceived. Both images should be scaled
in the units of luminance. In case of low-dynamic range images, pixel values should
be inverse gamma corrected and calibrated according to the maximum luminance of
the display device. In case of HDR images no such processing is necessary, however
luminance should be given in cd/m2.

Figure 4.2: Data flow diagram of the High Dynamic Range Visible Difference Predictor
(HDR-VDP)

The first three stages of HDR-VDP model behavior of the opticsand retina. Both a
reference and a test images are filtered by the Optical Transfer Function (OTF), which
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simulates light scattering in the cornea, lens, and retina.The OTF used in the HDR-
VDP is shown in Figure 4.3. Figure 4.4 demonstrates the effect of the OTF on an
HDR image with a relatively bright regions. HDR images can contain high luminance
objects (sun, lamps, brightly illuminated windows) that can significantly affect contrast
perception in the neighboring regions.
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Figure 4.3: Optical MTFs from the model of Deeley et al. [39] for different levels of
adaptation to luminance and pupil diameters (given in parenthesis).

Figure 4.4: The result of filtering and image with the opticaltransfer function (OTF)
of the human eye. The Memorial Church image courtesy of Paul Debevec.

To account for the nonlinear response of photoreceptors to light, the amplitude of the
signal is nonlinearly compressed and expressed in the unitsof Just Noticeable Differ-
ences (JND). Such non-linearity is very similar to the JND-encoding discussed in Sec-
tion 5.1.6, but is derived from the Contrast Sensitivity Function (CSF), used in the next
processing step. Because the HVS is less sensitive to low andhigh spatial frequencies,
in the next step a JND-scaled image is filtered by the CSF. Unlike the original VDP, the
HDR-VDP locally adapts the CSF filtering kernel depending onthe adaptation lumi-
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nance. The adaptation luminance shifts the CSF both horizontally and vertically. Since
the vertical shifts affecting the peak contrast sensitivity are already modelled by the
amplitude non-linearity, the CSF is normalized so that the peak has value 1, and only
horizontal shifts must be taken into account. The horizontal shifts of the CSF due to
adaptation luminance are shown in Figure 4.5.
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Figure 4.5: Family of normalized Contrast Sensitivity Functions (CSF) for different
adaptation levels. The peak sensitivity shifts towards lower frequencies as the lumi-
nance of adaptation decreases.

The OTF, amplitude non-linearity and the CSF filtering stepsare mostly responsible for
contrast reduction in the HVS. The next two computational blocks, the cortex transform
and visual masking, decompose the images into spatial and orientational channels and
predict perceivable differences in each channel separately. Phase uncertainty further
refines the prediction of masking by removing dependence of masking on the phase of
the signal. In the final error pooling stage the probabilities of visible differences are
summed up for all channels and a map of detection probabilities is generated.

4.2.1 Implementation

The source code of HDR-VDP is available under the GPL licenseand can be down-
loaded from the web pagehttp://hdrvdp.sourceforge.net/. It is integrated with
pfstoolspackage (refer to Chapter 10), which can read most of the HDR file formats.
The software provides a ready-to-use metric that can be usedin a broad range of dig-
ital imaging applications, ranging from validation of computer graphics algorithms to
detection of artifacts in compressed images.
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The detailed documentation of the HDR-VDP software can be found on the web page.
To give an impression how the software operates, the box below shows a typical usage
scenario:

vdp original.exr distorted.exr prediction.png

Predict differences between an originaloriginal.exr and distorted
distorted.exr images and create the visualization of the prediction in
prediction.png.



Chapter 5

HDR Image, Video and Texture
Compression

The bit-depth precision of majority of image and video formats can soon become in-
sufficient for the new generation of displays. The traditional image and video formats,
such as JPEG, PNG or MPEG, employ color spaces that fail to represent scenes of
dynamic range over 2 or 3 orders of magnitude and extended color gamut. The 8-bit-
per-color-channel encoding was more than sufficient when such formats were designed,
and the best CRT displays could achieve contrast ratio of 1:200 and their peak lumi-
nance did not exceed 100 cd/m2. Now, commercially available displays can show
contrast of 1:3,0001. The prototypes of HDR displays are capable of showing contrast
1:200,000 and have the peak luminance of 3,000 cd/m2(refer to Section 7.2). More-
over, the improvements of LED display backlight make it possible to achieve more
saturated colors and thus wider color gamut. These new advances in display technol-
ogy make essential that video and image compression formatsare extended to support
new displays.

Despite the diversity of display technologies (LCD, Plasma, DLP, etc.), the most pop-
ular image and video file formats are still device dependent.The gamma correction
non-linearity, employed in most color spaces used for compression, was originally de-
signed for the CRT displays [40]. When technology changes rapidly, developing stan-
dards based on the characteristics of the particular type ofdevices does not seem to be
appropriate.

In typical imaging pipelines, it is commonly assumed that the decoded images or video
are directly displayed. As the complexity and diversity of displays increase, it can
be expected that the future displays will employ additionalrendering step, in which
the dynamic range and color gamut is reduced to match the display capabilities (tone
mapping), the content is adapted to the viewing conditions (different rendering for

1For a single frame, as of 2007
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Figure 5.1: A range of perceptual effects that can be simulated based on HDR data. From left to right:
visual glare (see light scattering at the edges of the objects); motion blur can be correctly simulated
in linear luminance domain (right half); given absolute luminance values, color deficiency of night
(scotopic) vision can be simulated. The source images courtesy of Paul Debevec, Spheron VR, and
vr architects.

bright and dark room), additional effects and enhancementsare applied. Figure 5.1
demonstrates some effects that simulate the human visual system or a camera, that can
be added in real-time to the video stream [41].

High dynamic range (HDR) imaging is a very attractive way of capturing real world
appearance, since it assumes the preservation of complete and accurate luminance (or
spectral radiance) values that can be found in a scene. Each pixel is represented as a
triple of floating point values, which can range from 10−5 to 1010. Such a huge range
of values is dictated by both real world luminance levels andthe capabilities of the
human visual system (HVS), which can adapt to a broad range ofluminance levels,
ranging from scotopic (10−5 – 10 cd/m2) to photopic (10 – 106 cd/m2) conditions.
Obviously, floating point representation results in huge memory and storage require-
ments and is impractical for storage and transmission of images and video. Therefore
better techniques of encoding HDR pixel values are discussed in Section 5.1.

This chapter is intended to give an overview of the current state-of-the-art in the high-
fidelity image, video and texture coding. Section 5.2 gives an overview of the image
and Section 5.3 of the video formats that are intended to preserve higher fidelity. As
HDR formats have just started gaining popularity, it is important to provide backward
compatibility with the existing LDR formats. The schemes for backward compatible
compression of HDR images and video are described in Section5.4. Finally, Sec-
tion 5.5 reviews some recent texture compression schemes.

5.1 HDR Pixel Formats and Color Spaces

Choice of the color space and the pixel encoding used for image or video compression
has a great impact on the compression performance and capabilities of the encoding
format. While representing pixel values as a triple of 32-bitfloating point numbers
gives more than sufficient precision and good flexibility in data processing, such en-
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coding does not use memory efficiently and is not compatible with most image and
video compression standards. For this reason, several HDR pixel encoding and color
spaces are used in popular HDR image formats. This section gives an overview of these
pixel encodings.

5.1.1 Minifloat: 16-bit Floating Point Numbers

Graphics cards from nVidia and ATI can use more compact representation for floating
point numbers, known ashalf-precision float, fp16or S5E10. The S5E10 indicates that
the floating point number consist of one bit of sign, 5-bit exponent, and 10-bit mantissa,
as shown in Figure 5.2. Such 16-bit floating point formats is also used in the OpenEXR
image format (see Section 5.2.2).
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Figure 5.2: Red-green-blue component encoding using half-precision floating point
numbers

The half-precision float offers flexibility of the floating point numbers at the half stor-
age cost of the typical 32-bit floating point format. Floating point numbers are well
suited for encoding linear luminance and radiance values, as they can easily encom-
pass large dynamic ranges. One caveat of the half-precisionfloat format is that it can
represent numbers up to the maximum value 65,504, which is less than for instance
luminance of bright light sources. For this reason, the HDR images given in absolute
luminance or radiance units often need to be scaled down by a constant factor before
storing them in the half-precision float format.

5.1.2 RGBE: Common Exponent

TheRGBEpixel encoding is used in the Radiance file format, which willbe discussed
in Section 5.2.1. The RGBE pixel encoding represents colorsusing four bytes: the first
three bytes encode red, green and blue color channels, and the last byte is a common
exponent for all channels (see Figure 5.3). RGBE is essentially a custom floating point
representation of pixel values, which uses 8 bits to represent exponent and another 8
bits to represent mantissa (8E8). RGBE encoding takes advantage of the fact that all
color channels are strongly correlated in the RGB color spaces and their values are at
least of the same order of magnitude. Therefore there is no need to store a separate
exponent for each color channel.
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0 8 16 24 31
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Figure 5.3: 32-bit per pixel RGBE encoding

The conversion between from(R,G,B,E) bytes to red, green and blue trichromatic
color values(r,g,b) is done using the formulas:

(r,g,b) =











(R,G,B)+0.5
256

2E−128 exposure
Ew

if E 6= 0

(0,0,0) if E = 0

(5.1)

where per imageexposureparameter can be used to adjust absolute values andEw is
the efficacy of the white constant equal 179. Both these termsare used in the Radiance
file format but are often omitted in other implementations.

The inverse transformation is given by:

E =











⌈log2 (max{r,g,b})+128⌉ if (r,g,b) 6= 0

0 if (r,g,b) = 0

(R,G,B) =

⌊

256r
2E−128

⌋

(5.2)

where⌈·⌉ denotes rounding up to the nearest integer and⌊·⌋ rounding down to the
nearest integer.

5.1.3 LogLuv: Logarithmic encoding

One shortcoming of floating point numbers is that they are notoptimal for image com-
pression methods. This is partly because additional bits are required to encode man-
tissa and exponent separately, instead of a single integer value. Such representation,
although flexible, is not necessary for color data. Furthermore, precision error of float-
ing point numbers varies across the full range of possible values and is different than
the “precision” of our visual system. Therefore, better compression can be achieved
when integer numbers are used to encode HDR pixels.

0 1 16 24 31

Sign 15-bit logL 8-bit u 8-bit v

Figure 5.4: 32-bit per pixel LogLuv encoding

TheLogLuvpixel encoding [42] requires only integer numbers to encodethe full range
of luminance and color gamut that is visible to the human eye.It is an optional encoding
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in the TIFF library. This encoding benefits from the fact thatthe human eye is not
equally sensitive to all luminance ranges. In the dark we cansee a luminance difference
of a fraction of 1 cd/m2, while in the sunlight we need a difference of tens of cd/m2to
see a difference. This effect is often called luminance masking. But if, instead of
luminance, a logarithm of luminance is considered, the detectable threshold values do
not vary so much and a constant value can be a plausible approximation of the visible
threshold. Therefore, if a logarithm of luminance is encoded using integer numbers,
quantization errors roughly correspond to the visibility thresholds of the human visual
system, which is a desirable property for pixel encoding.

The 32-bit LogLuv encoding uses two bytes to encode luminance and another two
bytes to represent chrominance (see Figure 5.4). Chrominance is encoded using the
CIE 1976 Uniform Chromacity Scalesu′ v′:

u′ = 4X
X+15Y+3Z v′ = 9Y

X+15Y+3Z
(5.3)

which can be encoded using 8-bits:

u8bit = u′ ·410 v8bit = v′ ·410 (5.4)

Note that theu′ andv′ chromatices are used rather thanu∗ andv∗ of theL∗u∗v∗ color
space. Althoughu∗ andv∗ give better perceptual uniformity and predict loss of color
sensitivity at low light, they are strongly correlated withluminance. Such correlation
is undesired in image or video compression. Besides, theu∗ andv∗ chromatices could
reach high values for high luminance, which would be difficult to encode using only
eight bits. It is also important to note that the CIE 1976 Uniform Chromacity Scales
are only approximately perceptually uniform, and in fact the 8-bit encoding given in
Equation 5.4 may lead to just visible quantization errors, especially for blue and pink
hues. However, such artifacts should be hardly noticeable in complex images.

The LogLuv encoding has a variant which uses only 24 bits per pixel and still offers
sufficient precision. However, this format can be ineffective to compress using arith-
metic coding, due to discontinuities resulting from encoding two chrominance channels
with a single lookup value.

5.1.4 RGB Scale: low-complexity RGBE coding

The RGB Scale or the RGBS encoding simplifies the RGBE format (Section 5.1.2) to
avoid expensive exponential functions:

(r,g,b) = (R,G,B) ·16S (5.5)

The encoding was used in Valve’s game engine to store HDR textures and buffers
using 8-bit RGBA (three channels + alpha buffer) textures [43]. The disadvantage of
this approach is a limited dynamic range of about 6 log10 units.
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5.1.5 LogYuv: low-complexity LogLuv

For the applications, where the complexity of the CIE 1976 Uniform Chromacity
Scales is not acceptable, a simplified version of the LogLuv encoding (Section 5.1.3)
can be used:

(Y,u,v) =

(

log2Y,wb
b
Y
,wr

r
Y

)

, (5.6)

whereY is the luminance term computed as:

Y = wr r +wgg+wbb, (5.7)

and the constants are equalwr = 0.299,wg = 0.587,wb = 0.114. With non-zero and
positive inputr, g andb values in the range from 2−16 to 216, the log-luminanceY is
in the range [-16,16], and the chroma components are in the range [0,1] withu+v≤1.
Unlike LogLuv, this simplified encoding cannot be used to store color values outside
the red-green-blue color triangle given by the primaries. Such encoding was used for
high dynamic range texture compression [44].

5.1.6 JND steps: Perceptually uniform encoding

Most of the low dynamic range image or video formats use so calledgamma correction
to convert luminance or RGB spectral color intensity into integer numbers, which can
be latter encoded. Gamma correction is usually given in a form of the power function
intensity= signalγ (or signal= intensity(1/γ) for an inverse gamma correction), where
the value ofγ is between 1.8 and 2.2. Gamma correction was originally intended to
reduce camera noise and to control the current of the electron beam in CRT monitors
(for details on gamma correction, see [45]). Accidentally,light intensityvalues, after
being converted intosignal using the inverse gamma correction formula, correspond
usually well with our perception of lightness. Therefore such values are also well suited
for image encoding since the distortions caused by image compression are equally
distributed across the whole scale ofsignal values. In other words, alteringsignal
by the same amount for both small values and large values of signal should result in
the same magnitude of visible changes. Unfortunately, thisis only true for a limited
range of luminance values, in practice up to 100 cd/m2. This is because the response
characteristics of the human visual system (HVS) to luminance2 changes considerably
above 100 cd/m2. This is especially noticeable for HDR images, which can span
the luminance range from 10−5 to 1010 cd/m2. An ordinary gamma correction is not
sufficient in such case and a more elaborate model of luminance perception is needed.
This problem is solved by theJNDencoding, described below.

The JND encoding is a further improvement over theLogLuv encoding (see Sec-
tion 5.1.3), which takes into account more accurate characteristic of the human eye.
TheJND encoding can also be regarded as an extension of gamma correction to HDR

2HVS use both types of photoreceptors, cones and rods, in the range of luminance approximately from
0.01 to 10 cd/m2. Above 100 cd/m2only cones contribute to the visual response.
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Figure 5.5: 28-bit per pixel JND encoding

pixel values. The nameJND encoding is motivated by its design, which makes the
encoded values correlate with the Just Noticeable Differences (JND) of luminance.

The JND encoding requires two bytes to represent color and 12 bits toencode lumi-
nance (see Figure 5.5). Similar toLogLuvencoding, chroma is represented using the
u′ and v′ chromaticities as recommended by CIE 1976 Uniform Chromacity Scales
(UCS) diagram. Luma,l , is found from absolute luminance values,y [cd/m2], using
the formula:

lhdr(y) =























a·y if y< yl

b·yc+d if yl ≤ y< yh

e· log(y)+ f if y≥ yh

(5.8)

There is also a formula for the inverse conversion, from 12-bit luma to luminance:

y(lhdr) =























a′ · lhdr if lhdr < l l

b′(lhdr+d′)c′ if l l ≤ lhdr < lh

e′ ·exp( f ′ · lhdr) if lhdr ≥ lh

(5.9)

The constants are given in the table below:

a= 17.554 e= 209.16 a′ = 0.056968 e′ = 32.994

b= 826.81 f =−731.28 b′ = 7.3014e−30 f ′ = 0.0047811

c= 0.10013 yl = 5.6046 c′ = 9.9872 l l = 98.381

d =−884.17 yh = 10469 d′ = 884.17 lh = 1204.7

The above formulas have been derived from the luminance detection thresholds is such
a way, that the same difference of valuesl , regardless whether in a bright or in a dark re-
gion, corresponds to the same visible difference3. Neither luminance nor the logarithm
of luminance has this property, since the response of the human visual system to lumi-
nance is complex and non-linear. The values ofl lay in the range from 0 to 4,095 (12
bit integer) for the corresponding luminance values from 10−5 to 1010 cd/m2, which
is the range of luminance that the human eye can effectively see (although the val-
ues above 106 would mostly be useful for representing the luminance of bright light

3Derivation of this function can be found in [46]. The formulasare derived from the threshold versus
intensity characteristic measured for human subjects and fitted to the analytical model [47].
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sources). If desired, the values ofl can be rescaled to lower range, in order to encode
luminance using 10 or 11 bits. Such lower bit encodings should still offer quantization
errors below the visibility thresholds, especially for video encoding.

A useful property of the function given in Equation 5.8 is that it is smooth (C1-continuous)
and defined for the full positive range of luminance values, including the pointy= 0,
in which l = 0.
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Figure 5.6: Functions mapping physical luminancey to encoded luma valuesl .
JND Encoding – perceptual encoding of luminance; sRGB – nonlinearity (gamma
correction) used for the sRGB color space; logarithmic compression – logarithm of
luminance, rescaled to 12-bit integer range. Note that encoding high luminance values
using the sRGB nonlinearity (dashed line) would require significantly larger number of
bits than the perceptual encoding.

Function l(y) (Equation 5.8) is plotted in Figure 5.6 and labelled “JND encoding”.
Note that both formula and shape of theJND encoding is very similar to the nonlin-
earity (transfer function) used in the sRGB color space [48]. Both theJND encoding
and the sRGB nonlinearity follow similar curve on the plot, but theJND encoding is
more conservative (a steeper curve means that a luminance range is projected on a
larger number of discrete luma values, V, thus lowering quantization errors). sRGB
nonlinearity consist of two segments: a linear and a power function. So does theJND
encoding, but it additionally includes a logarithmic segment for the luminance values
greater than 1,420.7 (see Equation 5.8).

For comparison, Figure 5.6 also shows thelog luminance encoding, used in theLogLuv
TIFF format. The shape of the logarithmic function is significantly different from both
the sRGB non-linearity and theJND encoding. Although the logarithmic function
is a simple and often used approximation of the HVS response to the full range of
luminance, which adheres to the Weber-Fechner law, it is clear that such approximation
is very coarse and does not predict the loss of sensitivity for the low light conditions.

One difficulty that arises from the JND luminance encoding isthat the luminance must
be given in absolute units of cd/m2. This is necessary since the performance of the
HVS is affected by the absolute luminance levels and the contrast detection thresholds



5.1. HDR PIXEL FORMATS AND COLOR SPACES 53

OpenEXR (S5E10 float)

RGBE (8E8 float) LogLuv 32 (16-bit log)

-6 -4 -2  0  2  4  6  8  10
-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

luma (12 bit integer)

log luminance y [cd/m^2]

lo
g 

m
ax

im
um

 r
al

at
iv

e 
qu

an
t. 

er
ro

r

Figure 5.7: Comparison of the maximum quantization errors for different luminance
to luma encodings: JND encoding (12-bit integer) is given byEquation 5.8; RGBE is
an encoding used in the Radiance HDR format; 16-bit half is a 16-bit floating point
format used in OpenEXR; 32-bit LogLuv is a logarithmic luminance encoding used in
LogLuv TIFF format.

are significantly higher for low light conditions. The majorsource of this problem
are the existing HDR capture techniques, such as multi-exposure methods, which give
a measurement of relative luminance (luminance factor), but give no information on
absolute luminance levels. The conversion from relative toabsolute luminance units
is however very simple and requires multiplication of all XYZ color coordinates by a
single constant. Such a constant needs to be measured only once for a camera. The
measurement can be done by capturing a scene containing a uniform light source of
known luminance or a surface of measured luminance [29]. If such a measurement is
not possible, an approximate calibration of an image to absolute units, by assuming
typical luminance levels of some objects (e.g. the sky or a daylight illuminated wall),
is usually sufficient.

The maximum quantization errors for all luminance encodings described in this chap-
ter are shown in Figure 5.7. All but theJND encoding have approximately uniform
maximum quantization error across all visible luminance values. The edgy shape of
both RGBE and16-bit half encodings is caused by rounding of the mantissa. TheJND
encoding varies the maximum quantization error across the range to mimic loss of sen-
sitivity in the HVS for low light levels. This not only makes better use of the available
range of luma values, but also reduces invisible noise in very dark scenes, which would
otherwise be encoded. Such noise reduction can significantly improve image or video
compression.
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5.2 High Fidelity Image Formats

The need for image formats capable of encoding higher dynamic ranges was recog-
nized very early in several fields, such as computer graphics, medical imaging or film
scanning in the motion picture production. These led to several image formats, which
can be classified into three groups:

• Formats originally designed for high dynamic range images.The quantities they
store are usually floating points values of a linear radianceor luminance factor4.
There are several high-precision formats, such as Radiance’s RGBE, logLuv
TIFF and OpenEXR. These formats are lossless up to the precision of their pixel
representation.

• Formats designed to store as many bits as a particular sensorcan provide, for ex-
ample 12-bit for a film scanner. This group includes: DigitalPicture Exchange
DPX format used in the movie industry to store scanned negatives, DICOM for-
mat for medical images, and a variety of so calledRAW formats used in digital
cameras. All these formats use more than 8 bits to store luminance, but they
are usually not capable of storing such an extended dynamic range as the HDR
formats.

• Formats that store larger number of bits but are not necessary intended for HDR
images. Twelve or more bits can be stored in JPEG-2000 and TIFF files. All
these formats can easily encode HDR if they take advantage ofa pixel encoding
that can represent full visible range of luminance and colorgamut, such as those
described in Section 5.1.

Variety of formats and lack of standards hinders the transition from traditional output-
referred LDR formats to scene-referred HDR formats. The HDRformats (Radiance’s
RGBE, logLuv TIFF and OpenEXR) have not gained widespread acceptance mainly
because they offer only lossless compression resulting in huge files sizes. The most
successful OpenEXR format has been however integrated withseveral Open Source
and commercial applications, such as AdobeR© PhotoshopR© starting from the release
CS2. Other specialized formats, such as DPX, DICOM and cameras’ RAW formats,
usually do not allow storing as high dynamic range as the HDR formats. Since they are
designed to be used for a specific application, it is unlikelythat they will evolve into
general purpose image formats.

The following subsections describe the two most popular HDRimage formats: the
Radiance HDR and the OpenEXR format.

4For the explanation of luminance factor, refer to Section 2.1
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5.2.1 Radiance’s HDR Format

One of the first HDR image formats, which gained much popularity, was introduced
in 1989 into the Radiance rendering package5. Therefore, it is known as the Radiance
picture format and can be recognized by the file extensions .hdr or .pic. The file consist
of a short text header, followed by run-length encoded pixels. Pixels are encoded using
the XYZE or RGBE pixel formats, discussed in Section 5.1.2. The difference between
both formats is that the RGBE format uses red, green and blue primaries, while the
XYZE format uses the CIE 1931 XYZ primaries. As a result, the XYZE format can
encode the full visible color gamut, while the RGBE is limited to the chromaticities
that lie within the triangle formed by the red, green and bluecolor primaries. For more
details on this format, the reader should refer to [49] and [6, Sec. 3.3.1].

5.2.2 OpenEXR

The OpenEXR format or (the EXtended Range format), recognized by the file name
extension .exr, was made available with an open source C++ library in 2002 by Indus-
trial Light and Magic (seehttp://www.openexr.org/ and [50]). Before that date
the format was used internally by Industrial Light and Magicfor the purpose of spe-
cial effect production. The format is currently promoted asa special-effect industry
standard and many software packages already support it. Some features of this format
include:

• Support for 16-bit floating-point, 32-bit floating-point, and 32-bit integer pixels.

• Multiple lossless image compression algorithms. Some of the included codecs
can achieve 2:1 lossless compression ratios on images with film grain.

• Extensibility. New compression codecs and image types can easily be added
by extending the C++ classes included in the OpenEXR software distribution.
New image attributes (strings, vectors, integers, etc.) can be added to OpenEXR
image headers without affecting backward compatibility with existing OpenEXR
applications.

Although the OpenEXR file format offers several data types toencode channels, color
data is usually encoded with 16-bit floating point numbers, known as half-precision
floating point, discussed in Section 5.1.1.

5.3 High Fidelity Video Formats

The developments in the display and digital projection technologies motivated work on
high fidelity video formats. This section reviews recent advancements in this area.

5Radiance is an open source light simulation and realistic rendering package. Home page:http://
radsite.lbl.gov/radiance/
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5.3.1 Digital Motion Picture Production

Digital motion picture production involves processing higher dynamic range images
than normally found in standard imaging setups. Cinematographic cameras capture
the dynamic range up to 12 f-stops and the films are scanned to the 12-bit logarithmic
DPX format. Computer generated sequences are rendered in linear-luminance units
and stored using HDR file formats.

To standardize the formats used to exchange materials involved in the motion picture
production, the Science and Technology Council of the Academy of Motion Picture
Arts and Sciences formed an Image Interchange Framework committee. The com-
mittee is to define a conceptual framework, file formats and recommended practices
related to color management and exchange of digital images during motion picture
production and archiving. As of 2007, the standardization is an ongoing process and
an early overview of the proposal can be found in [51]. The proposed framework em-
ploys the OpenEXR HDR image format (refer to Section 5.2.2) for storage and the
Color Transformation Language for color profiling. Since this is going to be the first
device independent framework, which does not rely on output-referred formats, this
section mentions its major concepts.

The image interchange framework assumes that all original material, including scanned
film negatives, images from digital cameras, and 3D computergraphics are imported
into a common pixel format called “Academy Color Encoding Space” or ACES. The
ACES assumes unlimited color gamut and dynamic range. It is neither output-referred,
nor strictly scene-referred representation. It assumes that pixel values are approxi-
mately linear to radiance and luminance (as for most HDR file formats), but it does
not require that these values correspond to the actual physical color values found in
the original scenes. This is dictated by the common practices of film making, where
the colors of the original scene are intentionally altered.To display ACES images, two
color transforms needs to be applied: therendering transformgives desired “look”,
while the output device transformaccounts for differences between output devices,
such as preview monitors or film printers. Image editing and compositing visual ef-
fects is performed on the ACES images, stored in OpenEXR files. All color transforms
are specified using the Color Transformation Language (CTL).

While the framework is still under development, it introduces several appealing con-
cepts. The output device transform eliminates the dependency on the output device.
The rendering transform introduces a flexible “tone-mapping” step, which can be al-
tered to change the desired “look” of images. Finally, the ACES file format ensures
that no information is lost due to gamut clamping or insufficient precision of the pixel
format.

5.3.2 Digital Cinema

High fidelity image formats are required not only in the motion picture production
process, but also when the final version of a movie is distributed and shown in movie
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theatres. Analog movie projectors, which still offer outstanding resolution and larger
dynamic range than traditional displays, are being replaced with their digital counter-
parts, mostly because of much lower costs of movie distribution. The quality of digital
projection is found to be comparable with the highest quality analog projection, but
does not require expensive process of printing thousands offilm copies.

A consortium of movie studios formed Digital Cinema Initiatives or DCI with a goal
to establish a standard framework for digital movie distribution and projection. In
2007, the DCI released an updated version of the specification (v1.1). The specifi-
cation assumes that single frames are encoded at the resolution 2,048×1,080 (2K) at
24Hz or 48Hz, or 4,096×2,160 (4K) at 24Hz using JPEG2000. Pixels are represented
as the CIE 1931 XYZ absolute trichromatic color values, so thatY value corresponds
to luminance. Each trichromatic color value is normalized by the constant 52.37, com-
pressed with the power function of theγ = 2.6 and encoded on 12-bit. The value 52.37
is slightly higher than the peak luminance of a typical projector and sets the upper
threshold on the luminance that can be represented.

The specification takes great care of color data handling andmaking sure that the ex-
perience of digital cinema does not differ much from analog projection. This is man-
ifested in quite moderate frame-rate of 24Hz, which is typical to analog film. This
assumptions however, and in particular the choice of the peak luminance of 52.37
cd/m2and the step gamma function, makes the framework less suitable for high dy-
namic range movie projection.

5.3.3 MPEG for High-quality Content

The need for encoding high-fidelity video has been recently the focus of the Joint
Video Team (JVT), which works on the family of popular MPEG standards. The JVT
has recently added five new profiles intended for high-quality content to the MPEG4-
AVC/H.264 video coding standard [52]. The new profiles offerchroma channels en-
coding without subsampling and with the same precision as the luma channel, so called
4:4:4 video format coding, bit depths up to 14 bits per sampleand a set of supplemental
enhancement information (SEI) messages that describe the tone-mapping curve to use
to map higher bit-depth content to lower number of bits.

The new profiles offer possibility to use the extended gamut color spaces, defined by
IEC 61966-2-4 (xvYCC601 andxvYCC709) and ITU-R BT.1361. These color spaces are
also an optional encodings for the High-Definition Multimedia Interface (HDMI v1.3).
They can encode highly saturated colors, while maintainingbackward compatibility
with the color spaces used for video coding (BT.601 and BT.709). This was possible
since both BT.601 and BT.709 recommended using only the values within the range
from 16 to 235, thus allowing for undershoot and overshoot found in analog TV sig-
naling. Since such code-value margins are not necessary fordigital video, they can be
used to encode extended color gamut. Unfortunately, the newcolor space extends color
gamut only towards more saturated colors, while offering the same dynamic range as
the BT.601 and BT.709, therefore it is not suitable for encoding HDR content.
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5.3.4 HDR Extension of MPEG-4
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Figure 5.8: Simplified pipeline for the standard MPEG video encoding (black, solid) and proposed
extensions (italic, dashed) for encoding High Dynamic Range video. Note that edge blocks are
encoded together with DCT data in the HDR flow.

It was demonstrated [53] that the MPEG encoding standard, both the Advanced Sim-
ple Profile (ISO/IEC 14496-2) [54] and the Advanced Video Coding (ISO/IEC 14496-
10) [55], can be extended to handle HDR data. The scope of required changes to
MPEG-4 encoding is surprisingly modest. Figure 5.8 shows a simplified pipeline of
MPEG-4 encoding, together with proposed extensions. While astandard MPEG-4
encoder takes as input three 8-bit RGB color channels, the HDR encoder must be pro-
vided with pixel values in the absolute XYZ color space [7]. Such color space can
represent the full color gamut and the complete range of luminance the eye can adapt
to. Next pixel values are transformed to the color space thatimproves the efficiency of
encoding. MPEG-4 converts pixel values to one of the family of YCBCR color spaces,
which exhibit low correlation between color channels for a natural images. The pro-
posed extension uses instead the perceptually uniform HDR pixel encoding, described
in Section 5.1.6. The 11-bit, instead of 12-bit, encoding ofluma is used as it turns out
to be both conservative and easy to introduce to the existingMPEG-4 architecture.

Due to quantization of DCT coefficients, noisy artifacts mayappear near edges of high-
contrast objects. This problem is especially apparent for HDR video, in particular for
synthetic sequences, where the contrast tends to be higher than in natural LDR video.
This can be alleviated by encoding sharp-contrast edges in each 8×8 block separately
from the rest of the signal. An algorithm for such hybrid encoding can be found in
[53].

Additional examples and the demonstration video can be found on the project web
page:http://www.mpi-inf.mpg.de/resources/hdrvideo/index.html.

5.4 Backward Compatible Compression

Since the standard low-dynamic range (LDR) file formats for images and video, such
as JPEG or MPEG, have become widely adapted standards supported by almost all
software and hardware equipment dealing with digital imaging, it cannot be expected
that these formats will be immediately replaced with their HDR counterparts. To fa-
cilitate transition from the traditional to HDR imaging, there is a need for backward
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compatible HDR formats, that would be fully compatible withexisting LDR formats
and at the same time would support enhanced dynamic range andcolor gamut. More-
over, if such a format is to be successful and adopted by largepart of the market, the
overhead of HDR information must be very low, preferably below 30% of the LDR file
size. This is because very few consumers will have access to HDR technology, such
as HDR displays, at the beginning and the rest of the consumers will not accept dou-
bling the size of the file for the sake of the data they cannot take advantage of. Such
backward compatible encoding would also require that the original LDR content is not
modified. Although the compression of HDR can be improved if an LDR image can
be slightly altered, this would also be unacceptable for majority of applications where
it is crucial to preserve the original appearance of LDR content.

The following subsections present an overview of both existing and potential solutions
for backward compatible image and video encoding.

5.4.1 JPEG HDR

Spaulding et al. [56] showed that the dynamic range and colorgamut of typical sRGB
images can be extended using residual images. Their method is backward compatible
with the JPEG standard, but only considers images of moderate dynamic range. Ward
and Simmons [57] have proposed a backward-compatible extension of JPEG, which en-
ables compression of images of much higher dynamic range (JPEG HDR). JPEG HDR
is the extension of the JPEG format for storing HDR images that is backward-compatible
with an ordinary 8-bit JPEG. A JPEG HDR file contains a tone mapped version of
an HDR image and additionally a ratio (subband) image, whichcontains information
needed to restore the HDR image from the tone mapped image. The ratio image is
stored in the user-data space of JPEG markers, which are normally ignored by appli-
cations. This way, a naive application will always open the tone mapped version of an
image, whereas an HDR-aware application can retrieve the HDR image.

Tone Map HDR
Image

Compute Ratio
Image

Sub-sample
Ratio Image

JPEG DCT
compression

JPEG DCT
compression

Store Ratio
Image as

JPEG markers

HDR Image

JPEG file

Figure 5.9: Data flow of subband encoding in JPEG HDR format.

A data flow of the subband encoding is shown in Figure 5.9. An HDR image is first
tone mapped and compressed as an ordinary JPEG file. The same image is also used to
compute the ratio image, which stores a ratio between HDR andtone mapped image lu-
minance for each pixel. To improve encoding efficiency, the ratio image is sub-sampled
and encoded at lower resolution using the ordinary JPEG compression. The com-
pressed sub-band image is stored in the JPEG markers. To reduce the loss of informa-
tion due to sub-sampling the ratio image, two correction methods have been proposed:
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enhancing edges in a tone mapped image (so calledpre-correction) and synthesizing
high frequencies in the ratio image during up-sampling (so called post-correction).
Further details on the JPEG HDR compression can be found in [57] and [58].

5.4.2 Wavelet Compander

Li et al. [59] propose that HDR images can be encoded using only 8-bits, if they un-
dergo a reversible companding operation. They propose a multiscale wavelet architec-
ture, which can compress an HDR image to a lower bit-depth andlater expand it to ob-
tain a result that is close to the original HDR image. The information loss is reduced by
amplifying low amplitudes and high frequencies at the compression stage, so that they
survive the quantization step to the 8-bit LDR image. Such technique is conceptually
similar to thepre-correctionin JPEG HDR. Since the expansion is a fully symmetric
inverted process, the amplified signals are properly suppressed to their initial level in
the companded HDR image. To further reduce the information loss, the compressed
image is iteratively modified to improve the correlation of its subbands with respect to
the original HDR image. The authors observe a good visual quality of both the com-
pressed and companded images, but they admit that any guarantee concerning their
fidelity to tone mapped (i.e. undergoing just one compression iteration) and original
HDR images cannot be given. The obtained PNSR for the companded HDR image is
even worse than for ordinary LUT (Look-Up-Table) companding, however the results
of the multi-scale wavelet companding look visually better.

Given the requirements for a backward compatible image and video compression, the
lack of fidelity of tone mapped images is often not acceptable, since the original mate-
rial quality cannot be compromised. Another limitation of this technique is fixed tone
mapping operator. The emphasis on high frequencies at the compression step makes the
proposed framework less suitable for standard JPEG and MPEGtechniques, which use
the quantization matrices that are perceptually tuned to discard visually non-important
high frequencies. This is confirmed by relatively poor compression rates reported the
authors when they attempted to combine JPEG with their companding. It is not clear,
how the compander approach can be adopted for lossy HDR videocompression, in
which temporal coherence and computation efficiency must beguaranteed.

5.4.3 Backward Compatible HDR MPEG

Encoding of movies in high fidelity format is becoming more important as the quality
of consumer-level displays is starting to exceed the quality of available DVD or broad-
cast content. As discussed in Section 5.3.1, high fidelity content is available at the
movie production stage. However, to encode motion picturesusing traditional MPEG
compression, the movie must undergo processing called color grading. Part of this
process is the adjustment of tones (tone-mapping) and colors (gamut-mapping), so that
they can be displayed on majority of TV sets (refer to Figure 5.10). Although such
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Figure 5.10: The proposed backward compatible HDR DVD movieprocessing pipeline. The high
dynamic range content, provided by advanced cameras and CG rendering, is encoded in addition to
the low dynamic range (LDR) content in the video stream. The files compressed with the proposed
HDR MPEG method can play on existing and future HDR displays.

processing can produce high quality content for typical CRTand LCD displays, the
high quality information, from which advanced HDR displayscould benefit, is lost.

The HDR-MPEG encoding, similarly as the JPEG-HDR (refer to Section 5.4.1), com-
presses both LDR and HDR video stream and stores them in the same backward com-
patible movie file (see Figure 5.10). Depending on the capabilities of the display and
playback hardware or software, either LDR or HDR content is displayed. This way
HDR content can be added to the video stream at the moderate cost of about 30% of
the LDR stream size.

The complete data flow of the HDR-MPEG compression algorithmis shown in Fig-
ure 5.11. The encoder takes two sequences of HDR and LDR frames as input. The
LDR frames, intended for LDR devices, usually contain a tonemapped or gamut
mapped version of the original HDR sequence. The LDR frames are compressed us-
ing a standard MPEG encoder (MPEG encodein Figure 5.11) to produce a backward
compatible LDR stream. The LDR frames are then decoded to obtain a distorted (due
to lossy compression) LDR sequence, which is later used as a reference for the HDR
frames (seeMPEG decodein Figure 5.11).

Both the LDR and HDR frames are then converted to compatible color spaces, which
minimize differences between LDR and HDR colors. For the HDRpixels, the JND
encoding discussed in Section 5.1.6 is used. For the LDR pixels, the CIE 1976 Uniform
Chromacity Scales (Equations 5.3 and 5.4) are used for chrominance and the sRGB
non-linear transfer function is used to encode luminance.

The reconstruction function (seeFind reconstruction function in Figure 5.11) re-
duces the correlation between LDR and HDR pixels by giving the best prediction of
HDR pixels based on the values of LDR pixels. The residual frame is introduced to
store a difference between the original HDR values and the values predicted by the
reconstruction function.

To improve compression, invisible luminance and chrominance variations are removed
from the residual frame (seeFilter invisible noise in Figure 5.11). Such filtering simu-
lates the visual processing that is performed by the retina to predict the contrast detec-
tion threshold at which the eye does not see any differences.The contrast magnitudes
that are below this threshold are set to zero. An example of such filtering is shown in
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Figure 5.11: A data flow of the backward compatible HDR MPEG encoding. See text
for details.

Figure 5.12.

Finally, the pixel values of the residual frame are quantized (seeQuantize residual
frame in Figure 5.11) and compressed using a standard MPEG encoderinto a residual
stream. Both the reconstruction function and the quantization factors are compressed
using a lossless arithmetic encoding and stored in an auxiliary stream.

The encoding scheme was tested with a number of tone-mappingoperators, with and
without invisible noise filtering step, and compared to other HDR compression meth-
ods. The best performance was achieved for global tone-mapping operators, which do
not amplify high frequencies. As shown in Figure 5.13, the HDR-MPEG compression
performed worse then the HDR extension of MPEG-4 (refer to Section 5.3.4), labeled
asHDRV . This is because the HDRV encoding is not backward-compatible and there-
fore does not need to encode any information on an LDR stream.For the HDR VDP
and the UQI metrics, the JPEG HDR (refer to Section 5.4.1) performs almost the same
as the HDR MPEG for the pre-correction and the post-correction approach, but is worse
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Figure 5.12: Residual frame before (left) and after (center) filtering invisible noise.
Such filtering removes invisible information, while leaving important high frequency
details that are lost if ordinary low-pass filtering (downsampling) is used (right). Green
color denotes negative and gray positive values. The Memorial Church image courtesy
of Paul Debevec.

for the full-sampling, even though the HDR MPEG does not involve sub-sampling.
JPEG HDR performs slightly worse than the HDR-MPEG for the SNR metric.

More information on this project as well as the demonstration video can be found on
the project web page:http://www.mpii.mpg.de/resources/hdr/hdrmpeg/.

5.4.4 Scalable High Dynamic Range Video Coding from the JVT

The Joint Video Team (JVT), responsible for the family of MPEG standards, is consid-
ering several proposals for the scalable bit-depth coding.The scalable bit-depth coding
is equivalent to the backward-compatible coding (hence scalability) that can store HDR
data (hence enhanced bit-depth). This naming convention istaken from the spatial scal-
able coding that provides higher resolution and the temporal scalable coding that offers
higher frame-rate. The proposed extensions are conceptually similar to the JPEG HDR
introduced in Section 5.4.1 and the HDR MPEG described in Section 5.4.3. They en-
code a tone-mapped sequence using a backward-compatible 8-bit coding, a series of
coefficient for predicting HDR frames based on tone-mapped frames (inter-layer pre-
diction), and a residual stream that encodes prediction errors. In contrast to JPEG HDR
and HDR MPEG, the proposed schemes focus on computational efficiency, therefore
they use simplified color transforms and avoid expensive arithmetic operations.

One of the proposals [61] suggests using the following transform to predict the high dy-
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Figure 5.13: Comparison of lossy HDR compression algorithms. Metrics: VDP 75%
- HDR-VDP percentage of visibly different pixels at P=75%; UQI - Universal Qual-
ity Index [60]; SNR - Signal-to-Noise-Ratio for the JND-encoded luma (refer to Sec-
tion 5.1.6). The results are averaged for a set of images.

namic range pixel chroma and luma components based on a tone-mapped pixel value:

YHDR = α YLDR+o f f set,

CbHDR = α CbLDR+o f f set·
CbLDR,DC
YLDR,DC

,

CrHDR = α CrLDR+o f f set·
CrLDR,DC
YLDR,DC

(5.10)

where theα ando f f setare prediction coefficients stored for each block andYLDR,DC,
CbLDR,DC, CrLDR,DC are the DC portion (mean) of the luma and chroma components
in the LDR image block. The non-intuitive part of this transform is the presence of
luma component in the prediction ofCbHDR andCrHDR. Such normalizing luma factor
is necessary, since most color spaces utilized for video coding are not iso-luminant,
which means that they contain some luma information in theirchroma components.
The division by theYLDR,DC reduces the variance in chroma due to luma component.
The HDR MPEG coding solves this problem by employing approximately iso-luminant
CIE 1976 Uniform Chromacity Scales (Equations 5.3 and 5.4).
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5.5 High Dynamic Range Texture Compression

High dynamic range textures can significantly enhance realism in real-time rendering
using graphics hardware. This is, however, achieved at the cost of higher memory foot-
print, which can affect rendering performance. The bottleneck is both graphics card
memory and the bandwidth available for sending textures from external to graphics
card memory. Both these problems can be reduced if textures are efficiently com-
pressed prior to sending them to graphics card memory.

There exist several common techniques for compressing low dynamic range textures.
The S3TC texture compression scheme, also known as DXTC [62], has became a de
facto standard that is often implemented on graphics cards.It divides a texture into
4×4 blocks, then encodes each block using 64 bits, resulting in4 bits per pixel. Two
colors are selected as base colors and stored in 16 bits (red –5 bits, green – 6 bits, blue
– 5 bits). Then each pixel is encoded in 2 bits, which are used to linearly interpolate
between the two base colors. Unlike video or image compression, texture compression
schemes are always fixed-rate to allow random access to texels. They must be also
simple enough to offer very fast decoding and to be suitable for hardware implemen-
tation. Unfortunately a straightforward extension of the S3TC to larger number of bits
that could encode HDR textures results in visible quantization and blocking artifacts
[63], therefore more elaborate compression schemes are necessary.

Figure 5.14: Shapes used for coding chroma in a 4×4 texture block. From [44].

Munkberg et al. [44] extended the S3TC scheme for high dynamic range luminance
data and proposed an interesting approach to chroma encoding. The pixels are initially
transformed to the logYuv color space, described in Section 5.1.5. The luminance is
coded similarly as in the S3TC scheme, using two base log-luminance values encoded
in 8 bits and 16 (for a 4×4 block) 4-bit indexes used to interpolate between the base
values. The interpolation can be both uniform or non-uniform with smaller steps close
to the base values. The chroma channel is subsampled either horizontally or vertically,
halving the number of pixels to encode. Two base chroma colors are coded in 15 bits
each (8 bits foru and 7 bits forv) together with eight 2-bit indexes. Then instead of
using a straight line for interpolating between the two basecolors, Munkberg et al.
suggest to use one of the predefined shapes, shown in Figure 5.14. The two base colors
are used to fix the position of two vertices (solid vertices inthe figure), thus allowing
for shifting, scaling and rotation of the predefined shapes in theuv coordinates. Then
each chroma index indicates the vertex that should be used todecode chroma. An
example illustrating the difference between linear interpolation and shape transform
coding is shown in Figure 5.15. In overall, the Munkberg’s etal. compression scheme
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requires 128 bits per 4×4 block, thus 8 bits per pixel, instead of 48 bits required forthe
half precision floating point buffers (see Section 5.1.1).

Figure 5.15: Shape transforms can fit better to color distribution in a block than linear
interpolation. From [44].

Roimela et al. [63] propose to abandon the S3TC scheme and usethe properties of
the floating point numbers in their HDR texture compression method. Similarly as
Munkberg’s et al. scheme, the proposed encoding operates on4×4 blocks, each en-
coded in 128 bits or 8 bits per pixel. The first 72 bits are used to encode luminance. The
luminance of each pixel is encoded separately using 4 bits, with a common exponent (5
bits) and the number of leading zeros (3 bits) shared for eachpixel in a block. To com-
pute chroma pixels, red and blue color components are divided by luminance values.
Then, the chroma pixels are sub-sampled both horizontally and vertically, reducing the
number of color samples to 4. Each color component is quantized into seven bits, so
that 4 color samples× 2 color components× 7 bits can be encoded into the remaining
56 bits. Roimela’s et al. texture compression scheme locally adapts to the dynamic
range of a block, resulting in coarser quantization for highcontrast blocks and lower
quantization for the blocks in smooth regions. Another useful property is relatively
low complexity and decoding to the half-precision floating point numbers, which are
supported by graphics cards.

Both Munkberg’s et al. and Roimela’s et al. texture compression schemes require
modifications of the graphics hardware for the best performance. Therefore, it can be
expected that future work on HDR texture compression will focus on the schemes that
allow for efficient decoding on existing hardware using fragment programs.
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5.6 Conclusions

It is quite surprising that the well studied and improved over years general image and
video compression standards may turn out to be inadequate for new content and dis-
plays in the coming years. Although increasing the bit-depth of encoded images seems
to be the most apparent solution to this problem, it does not address the major issue:
how the encoded code-values should be mapped to the luminance levels produced by a
display. The ICC color profiles, commonly used for this purpose in low dynamic range
images, have been designed for reflective print colorimetryand are not suitable for high
contrast displays. The problem is even more difficult if the output device is unknown
and may vary from a low-contrast mobile display to a high-endlarge screen display.
To fully address this issue, not only the compression algorithms, but the entire imag-
ing pipeline, from acquisition to display-adaptive tone-mapping, must be redesigned.
High dynamic range pixel encodings (Section 5.1) offer a general purpose intermedi-
ate storage format, which can represent the colorimetrically calibrated images with no
display limitations. Such images could be displayed only onan ideal display, capable
of producing all physically feasible colors, which is unlikely to ever exist. Therefore,
the high dynamic range images must be adjusted to the actual display capabilities by
compressing its dynamic range, clipping excessively bright pixels, choosing the right
brightness level, so that all colors fit into the display color gamut. The tone-mapping
algorithms designed for that purpose are discussed in Chapter 6 of this book. Since
making such radical changes in the imaging pipeline would render the existing soft-
ware and hardware obsolete, it is important to ensure backward-compatibility of image
and video formats, as discussed in Section 5.4.

The specialized application areas that require higher image and video fidelity than of-
fered by a general purpose compression formats have alreadycome up with a custom
formats, such as Radiance RGBE or OpenEXR for computer graphics animation, or
DICOM for medical images, as discussed in Section 5.2. The proposals of the Image
Interchange Framework committee (Section 5.3.1) work on defining not only image
format, but also the entire imaging pipeline employed for digital motion picture pro-
duction. Another specialized area is texture compression (Section 5.5), which have
different requirements (fixed-rate coding, fast decoding)than general purpose image
compression. It can be expected that some advanced ideas from these specialized com-
pression formats will be incorporated in the future generalpurpose standards, such as
the family of MPEG or JPEG formats.
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Chapter 6

Tone Reproduction

The contrast and brightness range in typical HDR images exceeds capabilities of cur-
rent display devices or print. Thus, these media are inadequate to directly reproduce
the full range of captured light. Tone mapping is a techniquefor the purpose of reduc-
ing contrast and brightness in HDR images to enable their depiction on LDR devices.
The process of tone mapping is performed by a tone mapping operator.

Particular implementations of a tone mapping operator are varied and strongly depend
on a target application. A photographer, computer graphicsartist or a general user
will most probably like to simply obtain nice looking images. In such cases, one most
often expects a good reproduction of appearance of an original HDR scene on a display
device. In simulations or predictive rendering, the goals of tone mapping may be stated
more precisely: to obtain a perceptual brightness match between HDR scene and tone
mapped result, or to maintain equivalent object detection performance. In visualization
or inspection applications often the most important is to preserve as much of fine detail
information in an image as possible. Such a plurality of objectives lead to a large
number of different tone mapping operators.

In this chapter we present at first short overview of existingtone mapping operators.
Then we discuss the problem of tone mapping evaluation usingsubjective and objec-
tive methods. Finally, we discuss tone mapping extensions into temporal domain as
required to handle HDR video.

6.1 Tone Mapping Operators

Various tone mapping operators developed in recent years can be generalized as a trans-
fer function which takes luminance or color channels of an HDR scene as input and
processes it to output pixel intensities that can be displayed on LDR devices. The input
HDR image can be calibrated so that its luminance is expressed in SI units cd/m2 or it
may contain relative values which are linearly related to luminance (Section 3.2). The

69
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transfer function may be the same for all pixels in an image (global operator) or its
shape may depend on the luminance of neighboring pixels (local operator). In princi-
ple, all operators reduce the dynamic range of input data. Since most of the algorithms
process only luminance, color images have to be converted toa color space that decou-
ples luminance and chrominance, e.g.Yxy(refer to Chapter 2.2). After tone mapping,
theYxycolor space is converted to the original color space of the image. In such an in-
verse transform, the tone mapped intensities are used instead of the original luminance
as theY channel, while the chrominance is left unchanged.

6.1.1 Luminance Domain Operators

The most näıve approach to tone mapping is to “window” a part of luminance range in
an HDR image. That is to map a selected range of luminance using a linear transfer
function to a displayable range. Such an approach, however,renders dark parts of
image black and saturates light areas to white, thus removing the image details in the
areas. A basic sigmoid function:

L =
Y

Y+1
, (6.1)

maps the full range of scene luminanceY in the domain[0, inf) to displayable pixel
intensitiesL in the range of[0,1). Such a function assures that no image areas are
saturated or black, although contrast may be strongly compressed. Since the mapping
in equation (6.1) is the same for all pixels, it is an example of a global tone map-
ping operator. Other global operators include adaptive logarithmic mapping [64], the
sigmoid function derived from photographic process: photographic tone reproduction
(global) [65], a mapping inspired by the response of photoreceptors in the human eye:
photoreceptor [66], a function derived through histogram equalization [67]. The subtle
differences in tone mapped images using these operators areillustrated in Figure 6.1.
Usually, one obtains a good contrast mapping in the medium light levels and low con-
trast in the dark and light areas of an image. Therefore, intuitively, the most interesting
part of an image in terms of its contents should be mapped using the good contrast
range. The appropriate medium brightness level for the mapping is in many cases
automatically determined as a logarithmic average of luminance values in an image:

YA = exp

(

∑ log(Y+ ε)
N

)

− ε , (6.2)

whereY denotes luminance,N is the number of pixels in an image, andε denotes a
small constant representing the minimum luminance value toprevent 0 in logarithm.
TheYA value is then used to normalize image luminance prior to mapping with a trans-
fer function. For example, in equation (6.1) such a normalization would map the lu-
minance equal toYA to 0.5 intensity which is usually displayed as middle-gray (before
the gamma correction). TheYA is often called the adapting luminance, because such a
normalization is similar to the process of adaptation to light in human vision.
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linear logarithmic

sigmoid histogram eq.

Figure 6.1: Comparison of global transfer functions with linear mapping (standard
gamma correction with dynamic range clipping) given as the reference. The plot il-
lustrates how luminance values are mapped to the pixel intensities on a display. The
steepness of the curve determines the contrast in a selectedluminance range. Lumi-
nance values for which display intensities are close to 0 or 1are not transferred. Source
HDR image courtesy of Industrial Light & Magic.

6.1.2 Local Adaptation

While global transfer functions are simple and efficient methods of tone mapping, the
low contrast reproduction in dark and light areas is a disadvantage. To obtain a good
contrast reproduction in all areas of an image, the transferfunction can be locally ad-
justed to a medium brightness in each area:

L =
Y′

Y′
L +1

, (6.3)

whereY′ denotes HDR image luminance normalized by the globally adapting lumi-
nanceY′ = Y/YA andY′

L is the locally adapting luminance. The value of globally
adapting luminanceYA is constant for the whole image, while the locally adapting
luminanceY′

L is an average luminance in a predefined area centered around each tone
mapped pixel. Practically, theY′

L is computed by convolving the normalized image lu-
minanceY′ with a Gaussian kernel. The standard deviation of the kernelσ defines the
size of an area influencing the local adaptation and usually corresponds in pixels to 1
degree of visual angle. The mechanism of local adaptation isagain inspired by similar
processes occurring in the human eyes. Figure 6.2 illustrates the improvement in tone
mapping result through introduction of the local adaption.

The details are now well visible in dark and light areas of theimage. However, along
high contrast edges one can notice a strong artifact visibleas dark and light outlines
– the halo. The reason why such artifact appears is illustrated in Figure 6.3. Along a
high contrast edge the area of local adaptation includes both high and low luminance,
therefore the computed average in the area is inadequate forany of them. On the side
of high luminance the local adaptation is more and more under-estimated as the tone
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Figure 6.2: Tone mapping result with global, equation (6.1), and local adaptation, equa-
tion (6.3). The local adaptation (right) improves the reproduction of details in dark and
light image areas, but introduces halo artifacts along highcontrast edges.

bright outline

dark outline

Figure 6.3: The halo artifact along a high contrast edge (left) and the plots illustrating
the marked vertical line in tone mapped image (middle) and HDR image (right). Gaus-
sian blur (under-) over-estimates the local adaptation (red) near a high contrast edge
(green). Therefore the tone mapped image (blue) gets too bright (too dark) closer to
such an edge.

mapped pixels are closer to the edge, therefore equation (6.3) gradually computes much
higher intensities than appropriate. The reverse happens on the side of low luminance.
A larger blur kernel spreads the artifact over a larger area,while a smaller blur kernel
reduces the artifact but also reduces the reproduction of details.

6.1.3 Prevention of Halo Artifacts

Many image processing techniques have been researched to prevent the halo artifacts
out of which the notable solutions are automatic dodging andburning (photographic
tone reproduction (local) [65]) and the use of bilateral filtering instead of Gaussian
blur [68].

The automatic dodging and burning technique derives intuitively from the observation
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that a halo is caused by a too large adaptation area, Figure 6.3, but also a large area is
desired for a good reproduction of details. Therefore, the size of the local adaptation
area is adjusted individually for each pixel location such that it is as large as possible
but does not introduce halo. The halo artifact appears as soon as both very high and
very low luminance values exist in an adaptation area and significantly change the
estimated local adaptation. Therefore, by progressively increasing the adaptation area
for each pixel, the following test can detect the appearanceof halo:

|YL(x,y,σi)−YL(x,y,σi+1)|< ε . (6.4)

For each pixel, the size of the adaptation area, defined by thestandard deviation of
the Gaussian kernelσi , is progressively increased until the difference between the two
successive estimates is larger than a predefined thresholdε. The result of the Gaussian
blur for the largestσi that passed the test is then used for given pixel in equation (6.3).
The example of estimated adaptation areas is illustrated inFigure 6.4. The whole
process can be very efficiently implemented using the Gaussian pyramid structure as
described in [65].

Figure 6.4: Estimated adaptation areas for pixels marked asblue cross. In each case,
the green circle denotes the largest, thus the most optimal adaptation area. A slightly
larger areas denoted as red circles would change the local adaptation estimateYL more
than acceptable threshold in equation (6.4) and would introduce a halo artifact.

Bilateral filtering is an alternative technique to prevent halos [68]. The reason for halos,
Figure 6.3, can also be explained by the fact that the local adaptation for a pixel of high
luminance is incorrectly influenced by pixels of low luminance. Therefore, excluding
pixels of significantly different luminance from local adaptation estimation prevents
the appearance of halo in a similar way as in equation (6.4). The bilateral filter [69] is a
modification of the Gaussian filter which includes an appropriate penalizing function:

Yp
L = ∑

q∈N(P)

fσs(‖p−q‖) ·Yq ·gσr (|Y
p−Yq|). (6.5)

In the above equation,p denotes the location of the tone mapped pixel,q denotes pixel
locations in the neighborhoodN(p) of p. The first two terms of equation,fσs ·Y

q, define
Gaussian filtering with spatialσs. The last term,gσr , practically excludes from the
convolution those pixels whose luminance value differs from the tone mapped one by
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more thanσr . Both f andg are Gaussian functions, and luminance is usually expressed
in the logarithmic space for the purpose of such filtering. The bilateral filtering process
is shown in Figure 6.5.

f

g
x

x

Figure 6.5: Bilateral filtering of a similar scanline as in Figure 6.3, here marked in
magenta (left). The penalizing functiong (right plot) improves the estimation of the
local adaptation (red) by excluding pixels in the neighborhood f (magenta) whose lu-
minance value is outside the defined range (orange). Thus, the local adaptation for the
pixel marked with a cross (left image) is estimated only fromthe pixels in the area out-
lined in green, while the Gaussian blur would also include pixels in the area outlined
in red. The middle plot illustrates tone mapped pixel intensities resulting from bilateral
filtering.

Compared to the automatic dodging and burning, the bilateral filter better reproduces
details at the edges, because in most cases a relatively larger area is used for estimation
of local adaptation. Although the exact computation of equation (6.5) is very expensive,
a good approximation can be computed very efficiently [68, 70].

6.1.4 Segmentation Based Operators

An alternative approach to tone mapping, which is in a sense similar to the local adap-
tation techniques, is based on a fuzzy segmentation of an HDRimage into areas of
common and distinct illumination. Such algorithms focus onoptimizing the relations
of contrast or luminance between the segments while leavingthe relations of pixel in-
tensities within the segments unchanged or very simply transformed. The reduction
of dynamic range can be accomplished by optimizing the wholesegments because the
information within a segment is usually of low dynamic range, while the differences of
luminance level between the segments contribute to the highdynamic range. Unlike in
local adaptation approaches which are inspired by the behavior of photoreceptors in the
human eyes, the motivation here comes from the psychophysical theories of perception,
mainly Gestalt.

One example of such an approach is the lightness perception tone mapping [14]. The
algorithm is inspired by an anchoring theory of lightness perception [71] which com-
prehensively explains many characteristics of human visual system such as lightness
constancy and its spectacular failures which are importantin the perception of images.
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The principal concept of this theory is the perception of complex scenes in terms of
groups of consistent areas (frameworks). Such areas, following the Gestalt theorists,
are defined by the regions of common illumination. The key aspect of the image per-
ception is the estimation of lightness within each framework through the anchoring
to the luminance perceived as white, followed by the computation of the global light-
ness. Lightness is a perceptual quantity that assigns brightness to the perceived shades
of gray, and is judged relative to the brightness of a similarly illuminated area that
appears to be white.

In such segmentation approaches, the frameworks can be identified with an automatic
method for image decomposition [14] which derives from the principles of the anchor-
ing theory of lightness perception, or alternatively by a user guidance [72]. Corre-
spondingly, the local mapping of luminance to perceived scale of grays can be auto-
matically adjusted with a brightness adjustment method [14, 73] or manually.

The segmentation approaches mostly do not affect the local contrast and preserve the
natural colors of an HDR image due to the linear handling of luminance. The fuzzy
definition of segments assures that artifacts do not appear in the areas where distinct
illuminations mix. The strength of such operators is especially evident for difficult
shots of real world scenes which involve distinct regions with significantly different
luminance levels, Figure 6.6.

Figure 6.6: The lightness perception tone mapping operatorreduces the contrast in
HDR image (left) by decomposing the image into the areas of consistent illumination
(middle) and optimizing the contrast ratio between these areas (right). In the middle
image, blue and magenta illustrate the influence of two distinct frameworks and the
transition between the two colors mark fuzzy areas influenced by both frameworks.
The HDR image courtesy of SpheronVR.

6.1.5 Contrast Domain Operators

The tone mapping methods discussed so far perform the dynamic range reducing oper-
ations directly on luminance or on color channel intensities. However, one can observe
that an image with a wide range of luminance also contains a large range of contrast.
Therefore, as an alternative to luminance range compression, contrast magnitudes in
the image can be reduced. Since contrast conveys semanticalinformation in images,
such a control over contrast can be advantageous. For instance, small contrast usually
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represents the reflectance properties of surfaces, like texture, medium contrast often
defines the outlines of objects, and large contrast represents changes in illumination.
Particularly, large contrasts are in most cases the cause ofa high dynamic range. By
preserving small and medium contrasts, and reducing large contrasts, one can reduce
the dynamic range of illumination and at the same time preserve good visibility of de-
tails from the original HDR image. Such a contrast based processing gives a better
control over transferred image information than the luminance based operators. The
latter, however, give a better control over brightness mapping. In fact, it is hard to
impose a target luminance range for contrast based compression.

A typical contrast based tone mapping operator includes thefollowing steps. First, the
input luminance is converted to a contrast representation.The magnitudes of contrasts
are then modulated using a transfer function for contrast – the tone mapping step. Next,
the modulated contrast representation is integrated to recover the luminance informa-
tion, and such luminance is then scaled to fit the available dynamic range. Finally,
since the result of integration is calculated with an unknown offset, the brightness of
the tone mapped image is adjusted.

Contrast in tone mapping applications is most often measured as a logarithmic ratio of
luminance:

C= log
Yp

Yq , (6.6)

whereYp andYq denote luminance of adjacent pixel location. The contrast represen-
tation of an image is computed as a gradient of logY, since the logarithm of division is
equal to the difference of logarithms. For tone mapping, such a representation is often
multi-resolution to measure contrasts between adjacent pixels (full resolution) and ad-
jacent areas in an HDR image (coarser resolutions). The contrasts are then modulated
by a transfer function as for example in gradient domain compression [74]:

T(C) =
α
|C|

·

(

|C|
α

)β
. (6.7)

Given thatβ ∈ (0,1), such a function attenuates gradients that are stronger than α and
amplifies smaller ones. Thus, ifα is equal to medium contrasts in an image, equation
(6.7) reduces the dynamic range caused by large differencesin illumination and en-
hances fine scale details. More complex transfer functions are also possible including
for instance contrast equalization [75]. As the final step, the modulated contrast repre-
sentation of an HDR image has to be integrated in order to obtain intensities in a tone
mapped image. The integration step is performed by solving the Poisson equation and
the brightness adjustment step is left for manual setting bya user. The stages of the
contrast domain tone mapping process are illustrated in Figure 6.7.

6.2 Tone Mapping Studies with Human Subjects

The previous sections provide only an introduction to the general ideas behind the tone
mapping problem and the reader is referred to [6] for detailed descriptions of specific
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(a) HDR image, clipped (b) contrast representation (c) contrast transfer map (d) tone mapping result

Figure 6.7: Contrast domain tone mapping [74]. The HDR image(a) is transformed
to a contrast representation (b) which is multiplied by a contrast transfer function (c).
The contrast representation is then integrated to obtain a tone mapped image (d). In (b)
white denotes strong local contrast and black no contrast. In (c) black denotes strong
contrast attenuation and white marks no change in local contrast.

algorithms. Existing tone mapping operators can be furthergeneralized to a transfer
function in form of a “black box” which converts scene luminance to displayable pixel
intensities. While the universal goal of such a transfer function is to reduce the orig-
inal dynamic range and at the same time preserve the originalappearance of HDR, a
particular realization of it can be versatile and depends onthe objectives of a target
application. In many cases one may wish to simply obtain nicelooking images that re-
semble the original HDRs, but the requirements may also be more precise: perceptual
brightness match, good visibility of details, equivalent object detection performance in
tone mapped and corresponding HDR image, and so on. In view ofthe technical lim-
itations imposed by standard displays and other constraints related to particular image
observation conditions (ambient lighting, the screen resolution, the observer distance),
such requirements can only be met at the cost of other image properties. For instance,
if an available dynamic range is assigned to enable good visibility of details (local con-
trasts), there may not be enough dynamic range left to depictglobal contrast variations
in the scene (refer to Figure 6.8). The trade-off between these conflicting goals is often
balanced through an optimization process, but sometimes the design of an algorithm is
focused on the requirements and is oblivious to the side-effects. In the end, the overall
impact of image processing operations on the perceived image quality or fidelity to the
real world appearance is not thoroughly understood.

Evaluation of tone mapping operators is an active research area [76, 77, 78, 79], which
at the current stage is more focused on choosing correct psychophysical techniques than
on providing clear guidance as to how existing operators should be improved to produce
consistently high quality images. Many existing evaluation methods treat each tested
operator as a “black box” transfer function and compare its performance with respect to
images produced by other operators, without explaining thereasons underlying human
judgments. While some evaluation methods go one step furtherand attempt to analyze
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(a) adaptive logarithmic mapping (b) lightness perception tone mapping (c) contrast domain tone mapping

Figure 6.8: Different levels of detail visibility in tone mapping results.The increase in
detail visibility is obtained at the cost of contrasts between larger image areas. The
image (a) is the adaptive logarithmic mapping [64], (b) is the lightness perception tone
mapping [14] and (c) is the contrast domain tone mapping [75]. Image courtesy of
Byong Mok Oh.

the reproduction quality of overall brightness, global contrast, and details (in dark and
light image regions) [78, 79], but again they are focused on comparing which operator
is better for each of these tasks. Those studies do not provide any deeper analysis
as to how pixels of an HDR image have been transformed and whatthe impact of
such a transformation is on desired tone mapped image characteristics [80]. Another
important question is how the outcome of the transformationdepends on the particular
HDR image content.

In a vast majority of perceptual experiments with tone mapping only one set of param-
eters per operator and per HDR image is considered in order toreduce the number of
images that must be compared by subjects. The choice of the parameters may strongly
affect the appearance of tone mapped images and thus the operator performance in
the experiment [81]. Another common problem is averaging the experimental results
across subjects based on low-cross subject variability. This lack of variability can of-
ten be caused by the choices imposed on the subjects by the experiment design, which
does not offer any possibility of adjusting the image appearance to the subject’s real
preferences. The net result of published studies is that they often present contradic-
tory results even if the same HDR images are used. Clearly, this suggests that the tone
mapping evaluation methodology should be improved.

Instead of the “black box” tone mapping evaluation there aresome recent attempts
of “bottom-up” approach in which the goal is to identify the low-level tone mapping
characteristics that lead to perceptually attractive images [81, 82]. For this purpose the
subjective preference and fidelity with respect to the real world images is measured on
an HDR display for images produced by a generic operator, whose characteristic and
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parameters are well understood. The goal of such research isto find some universal
rules that facilitate a design of the operator that consistently produces preferred im-
age appearance. For example, Seetzen et al. [82] found that for a given display peak
luminance there is a preferred level of contrast, which whenexceeded leads to less pre-
ferred image appearance. The level of such optimal contrastincreases with the display
peak luminance. However, the preferred peak luminance should be below 6,000–7,000
cd/m2, regardless of contrast, due to discomfort glare in dim ambient environments
(the average surrounding luminance of 400–1,200 cd/m2 have been considered).

The correlation between image brightness and preferred contrast level has been also
confirmed by Yoshida et al. [81], which also suggests that theuse of these parame-
ters to control tone mapping may be difficult for the user. Based on this observation,
Yoshida et al. propose a better parameterization of a linearoperator in logarithmic
domain, in which parameters are more intuitive and can be partly estimated from im-
age characteristics. Their operator is controlled by two parameters:anchor whiteand
contrast. Theanchor whiteparameter is approximately consistent across subjects and
depends on images – it is set to a lower value if an image contains large self-luminous
objects. Thecontrastparameter is more subjective, and therefore users should beal-
lowed to adjust it. Yoshida et al. have shown that the parameters can be automatically
estimated for their operator based on an image characteristic to obtain a “best guess”
result. Thecontrastparameter can be predicted from the dynamic range of an image
(images of higher dynamic range must be reproduced with lower contrast), and thean-
chor whiteparameter is related to the image key value (although the prediction can be
unreliable if an image contains large self-luminous objects). The drawback of this ap-
proach is that the studied operator is very simple and does not deliver the image quality
obtained using the state-of-the-art algorithms discussedin Section 6.1. Therefore, it
remains to be seen whether more the advanced operators can benefit from the proposed
selection of parameters and an automatic estimation of their values as postulated in
[81]. The problems of anchor white selection and overall image brightness control in
terms of user preferences have been further addressed in [73].

Yoshida et al. have also investigated how the dynamic range and brightness of a dis-
play affects the preference for tone reproduction. For 14 simulated monitors of varying
brightness and dynamic range they did not find any major difference in the strategy
the subjects use to adjust images for LDR and HDR displays. However, they noticed
that the resulting images depend on a given task. If the goal is to find the best looking
image (preference), subjects tend to strongly enhance contrast (up to four times that of
the original image contrast), even at the cost of clipping a large portion of the darkest
pixels. On the other hand, when the task is to achieve the bestfidelity with respect
to a real-world scene, the subjects avoid clipping both in the dark and light parts of
an image and they do not extend contrast much above the contrast of an original im-
age. In both tasks, there is a tendency towards brighter images, which are achieved
by over-saturating the brightest pixels belonging to self-luminous objects. Yoshida et
al. have also compared the user’s preference for displays ofvarying luminance ranges.
The subjects prefer in the first order the displays that are bright, and in the second or-
der, the displays that have low minimum luminance. Again, while such findings give
useful insights how basic image display parameters affect the perceived image fidelity
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and preference, their integration to advanced tone mappingoperators is still an open
research question.

6.3 Objective Evaluation of Tone Mapping

In this section, instead of subjective analysis, an objective perceptual metric is con-
sidered to help in understanding how particular image characteristics, such as con-
trast or brightness, are distorted by tone mapping with respect to the original HDR
image. While objective metrics are usually less precise thandata derived directly in
psychophysical experiments, their big advantage is that a huge volume of images can
be efficiently analyzed. This is particularly important in tone mapping where image
characteristics affect the tone mapped image appearance even if the same operator is
used with consistently selected parameters [81].

The metric presented in this section is concerned with one well defined suprathresh-
old distortion: contrast compression due to tone mapping, and uses the knowledge of
human visual system to determine the perceived amount of such compression and to
estimate the impact of such distortions on perceived image quality. In the following
section contrast distortions due to tone mapping are characterized and then the anal-
ysis of such distortions is presented for selected tone mapping operators discussed in
Section 6.1.

6.3.1 Contrast Distortion in Tone Mapping

All successful tone mapping operators balance the tradeoffbetween plausible repro-
duction of the luminance range and preservation of details.One can argue that the pho-
tographic tone reproduction operator [65] best reproducesglobal contrast, while the
gradient domain compression [74] operator best preserves details. However, the accu-
racy of such statements may depend on the particular HDR image, and as concluded
by evaluations of tone mapping operators [79, 78], it is difficult for one tone mapping
operator to be well-suited to all types of images. Regardless of technique, each tone
mapping operator introduces a degree of distortion into theresulting LDR tone mapped
image. Drawing conclusions from previous evaluations and general observations, two
major contrast distortions can be identified that result from tone mapping:

Global Contrast Change the ratio between lightest and darkest areas of the HDR is
reduced in the LDR,

Detail Visibility Change (textures and contours) the high frequency contrast of the
HDR image becomes less prominent, disappears, or becomes exaggerated in the
LDR.

A significant Global Contrast Change is undesirable not onlyfor esthetic reasons, but
also because of changes in image understandability, despite good detail visibility. Cer-
tain specialized tone mapping operators assign a wider dynamic range to detailed re-
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gions to preserve textures and contours, which results in a narrower dynamic range
available for global luminance changes, decreasing the ratio between lightest and dark-
est areas. Detail Visibility Change occurs either because aregion becomes entirely
saturated or because an area is mapped to very few or very low brightness levels. The
second case is especially interesting from the perceptual point of view, because the
physical contrasts still exist in the LDR image, however thedetails are invisible to the
human observer. The illustration of detail visibility change is given in Figure 6.9.

A CB

Figure 6.9: The HDR image (A) contains subtle reflection on a surface of the cup.
A global tone mapping (B) reveals the coffee beans in the shadow but the reflection
details become indiscernible. This apparent loss of detailvisibility is predicted by the
metric and is marked with red color in image (C).

The goal of the objective metric is to determine the apparentdistortion in detail visi-
bility and global contrast change, which were introduced during the tone mapping of
HDR image, with the focus on the luminance compression aspect of the operators.
Instead of analyzing particular algorithms one by one, tonemapping is considered as
an unknown transformation applied to the luminance of an HDRimage, resulting in
an LDR image. The output of the metric consists of a single value representing the
global contrast change factor and a map representing the magnitude of change in detail
visibility. The units of the detail visibility map are Just Noticeable Differences (JND),
which allows to consider the visibility in the areas of an image and also permits to use
of this information for potential perceptually based corrections [83, 84].

For the details on the metric design the readers are referredto [83].

6.3.2 Analysis of Tone Mapping Algorithms

In this section, the aforementioned objective metric is used to analyze the performance
of 8 tone mapping methods in terms of Global Contrast Change and Detail Visibility
Change. The analysis was performed on a set of 18 HDR images with an average dy-
namic range of approximately 4 orders of magnitude and a resolution between 0.5 and
4 megapixels. The set contained a variety of scenes with differing lighting conditions
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and included panoramic images. The following tone mapping algorithms have been
tested: global (spatially uniform) – gamma correction(γ = 2.2), adaptive logarithmic
mapping [64], photographic tone reproduction (global) [65], photoreceptor [66] (Sec-
tion 6.1.1); and local (detail preserving algorithms) – photographic tone reproduction
(local) [65] (Section 6.1.3), bilateral filtering [68] (Section 6.1.3), lightness percep-
tion [14] (Section 6.1.4), gradient domain compression [74] (Section 6.1.5). The tone
mapped LDR images were obtained either from the authors of these methods or by
using publicly available implementationspfstmo(refer to Chapter 10). Tone mapping
parameters were fine tuned whenever default values did not produce satisfactory im-
ages.

The results of the Global Contrast Change analysis are summarized in Figure 6.10.
There is an apparent advantage of the photographic tone reproduction (local & global)
methods in conveying the global contrast impression almostwithout any change. These
methods were also among the top rated in other studies [78, 79]. In contrast the gra-
dient domain compression causes a severe decrease in the global contrast. Other local
methods perform moderately. Particularly, in case of the lightness perception model
the decrease of global contrast is caused by the optimization of difference in luminance
between the frameworks. The superior performance of the global methods is traded for
less efficient reproduction of details as observed in the further analysis.

global contrast change (log2 scale)

-3 -2 -1 0

gamma 2.2

adapt. logarithmic

gradient domain

bilateral filtering

lightness perc.

photogr. (local)

photogr. (global)

photoreceptor

Figure 6.10: The influence of various tone mapping operatorson the change of the
global contrast. The negative values denote the decrease inglobal contrast and 0 means
no change. The red bars show the median, whiskers denote 25th and 75th percentile of
data, and the red crosses are outliers.

The Details Visibility Change has been analyzed for two cases: the loss of detail visibil-
ity and the change in the magnitude of the detail visibility.The loss of detail visibility
describes the situation in which details have been visible in the HDR image but are
not perceivable in the tone mapped image. The change in the magnitude of detail vis-
ibility is considered only in the areas in which the details are visible both in the HDR
and in the tone mapped image. The average decrease and increase of the visibility are
calculated separately. Following previous studies [79], the analysis have been further
split into the dark and light image areas. To segment these areas, 33% of the darkest
pixels in an image has been assigned to the dark area, and 33% of the brightest pixels
to the light area. The results are summarized in Figures 6.11and 6.12. The results of
the increase in detail visibility are not shown because theycan be only observed for the
gradient domain compression.
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The analysis of Figure 6.12 indicates that the dynamic rangecompression and the
change in luminance levels lead to a decreased perception ofdetails in case of all op-
erators. The magnitude of change, however, is in most cases below 1 JND. This means
that the loss of detail visibility, largely observed in Figure 6.11, is unlikely caused by
the stark luminance range compression, but rather even a minor compression causes the
magnitudes of details to drop below the visibility threshold. This would suggest that
a minimal correction is sufficient to restore the visibility. The detail preserving tools
implemented in local tone mapping methods seem to perform well in light image ar-
eas, however the dark image areas are often not well reproduced with the exception of
the gradient domain compression and the adaptive logarithmic mapping. Notably, the
adaptive logarithmic mapping, which is a global operator, preserves details exception-
ally well in dark image areas. This advantage comes at the cost of a slightly higher loss
of details in light areas. The lightness perception tone mapping performs on par with
other local methods, being slightly advantageous in light image areas. The gradient
domain compression is particularly interesting, because the results of this detail pre-
serving method indicate both the increase and decrease in detail visibility while at the
same time the visibility of any details is not lost. Such behavior indicates good perfor-
mance of the contrast transfer function which attenuates large contrasts and increases
the small ones as explained in Section 6.1.5.

percentage of bright image area
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adapt. logarithmic
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photogr. (global)
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Figure 6.11: The influence of various tone mapping operatorson the loss of the detail
visibility. The analysis are split into dark (left) and light (right) image areas. The
percentage denotes the part of the dark/light image area in which details have been
visible in the HDR image but are not perceivable in the tone mapped image.

Overall, the better performance of the global tone mapping operators in the analysis of
Global Contrast Change is not surprising. However, the performance of the algorithms
in terms of Detail Visibility Change is very unstable acrossthe test images and there
is no obvious winner of the evaluation. Interestingly, the enhancements required to
improve the results do not necessarily need to be strong. While the discovery of a
new universal operator seems unlikely, such analysis motivates the development of
enhancement algorithms that could restore the missing information in tone mapped
images based on their HDR originals. Such enhancements can be obtained using colors
[83] or carefully shaped countershading profiles [84].
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Figure 6.12: The average decrease of the magnitude of detailvisibility caused by the
analyzed tone mapping operators. The analysis are split into dark (left) and light (right)
image areas. The average is calculated over the parts where details are visible both in
the HDR and in the tone mapped image. 0 denotes no change in visibility and 1 JND
denotes a visible change.

6.4 Temporal Aspects of Tone Reproduction

The tone mapping algorithms discussed so far have been designed for static images,
what in principle means that the illumination conditions and luminance levels are
assumed constant. In the HDR video, as also in the natural world, the illumination
changes. The human eyes adapt their response range to the current ambient light level.
Normally, the adaptation processes are mostly not noticed because the changes in the
illumination during the course of day and night are very slow. Sudden changes, how-
ever, cause visible loss in the sensitivity as illustrated in Figure 6.13. For instance,
when on a sunny day one immediately enters a dark theatre, theinterior is at first dark
and no details can be discerned – only after several seconds the silhouettes of objects
start to appear.

The adaptation of human eyes to light is a temporal process. The precise time course of
adaptation can be measured and is shown in Figure 6.14. The plots start with a sudden
change in illumination which results in loss of sensitivity. The sensitivity of both rods
and cones progresses asymptotically. During the dark adaptation, the process of cones
is faster but cones soon reach their maximum sensitivity. The sensitivity level is for
a moment constant because the rods still have not recovered from the strong illumi-
nation. With time, rods dominate the vision and continue theadaptation process until
the maximum sensitivity. The light adaptation in the scotopic range is extremely rapid
and nearly 75% of the process is accomplished in first 400ms. The cone system adapts
to light much slower and requires about 3 minutes to reach themaximum sensitivity
which then slightly decreases. Due to their asymptotic nature, the adaptation processes
are often approximated with the exponential function.

Similarly as in the natural world, the luminance values in the HDR video can signifi-
cantly change from frame to frame and cause unnatural brightness changes in the tone
mapping results. To prevent this, tone mapping operators for video implement mech-
anisms that are similar to the adaptation processes in humaneyes. The goal of these
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adapted state
adaptation to light

adaptation to dark

sudden change in illumination

adapted state

Figure 6.13: Visual experience in certain time intervals during the temporal adaptation
to light and to dark caused by a sudden change in illumination. The visibility improves
with time because the response range of photoreceptors adjusts to the medium illumi-
nation in the scene.

mechanisms is twofold: in principle they guarantee naturalappearance of light changes
in the video stream, but also they assure the temporal coherence between frames. The
temporal coherence is an important issue, because small changes in the luminance
distribution between video frames often influence the brightness of tone mapping re-
sult what in turn causes undesired brightness oscillationsin the displayed HDR video
stream. While the first goal may require faithful modelling oftemporal adaptation pro-
cesses in human vision, the temporal coherence can be achieved even by simple models
[86].

In the luminance based tone mapping algorithms, the light adaptation is usually mod-
eled using the adapting luminance term given in equation (6.2). To achieve temporal
coherence for video, instead of using the actual adapting luminanceYA for the dis-
played frame, a filtered valuēYA is used. In most implementations, the value ofȲA

changes approximately according to the adaptation processes in human vision, eventu-
ally reaching the actual value if the adapting luminance is stable for some time. The
adapting luminance is filtered using an exponential decay function [87]:

Ȳnew
A = ȲA+(YA−ȲA) · (1−e−

T
τ ), (6.8)

whereT is the discrete time step between the display of two frames, and τ is the time
constant describing the speed of the adaptation process. Depending on the required
faithfulness to the actual adaptation processes, the time constant can be one for all light
conditions, or can be different for rods and for cones, or even may depend on the pre-
adaptation processes [88]. Commonly chosen values for adaptation of rods and cones
are:

τrods= 0.4sec τcones= 0.1sec, (6.9)

and if only the temporal coherence is required, theτconesconstant is used. Further,
the time required to reach the fully adapted state depends also whether the observer is
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(a) dark adaptation, rods and cones
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(b) light adaptation − rods
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(c) light adaptation − cones
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Figure 6.14: Time course of dark adaptation (a) and light adaptation (b,c) as a function
of sensitivity. Higher threshold values indicate that the eyes are not well adapted thus
the sensitivity is low. Dark adaptation was to complete darkness, light adaptation to the
specified luminance levels. Plots after [85].

adapting to light or dark conditions. The values in equation(6.9) describe the adapta-
tion to light. For practical reasons the adaptation to dark is not simulated because the
full process takes up to tens of minutes as shown in Figure 6.14. Instead, the adapta-
tion is most often performed symmetrically neglecting the case of a longer adaptation
to dark conditions. The complete tone mapping solution for HDR video can be found
in [41] and in [27].

6.5 Conclusions

In view of the increasing availability of the HDR contents the problem of their pre-
sentation on conventional display devices is highly recognized. Different goals and
approaches led to the development of versatile algorithms.These algorithms have dif-
ferent properties which correspond to the specific requirements and applications. Fur-
thermore, due to the temporal incoherence certain methods cannot be used for the tone
mapping of video streams. A universal method has not been found so far, therefore the
choice of the tone mapping method should be based on the application requirements.
It is also not clear how to evaluate tone mapping operators interms of image quality,
because their performance depends strongly on the choice ofparameter values and the
actual HDR image content. The development of robust methodsthat could be used for
the automatic parameter tuning to obtain desirable image appearance is still an open
research question. Also, the problem of color appearance, which depends a great deal
on luminance level has not been researched too deeply.

With respect to the HDR video streams the choice of an appropriate tone mapping
method is usually a trade-off between the computational intensity and the quality of
dynamic range compression. The quality here is mainly assessed by a good local detail
visibility. The global tone mapping methods are very fast, but often lead to the loss
of local details due to an intensive dynamic range compression. Such methods should
be used whenever high efficiency is the main requirement of the target application.
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The adaptation mechanisms can be used to select the range of luminance values which
should obtain the best mapping. However when the quality is insufficient, local tone
mapping methods are necessary. The local detail enhancement methods provide a good
improvement to the global tone mapping methods still achieving good computational
performance.

The photometrically calibrated HDR video streams allow forthe prediction of the per-
ceptual effects such as reduced visual acuity and lack of color vision for the rod vision,
motion blur and glare (see Figure 9.2 and refer to Chapter 9.1). Such effects are typ-
ical to everyday perception of real-world scenes, but do notappear when observing a
display showing a tone mapped HDR video. Prediction of such effects and their simu-
lation can increase the realism of the presentation of HDR contents. On the other hand,
such a prediction may also be used to identify situations when a real-world observation
of scene would be impaired and to hint the tone mapping algorithm to focus on the
good detail reproduction there.

In Chapter 10 we provide more information on thepfstmosoftware package [33] con-
taining implementations of many state-of-the-art tone mapping described in this chap-
ter. The package is available under the URL:
http://www.mpi-inf.mpg.de/resources/tmo/
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Chapter 7

HDR Display Devices

In recent years we witness important developments in HDR display and projection
technology. In this chapter we discuss basic requirements imposed on this technol-
ogy from the standpoint of selected characteristics of the human visual system (HVS),
which are important in image perception. We give also examples of selected technical
solutions used in HDR display technology and we discuss their merits and limitations.

7.1 HDR Display Requirements

An ideal display device should not introduce any visible image quality degradation
with respect to the observation conditions for the real world scenes. This means that
technical capabilities of such an ultimate display device should outperform the limita-
tions imposed by the HVS. The following characteristics of the HVS are important in
image perception:

• The contrast sensitivity function (CSF), which determinesthe HVS ability to
resolve image patterns of various spatial frequencies. Thedisplay resolution
should enable to reproduce all spatial frequencies that canbe seen by the human
eye. The CSF for luminance and chrominance patterns should be considered,
but in practice the former one is the limiting factor becauseof higher the HVS
sensitivity to luminance.

• The threshold-versus-intensity (tvi) function, which describes the just noticeable
difference (JND) of luminance and chrominance that can be detected in the im-
age for given luminance adaptation conditions. In fact the tvi-function can be
derived by extracting the maximum sensitivity values from the family of CSFs,
which are measured for various background luminance. The quantization step in
luminance and chrominance encoding in the display should bebelow one JND
to avoid contouring (banding) artifacts that are visible inparticular when repro-
ducing smoothly changing image patterns.

89
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• The luminance range that can be simultaneously seen by the HVS for given adap-
tation conditions. The display dynamic range determined bythe minimum and
maximum luminance values should match the HVS capabilities. The dynamic
range decides about the maximum global contrast that can be reproduced by the
display.

• Color gamut seen by the HVS. The display primaries determinethe actual gamut
that can be reproduced in displayed images. The gamut also changes with the
display dynamic range.

• The field of view which affects the immersion experience and decides upon adap-
tation conditions. The visual field measured for binocular human vision extends
over 200 degrees (width)× 135 degrees (height).

An important question arises what are the limitations of current display technology
in terms of matching the just listed HVS characteristics that are important in image
perception?

The best match can be observed between the CSF and display resolution. Image pat-
terns of spatial frequency up to 50 cycles-per-degree (cpd)can be still reproduced on
the high-definition (HD) displays featuring the image resolution of 1,920× 1,080 pix-
els for the observer distance larger than 5 screen heights. Since even the high-contrast
luminance patterns of this spatial frequency are barely visible by the human eye, it can
be considered that the HD display technology matches the HVScapabilities in terms of
spatial pattern reproduction. In practical TV viewing conditions with significant ambi-
ent lighting it is often assumed that only patterns up to 30 cycles-per-degree (cpd) can
be seen and thus 3 screen heights is the recommended watchingdistance to take the
full advantage the HD image resolution. Note, that the watching distance effectively
defines the field of view covered by the display. The HD resolution is also sufficient
for brighter displays that might be available in the future because the shape of CSF
does not change significantly for adaptation luminance above 1,000 cd/m2 (refer to
Figure 4.5).

The quantization step in encoding physical luminance and chrominance values, which
can be reproduced by the display, obviously depends on its dynamic range. As we
discussed in Chapter 2.3 the HVS can simultaneously see the luminance range up to
4–5 orders of magnitude. For natural scenes, which feature even wider dynamic range,
an appropriate subset is selected through complex adaptation mechanisms. For dis-
play observation conditions such adaptation strongly depends on ambient light in the
surrounding environment as well as light emitted by the display itself. The resulting
adaptation anchors the range of simultaneously visible luminance and determines the
minimum and maximum luminance values that can be seen. Seetzen et al. [82] have
found for a darkened room the maximum luminance values that can be comfortably
seen is of the order 6,000–7,000 cd/m2. In such conditions the minimum luminance
that can be seen is of the order of 0.01 cd/m2. In practice, the display black level
is affected by the ambient light reflected in the display screen. As predicted by the
JND-space encoding (refer to Chapter 5.1.6) for such brightdisplays the quantization
artifacts are easier to see, which means that 8-bit encodingof such wide luminance
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range is not sufficient, and at least 10-bit encoding may be required (in fact it is safer to
assume even smaller quantization error as offered by 12–16-bit encoding). More than 8
bits is also required for chrominance encoding, in particular, for blue and purple colors
for the highest luminance levels.

For such a display specification and assumed dark environment the HVS performance
will be close to optimal and further increase of the display luminance range and as well
as reduction of the quantization error cannot improve this performance. In practice,
modern displays rarely meet such requirements: 8-bit quantization is predominant and
the ANSI contrast numbers as measured for black and white checkerboard are of the
order from 1:50 to 1:500, which is far from desirable 4–5 orders of magnitude. The
contrast specification provided by many display manufacturers is based on luminance
measurements for the full-on and full-off screens, which leads to strongly exaggerated
contrast values because light leakage from neighboring bright to dark regions is not
accounted for.

Recently, the so-called HDR display devices have been developed whose specification
approaches limits imposed by the HVS in terms of reproduced contrast and quantiza-
tion error. Two basic technologies have been used to achievethis goal: dual modulation
and laser projection. Dual modulation relies on optical multiplication of two indepen-
dently modulated representations of the same image. Effectively, the resulting image
contrast is a product of contrast achieved for each component image, while only stan-
dard 8-bit drivers are used to control pixel values. In laserprojectors the laser light is
scanned over the screen surfaces with light intensity directly modulated using 12–16-
bit drivers. In the following sections we briefly describe both technologies.

7.2 Dual-modulation Displays

In the basic design of a dual-modulation display the input HDR image is decomposed
into low resolutionbacklightimage and high resolutioncompensationimage as shown
in Figure 7.1. The requirement of precise alignment of pixels between the two images
can be relaxed due to blur in the backlight image, which does not contain high spatial
frequencies. Therefore, as the result of optical multiplication between backlight and
compensation images the achieved global contrast (low spatial frequency) is a product
of contrasts in both images, while the local pixel-to-pixelcontrast (high spatial fre-
quency) arises only from the compensation image. While this is not a problem for low
contrast image patterns, which are successfully reproduced even on traditional single-
modulator LDR displays, local pixel-to-pixel contrast reproduction in the proximity of
high-contrast edges may not be precise. Fortunately, the veiling glare effect caused by
imperfections of the human eye optics leads to polluting retinal photoreceptors, which
represent dark image regions with parasite light coming from bright regions. Thus,
the veiling glare makes impossible to see sharply such localpatterns of high contrast,
which effectively means that they do not have to be reproduced by the display. Obvi-
ously, high contrast between more distant image regions, which can be readily seen be
the eye, is faithfully reproduced.
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Figure 7.1: Decomposition of the source image (left) into the low-resolution backlight
image (middle) and the high-resolution compensation image. Images courtesy of Ger-
win Damberg, Helge Seetzen, Greg Ward of Dolby Canada and Wolfgang Heidrich and
Lorne Whitehead of the University of British Columbia.

The backlight and compensation images require special image processing so that their
multiplication results in the reconstruction of the original HDR image. The goal of
such image processing is to account for different image resolutions and the optical blur
in the backlight image. For this purpose the point-spread function (PSF) characterizing
this blur should be modeled for all pixels of the backlight image. The overall flow of
image processing in the dual-modulation display architecture is shown in Figure 7.2.
At first the square root function is used to compress the luminance contrast in the input
HDR image and then the resulting luminance image is downsampled to obtain the low
resolution backlight image. In the following step the PSF ismodelled for every pixel of
the backlight image, which simulates the light field (LFS) that effectively illuminates
the high resolution modulator. By dividing the input HDR image by the LFS the high
resolution compensation image is computed. Since the compensation image is 8-bit
encoded, some of its regions may be saturated, which resultsin undesirable detail loss.
Such saturation errors are analyzed and a close-loop control system is used to locally
increase the intensity of pixels in the backlight image to prevent such saturation. Fig-
ure 7.1 shows an example of backlight and compensation images resulting from such
image processing.

The dual-modulation technology has been successfully usedto build HDR projection
[89] and display systems [2], [27, Chapter 14]. In both casesstandard 8-bit LCD pan-
els have been used for modulation of the compensation image,and major construction
differences come from realization of the backlight modulator. For the projection sys-
tem developed by Damberg et al. [89] a passive low-resolution LCD modulators with a
fixed light source has been used. Figure 7.3 illustrates extensions introduced to a stan-
dard projection system with three transmissive LCD panels modulating RGB channels.
Three low resolution transmissive LCD panels have been placed next to the existing
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Figure 7.2: Image processing flow required to drive low- and high-resolution modu-
lators in HDR projection/display system. Image courtesy ofGerwin Damberg, Helge
Seetzen, Greg Ward of Dolby Canada and Wolfgang Heidrich andLorne Whitehead of
the University of British Columbia.

high resolution panels. Such a design enables very faithfulcolor reproduction and the
amount of blur can be controlled by changing the distances between each pair of low
and high resolution RGB panels. The low resolution of the backlight modulator leads
also to a better efficiency of light transmission because density of electronic compo-
nents and other blocking elements can be reduced [89]. Damberg et al. reported that in
their projection system they achieved 2,695:1 contrast, which is only by 5% lower than
the theoretical product of contrast reproduced by the low (1:18) and high (1:155) reso-
lution modulators. The authors experimented also with other projector architectures by
changing the order of high and low resolution panels, or using just a single low reso-
lution luminance modulator, which is placed between the X-Prism and the lens system
i.e., after the recombination of light modulated by the three high resolution RGB chan-
nels. The generic HDR projector architecture as proposed in[89] can be also used for
other projection technologies based on digital micro-mirror devices (DMD) and liquid
crystal on silicon (LCoS).

For HDR displays passive modulators have been used as well, but much better en-
ergy efficiency has been achieved using active backlight modulators based on a matrix
of independently modulated light emitting diodes (IMLED) [2]. Interestingly, such
spatially-varying backlit device is 3–5 times power efficient than uniform light em-
ployed in conventional LCD displays of similar brightness [27, Chapter 14]. Also, the
color gamut can be significantly expanded if different colorLED (e.g., integrated RGB
LED packages) are used instead of white light commonly used in conventional LCD
displays. Brightside Technologies developed a number of prototype HDR displays and
their recent DR37-P model features the maximum luminance upto 3,000 cd/m2 and
almost perfect black level of 0.015 cd/m2, which is limited only by parasite lighting
that may leak from neighboring active LEDs. This gives remarkable 1:200,000 global
contrast while the measured ANSI contrast for the black and white checkerboard pat-
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Figure 7.3: Example of implementation of a three LCD projector augmented with three
low-resolution backlight modulators for RGB color channels. Image courtesy of Ger-
win Damberg, Helge Seetzen, Greg Ward of Dolby Canada and Wolfgang Heidrich and
Lorne Whitehead of the University of British Columbia.

tern reaches 1:25,000. BrightSide DR37-P is the full HD 1,920 × 1,080 display with
37′′ screen diagonal. For the backlight device 1,200 LEDs have been used, which form
a symmetric hexagonal grid.

The use of IMLED matrices as backlight devices becomes more and more popular in
modern LCD TV sets. Just recently LG Philips introduced on the market a novel Local
Area Luminance Control in their 47′′ TV sets with LED backlight. Also, Samsung de-
veloped Local Dimming LED technology. For these technologies, the cooling problem
is the main issue that prevents installing more powerful LEDs in these displays and
making them full-fledged HDR displays. However, given that the number of lumens
per watt [lm/W] in modern LEDs increases at a higher rate than the Moore’s law, up-
grading Philips and Samsung technology to the specification(in terms of contrast and
luminance range) similar to the BrightSide’s HDR display may be a matter of relatively
short time. Also, it can be envisioned that with progressingminiaturization of small
high power light source arrays the active backlight technology will also be employed
for future projection systems.

Overall the dual-modulation technology offers an inexpensive way of doubling the bit
depth controlling the luminance or color channels, and achieving remarkable global
contrast and the maximum luminance specifications for HDR projection and display
systems.
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7.3 Laser Projection Systems

Laser projection technology is a promising alternative fordisplaying HDR images. For
example, the Scanning Laser Display Technology developed by JENOPTIK GmbH
[90] (refer to Figure 7.4) employs 12–16 bit image encoding and directly reproduces
bright and dark pixels through modulating the amplitude of RGB laser beams. Acousto-
optical modulators are used to transform the RGB video signal into optical information.
Then the three modulated laser beams are combined into one collinear beam, which is
transferred to the projection head (scanner unit) using an optical fiber, whose length can
be up to 30 meters. This separation of large laser system fromthe compact scanner unit
is very convenient for many applications. The modulated light arriving to the scanner
unit is deflected in the horizontal direction using a rotating head with 25 mirror facets,
which results in the scan angle of about 26◦. The vertical deflection of image scan-
lines is performed using a galvanometer mirror, which allows a full deflection angle of
about 20◦. The flying spot of the laser beam results in the very smooth transition be-
tween neighboring pixels (absence of visible pixel boundaries). The image resolution
can be easily enhanced, motion blur is practically invisible due to fast line scan time,
and native bit depth of amplitude modulation is very high. The image can be easily
projected on curved surfaces because of large depth of sharpness ranging from 5 to 50
meters and good color convergence. The full on/full off contrast ratio is higher than
1:100,000, which in simulation applications enables day and night simulation with the
same equipment. Another advantage of laser projection technology is enlarged color
gamut due to more saturated primaries determined by the wavelengths of lasers. With
extended contrast offered by the projector this leads to more saturated and vivid colors.
The fixed laser wavelengths and power control enables good temporal stability in color
reproduction.

Figure 7.4: Scanning laser projection display developed byJENOPTIK GmbH. Image
after Figure 1 in [90].
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The main disadvantage of laser projection technology is moderate peak luminance
level, which is limited by the power of laser diodes. Anotherlimiting factor is the
high cost of major system components such as lasers and lightmodulators. There is
some hope that the cost barriers will be overcome with increasing interests in laser
television (TV). In recent years the rapid progress in the development one-Watt and
higher power RGB lasers can be observed. Also, after a successful application of
digital micromirror device (DMD) technology in projectionsystems, new generation
of microelectro-mechanical systems (MEMS) have been successfully tested as linear
light modulator arrays. Grating light valve (GLV) and grating electro-mechanical sys-
tem (GEMS) technologies are much cheaper in manufacturing than the DMD devices
and much faster (× 1,000) in switching between their states. Effectively thisenables to
build just a high resolution column of pixels which through laser scanning and deflec-
tion of the reflected beam can build an image of very high resolution. For example, the
GLV switching speed of 20 nanoseconds is sufficient to build even four such images
during a conventional video frame, which enables to improvethe bit-depth for color
channels using temporal dithering approach (effectively asmaller quantization step
can be achieved through averaging of subsequently displayed images by the HVS).
For example, GEMS-based laser projection system demonstrated by the Eastman Ko-
dak Company featured superb image quality with wide color gamut, reduced motion
artifacts, HD resolution, and high native bit depth [91].

7.4 Conclusions

In this chapter we have outlined recent developments in HDR display technology. In
coming years rapid development of such technology can be anticipated and virtually
every month brings some announcements from the industry on launching on the market
new HDR projection and display devices. Digital cinema applications are the driving
force for the professional market of HDR projectors. For theconsumer market, the
dual-modulation technology with LCD displays becomes particularly attractive with
dropping prices of high power LEDs and improving their luminous efficiency. Also, in-
tegrated circuits (IC), which are capable of steering larger and larger LED matrices, are
actively developed due to increasing demands from other industries e.g., automotive.
It seems that at the current stage every major manufacturer is preparing for launching
LCD displays based on some form of local dimming technology to deepen the black
level of the display. The availability of energy efficient LEDs, which feature high lumi-
nous power, will improve the image reproduction in bright regions without imposing
excessive demands on the display cooling system. In such situation the main problem,
which we discuss in the next chapter, is to deliver HDR content that fully can exploit
the capabilities of modern display technology.



Chapter 8

LDR2HDR: Recovering
Dynamic Range in Legacy
Content

Historically CRT display devices have been predominantly used to render digital con-
tent and their capabilities in terms of reproduced contrast(typically up to 1:100) and
luminance range (typically 1–100 cd/m2) have a profound impact on image and video
formats, which have been specifically tailored for these capabilities. In such display-
referred LDR formats information for every pixel is encodeddirectly in a ready-to-
use format with the goal that reproduced images should “lookgood” on any device
and should not require any further processing. This strategy of digital content storage
turned out to be far from optimal with increasing diversity of display and projection
technologies, which are capable of reproducing wider contrast ranges (typically up to
1:400 for modern LCD and plasma displays), feature more profound black levels and
maximum luminance values, and improve image sharpness. Forthese technologies the
precision deficiency in existing image and video formats mayresult in visually dis-
turbing quantization artifacts, which modern LCD displayscan practically eliminate
through on-line decontouring and bit-depth expansion (refer to Section 8.1).

Such simple means are not sufficient any more for full-fledgedHDR displays such
as Brightside DR37-P (refer to Section 7.2). For such displays recovering HDR in-
formation in legacy LDR images and video is required, which is often called inverse
tone mapping or simply LDR2HDR. The main problem here is to find non-linearity of
contrast compressing function applied to each LDR image andto overcome the quan-
tization errors in the recovered HDR image. Another important problem is restoring
(inpainting) image details in highlights, light sources, and deep shadows, which are
typically clipped in LDR images, but can be easily displayable on HDR displays.

The LDR2HDR problem can be formally stated as the reproduction of real-world lu-
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minance values for every pixel in an LDR image. Such stated problem without making
extra assumptions concerning the image capturing system aswell as captured scene
itself is ill-posed and in general case cannot be solved in anautomatic way. The first
unknown factor on the way of light from the scene towards camera sensor is the lens
system. The direct illumination in the scene that should be registered for each sensor
pixel is polluted through indirect lighting scattered in the camera optics due to veiling
glare and lens flare effects. Another important factor is thecamera sensor response,
which can be a complex-shaped function that is difficult to recover faithfully from a
single LDR image. The captured image is polluted by the sensor noise, which makes
dark pixels less reliable. Information is lost completely for excessively exposed and
thus saturated pixels. Finally, the raw sensor image usually undergoes sophisticated
image enhancing, sharpening, and tone mapping (possible further pixel clipping both
in dark and light image regions) using proprietary and generally unknown algorithms
before its encoding in any standard format. All these factors make the task of precise
scene luminance map reconstruction very difficult. In practice, the goal of LDR2HDR
processing is formulated less strictly in terms of achieving visually plausible image ap-
pearance on an HDR display. We summarize existing solutions, which can contribute
to dynamic range expansion and are suitable for legacy videoand images:

• Bit-depth expansion and decontouring techniques (Section8.1),

• Reversing tone mapped curve in LDR images (Section 8.2),

• Recovering camera response curve from a single LDR image (Section 8.3),

• Recovering (inpainting) image details in saturated shadow, highlight, and light
source regions (Section 8.4),

• Handling video on-the-fly (Section 8.5),

• Taking advantage of image artifacts due to acquisition problems for recovering
useful HDR information (Section 8.6).

In the following sections we discuss the problem of upgrading the existing LDR image
and video content to make it suitable for HDR display and projection systems such
as those discussed Chapter 7. We focus mostly on restoring luminance component.
We do not cover another important problem of extending colorgamut, e.g., extending
chromaticity values toward higher saturation, without changing the hue as required for
projectors and displays with color primaries based on lasers and LEDs. Such problems
are partially discussed in the literature on gamut expansion. Also, we do not address
the problem of quantized colors restoration, which is in particular a difficult task when
the quantization method is not known a priori [92].

8.1 Bit-depth Expansion and Decontouring Techniques

In many traditional LDR imaging pipelines, usually based on24 bits/pixel, there are
often some components which impose limitations on the number of bits per pixel. For
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example, in DVD applications tailored for the CRT displays the compressed image
quality is effectively equivalent to 6-bit signal because information from the two least
significant bits in the original 8-bit encoding is usually removed due to the quantization
errors. Note that for new generation LCDs, which are very bright and feature little
noise, 10-bit accuracy of internal processing is often required so that the analog signal,
which steers the liquid crystals can reproduce the smallestcontrast details that the
human eye can perceive. It should be noted that this conservative requirement concerns
only the spatial frequencies of 4–8 cpd and for other spatialfrequencies a lower number
bits is sufficient (e.g., 4 bits for spatial frequencies greater than 27 cpd) [93]. This is
an important change with respect to the CRT technology, which required only 6–8-
bit accuracy due to lower luminance levels (lower eye sensitivity for contrast), more
blurry and noisy pixels (more visual masking suppressing the visibility of low contrast
details). Excessively limited bit-depth obviously results in loss of low amplitude details
that are below the corresponding quantization error, but could be potentially visible
on a high quality display device. Another visual consequence of limited bit-depth
is contouring, which forms false contours (also called banding artifacts) in smooth
gradient regions (such contouring for chromatic channels is often called posterization).
We discuss two types of techniques designed to reduce these artifacts:

• Pre-processing techniques in which the high-bit depth reference image is avail-
able and it can be used to modify the low bit-depth image version by adding noise
or amplifying its low amplitude features, so that this information can survive the
image quantization and can be recovered at the display stage. We describe briefly
bit-depth expansion (BDE) and compander techniques, whichbelong to this cat-
egory.

• Post-processing techniques for which the only available information is the low
bit-depth image and the main goal is removing existing contouring artifacts (de-
contouring). We outline adaptive filtering, coring, and predictive cancellation
techniques, which are examples of post-processing techniques. These techniques
are often implemented in hardware installed in modern LCD and plasma TVs to
achieve real-time performance.

BDE techniques are designed specifically to achieve higher perceived bit depth quality
than it is physically available. As in dithering techniques, usually the BDE techniques
rely on adding imperceptible spatiotemporal noise to an image prior to the quantization
step. Intensity averaging in the optics of display and humaneye leads to recovering in-
formation below the quantization step. Modern BDE techniques tune a micro-dither
amplitude to obtain a low-spatial frequency flicker from mutually high-pass spatial and
temporal noise and achieve 10-bit perceived quality on 8 bit-driver LCDs [94]. In de-
signing power spectral density and amplitude characteristics of the noise, it is important
to take into account the knowledge of human visual system, sothat the noise remains
invisible. Otherwise, perceptible noise would not only degrade the visual quality, but
additionally could mask the low amplitude image details, which is just the opposite ef-
fect to the fundamental goal of BDE techniques. The noise visibility can be kept under
control by setting the noise amplitude below thresholds predicted by spatio-temporal
contrast sensitivity function (CSF). Also, the spectral density noise characteristics can
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be effectively pushed to higher, less perceptible spatial and temporal frequencies. An-
other factor that should be considered in evaluation of noise visibility is increasing the
eye sensitivity to contrast for modern display devices due to much brighter images with
respect to CRT devices.

Li et al. [59] propose a wavelet multiband technique for the compression of an high bit-
depth image into an low bit-depth image and then the expansion of its dynamic range
back (the so-called compander). The information loss is reduced by amplifying (pre-
distorting) low amplitudes and high frequencies at the compression stage, so that they
survive the quantization step to the 8-bit LDR image. Since the bit-depth expansion
is a fully symmetric inverted process, the amplified signalsare suppressed back to
their initial level in the companded high bit-depth image. The authors observe that
their compander leads to a good quality reconstruction of HDR images based just on
8-bit LDR images, whose visual quality is also acceptable. However, it seems that
this technique has more potential for HDR image compressionrather than pure bit-
depth expansion. We discuss the compression aspect of this technique in more detail
in Section 5.4.2.

When higher bit-depth information is not available anymore,which is often the case
for legacy content, low-amplitude details cannot be reconstructed, and post-processing
is focused on removing false contours [93, 95]. Adaptive filtering relies on smoothing
contouring artifacts without introducing excessive blur to an image. For example bi-
lateral filtering can be used for this purpose by removing from the image information
of high frequency and low amplitude. This can be achieved by setting the intensity
domain parameters of Gaussian filter tuned to expected contouring contrast and limit-
ing the spatial Gaussian filter support to few neighboring pixels. Coring techniques are
essentially based on the same principle, but offer more control over high frequency de-
tails filtering through multiband image representation [96]. Filtering is applied only to
a couple of high frequency bands and its strength is smoothlydecreasing towards lower
frequency bands. In adaptive filtering and coring methods details of low amplitude and
high frequency may be lost, which may affect the visual imagequality. For example,
excessive smoothing of the human skin texture may lead to itsunnatural plastic appear-
ance, which is highly undesirable effect for any commercialbroadcasting and display
system.

In predictive cancellation the idea is to estimate the quantization error based on input
low bit-depth image and compensating for this error prior tothe image display. To
achieve this goal, the low bit-depth imageP undergoes low-pass filtering, which re-
sults in low-spatial frequency imageL whose pixels have higher precision than inP
due to averaging (refer to Figure 8.1). Of course, this precision gain inL is obtained
only for slowly changing signals, at expense of original spatial resolution atP. Now,
when the quantization operatorQ with the same bit-depth accuracy as inP is applied
to L, the differenceE =Q(L)−L approximates the quantization error inherent forP,
but only for low spatial frequencies. Then, by subtracting the errorE from P the most
objectionable contouring due to slowly changing image gradients is removed. At the
same time, potential contouring at higher spatial frequencies remains intact, but here
the eye sensitivity to contrast is lower as predicted by the CSF. Also, in the high con-
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trast image regions with significant high spatial frequencycontent (e.g., some texture
patterns) visual masking can further help in hiding contouring artifacts.

Predictive cancellation

Figure 8.1: Predictive cancellation flowchart. Thick linesdenote a higher-bit precision
in the image representation. The de-contoured imageP is submitted to a display device.

Recently, Bhagavathy et al. [95] have proposed a multi-scale probabilistic dithering
method, which comprises two main steps. At first, a multi-scale analysis on the neigh-
borhood of each pixel determines the likelihood of banding for this pixel. A pixel is
assumed to be a part of banding artifact, when the likelihoodof banding is larger than
a predefined threshold value at least one scale. Then bandingreduction is performed
for such a pixel by computing a local mean (floating-point) intensity in the pixel neigh-
borhood, which is then probabilistically dithered and quantized as required for the new
bit depth. The proposed method is less dependent of the proximity between adjacent
false contours than methods relying on smoothing filters with predefined support such
as predictive cancellation. On the other hand, the proposedmethod is sensitive on the
preset threshold of banding likelihood, which is used to detect pixels contributing to
banding artifacts.

All discussed BDE and decontouring techniques are optimized for much lower bit-
depth expansion than required to accommodate HDR image and video content, so their
adaptation to the LDR2HDR problem is an open research question. An exception
is the compander technique, which has been successfully applied for dynamic range
compression and expansion, but only in the context of staticHDR images. Also, this
method required the HDR reference and strongly enhances low-contrast information
in the compressed image, which may not be acceptable in some applications for which
the fidelity of compressed image appearance is important. The decontouring techniques
may have some potential for contrast boosting techniques described in the following
section in particular for lower quality and low bit-depth legacy video and images.

8.2 Reversing Tone Mapping Curve

For high quality LDR images with a small amount of under- and over-exposed pixels,
which do not contain visible quantization and compression artifacts, deriving inverse
tone mapping function, then transforming all pixel values using this function, and fi-
nally contrast expansion seems to be an easiest recipe to reconstruct the corresponding
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HDR images. A number of solutions presented in the literature adopted such a proce-
dure [97, 98, 99, 100], and they differ mostly in the precision of inverse tone mapping
function derivation and the actual contrast expansion approach.

Akyüz et. al. [97] conducted a psychophysical study on an HDR display, in which they
ranked the general preference for high quality HDR images and the corresponding LDR
images with linearly/non-linearly scaled contrast and brightness to fully exploit the
dynamic range of an HDR display. Each source LDR image, whichhas been submitted
for such scaling, has been selected as the best exposed imagefrom the pool of images
merged through a multi-exposure technique into the corresponding high-quality HDR
image. It turned out that the subjects similarly ranked the LDR images with linear
contrast scaling as the corresponding HDR images. This may suggest that for a good
quality LDR image simple contrast boosting may be sufficientfor many scenes.

In another psychophysical study Meylan et al. [98, 101] confirmed this observation
for scenes featuring lower dynamic range. However, they argued that just a linear
rescaling of images that are tone mapped for standard displays may lead to too bright
images when displayed on an HDR display. They found that usually better results can
be obtained by taking into account the actual image content and by diversifying contrast
boosting for diffuse regions and highlights. In their inverse tone mapping algorithm,
they segment the diffuse and highlights image parts, which are then independently
rendered with two different linear scaling functionsr1 and r2. This way the lower
part of display dynamic range is used to render the scene and the remaining part is
allocated for visualization of highlights and light sources (refer to Figure 8.2). The
splitting point between these parts is decided based on the maximum diffuse white
Win in the input LDR image and assigned to this point display luminance valueWout.
ParameterWout should be adjusted based on the image content to control the overall
image brightness impression and can be a function of the sizeof highlight regions.
In [98] Meylan et al. describe a psychophysical experiment in which they investigate
the subject preference for variousWout choices. They found that for outdoor scenes
the subjects preferred to allocate a rather small part of thedynamic range to specular
highlights to achieve overall brighter image appearance. For indoor scenes better visual
results were obtained when more dynamic range was allocatedfor highlights. Also,
the percentage of specular pixels can be important (e.g., the sun reflecting in the water
surface), in which case the subjects prefer dimmer images. In all tested cases boosting
brightness of specular highlights led to more natural impression, which indicates that
content-dependent inverse tone mapping may be favorable (refer to Figure 8.3).

In the follow-up paper Meylan et al. [102] investigate an automatic algorithm for high-
light detection and determination of the maximum diffuse white Win. They observe
that the highlight regions contain more high spatial frequency content than diffuse im-
age parts due to quick changes in the surface shading. They proposed a set of low-
pass filters combined with morphological operations, whichcan automatically detect
highlights (refer to Figure 8.4). The Gilchrist theory of lightness perception [71] may
provide some insight towards an automatic selection ofWin andWout parameters. This
theory relies on the notion of the reference white point, which is conceptually similar to
the concept ofWin. The Gilchrist theory has already been employed for tone mapping



8.2. REVERSING TONE MAPPING CURVE 103

specular 
input image

diffuse
input image

output image

output image

of the diffuse
Luminance range 

of the specular

W

Luminance range 
W

digital values

r1

out

in

2r

Figure 8.2: Display dynamic range allocation between diffuse and specular image
parts.Win refers to the maximum diffuse white in the input LDR image andWout de-
notes the corresponding intensity in the output dynamic range enhanced image. Figure
courtesy of Laurence Meylan of General Electric and Scott Daly of Sharp Laboratories
of America.

[14], which is also based on linear contrast scaling within segmented image regions
(frameworks) with clearly different luminance levels.

Banterle et al. [99] investigate non-linear contrast scaling by inverting simple tone
mapping operators based on exponential and sigmoid functions. Visually the most
compelling results have been obtained by inverting the photographic tone mapping
operator [65]. The authors observed, that when using this approach, they cannot expand
the dynamic range to arbitrarily high values due to quantization errors manifesting in
contouring artifacts in particular in bright image regions, in which the sigmoid function
strongly compresses contrast. (The authors do not report any problem with saturated
dark pixels.) To address the contouring problem they createan interpolation map,
which is used to smooth shading of pixels that belong to the high luminance areas
(refer to Figure 8.5). The interpolation map is built in two steps. At first importance
sampling over the pixel intensity distribution in the inputLDR image is performed
to find a set of virtual light sources that energy-wise represent the whole image and
are concentrated mostly in high luminance regions (Figure 8.5(center)). In the second
step, density estimation over these light sources is performed for every pixel to obtain
a smooth interpolation map (Figure 8.5(right)). The interpolation map is finally used to
blend between the original LDR image and the range-expandedimage obtained though
the sigmoid function inversion. The authors validate theirapproach by comparing the
reference HDR images against their range-expanded counterparts using the HDR VDP
(refer to Chapter 4.2). A vast majority of perceivable differences reported by the metric
come from the highlight and light source regions in which theluminance values of
reconstructed pixels are selected in an ad-hoc manner (refer to Figure 8.6). This is
a general problem for all discussed so far methods that focuson enhancing contrast
and suppressing contouring artifacts, but do not pay much attention to clipped pixels
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Figure 8.3: The view of an image with enhanced dynamic range as it would appear
on an HDR display is simulated. The dynamic range has been enhanced using linear
scaling (left) and the approach proposed in [98] withWout = 67% (right). Because
of dynamic range limitation on print only the appearance of the diffuse image part
is simulated and the highlights can be properly seen only on an HDR display. The
original image appearance as tone mapped for reproduction on an LDR display can be
seen in Figure 8.4. Notice that the linear scaling may lead tooverall too bright image
appearance. Images courtesy of Laurence Meylan of General Electric and Scott Daly
of Sharp Laboratories of America.

both in dark and light image regions. In Section 8.4 we discuss solutions aimed at this
problem.

In all LDR2HDR techniques discussed in this section, the goal of applying inverted
tone mapping was to obtain visually plausible results. These methods do not give any
insight what are the actual scene radiance values, which canbe considered as an ulti-
mate goal of any solid-grounded LDR2HDR reconstruction. Inthe following section
we discuss techniques aiming at this goal.

8.3 Single Image-based Camera Response Approxima-
tion

The camera response function relates the scene luminance values with image pixel in-
tensities captured in an image. Thus, if the inverse camera response function is known,
the scene radiance map can be easily reconstructed. The problem of recovering the
camera response function based on multiple, differently exposed images of the same
mostly static scene is relatively well researched (refer toSection 3.2). A challeng-
ing question arises how to reconstruct the response function based on a single image
without any knowledge of camera used for capturing, exposition parameters, and the
captured scene characteristic? This is a typical situationfor legacy images and video.

The camera response function should compensate for camera optic imperfections and
sensor response non-linearity, as well as image enhancement and tone mapping inten-
tionally performed by camera firmware altogether. In many practical applications, the
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Figure 8.4: Highlight and light source detection in LDR images using a segmentation
algorithm as proposed in [102]. The detected highlight and self-luminous objects are
marked in red. Images courtesy of Laurence Meylan of GeneralElectric and Scott Daly
of Sharp Laboratories of America.

camera response function is often approximated by a simple gamma correction curve in
which case some standard gamma value, e.g., 2.2 is usually assumed. Farid [103] pro-
poses a more principled approach in which the gamma value canbe blindly estimated
in the absence of any camera calibration information based on the single image (the so-
called blind inverse gamma correction). It turns out that gamma correction introduces
to the image several new harmonics whose frequencies are correlated to the original
harmonics in the image. There is also a strong dependence between the amplitudes of
the original and newly created harmonics. It can be shown that such higher order cor-
relations in the frequency domain monotonically increase with increasing non-linearity
of gamma correction. Tools from the polyspectral analysis can be used to detect such
correlations, and by searching for the inverse gamma, whichminimizes such correla-
tions, the actual gamma correction originally applied to the image can be found.

In practice, the gamma function is only a crude approximation of the camera response
and by applying a simple inverse gamma correction to an imagethe accuracy of re-
constructed radiance map can be affected. Lin et al. [104] show that for a single LDR
image the camera response curve can be more precisely reconstructed based on the
distribution of color pixels in the proximity of object edges. The most reliable infor-
mation for such reconstruction is provided by edges separating the scene regions of
uniformly distributed and significantly different color (radiance values)R1 andR2 (re-
fer to Figure 8.7a). For a digitized image of the scene using acamera featuring the
linear response, the colorIp of pixel representing precisely the edge location should
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Figure 8.5: Interpolation map construction. Tone mapped image (left) is importance
sampled to a set of virtual light sources (center), which through density estimation pro-
cess are converted in to the final interpolation map (right).Images created by Francesco
Banterle. Copyright: Warwick Digital Laboratory, University of Warwick.

be then a linear combinationI1 andI2 (refer to Figure 8.7b). The partial coverage of
pixel area by each of the two regions decides about the contribution of I1 and I2 val-
ues into the pixel colorIp. However, due to the non-linearity in the camera response
the actual measured colorMp may be significantly different from such a linear com-
bination of measured colorsM1 andM2 (refer to Figure 8.7c), which correspond to
I1 and I2. By identifying a number of such< M1,M2,MP > triples and based on the
prior knowledge of typical real-world camera responses a Bayesian framework can be
used to estimate the camera response function. By applying inverse of this function to
each triple< M1,M2,MP >, the corresponding< I1, I2, IP > should be obtained such
that Ip should be a linear combination ofI1 and I2. Applying such inverse response
function to all image pixels results in reconstruction of the scene radiance map. The
authors observe that their method leads to a good accuracy inreconstruction the radi-
ance map. The best accuracy is achieved when the selected edge color< M1,M2,MP >
triples cover a broader range of brightness values for each color channel. The method
may not be very accurate for images that exhibit a limited range of colors. By using
< M1,M2,MP > triples from additional images captured with the same camera, the ac-
curacy of the camera response reconstruction can be furtherimproved. Obviously, the
radiance information in saturated image regions cannot be recovered, and we address
this problem in the following section.

8.4 Recovering Clipped Pixels

Another problem with legacy images are image regions completely saturated due to
intensity clipping of brightest and darkest images regions. The problem of lost infor-



8.4. RECOVERING CLIPPED PIXELS 107

Figure 8.6: Radiance maps for the original HDR image (left) and its LDR image based
reconstruction (center). Pseudo-color encoding is used todepict radiance values with
blue, green, and red roughly corresponding to 10, 100, and 700 cd/m2. HDR VDP
is used to predict perceivable differences (right) betweenthe radiance maps shown in
(left) and (center). In the perceivable difference map (right) red color denotes pixels for
which the difference is over 1 just noticeable difference (JND) unit. Images created by
Francesco Banterle. Copyright: Warwick Digital Laboratory, University of Warwick.

mation reconstruction is clearly under-constrained with anumber of possible solutions
that lead to the same appearance of an LDR image. Since under-and over-exposed
image regions may contain only sparse information, learning approaches that rely on
finding correspondences in a predefined database of LDR and HDR image pairs seems
to be a very difficult task. The most promising results have been obtained so far using
inpainting and texture synthesis techniques specialized in repairing damaged images or
removing unwanted objects.

It can be observed that many LDR images, which are difficult cases for tone mapping
inversion approaches, may contain similar textures whose details remain intact in some
image regions while they are clipped in very dark or bright image regions. Wang et al.
[105] investigate texture transferring from such well exposed regions by drawing from
the texture synthesis literature. The authors call their approach HDR hallucination. The
texture transfer in the LDR2HDR setting is actually more complex due to diversity
of lighting conditions, which is usually not the case for traditional texture synthesis.
To simplify this problem the authors employ bilateral filtering to decompose inverse-
gamma corrected LDR image (a roughly reconstructed radiance map of the scene)
into a low-frequency illumination component and a high-frequency texture component
[68]. Then saturated illumination component is reconstructed via interpolation from
a linear combination of elliptical Gaussian kernels, whichare fitted to non-saturated
pixels around the over-exposed region. If needed, the fittedillumination function can
be further manually adjusted. The high-frequency texture component is reconstructed
via constrained texture synthesis [106] based on the sourcetexture and destination
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Figure 8.7: Color distortions in edge regions due to non-linearity in the camera re-
sponse. (a) Two regions in the scene, which are separated by an object edge, feature
distinct spectral radianceR1 andR2 values. (b) Hypothetical linear image sensor maps
R1 andR2 values intoI1 andI2 values in the RGB color space. Due to the scene radiance
digitization by the sensor, the color of each pixel on the edge is a linear combination
of I1 and I2 with weights proportional to the covered area on the left andright sides
of the edge. (c) A non-linear camera responsef warps these colors resulting in their
non-linear distribution. Image after [104].

location, which are manually indicated by the user (refer toFigure 8.8). To correct
for perspective shortening or properly align texture structure or semantic information
the user draws a pair of strokes in the source texture and destination image region,
and then the source texture is automatically warped to the required size and orientation
(refer to the stained-glass image in Figure 8.8, which illustrates the texture transfer
and warping form the left to the right window). Poisson editing is performed [107] to
smooth out transitions between the synthesized textures and the original image. Overall
the proposed technique works remarkably well and its failure cases are mostly related
with the lack of appropriate source textures in the image to be transferred. In such a
case another image can be also used to successfully transferoriginally missing texture.

8.5 Handling Video On-the-fly

Rempel et al. [100] proposed on-the-fly solution to handle legacy video, which com-
bines altogether all important elements of LDR2HDR processing such as reverse tone
mapping, decontouring, contrast enhancement, and separate handling of highlight and
light source regions. All these elements have been discussed in Sections 8.1–8.4, but in
the proposed solution the emphasis is on its robustness (should not produce disturbing
artifacts), automatic operation for preset parameters based on the HDR display charac-
teristics, high computational performance and good temporal coherence of employed
image processing algorithms.

Figure 8.9 shows the algorithm overview. At first an input LDRimage is transformed
from the ready-to-display, perceptually uniform, non-linear representation (luma) to a
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Figure 8.8: HDR hallucination results. For each of the two image groups two differ-
ent exposures of the original image are shown on the left, andthe corresponding HDR
hallucination results are shown on the right. The central images illustrate the user
interaction, the green color denotes source texture/warp strokes, blue destination tex-
ture/warp strokes, and orange illumination adjustment. Images courtesy of Lvdi Wang,
Liyi Wei, Kun Zhou, Baining Guo, and Heung-Yeung Shum of Microsoft Research
Asia.

linear space, which approximates luminance in the originalspace. For this purpose
simple inverse gamma operation is performed and a gamma curve of 2.2 is used, which
is standard in video and television formats. In the next step, contrast is stretched by
simple mapping of linearized pixel values to absolute luminance values reproduced by
the target HDR display. The authors limit contrast stretching to up to 5,000:1, which al-
ways leads to improved image quality without causing artifacts that may arise for some
images. Of course, even higher contrast stretching could lead to visually better results
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Figure 8.9: Overview of LDR2HDR processing. Image courtesyof Allan Rempel et
al. [100].

for some images, but the algorithm robustness and automaticoperation requirements
justify this hard limit on the maximum contrast. The contrast stretching may magnify
noise and compression artifacts as well as may lead to visible contouring artifacts (refer
to Section 8.1) in particular for poorer quality footage. Inthis case optionally bilateral
filtering is performed, which is tuned to the possible artifact level while preventing
blurring image features. Since filtering is performed in theperceptually non-uniform
luminance domain the variance of the photometric Gaussian factor in the filter is ad-
justed for each luminance level to the quantization thresholds.

As found in [82, 81] to achieve good appearance of HDR images both luminance and
brightness should be simultaneously increased. For this reason, in the next process-
ing step, as shown in Figure 8.9, smooth brightness enhancement is performed in the
neighborhood of saturated image regions. At first such bright regions are identified
by simple thresholding of pixels with RGB values over 230 (for video) and 254 (for
photographs) in at least one color channel. The resulting bright pixel mask is strongly
blurred with a filter, whose parameters are tuned to remove most of energy with spatial
frequencies higher than 0.5 cpd from the mask signal (Figure8.10(upper-right) shows
an example of brightness enhancement mask in red). For the remaining low spatial
frequencies the human eye is not very sensitive as predictedby the contrast sensitiv-
ity function (CSF), which effectively means that such smooth brightness enhancement
proportional to the intensity of pixels in the mask should not introduce visible artifacts.
An edge-stopping function is introduced to the blurred maskto prevent brightness en-
hancement in neighboring darker regions which are separated from the bright pixels by
strong edges. An efficient implementation of mask blurring and edge-stopping filters
are achieved using Gaussian image pyramids. Figure 8.10 shows the results obtained
using this method.

8.6 Exploiting Image Capturing Artifacts for Upgrad-
ing Dynamic Range

Scattering of light inside the lens is very apparent in the capture of high dynamic range
images, defining a limit to the dynamic range that can be captured with a camera [108].
Such scattering can be modeled with point spread functions (PSF) and removed using
deconvolution [109]. However, precise estimation of the PSF is not trivial especially
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Figure 8.10: On-the-fly video LDR2HDR processing: (upper-left) input LDR image,
(upper-right) brightness enhancement mask, (lower-left)two virtual exposures of the
reconstructed HDR image featuring contrast 9,300:1, and (lower-right) the same HDR
image shown on a Brightside DR37-P HDR display partially covered by a 10% neutral
density filter to demonstrate details in bright image regions. Images courtesy of Allan
Rempel et al. [100].

that its shape is non-uniform across the image. Deconvolution may also lead to high
quantization noise in strongly veiled image regions, due toinsufficient precision of real
scene information. Recently, Talvala et al. [110] have demonstrated that by placing
a structured occlusion mask between the scene and the camera, direct and indirect
(scattered) light falling on the camera sensor can be separated. For a given position
of the mask, the sensor elements, which are occluded by the mask, are illuminated by
only scattered light. By jittering the mask position and capturing HDR images for each
such position the amount of scattered light can be estimatedfor each pixel and then
removed from the final HDR image. A practical problem with this technique is that
the scene must be static, and the mask must be placed near the scene in order to be
in camera focus so that its contribution to the intensity of non-occluded by the mask
pixels is reduced.

8.7 Conclusions

As we discussed in Chapter 7 in coming years rapid development of HDR display tech-
nology can be anticipated. The process of standardization for lossy HDR image and
video formats is just initiated (refer to Chapter 5), however, a number of years will be
required before standards accepted by the industry will emerge. For this reason the
problem of legacy content enhancement is so urgent. In this respect, robust on-the-fly
solutions as presented in Section 8.5 are of particular importance, since they can be em-
bedded in the new generation of displays and tuned to obtain the best performance for
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a given display type. This solution enables to enjoy HDR content without waiting for
painful format standardization and broadcasting HDR-enabled video signal. However,
such dynamic range enhancement is ill-posed problem in which precise reconstruction
of original HDR content is difficult and often not possible. For this reason the devel-
opment of algorithms enabling blind reconstruction of tonemapping will be important
research topic in coming years. Also, robust detection of highlights and light sources
in the original LDR footage and then restoration of missing information in saturated
image regions is another challenge. In professional applications off-line dynamic range
restoration, perhaps involving the user interaction for selected frames, and then prop-
agation of restored information for the remaining frames, can be envisioned. In this
chapter we did not discuss the problem of color gamut enhancement, which will be
important with constantly improving display technologiesenabling wider gamuts, and
thus enabling more saturated and vivid colors.



Chapter 9

HDRI in Computer Graphics

Recent developments in computer graphics and HDR imaging demonstrate strong mu-
tual dependence. Computer graphics is a continuous source of HDR image and video
content. Synthetised HDR images are a natural outcome of more engineering oriented
aspects of computer graphics such as physically-based image rendering, but recently
also entertainment applications such as cinematography and computer games greatly
benefit from more precise HDR pixel representations. On the other hand, the HDR
images and video captured in the real-world are a precious source of the input data for
image-based rendering and modeling in graphics. In this chapter we discuss these im-
portant aspects of convergence between graphics and HDR imaging. To be aligned with
the main topic of this book, whenever possible we focus on HDRvideo applications,
but in some cases only static HDR images have been used so far.It can be envisioned
that with quickly progressing HDR video cameras technology, image sequences will
effectively replace static images in many of the discussed here applications.

9.1 Computer Graphics as the Source of HDR Images
and Video

At present, multi-exposure techniques and specialized HDRcameras are the main
source of HDR images and video (refer to Chapter 3). While the multi-exposure tech-
niques have been invented and applied first for the traditional film technology [12, 111],
they gained real popularity when digital cameras with manually controlled exposures
have been available. The development of full-fledged HDR cameras is just a matter of
recent years. However, historically the first HDR images resembling photographs have
been obtained in lighting engineering and realistic rendering communities. While these
two communities have been working mostly independently aiming at different goals,
they have had common interests in physically-based lighting simulation. Such simula-
tion was always important in lighting engineering, but often limited to the estimation of
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numerical values of illumination at selected points in the designed environments, e.g.,
workspace. The progress made in the meantime in graphics hada significant impact on
lighting engineers and designers, who showed more and more interest in realistic image
synthesis as well. In particular, the work of Greg Ward and his publicly available RA-
DIANCE system [112, 113] popularized image synthesis in thelighting community. In
computer graphics, image synthesis has always been one of the major goals, but just in
mid-eighties researchers started to combine realistic image synthesis with physically-
based lighting simulation [114, 115, 116]. The first inspiration on how to deal with
this problem came to graphics from the heat transfer literature (mostly finite element
methods [117]) and lighting engineering (also Monte Carlo methods [118, 119]).

Physically-based lighting simulation required valid input data expressed in radiomet-
ric or photometric units. It was relatively easy to acquire such data describing light
sources, because high-profile manufacturers of lighting equipment measured, and of-
ten made available directional emissive characteristics of their luminaires (the so-called
goniometric diagrams). It was far more difficult to obtain valid reflectance characteris-
tics of materials (the so-called bi-directional reflectance distribution function - BRDF).
However, the assumption of Lambertian (perfectly diffuse)reflectance model has been
predominant at early days of lighting engineering and realistic graphics, which greatly
simplified the computation. It was relatively easy to estimate the surface albedo (a sin-
gle scalar value), which fully characterizes the reflectance for Lambertian surfaces. In
nineties, lighting simulation methods progressed to handle more general environments
efficiently, and more advanced BRDFs have been measured (refer to Section 9.2.2) or
expressed using physically-valid analytical models.

Physically-based lighting simulation with the use of physically-valid data, which de-
scribe the rendered scenes, resulted in a good approximation of illumination distri-
bution with respect to the corresponding real-world environments. Also, pixels in
rendered images were naturally expressed in terms of radiance or luminance values,
which is the distinct characteristic of HDR images. To storesuch images efficiently
first compact HDR image formats have been developed, such as the RGBE format (re-
fer to Chapter 5.1.2) proposed by Ward as a part of his RADIANCE package [49].
Also, early tone mapping techniques appeared to enable image display on devices with
limited dynamic range [120, 121, 122]. Figure 9.1(left) shows a typical example of
realistic image rendered using Monte Carlo methods. Figure9.1(right) shows the cor-
responding HDR image that was captured in the actual real-world scene.

While realistic rendering software is a source of HDR images and video for almost two
decades, recently available graphics processing units (GPU) and major game consoles
upgraded their rendering pipelines to the floating point precision, which effectively en-
abled HDR image rendering. Thus, in the years to come computer games and other
real-time applications running on these platforms will be an important source of HDR
image sequences. In the simplest case such HDR-enabled platforms could be directly
connected to an HDR display offering even more immersive game experience. In fact,
due to lack of standardization such a direct connection, could require some engineering
efforts to accommodate specific signal requirements e.g., Brightside DR37-P requires
special steering of an LED array in its backlit device [2]. This problem has been suc-
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Figure 9.1: Atrium of the University of Aizu: (left) rendered
image, and (right) HDR photograph. Accompanying web page
http://www.mpi-inf.mpg.de/resources/atrium/ provides with the com-
plete data set required to render this image. Also, the results of lighting simulation
have been compared to the measurement data in the actual scene.

cessfully solved by Ghosh et al. [123], who additionally enhanced the immersive game
experience by adding surround lighting that can be seen be inthe user’s peripheral field
of view. However, even without having the access to an HDR display, computer games
benefit greatly from many HDR visual effects which are difficult to model convincingly
using LDR game pipelines:

• Glare (dazzling) effects around strong lights and bright highlights, which are
modeled using an image processing approach by applying a pyramid of care-
fully tuned low-pass filters with different spatial supportto every bright pixel.
The filter pyramid effectively spreads bright pixel intensity in the neighborhood
causing characteristic blooming pattern, which reduces contrast and thus detail
visibility in the proximity of bright image regions. An alternative, cheaper, but
less general way of glare modeling is to impose sprites (pre-computed bit maps
with the bloom pattern) around strong light sources (light reflections are more
difficult to handle). The sprites apart from the blooming appearance can add
camera-triggered effects such light streaks (stars) caused by diffraction over the
diaphragm blades and ghosts caused by internal reflection inthe multiple-lens
optical system. The sprites are feasible only for a small number of bright, regu-
larly shaped, and small light sources such as the sun, car headlights, lamps, and
so on.
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Figure 9.2: Real-time GPU rendering with HDR effects. (left) Realistic reflection
with Fresnel’s effects on the surface of the white plastic ball. Visually correct motion
blur, depth of field, and glare effects. (right) Interestingvolumetric refraction and
reflection effects inside the foggy box. All computation performed for HDR pixel
intensities. Real-time tone mapping applied prior to the image display. Images courtesy
of Ivo Ihrke, Gernot Ziegler, Art Tevs, Christian Theobalt,Hans-Peter Seidel of MPI
Informatik and Marcus Magnor of Technische Universität Braunschweig.

• Exposure control with dark and light adaptation using a tonemapping technique
for dynamic sequences.

• Depth-of-field effect with the shape of aperture stop.

• Motion blur performed for HDR pixels to avoid intensity clamping typical for
LDR approaches.

• Bright reflections (refractions) of strong light sources (e.g., the sun) in the sur-
faces of low reflectance (transmission), which cannot be reproduced in the LDR
setting due to light intensity clamping.

Figure 9.2 presents some of discussed effects as rendered ona modern GPU with real-
time performance. In game applications the main goal of modeling these effects is
to improve the visual attractiveness and believability of images, while their physical
correctness is of secondary importance. Some of the discussed effects such as glare are
presented in the computer graphic literature as an integralpart of widely understood
tone mapping (refer to Chapter 6).

9.2 HDR Images and Video as the Input Data for Com-
puter Graphics

Machine vision and computer graphics are rapidly converging disciplines. Image-based
rendering is a prominent example of such convergence, wherecomputer graphics tech-
niques enable changes in the scene viewpoint, lighting conditions, object appearance,
or even image content. When video is used as an input, all thesemodifications can be
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performed in temporal domain, and additionally kinematicsand dynamics can be ma-
nipulated. Image-based rendering still outperforms traditional 3D rendering in terms of
achieved realism, and obviously acquiring images is much easier than building scene
model using standard 3D graphics tools. Vision and graphicscoupling is even more
obvious in augmented reality applications in which real world images and video must
be seamlessly mixed with rendered objects. Finally, image-based modeling can be
used for efficient acquisition of data required in graphics such as 3D scene geometry
or material reflectance characteristics.

HDRI technology has great potential in all discussed image-based techniques used in
graphics, because it is less sensitive for extreme lightingconditions. This means that
virtually all pixels convey potentially useful information, while using traditional cam-
eras such information can be lost in under- and over-exposedimage regions. HDR cam-
era has also great potential as a radiometrically (photometrically) correct measurement
device (refer to Chapter 3.2), which in single image provides millions of independent
measurements acquired at once for all pixels. Such physicalcorrectness is required in
particular in realistic image synthesis, which is one of themainstream applications in
3D graphics. In the following sections we present applications of HDR imaging for
acquisition of scene lighting and surface reflectance, which greatly contribute to the
final appearance of rendered objects.

9.2.1 HDR Video-based Lighting

Traditionally, in realistic 3D image synthesis lighting ismodeled by specifying a certain
number of directional, point, or area (usually rectangularor circular shape is assumed)
light sources distributed in the scene. In physically-based rendering the computation
of interreflection is additionally performed to account forindirect lighting illuminating
the scene. In cinematography more control over lighting distribution may be required
for artistic reasons, and indirect lighting is often replaced by inserting into the scene a
huge number of individually-controlled local lights. Another important reason for such
a non-physical approach are huge costs to compute the interreflection given the com-
plexity of scenes in modern computer-generated movies. Only recently one bounce of
indirect lighting has been used in high profile productions like Shrek 2. Game industry
relies mostly on direct lighting and lack of interreflectioncompensates using ambient
lighting, which in more advanced cases may be modulated based on purely geometri-
cal visibility considerations (the so-called ambient occlusion technique). However, in
all discussed cases resulting images have usually a synthetic look, which can be easily
distinguished from photographs. The exception are cinematographic applications in
which more realistic effects are achieved through time consuming tweaking of local
lighting parameters.

Much better realism can be achieved when a synthetic 3D scenemodel is illuminated
by camera-captured real world lighting (refer to Figure 9.3). The technique is called
image-based lighting (IBL), and the problem of costly interreflection computation is
less-pronounced for this technique since images capture both direct and indirect light-
ing simultaneously. The only problem is to account for interreflection between the
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Figure 9.3: Realistic rendering of the dragon model with measured bi-directional tex-
ture function (BTF) of leather [124]. Captured real-world lighting, which is visible
at background, is used to illuminate the model. Image courtesy of Gero M̈uller, Ralf
Sarlette, and Reinhard Klein of the University of Bonn.

illuminated object and the scene, but this is often negligible, e.g., in the game scenario
moving characters usually do not contribute much into indirect lighting of the whole
scene. However, what makes the IBL so compelling comes from the side of human
visual system (HVS), which is strongly adapted to real-world lighting conditions and
makes many implicit assumptions about statistical regularities in such a lighting [125].
The geometrical structure and other statistics of real-world lights are often needed to
disambiguate information about surrounding objects. Notethat the same amount of
light may fall onto the human eye retina when reflected from strongly illuminated sur-
faces that are poor reflectors and identically-shaped surfaces that are good light reflec-
tors located in a dim environment. The human visual system can easily distinguish
both situations by discounting the illuminants, which computationally is an ill posed
problem of lightness determination that requires some assumptions about the scene
lighting to be solved [126, 127]. Through psychophysical experiments with computer
generated images Fleming et al. [125] have shown that the human observer ability
to notice even subtle differences in the material appearance (surface reflectance char-
acteristics) is much better under real-world lighting conditions than commonly used
point light sources. Realistic lighting improves also the ability to discriminate between
rendered objects, whose shape is only slightly different [128]. This observation has
strong implications in the industrial design practices, and for example images of new
car models used for advertisement purposes are predominantly rendered as illuminated
by captured real-world lighting (e.g., using the SpheroCamHDR camera [129]). On
the other hand, the HVS sensitivity to the differences in reflectance properties strongly
depends on the object shape [130].

Clearly, real-world lighting is desirable in many engineering applications and would
improve the believability of virtual reality systems notoriously lacking realism in ren-
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dering. Real-world lighting is indispensable in many mixedreality applications, in
which virtual objects should be seamlessly merged with a real world scene [131].

Traditionally, real-world lighting is captured into the environment map (EM), which
represents distant illumination incoming to a point from thousands or even millions of
directions that are distributed over a sphere (hemisphere). HDR technology is required
for the environment map acquisition to accommodate high contrasts in the real world
lighting. For static conditions low dynamic range cameras and a multi-exposure tech-
nique can be used to capture two HDR images, which fully covera spherically-shaped
mirror light probe [12]. For dynamic light capture an HDR video camera with fish-
eye lens is the best solution to obtain hemispherical environment map, which we call
the video environment maps (VEM). Existing multi-exposuretechniques for video are
limited just to two exposures [15], which may not offer sufficient dynamic range for
robust capturing of high contrast lighting.

An important question concerning visually tolerable distortions in captured HDR EM
and VEM arises due to the limitations in camera resolution and geometry distortions
introduced by a fish eye lens. Ramanarayanan et al. [132] conducted a psychophys-
ical study in which they investigated the impact of these twofactors on the visual
equivalence in object material and shape perception. It turned out that even significant
amount of blur in EM lighting still leads to visually equivalent images, in particular for
less glossy objects, which act as low-pass filters for reflected lighting [133]. Lighting
geometry distortions may be more objectionable, which means that stronger warps of
environment maps can be wrongly interpreted as change in theobject shape. In this
case, the HVS would expect that perceivable distortions in the EM reflection come
rather from imperfections in the object surface than deformed shapes of light sources,
which is less likely scenario in the real-world environments. However, these problems
are negligible for lens distortions and image resolutions offered by existing HDR video
cameras.

Two rendering techniques: precomputed radiance transfer (PRT) and environment map
importance sampling are prevailing solutions in interactive rendering with EM lighting.
Both techniques naturally support rotations of EM and can beeasily extended to handle
VEM. We briefly characterize these techniques and then we focus on their successful
applications with the use of VEM. For more general discussion of IBL techniques,
which concerns mostly static lighting, please refer to an excellent survey in Chapter 9
of [6].

Video Environment Maps in Precomputed Radiance Transfer

Interactive rendering of realistic objects illuminated bylarge light sources is a diffi-
cult problem, in particular, if such light transport effects as shadows, interreflections,
and sub-surface scattering are taken into account. For scenes that are illuminated by
the EM the most costly computation comes from testing visibility and integrating in-
coming lighting over all hemi-spherical directions (spherical for non-opaque objects).
PRT techniques relegate these costly computation to preprocessing, which dramatically
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reduces the computation load at the rendering stage [134].

Essentially PRT computes the illumination of each point in the scene (often mesh ver-
tices are only considered) as a linear combination of incident lighting, which may come
from all directions over the sphere, but at the same time it isassumed that light source
(environment map) is far away from the scene. A direct consequence of this assumption
is that for all non-occluded points in the scene, the same incident lighting always comes
from a given direction, which greatly simplifies the computation and bookkeeping of
incident lighting. This is also a realistic assumption for outdoor scenes illuminated by
sky lighting, but may fail for some indoor scenes with spatially varying direct lighting
(at the end of this section we discuss how to overcome this limitation).

To encode incoming lighting an efficient spherical basis function such as spherical har-
monics (SH) is commonly used in PRT techniques. The SH basis has a very powerful
property: The integral over a product of two spherical functions reduces to the dot
product of the SH coefficients of these two functions. Let us recall that the global il-
lumination problem is essentially equivalent to the solution of such an integral, but for
the product of three functions: reflectance (BRDF), visibility, and incoming lighting
[135]. For this reason the reflectance (for Lambertian surfaces just a scalar value) and
visibility information is usually concatenated into a single function called the trans-
fer function. The transfer function encapsulates the wholelight transport information
from the directional light sources (represented by pixels in the EM) to each point in
the scene, and it is computed at the pre-processing stage andstored as SH coefficients.
The transfer function includes the direct EM visibility/occlusion information for each
point in the scene, as well as directional visibility and energy attenuation information
for indirect light transport. The lighting function is projected on the SH basis functions
on-the-fly for each VEM frame, which enables dynamic lighting simulation. Such a
projection is very fast and can be easily done at interactivespeeds (e.g., for the VGA-
resolution video of 640× 480 pixels per frame).

Lighting and transfer functions for Lambertian surfaces are usually projected into 25
SH basis functions for each sample point. In general, this leads to good visual results,
but only slowly changing and smooth lighting can be reproduced, e.g., soft shadows.
Thus, lighting details that require high spatial frequencypatterns, cannot be repro-
duced, e.g., sharp shadow boundaries. For more general reflectance functions (BRDF)
for which the incoming lighting directions are important, amatrix of spherical har-
monic coefficients with the transfer vectors for each of those directions must be con-
sidered. In practice, matrices of 25× 25 coefficients are commonly used [134]. Since
the transfer vectors (matrices) are stored densely over thescene surfaces (usually for
each mesh vertex) an important issue is the data compression, which can be efficiently
performed using standard tools such as principal componentanalysis (PCA) and clus-
tering [136]. Recently, the limitation of low frequency lighting, which is inherent for
the SH basis, has been lifted using the wavelet basis functions [135]. Using the ap-
proach proposed by Ng et al. both soft and sharp shadows can berendered, but very
dense mesh is required to reconstruct the lighting functionprecisely and it is not clear
how to include interreflections into this framework.

Another serious drawback of PRT techniques is the assumption that the scene is static
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Figure 9.4: HDR video environment maps (VEM) acquisition system equipped with
two photometrically-calibrated HDRC VGAx (IMS CHIPS) cameras for the sky light-
ing and windshield view capturing.

for the transfer function computation at the preprocessingstage. If the interreflection
computation is not required, this assumption can be relaxedusing the SH exponentia-
tion approach [137], which can efficiently handle soft shadows for deformable objects.
However, PRT techniques are useful in many technical applications in which scenes
with static geometry and dynamic lighting are considered and global illumination at
interactive rates is important.

We present an example of such an application in which PRT techniques has been used
in a virtual reality (VR) system aimed at simulation of lighting in the car interior. The
interior can be illuminated by VEMs that have been captured for various driving condi-
tions and are visible through the car windows. Figure 9.4 shows the acquisition system
mounted on the roof of a car, which is composed from two HDR video cameras with
fish-eye lenses for the windshield view and sky lighting capturing. The main goal of
the VR system is to study the impact of such dynamic real-world lighting, which is cap-
tured for the actual driving conditions, on the visibility of information displayed on the
LCD panel mounted in the car cockpit. This application scenario is similar to the sim-
ulation of free driving in an environment in which buildings, trees, and other occluders
change the amount lighting penetrating the car interior. This requires that a global il-
lumination solution responds interactively to lighting changes for an arbitrary position
of the driver head (virtual camera position), which can be easily achieved using PRT.
Figure 9.5(left) shows a snapshot of interactive PRT rendering. Figure 9.5(right) shows
the result of off-line rendering using a more precise path-tracing method, which also
employs the captured VEM to model input lighting. To improvethe immersion expe-
rience the CAVE environment with five stereo-projected screens is used for displaying
the car interior. Also, a head tracking system is employed tomonitor the driver’s head
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Figure 9.5: Snapshots of the car interior (left) rendered atinteractive speeds using PRT
techniques, and (right) computed off-line using the physically-accurate path tracing
algorithm. Calibrated HDR VEMs have been used to model inputlighting. Notice the
cockpit reflections in the windshield for the path tracing image. Images courtesy of
Tom Annen of MPI Informatik.

Figure 9.6: The LCD panel appearance as a result of the globalillumination compu-
tation for VEM lighting: (left) full global illumination, (center) display emitted light
only, and (right) reflected light. To compute the reflected light, BRDF-driven impor-
tance sampling and PRT lighting querying has been performed. Images courtesy of
Tom Annen of MPI Informatik.

position, which is important to properly warp the car interior images projected on the
CAVE screens. The head tracking system enables also to modellight reflections in the
LCD panel as seen from the drivers’ point of view.

Figure 9.6 shows the appearance of LCD panel under the globalillumination conditions
for dynamic VEM lighting as displayed on an HDR monitor. All rendered images are
inherently HDR because physically-correct car model and calibrated VEM lighting
have been used for the global illumination computation, which is performed with the
floating-point precision. Since the dynamic range of an HDR monitor is significantly
higher than the one of a typical LCD panel that is mounted in the car cockpit, the
visibility of information displayed for the driver can be tested for many external light-
ing conditions. Through the calibration of the HDR display the real world luminance
values can be reproduced for the LCD panel by taking into account both the panel emis-
sivity as well as reflected lighting resulting from the global illumination simulation.
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Importance Sampling for Video Environment Maps

Many practical rendering algorithms achieve the best performance for very simple di-
rectional and point light sources. Such types of light are well suited for the shadow
computation and shading using graphics hardware and ray tracing. In fact, more ad-
vanced area light sources are usually decomposed into a set of such simple lights. The
same approach can be applied for the EM lighting, which is decomposed into a set of
representative directional light sources due to the infinite light source distance assump-
tion. Such a set should be equivalent to the source EM in termsof lighting energy,
but also resulting shadows should be visually equivalent tothe outcome of brute force
integration of incoming lighting over all pixels in the EM. The human perception helps
to achieve the latter goal, because for typical display observation conditions it is safe
to assume that the just discriminable change in contrast must be over 1%. In case all
directional lights carry the same energy, which is the optimal condition in terms of im-
age variance (noise) reduction, having more than 100 light sources that illuminate each
point in the scene, makes the influence of each light undiscriminable. This leads to
smooth shading without banding or contouring artifacts. The practical number of light
sources to achieve this goal is roughly 200–300 because somelights can be occluded,
and then the relative contribution of each non-occluded light sources could be greater
than the discriminability threshold. This larger number oflight sources is also required
because the full EM contains all possible directions over the sphere, and each point
in the scene, which represents an opaque surface, can be illuminated only by light-
ing coming from the upper hemisphere with the pole determined by the normal vector
direction.

A number of techniques for the EM decomposition into visually equivalent set of direc-
tional light sources have been developed in recent years. However, a vast majority of
these techniques have been designed for static EM, and they do not generalize well for
the VEM case. The main problem is the computation performance, which is far from
interactive and precludes the VEM frames processing on-the-fly directly for captured
light. Another serious problem is lack of temporal coherence, which means that sig-
nificantly different set of directional light can be selected even for moderate and local
changes between the VEM frames. This results in severe flickering artifacts that are
not acceptable.

Havran et al. [138] have proposed an algorithm specifically designed for on-the-fly
VEM processing. To reduce temporal flickering they use the same set of initial sam-
ples over the unit 2D square for each VEM frame. The samples are generated using
the quasi-random 2D Halton sequence, which means that they are well stratified over
the unit square surface. The Halton sampling enables addingnew samples without af-
fecting the position of existing samples, while good samplestratification properties are
always preserved. This is important for the progressive image quality refinement and
maintaining constant frame rate by adjusting the number of directional lights on-the-
fly. In order to improve light sampling properties Lloyd’s relaxation over the initial
sample positions is performed at the pre-processing stage,which results in the blue
noise properties of the sampling pattern [139, 140]. Figure9.7(left) illustrates the re-
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Figure 9.7: Distribution of samples for uniform intensity (left) and real-world captured
(right) environment maps. The left image demonstrates a good stratification and blue
noise properties of the initial sample distribution. Theseproperties are partially main-
tained in the distribution of samples in the right image, which is a warped version of
the sample positions in the left image. The importance sampling applied to the sam-
ples in the right image prevents folding and preserves neighborhood relations between
samples as imposed by their initial position in the left image.

sulting position of samples as mapped from the unit square tothe hemi-sphere, which
would be close to the optimal sampling pattern in terms of visible noise reduction for
the uniform energy EM. In practice, the position of directional light sources is adjusted
accordingly to the local energy distribution in the EM. As shown in Figure 9.7(right)
the directional lights are more densely concentrated in brighter EM regions, in partic-
ular around the sun location, while darker regions are represented only sparsely. This
is achieved using the importance sampling procedure, whichis well established in the
Monte Carlo literature [141]. The pixel luminance values inthe EM are treated as
a discrete 2D probability density function (PDF). Then stratified Halton samples are
transformed to samples drawn from the discrete PDF and mapped to spherical coordi-
nates. This procedure is described in detail in [142]. In fact, Havran et al. used slightly
more involved sample transform method [143], which exhibits unique continuity and
uniformity properties. The method guarantees the bi-continuity property for any non-
negative PDF, which means that a small change in the input sample position over the
unit square is always transformed into a small change in the resulting position of light
source over the EM hemisphere. This property greatly improves temporal coherence.

Havran et al. [138] have built a complete system, which enables the HDR VEM acqui-
sition and rendering with captured lighting at interactivespeeds (refer to Figure 9.8).
A photometrically-calibrated HDRC VGAx (IMS CHIPS) camerawith a fish-eye lens
is used for the VEM acquisitions [144]. The inverse camera response (refer to Chap-
ter 3.2) is used to transform captured RGB values into the luminance map. This lumi-
nance map is submitted to the importance sampling procedureto reconstruct a represen-
tative set of directional light source. Since even local changes in the VEM frame lead to
global changes of the PDF, the direction of virtually all light sources may change from
frame to frame, which causes unpleasant flickering in the rendered images. Havran et
al. apply a perception-inspired, low-pass FIR filtering to the trajectory of each light
motion over the hemisphere as a function of time. Since the energy in the environment
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Figure 9.8: The HDR video capture and rendering system pipeline illustrating the dis-
tribution of tasks between CPU and GPU.

map can fluctuate, in particular for scenes with incandescent lighting, filtering over
all environment map energy is performed as well. A better stabilization of temporal
artifacts is achieved, when a certain number of frames from the future is considered.
For this reason, a delay of 4 VEM frames is introduced, which is essentially not ob-
jectionable because frame grabbing in their system works asynchronously in respect to
usually slower rendering. All computation discussed so faris performed on the CPU
side of their system.

The GPU part is responsible for rendering. The luminance mapacquired by the camera
is at first displayed as the background and then all objects inthe scene are rendered.
Directional lights decomposed in CPU from each HDR VEM framealong with the
shadow mapping technique are used to illuminate the scene. The stratification and pro-
gressiveness properties of the Halton sequence permit adding more lights for selected
angular regions in the EM without affecting the directions of already distributed lights.
The directional light sources, which represent strong emitters such as the sun, can be
clustered to reduce the cost of computing shadows. Finally,rendered GPU frames are
tone mapped (refer to Chapter 6.1) and displayed.

The system presented by Havran et al. does not require any costly preprocessing, can
handle fully dynamic geometry and arbitrary reflectance models evaluated on a GPU
(refer to Figure 9.9). The system does not support interreflection, but it seems that the
instant global illumination algorithm [145] fits well its architecture. The main use of
the proposed system can be envisioned in augmented reality applications in which real
and synthetic objects are illuminated by consistent lighting at interactive frame rates
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Figure 9.9: A snapshot obtained using the Havran et al. system. Left: distribution of
directional lights (marked as the green dots) over a VEM frame as captured using the
fish-eye lens (top) and shown in polar projection (bottom). Right: Stanford BUNNY
illuminated by the 72 directional lights.

Figure 9.10: Comparison of the fidelity in the shadow and lighting reconstruction for
the real-world and synthetic angel statuette illuminated by dynamic lighting. Real-
world lighting is captured by the HDR video camera located inthe front of the round
table with an angel statuette placed atop (the right image side). The captured lighting is
used to illuminate the synthetic model of the angel statuette shown in the display (the
left image side).

(refer to Figure 9.10).

Grosch et al. [146] have built such an augmented reality system capable of the diffuse
interreflection computation (refer to Figure 9.11). As in [138] an HDR video camera
is used to capture dynamic lighting and at the same time another HDR video camera
captures the scene view. The latter view is augmented in real-time by adding virtual
objects, which are illuminated by direct and indirect lighting components from the real
scene (the influence of the virtual objects on the scene illumination is ignored). Direct
lighting is computed using importance sampling of VEM, which additionally takes
into account the visibility of virtual objects. Figure 9.12summarizes the indirect light-
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ing computation, which is performed for digitized geometryand material reflectance
properties of the real world scene. The hemisphere with captured lighting (effectively
VEM as in [138]) is decomposed into a number of angular sectors and for each such
a sector a basis irradiance volume (i.e., directional distribution of incoming lighting
at the nodes of a uniform grid in the scene [147]) is pre-computed using the radiosity
method. To find the actual indirect lighting at a given node, contributions from all ba-
sis irradiance volumes are re-scaled based on the captured VEM lighting and summed
up at interactive speeds. The indirect lighting at any pointat the virtual object is tri-
linearly interpolated based on illumination stored for neighboring nodes. Figure 9.13
shows the comparison of the Cornell Box scene augmented withthe virtual teapot with
respect to the ground-truth real world view with the teapot obtained using a 3D printer.
As can be seen the system proposed by Grosch et al. can faithfully model virtual ob-
jects illuminated by distant direct and spatially varying indirect lighting at interactive
framerates.

Figure 9.11: Virtual Bunny illuminated by daylight as captured by an external HDR
video camera and indirect lighting simulated for the Cornell Box interior. It is assumed
that the interior geometry and its reflectance properties are known to perform such a
simulation. Image courtesy of Thorsten Grosch. Copyright the University of Koblenz-
Landau.

Wan et al. [148] proposed another algorithm suitable to handle VEM. They introduce a
quad-tree over the sphere based on the adaptive subdivisionof spherical quadrilaterals,
which they call theQ2-tree structure. They adaptively sample the EM based on an
importance metric, which leads to finer quad-tree subdivision in brighter EM regions
(refer to Figure 9.14). A directional light source is created for every quad (stratum),
which is a leaf-node in theQ2-tree. The radiance emitted by all pixels in a given
quad is summed and assigned to the corresponding light source, whose direction is
jittered with respect to the quad centroid. To maintain temporal coherence, the authors
adjust theQ2-tree from the previous frame by splitting leaf-node quads,which gain
radiance (thus importance) with respect to the previous frame. Analogously, leaf-node
quads are merged in the regions that become darker. A certainnumber of such merge-
and-split iterations is considered, so that lighting changes are mirrored by the current
Q2-tree structure, and at the same time coherence with the previous frames is preserved
whenever possible. The number of iterations decides whether lighting represented by
Q2-tree is more up-to-date, or more temporally coherent. The authors show that using
their approach low-discrepancy sampling patterns are generated.
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Figure 9.12: Combining basis illumination. For each solid angle sector of the fish-
eye lens an irradiance volume basis is computed using the radiosity method. The di-
rectional illumination distribution is computed for each node of the uniform grid and
compressed using spherical harmonics for more efficient storage and access. The actual
indirect lighting is obtained by combining basis illumination scaled by the actual light-
ing captured for each sector of the fisheye lens. Image courtesy of Thorsten Grosch.
Copyright the University of Koblenz-Landau.

The distant lighting assumption inherent for traditional EM lighting holds well for
many outdoor situations, but often fails for indoor scenes.In the latter case, when
captured lighting is represented just by a single environment map and decomposed into
a set of directional lights, the appearance of shadows cast by dynamic objects may look
unrealistic. In environments with dominant directional lights the resulting shadows are
casted always in the same direction irrespectively of the dynamic object position. This
problem can be significantly ameliorated when the directional lights are replaced with
a representative set of point light sources with their fixed position in the scene. Korn
et al. [149] have built an augmented reality system aimed towards achieving such
goal1. In their system they use two photometrically-calibrated HDRC VGAx (IMS
CHIPS) cameras with fisheye lenses [144] as shown in Figure 9.15. The HDR cameras
are attached to the table and their fisheye lenses are upward directed. Additionally, a
webcam camera can be seen, which is directed towards a markeron the table, where
a virtual object is to be placed. The display shown in Figure 9.15 presents the EM
images captured by the cameras as well as the view from the webcam augmented with

1Good background information concerning the lighting reconstruction using a stereo-camera pair, and
then the scene augmentation with virtual objects is providedby Sato et al. [150]. However, their system is
off-line and only static scenes are considered.
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Figure 9.13: Comparison of virtual teapot appearance (left) as illuminated by captured
direct and simulated indirect lighting with respect to its real world counterpart printed
using a 3D printer (right). Image courtesy of Thorsten Grosch. Copyright the Univer-
sity of Koblenz-Landau.

Figure 9.14: Adaptive sphere subdivision using theQ2-tree technique. Image after
Figure 6 in [148].

a virtual object, which is illuminated by captured lighting.

The decomposition of VEM captured by the two video cameras into a set of point light
sources is performed as follows. In one of the captured EM bright pixels are selected,
and their corresponding positions in the second EM are foundusing the epipolar geom-
etry. This narrows the search space to pixels located along the corresponding epipolar
line. In fact, the epipolar lines are distorted into curves due to the image geometry im-
posed by the fisheye lenses. In practice, Korn et al. precomputed 500 epipolar curves
and stored them in a look-up table to improve the correspondence search efficiency.
When the corresponding light sources are found in the captured EM, then based on the
known camera parameters and the distance between the cameras, 3D light source posi-
tions can be derived by means of simple triangulation. The light positions are tracked
from frame to frame and updated along with changes in lighting as captured by the
cameras. Figure 9.16 shows the real world scene and the corresponding augmented
scene with added a virtual box. Note a good match of shadows, which is achieved
automatically due to real-world lighting capture.



130 CHAPTER 9. HDRI IN COMPUTER GRAPHICS

Figure 9.15: Light capturing system with stereo HDR video cameras (attached to the
table). The webcam captures the scene view with the marker, which tracks position
of the virtual object. The resulting augmented scene is shown on the display as well
as two environment maps used to illuminate the scene. Image courtesy of Thorsten
Grosch. Copyright the University of Koblenz-Landau.

9.2.2 HDR Imaging in Reflectance Measurements

High-quality modeling of surface reflectance properties contributes greatly to the real-
istic appearance of rendered objects. At present, analytical reflectance models are still
predominant in low-end applications due to their compactness, but their use is often
difficult due to non-intuitive and perceptually non-uniformly scaled parameters [151],
which often do not have any physical meaning and cannot be measured for real world
materials. Also, the class of real-world materials that canbe convincingly represented
using the analytical reflectance models is limited. For thisreasons many industrial
and cinematographic applications, which require high fidelity or at least plausibility
in the appearance of complex materials, relies on measured bi-directional reflectance
distribution function (BRDF).

Bi-directional Reflectance Distribution Function Acquisition

The BRDF is a 4D function, which is defined as the ratio of radiance outgoing in the
direction(θo,φo) to irradiance (the radiant power per unit area) incident onto a material
sample from the direction(θi ,φi). For opaque surfaces the BRDF is measured for all
combinations of incoming and outgoing light directions over the hemisphere. Special-
ized gonioreflectometers with robotically controlled positions of the light source and
detector with respect to the flat material sample are used forthe high-quality BRDF
measurement. Such a measurement can be performed much faster using a calibrated
camera, which captures a curved material sample [152, 153].In this case each pixel,
which represents the material sample, effectively provides measurement data. Instead
of capturing the spherical material probe, the appearance of real-world curved objects
with spatially varying BRDF can be captured using a relatively small number of HDR
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Figure 9.16: Real-world scene (left) and its augmented counterpart (right). The box
floating over the table is a virtual object, which augments the video stream captured by
the webcam (refer to Figure 9.15). The box is illuminated by lighting captured by the
two HDR cameras. Images courtesy of Thorsten Grosch. Copyright the University of
Koblenz-Landau.

images [154]. Sparse BRDF sampling over(θi ,φi) and(θo,φo) direction pairs for each
point on the object surface is compensated by exploiting thespatial coherence of BRDF
for neighboring regions, and by fitting the measured data to an analytical reflectance
model whose parameters change over the object surface. Figure 9.17 shows the ac-
quisition setup used by Lensch et al. Figure 9.18 presents anobject, whose geometry
and spatially varying reflectance has been captured, as it isrendered under arbitrary
lighting conditions.

Bi-directional Texture Function Acquisition

All BRDF measurement techniques discussed so far are suitable for materials, which
do not exhibit complex spatial structure. While such structure must be rendered to
convey the material look-and-feel, it is usually impractical to include such fine scale
details into the geometrical model. Also, complex light interactions within the fine
structure due to light sub-surface scattering and self-shadowing cannot be captured by
global illumination simulation due to excessive costs. These effects can be captured
in the bi-directional texture function (BTF), which is a 6D texture representation that
generalizes the BRDF by adding information on the sample point 2D position(u,v)
over the surfaceA. Effectively each BTF sample is parametrized by its position (u,v)
at A, and the incoming and outgoing light directions(θi ,φi) and(θo,φo). Figure 9.3
shows an example of realistic rendering of dragon model covered with a leather BTF
and illuminated by a captured HDR EM. Figure 9.19 shows a BTF measurement setup,
in which a CCD camera is used to capture the material sample hold by a robot. Kodak
DCS Pro 14N has been used in this system to capture 12-bit RGB images with a resolu-
tion 4,500× 3,000, but for more glossy material samples capturing HDR images could
be required. A practical problem here is the capture time of over 6,500 images, which
must be multi-fold increased when a multi-exposure technique is used. This problem
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could be alleviated, when an HDR camera would be used, which for this particular
application should offer very high resolution as well. For more information on BTF
acquisition and rendering refer to an excellent survey on this topic by Müeller et al.
[155].

Reflectance Field Acquisition

The reflectance field as introduced by Debevec et al. [156] is an 8D function, which
relates incoming lighting from the direction(θi ,φi) at any point(ui ,vi) at the surfaceA
to outgoing lighting in the direction(θo,φo) at any point(uo,vo) at A. The reflectance
field dimensionality can be reduced to 6D by assuming that lighting is distant (a simi-
lar assumption as for the environment map lighting in Section 9.2.1), which effectively
means that incoming lighting does not vary over the surface of A for each point(ui ,vi).
By making another simplifying assumption that the camera viewpoint is fixed, only
a single outgoing lighting direction(θo,φo) is considered for each point(uo,vo) at A,
what further reduces the reflectance field dimensionality tomore tractable 4D. Note that
even such a 4D slice over the general 8D reflectance field stillprovides information on
important aspects of light transfer within the material including subsurface scattering.
In cinematography and game applications the human skin is animportant example of
material, which without modeling of the sub-surface scattering effect has an unnatu-
ral plastic look. Debevec et al. [156] demonstrated that the4D reflectance field of a
human face can be reconstructed from a set of images with light rotating around the
face at various heights. Essentially a set of basis images for various light directions has

Figure 9.17: Photograph of a setup used for capturing spatially varying BRDF [154].
In a photo studio covered with dark felt the following setup elements can be seen (from
left to right): an HMI metal halide bulb serving as a point light source, metal spheres
whose highlight configuration serves to track the light source position, object whose
BRDF is acquired, and a Kodak DCS 560 camera used for multi-exposure HDR images
acquisition. Image courtesy of Hendrik P. A. Lensch, Jan Kautz, Michael Goesele,
and Hans-Peter Seidel of MPI Informatik and Wolfgang Heidrich of the University of
British Columbia.
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Figure 9.18: Digitalization of the Max Planck bust using theacquisition setup [154]
shown in Figure 9.17: (upper left) photograph, (upper right) acquired 3D geometric
model, (lower left) rendered image based on the acquired geometry model and spatially
varying BRDF distribution for the same viewpoint as the photograph in (upper left), and
(lower right) rendered image based on the same acquired model as in (lower right), but
illuminated by different lighting and seen from a differentviewpoint. Images courtesy
of Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, and Hans-Peter Seidel of MPI
Informatik and Wolfgang Heidrich of the University of British Columbia.

been created, which then by their linear combination with different weights enables to
render the image of face under arbitrary lighting and the sub-surface scattering effect
is properly considered. Since during the acquisition the human face must remain static
it is desirable to use high speed camera. The follow-up research has been focused on
lifting the restriction of dimensionality for the capturedreflectance fields by allowing
arbitrary camera position [157], spatially varying lighting [158], or even full 8D re-
flectance field [159]. Fuchs et al. [160] showed how to reduce the number of basis
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Figure 9.19: Acquisition setup for bi-directional texturefunction capturing [155]. A
planar 10cm×10cm texture sample is attached to the robot’s sampleholderwhich may
change its orientation with respect to a fixed HMI bulb and a rail-mounted CCD camera
(Kodak DCS Pro 14N). Images courtesy of Gero Müller, Jan Meseth, Mirko Sattler,
Ralf Sarlette, and Reinhard Klein of the University of Bonn.

images and still achieve the good quality in the scene re-lighting for 4D reflectance
fields (with the fixed camera and distant lighting assumptions as in [156]). HDR im-
age capture has been commonly used as it is required to handlestrongly glossy objects
and improves the overall acquisition accuracy. Figure 9.20shows the acquisition setup
from [160] in which a multi-exposure technique [111] is employed to capture HDR
sequences using Jenoptik CEcool or C14plus cameras (refer to Chapter 3.2 for more
details on the C14plus camera). Figure 9.21(left) shows an environment map used to
relight the scene with the bottle containing a colored liquid Figure 9.21(right). No-
tice subtle light transport effects including anisotropy in the reflectance field due to the
interplay of cylindrical bottle’s shape with glossy surface material.

Translucent Objects Acquisition

Another important category of real-world materials are translucent objects character-
ized by complex light scattering inside the material. This multiple light scattering
enables to see light shining through the object and washes out visible surface details
by reducing contrast of reflected light. The latter effect issimilar to the ambient term
in simple reflectance models, but sub-surface scattering may add significant spatially
varying and usually low spatial frequency lighting component. Apart from the human
skin other examples of translucent materials include milk,marble, and many organic
objects such as some fruits. Jensen et al. [162] were the firstto address the problem
of physics-based translucency modeling and rendering. They proposed an approxima-
tion to a diffusion model suitable for rendering of homogeneous materials, and they
measured physical parameters required by this model. In their measurement setup they
illuminate material with strong narrow beam of light and capture HDR images using
a multi-exposure technique, which is necessary to capture the exponential fall off of
scattered light intensity away from the point of illumination (they reported up to five
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Figure 9.20: Photograph of a setup used for capturing of the 4D reflectance field [160].
Spotlight projectors placed on the floor illuminate a tent made of black cloth and indi-
rectly illuminate the captured scene, which is arranged on top of the boxes. A camera
mounted on the tripod records the HDR sequences with dynamically changing lighting
due to computer controlled changes in the orientation of thespotlight projectors. Image
courtesy of Martin Fuchs, Volker Blanz, Hendrik P. A. Lensch, and Hans-Peter Seidel
of MPI Informatik.

Figure 9.21: Rendering of the bottle containing a colored liquid (right) as re-lighted
by a real-world environment map (left) [160]. The image has been reconstructed using
1024 HDR images captured for different lighting conditionsusing the setup from Fig-
ure 9.20. Images courtesy of Martin Fuchs, Volker Blanz, Hendrik P. A. Lensch, and
Hans-Peter Seidel of MPI Informatik.

orders of magnitude in the measured light fall-off). Goesele et al. [161] have proposed
a measurement setup to capture inhomogeneous translucent object appearance (refer to
Figure 9.22). In their system, they use a narrow laser beam tosequentially illuminate
a dense set of locations on the object surface, and the resulting scattered light distri-
bution is captured using an HDR video camera (refer to Figure9.23 to see captured
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Figure 9.22: Acquisition setup for measuring the appearance of inhomogeneous
translucent materials [161]. A narrow laser beam, deflectedby a high precision 2D
galvanometer scanner, sweeps over the object’s surface with a sample spacing of about
1 mm. The distribution of scattered lighting for each laser illumination sample is cap-
tured by an HDR video camera. For a given camera position all sides of the object
are captured using a turntable. This process is repeated formanually changed camera
positions, so that the full 360◦ range of relative laser and camera positions is covered.
The two spotlights visible on both sides of the HDR video camera in the right image
are used only for object geometry acquisition, which is not discussed here. Images
courtesy of Michael Goesele, Hendrik P. A. Lensch, Jochen Lang, Christian Fuchs,
and Hans-Peter Seidel of MPI Informatik.

sample images for various objects). The use of HDR video camera is mandatory in
this application given the amount of images to be captured aswell as extremely high
dynamic range in scattered lighting. The authors used a Silicon Vision Lars III HDR
video camera of resolution 768×496 equipped with a high quality lens to reduce flare
effects (refer to Chapter 3.2 for more details on this camera). The captured data are
re-sampled over the vertices of dense mesh, which describesthe object geometry, and
are used to compute scattered and reflected lighting under arbitrary illumination.

9.3 Conclusions

In this chapter we have discussed cross-correlations between developments in computer
graphics and HDRI. Realistic graphics and more recently themovie industry relying
on digital technology are rich sources of high quality HDR content. In coming years
the role of modern GPUs and game consoles will be increasing in on-line HDR content
generation, which will be even more important with the improving availability of HDR
display devices (refer to Chapter 7). HDRI contributes to graphics as well by providing
captured lighting and object appearance. HDRI-based lighting dominates now in spe-
cial effects, mixed reality applications, and car advertisement due to much better visual
quality of resulting images, good match of virtual and real part of scenography as well
as freedom concerning the place and time of HDR light capturing. It can envisioned
that soon virtual TV studios, driving simulators, and gameswill benefit to a greater
extent from this technology. In all these applications, therole of HDR video will be
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Figure 9.23: Translucent Objects Acquisition: (top row) the test objects used to cap-
ture their translucent appearance under indoor illumination and (bottom row) the same
objects illuminated by a spot-shaped laser beam as capturedby an HDR video camera
using the acquisition setup shown in Figure 9.22 [161]. Images courtesy of Michael
Goesele, Hendrik P. A. Lensch, Jochen Lang, Christian Fuchs, and Hans-Peter Seidel
of MPI Informatik.

increasing since the dynamic aspect of lighting is important in many discussed appli-
cations. In surface reflectance or even more general reflectance field capturing HDRI
becomes a standard practice. Here the use of HDR video cameracan lead to shortening
of the acquisition time which is in particular important when humans or animals are
captured. In acquisition setups that require higher sampledensity such as bi-directional
texture function HDR still cameras could be a better choice because at least at present
they provide higher image resolution at much lower costs.
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Chapter 10

Software

To facilitate the work with HDR images and video, Mantiuk et al. [33] have devel-
oped a set of software tools that provide a wide range of imageand video processing
functionality. The tools share a common design pattern based on system pipes which
permits to combine them in the form of filters in a processing pipeline, similar to the
netpbmtoolkit. Such a pipeline starts with an input program that reads a list of im-
ages and forwards the data in a uniform manner to the next tool. The subsequent tools
can perform certain image processing operations includingcropping, rotating, and tone
mapping. The last tool in the pipeline usually stores the processed content.

The communication in the pipeline is facilitated by a generic protocolpfswhose imple-
mentation is offered as a C++ library. The protocol is also straightforward to implement
in other languages. The tools exchange data using the pipes commonly supported by
many operating systems. Such a design eases the implementation of new tools and
permits to transparently combine programs written in various programing languages
including MATLAB R©and GNU Octave scripts, Perl, Python and many others. The
design principles, including the choice of data representation in the pipeline, are de-
scribed in more detail in [33].

The main package of the software ispfstoolsand it is currently extended withpfstmo,
pfscalibration, andHDR Visible Differences Predictor (VDP). The whole software is
Open Source and can be compiled on several operating systems. It is supported by an
active news-group that gathers users and developers.

10.1 pfstools

pfstoolsis the main package of the software. It implements the generic communication
protocol in the stand-alone librarylibpfs, and contains numerous basic image process-
ing tools including an HDR capable viewer.pfstoolssupports many HDR and standard
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file formats including: Radiance RGBE, OpenEXR, Tiff, LogLuv, PFM, PPM, RAW
formats of digital cameras, and practically all 8-bit formats through ImageMagickR©.

Project page:
http://www.mpi-inf.mpg.de/resources/pfstools/

10.2 pfscalibration

pfscalibrationpackage provides an implementation of the method developedby Robert-
son et al. [28] for the recovery of the response curve of arbitrary cameras. Tools
provided in this package can be used for photometric calibration of both off-the-shelf
digital cameras and HDR cameras as described in Chapter 3.2,and for the recovery of
high dynamic range images from the set of low dynamic range exposures as explained
in Chapter 3.1.1.

Project page:
http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html

10.3 pfstmo

pfstmopackage contains implementations of the state-of-the-arttone mapping opera-
tors, including those described in Chapter 6.1. The implementations are suitable for
convenient processing of both static images and animations.

Project page:
http://www.mpi-inf.mpg.de/resources/tmo/

10.4 HDR Visible Differences Predictor

HDR Visible Differences Predictor (VDP)belongs to the category of visual metrics,
which can predict whether differences between two images are visible to the human
observer or not (refer to Chapter 4). Such metrics are used for testing either visibility
of information (whether we can see important visual information) or visibility of noise
(to make sure we do not see any distortions in images, e.g., due to lossy compression).
The unique feature of the HDR VDP is that it can work with the full range of luminance
that can be seen by the human eye in the real world scenes, which effectively means
that visual differences between any pair of HDR images can bepredicted.

Project page:
http://www.mpi-inf.mpg.de/resources/hdr/vdp
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