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Chapter 1

Introduction

1.1 Low vs. High Dynamic Range Imaging

The majority of existing digital imagery and video matergalpture only a fraction
of the visual information that is visible to the human eye ame not of sufficient
quality for reproduction by the future generation of digpdievices. The limiting factor
is not the resolution, since most consumer level digital @@® can take images of
higher number of pixels than most of displays can offer. Trablem is the limited
color gamut and even more limited dynamic range (contragidwced by cameras and
stored by the majority of image and video formats. To empeattiese limitations of
traditional imaging technology it is often callémiv-dynamic ranger simply LDR.

For instance, each pixel value in the JPEG image encodirepigsented using three
8-bit integer numbers (0-255) using ti&; C, color space. This color space is able to
store only a small part of visible color gamut (although edming the colors most of-
ten encountered in the real world), as illustrated in Fidufeleft, and an even smaller
part of the luminance range that can be perceived by our egetlustrated in Fig-
ure 1.1-right. The reason for this is that the JPEG format dessigned to store as
much information as can be displayed on the majority of diggl which were at that
time Cathode Ray Tube (CRT) monitors or TV sets. This assiamg no longer valid,
as the new generations of LCD and Plasma displays can depiach broader color
gamut and dynamic range than their CRT ancestors. Every eaergtion of displays
offers better color reproduction and requires higher gieniof image and video con-
tent. The traditional low contrast range and limited colamyit imaging (LDR imag-
ing), which is confined to three 8-bit integer color channetsnot offer the precision
that is needed for the upcoming developments in image oappuocessing, storage
and display technologies.

High Dynamic Range Imaging (HDRI) overcomes the limitatddraditional imaging
by performing operations on color data with much higher isien. Pixel colors are
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Figure 1.1: Left: the standard color gamut frequently usedraditional imaging
(CCIR-705), compared to the full visible color gamut. Rightal-world luminance
values compared with the range of luminance that can beajisdlon CRT and LDR
monitors. Most digital content is stored in a format that astrpreserves the dynamic
range of typical displays.

specified in HDR images as a triple of floating point valuesiéliy 32-bit per color
channel), providing accuracy that exceeds the capabkiliti¢he human visual system
in any viewing conditions. By its inherent colorimetric pigion, HDRI can represent
all colors found in real world that can be perceived by the Gomye.

HDRI does not only provide higher precision, but also enathe synthesis, storage
and visualization of a range of perceptual cues that areafoeeable with traditional
imaging. Most of the LDR imaging standards and color spaege been developed to
match the needs of office or display illumination conditiohen viewing such scenes
or images in such conditions, our visual system operatesnixture of day-light and
dim-light vision state, so called the mesopic vision. Wheswing out-door scenes,
we use day-light perception of colors, so called the phatefsion. This distinction
is important for digital imaging as both types of vision sisodifferent performance
and result in different perception of colors. HDRI can regra images of luminance
range fully covering both the photopic and the mesopic nisibus making distinction
between them possible. One of the differences between ricesagh photopic vision is
the impression of colorfulness. We tend to regard objecteroolorful when they are
brightly illuminated, which is the phenomenon that is cdlléunt’s effect. To render
enhanced colorfulness properly, digital images must pvesmformation about the
actual level of luminance of the original scene, which is possible in the case of
traditional imaging.

Real-world scenes are not only brighter and more colorfahttineir digital reproduc-
tions, but also contain much higher contrast, both localvbeh neighboring objects,
and global between distant objects. The eye has evolvedp® with such high con-
trast and its presence in a scene evokes important pertepas Traditional imaging,
unlike HDRI, is not able to represent such high-contrashese Similarly, traditional
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images can hardly represent common visual phenomena, susélfduminous sur-
faces (sun, shining lamps) and bright specular highlighiisey also do not contain
enough information to reproduce visual glare (brighterdfighe areas surrounding
shining objects) and a short-time dazzle due to suddenaseref the brightness of a
scene (e.g. when exposed to the sunlight after staying msjloto faithfully represent,
store and then reproduce all these effects, the originaksrist be stored and treated
using high fidelity HDR techniques.

1.2 Device- and Scene-referred Image Representations

To accommodate all discussed requirements imposed on HRBanon format of
data is required to enable their efficient transfer and @siog on the way from HDR
acquisition to HDR display devices. Here again fundametitedrences between im-
age formats used in traditional imaging and HDRI arise, Whie address in this
section.

Commonly used LDR image formats (JPEG, PNG, TIFF, etc.)ainrdata that is tai-
lored to particular display devices: cameras, CRT or LCIpldigs. For example, two
JPEG images shown using two different LCD displays may beifségntly different
due to dissimilar image processing, color filters, gammaextion, and so on. Obvi-
ously, such representation of images vaguely relates tadteal photometric proper-
ties of the scene it depicts, but it is dependent on a disptaycd. Therefore those
formats can be considered dsvice-referredalso known autput-referred, since
they are tightly coupled with the capabilities and chanastie of a particular imaging
device.

ICC color profiles can be used to convert visual data from awce-referred format

to another. Such profiles define the colorimetric propexies device for which the

image is intended for. Problems arise if the two devices ldifferent color gamuts

or dynamic ranges, in which case a conversion from one fotmanother usually

involves the loss of some visual information. The algorighior the best reproduction
of LDR images on the output media of different color gamutehbeen thoroughly

studied [1] and CIE technical committee (CIE Division 8: FG8) have been started
to choose the best algorithm. However, as for now, the coteenltas not been able
to select a single algorithm that would give reliable resuitall cases. The problem
is even more difficult when an image captured with an HDR canreiconverted to

the color space of a low-dynamic range monitor (see a mdditf tone reproduction

algorithms discussed in Chapter 6). Obviously, the ICC [@®ftannot be easily used
to facilitate interchange of data between LDR and HDR deyvice

Scene-referredepresentation of images offers a much simpler solutiomit grob-
lem. The scene-referred image encodes the actual photortiedracteristic of a scene
it depicts. Conversion from such common representationchwtirectly corresponds
to physical luminance or spectral radiance values, to adbsuitable for a particu-
lar device is the responsibility of that device. This shoglhrantee the best possible
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rendering of the HDR content, since only the device has allitfiormation related

to its limitations and sometimes also viewing conditiong (eambient illumination),

which is necessary to render the content properly. HDR fitenéds are examples of
scene-referred encoding, as they usually represent éithénance or spectral radi-
ance, rather than gamma corrected and ready to displayl {@kees”.

The problem of accuracy of scene-referred image reprasamtarises, for example
the magnitude of quantization error and its distributionvarious luminance levels in
the depicted scene. For display-referred image formatpribielem of pixel accuracy
is easy to formulate in terms of the reproduction capabditf target display devices.
For scene-referred image representations the accuracydshot be tailored to any
particular imaging technology and, if efficiency of storidagta is required, should be
limited only by the capabilities of the human visual system.

To summarize, the difference between HDRI and traditiomzRlmaging is that HDRI
always operates on device-independent and high-predikita) so that the quality of
the content is reduced only at the display stage, and onlgéwice cannot faithfully
reproduce the content. This is contrary to traditional LBRging, where the content
is usually profiled for particular device and thus strippeahf useful information as
early as at the acquisition stage or latest at the storage.stéigure 1.2 summarizes
these basic conceptual differences between LDR and HDRimgag

Standard (Low) Dynamic Range High Dynamic Range

50 dB Camera Dynamic Range 120 dB
1:200 Display Contrast 1:15,000
8-bit or 16-bit Quantization floating point or variable
display-referred Image Representation scene-referred
display-limited Fidelity as good as the eye can see

Figure 1.2: The advantages of HDR compared to LDR from thdiegins point
of view. The quality of the LDR image have been reduced on @sgpo illustrate a
potential difference between the HDR and LDR visual corserst seen on an HDR
display. The given numbers serve as an example and are noit meebe a precise
reference.
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1.3 HDR Revolution

HDRI has recently gained momentum and is affecting almd§iedds of digital imag-
ing. One of the breakthroughs responsible for this burshtrest in HDRI was the
development of an HDR display, which proved that the visaion of color and the
luminance range close to real-world scenes is possibleQ®ie of the first to adopt
HDRI were video game developers together with graphics eandlors. Today most
of the state-of-the art video game engines perform rengeriing HDR precision to
deliver more believable and appealing virtual reality irigg Computer generated im-
agery used in special effect production uses HDR technitiuashieve the best match
between synthetic and realistic objects. High-end cinegraphic cameras, both ana-
log and digital, already provide significantly higher dynamange than most of the
displays today. This dynamic range can be retained aftéatiation only if a form
of HDR representation is used. HDRI is also a strong trendiditad photography,
mostly due to the multi-exposure techniques that allow arRHMage to be made
using a consumer level digital camera. HDR cameras that icactl¢ capture higher
dynamic range are available, for examgleroCamHDRom SheronVRHDRCfrom
IMS Chips Origin®from Dalsaor Viper FilmStream™from Thomson Also, major
display vendors experiment with local dimming technologg & ED-based backlight
devices, which significantly enhances the dynamic rangdfefex by them LCD dis-
plays. To catch up with the HDR trend, many software vendon®ance their support
of the HDRI, takingAdobeR) Photosho® CS3andCorelR) Paint Shop Pr@® Photo
X2 as examples. Also, commercial packages supporting mxpesre blending and
tone reproduction such &hotomatixor FDRToolstargeted mostly for photographers
become available.

Besides its significant impact on existing imaging techgwe that we can observe
today, HDRI has the potential to radically change the methnydwhich imaging data
is processed, displayed and stored in several fields of szieBomputer vision algo-
rithms can greatly benefit from the increased precision oRHBDages, which do not
have over- or under-exposed regions and which are oftenasecof the algorithms
failure. Medical imaging has already developed image fasnje.g. the DICOM for-
mat) that partly cope with the shortcomings of traditiomabges, however they are
supported only by specialized hardware and software. HDRkghe sufficient preci-
sion for medical imaging and therefore its capture, praogsnd rendering techniques
can be used also in this field. HDR techniques can also findaapioins in astronomi-
cal imaging, remote sensing, industrial design and sdéienisualization.

All these exciting developments in HDRI as well as huge pidénf this technology
in multiple applications suggest that imaging is on the gasfjHDR revolution. This
revolution will have a profound impact on devices that areduf®r image capture and
display, as well as on image and video formats that are usstbte and broadcast vi-
sual content. Obviously, during the transition time sonsgreints of imaging pipeline
may still rely on traditional LDR technology. This will regya backward compatibility
of HDR formats to enable their use on LDR output devices ssopriaters, displays,
and projectors. For some of such devices the format extesgidHDR should be trans-
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parent, and standanisplay-referredcontent should be directly accessible. However,
more advanced LDR devices may take advantage of HDR infaomdaty adjusting
scene-referreccontent to their technical capabilities through customhizene repro-
duction. Finally, the legacy images and video should be aghegl when displayed on
HDR devices, so that the best possible image quality is aeflié€he so-called inverse
tone mapping). In this book we address all these importaoes by focusing mostly
on the state-of-the-art techniques. An interesting actotihistorical developments
on dynamic range expansion in the art, traditional photalgyaand electronic imaging
has been recently presented by one of the pioneers in HDRIN@Cann [3].

1.4 Organization of the Book

The book presents a complete pipeline for HDR image and vdecessing from ac-
quisition, through compression and quality evaluatiordigplay (refer to Figure 1.3).
At the first stage digital images are acquired, either with@as or computer rendering
methods. In the former case pixel values calibration in seofrphotometric or radio-
metric quantities may be required in some technically aeérapplications. At the
second stage, digital content is efficiently compressedemedded either for storage
or transmission purposes. Here backward compatibiliti eitisting formats is an im-
portant issue. Finally, digital video or images are dispthgn display devices. Tone
mapping is required to accommodate HDR content to LDR deyiaad conversely
LDR content upgrading (the so-called inverse tone mappsiggcessary for display-
ing on HDR devices. Apart from considering technical cali@ds of display devices,
the viewing conditions such as ambient lighting and amotitigbt reflected by the
display play an important role for proper determinationaid mapping parameters.
Quality metrics are employed to verify algorithms at allgets of the pipeline.

i [ Viewing
a _ ] k Conditions C
LDR Camera LDR LDR Display \

Storage
Conditions B

%
Viewing
Conditions A
—_—
Real Scene HDR Camera\ I 'S
@ - E

) e / HDR .
Eye U —_— Storage HDR Display Eye
A

Abstract 3D Model CG Rendering
Memory of Appearance
O @

Image Quality Metric

Viewing

Figure 1.3: Imaging pipeline and available HDR technolsgie

Additionally, the book includes successful examples of use of HDR technology
in research setups and industrial applications involvimigpguter graphics. Whenever
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needed short background information on human perceptigiven, which enables
better understanding of the design choices behind the sscdualgorithms and HDR
equipment.

The goal of this book is to present all discussed componédiiteediDR pipeline with
the main focus on HDR video. For some pipeline stages HDRovidutions are not
well established or do not exist at all, in which case we dbesdechniques for single
HDR images. In such cases we attempt to select the technighih can be extended
into temporal domain.

1.4.1 Why HDR Video?

Our focus in this book on HDR video stems from the fact thatleRiDR images are
visually compelling and relatively common (over 125,00@agraphs tagged as HDR
is available on Flickr), the key applications that will drifurther HDRI development
in coming years require some form of HDR video or uncompig$smporal image
sequences. It can be envisioned that the entertainmergtiyduith computer games,
digital cinema, and special effects will be such an impdrthaiving force. In games
due to HDR-enabled (floating point) graphics pipelines HDRge sequences can be
readily generated as an output from modern GPU cards. Indhe fature, games
will use more often HDR video of real world scenes for virtgaknes relighting or
as realistic video textures. In digital cinema applicasitime lack of desirable contrast
and luminance range are the main current drawbacks, whosgopimprovement can
be expected in the quest for a better visual quality than piossible with traditional
film projectors. In terms of HDR content for digital cinemastldoes not look like
a real problem. Modern movies have often been shot with casnieaturing higher
dynamic range, and legacy movies can be upgraded even ifahiwervention would
be required for some frames (as this happened in the pastblatk&white films’
upgrade to color). Also, special effects, especially thiasehich real and synthetic
footage are seamlessly mixed, require both HDR shootingemdering. HDR video
is also required in all applications in which capturing temg) aspects of changes in
the scene is required with high accuracy. This is in paticirhportant in monitoring
of some industrial processes such as welding, predictiverdassistance systems in
automotive industry, surveillance systems, to name jusivagossible applications.
HDR video can be also considered to speedup the image aoouisiall applications,
in which a large number of static HDR images are requiredpasXample in image-
based techniques in computer graphics. Finally, with theabof TV sets featuring
enhanced dynamic range, broadcasting of HDR video sigribbeiimportant, which
may take long time before it actually happens due to stamzktidn issues. For this
particular application, enhancing current LDR video slgnaHDR by intelligent TV
sets seems to be a viable solution in the nearest future.
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1.4.2 Chapter Overview

The book is organized as follows: Chapter 2 gives backgraofatmation on the
digital representation of images and the photometric arnarioaetric description of
light and color. Chapter 3 reviews the HDR image and videdwapechniques and
describes the procedure of their photometric calibratsanthat the pixel values are
directly expressed in luminance units. Chapter 4 presepereeption-based image
quality metric, which enables the prediction of differesideetween a pair of HDR
images. Such metrics are important to judge the quality oRHIdntent for example
as the result of lossy compression. Chapter 5 discussesshes of HDR image and
video compression. At first HDR pixel format and color spaaesreviewed and then
existing formats of HDR image and video encoding are presknEpecial attention
is paid to backward-compatible compression schemes. €h@giresents a synthetic
overview of state-of-the-art tone mapping operators aadudises the problem of their
evaluation using subjective methods with human subjeaajective computational
models. Also, temporal aspects of tone reproduction aestigated. Chapter 7 briefly
surveys HDR display and projection technologies that aggaksn recent years. The
problem of upgrading legacy images and video (inverse tamgping), so that they can
be displayed on HDR devices with the best visual quality,issussed in Chapter 8.
Chapter 9 surveys cross-correlations between develognenbmputer graphics and
HDRI. At first, computer graphics rendering as a rich sourtdigh quality HDR
content is presented. Then, HDR images and video capturdgtireal-world as the
input data for image-based rendering and modeling are sgch Finally, Chapter 10
demonstrates software packages for processing of HDR snaige video that have
been made available by the authors of this book as openepuofects.



Chapter 2

Representation of an HDR
Image

This chapter explains several physical and perceptualtigiesnimportant for digital
imaging, such as radiance, luminance, luminance factat,cator. It does not give
a complete or exhaustive introduction to radiometry, phatsy or colorimetry, since
these are described in full extent elsewhere [4, 5, 6]. Thedmf this chapter is on the
concepts that are confusing or vary in terminology betwésdiglines, and also those
that are used in the following chapters.

2.1 Light

[rgb]0,0,0(A)

Figure 2.1: Spectral radiance. Spectral radiance is ardiff@al measure, defined for
infinitely small areadA, infinitely small solid angledw, radiant flux® and an angle
between the rays and the surfate

The physical measure of light that is the most appropriateriaging systems is either
luminance(used in photometry) ospectral radiancegused in radiometry). This is
because both measures stay constant regardless of thecdiftam a light source to a
sensor (assuming no influence of the medium in which thetighels). The sensor can

13
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Figure 2.2: CIE spectral luminous efficiency curve for pipitgday light) and scotopic
(night) vision. Data downloaded frohttp://www.cvrl.org/.

be either camera’s CCD chip or a photoreceptor in the eye. (Ulaatities measured
by photoreceptors or digital sensors are related to eithétrese measures.

Spectral radiancés a radiometric measure, defined by:

d?d(A)

L(A) = dw-dA: cosf

(2.1)
whereL (A) is spectral radiance for the wavelength® is radiant flux flowing through

a surface per unit timey is the solid anglef is the angle between the rays and the
surface, and\ is the area of the surface, as illustrated in Figure 2.1.Algh spectral
radiance is commonly used in computer graphics, imagesedterhefined with pho-
tometric units oluminance Luminances spectral radiance integrated over the range
of visible wavelengths with the weighting functidt{A ):

770nm
Y = L(A)V(A)dA (2.2)

380nm
The functionV (A), which is called thespectral luminous efficiency curyé], gives
more weight to the wavelengths, to which the human visuaesygHVS) is more
sensitive. This way luminance is related (though non-maalrly) to our perception
of brightness. The functiod for the daylight vision (photopic) and night vision (sco-
topic) is plotted in Figure 2.2. The temporal aspects of igayland night vision will
be discussed in more detail in Section 6.4. LuminaNgés usually given in cd/rhor
equivalentit units.

Since the most common multi-exposure technique for acymidDR images (refer to
Chapter 3.1.1) cannot assess the absolute luminance levatly a relative luminance
values, most HDR images do not contain luminance valuesdiber the values of
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Figure 2.3: Cone photocurrent spectral responsivitieterA9)].

luminance factor Such luminance factor must be multiplied by a constant reqmmb
which depends on a camera and lens, to get actual luminanod. (®nstant number
can be easily found if we can measure the luminance of a pragtbgd surface (refer
to Chapter 3.2).

2.2 Color

Colors are perceptual phenomena rather than physical. oddtn we can precisely
describe colors using physical units of spectral radiasceh description does not
give immediate answer whether the described color is greesdoColorimetryis the
field that numerically characterizes colors and providésiadetween the human color
perception and the physical description of the light. Tleist®n introduces the most
fundamental aspects of colorimetry and introduces colacap, which will be used in
later chapters. More detailed introduction to colorimetay be found in [8] and [6],
while two handbooks, [5] and [4], are more exhaustive soaf¢eformation.

The human color perception is determined by three types méxoL, M and S, and
their sensitivity to wavelengths. The light in the visiblpestrum is in fact multi-

dimensional variable, where each dimension is associaitbdparticular wavelength.
However, the visible color is a projection of this multi-démsional variable to three
primaries, corresponding to three types of cones. Suclegioj is mathematically
described as a product of the spectral power distributigid,), and the spectral re-
sponse of the type of coné3, (A ), Cu(A) andCg(A ):

R:/WMQMMA 2.3)
A
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Figure 2.4: Color matching functions for the CIE matchingsii R, G and B and 2
standard observer. Data downloaded fiottp: //wuw.cvrl.org/.

G— /A O(A)Cy (A )dA (2.4)

B— / 9(A)Cs(A)dA (2.5)
JA
The spectral responsivities of cones are shown in Figure 2.3

As the result of three-dimensional encoding of color in thé{ithe number of distin-
guishable colors is limited. Also, two stimuli of differespectral power distributions
can be seen as having the same color if only their R, G, and jBgiions match. The
latter property of the HVS is calleshetamerism

To uniquely describe visible color gamut, CIE standardimeti931 a set of primaries
for the standard colorimetric observer. Since the conetsgdea@sponsivities were
not known at that time, the primaries were based on color mvajcexperiment, in
which monochromatic stimuli of particular wavelength waatohed with a mixture of
the three monochromatic primaries (435.6 nm, 546.1 nm, 83ch). The values of
color-matching mixture of primaries for each wavelengthegtheR, G andB primaries
shown in Figure 2.4. The drawback of this procedure was thasulted in negative
value ofR primary. The negative part represents out of gamut colohiglware too
saturated to be within visible or physically feasible range bring those colors into
the valid gamut, the colors must be desaturated by addingpowamatic light. Since
adding monochromatic light results in increasing the walokall R, G and B com-
ponents, there is a certain amount of the added light thatdvoake all components
positive.

To avoid negative primaries and to connect colorimetriccdpton of the light with
photometric measure of luminance (see previous sectioi),if@roducedXY Z pri-
maries in 1931. The primaries, shown in Figure 2.5, weregihesi so that primary
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Figure 2.5: Color matching functions for the CIE matchingsii X, Y and Z and 2
standard observer. Data downloaded fiottp: //www.cvrl.org/.

Y represents luminance and its spectral tristimulus valtegaual the luminous effi-

ciency function (see Figure 2.2). Although the standardiwesn established over 70
years ago, it is still commonly used today, especially agexeace in color conversion

formulas.

For a convenient two-dimensional representation of thercohromaticity coordinates
are often used:

X
X=aviz (2.6)
Y
= 2.7
Y =Xiviz @.7)

Such coordinates must be accompanied by the correspondimgdnce valuey, to
fully describe the color.

The visible differences between colors are not well descritsy chromaticity coordi-
natesx andy. For better representation of perceptual color differen€dE defined
uniform chromaticity scales (UCS) in 1976, which are knownCAE 1976 Uniform
Chromacity Scales:

, 4X

U= iy 3z (2.8)
QY
\/_x+15Y+32 (2.9)

Note thatu/, V' chromaticity space only approximates perceptual uniftyriaid a unit
Cartesian distance can denote from 1 3N®4 JND units.

1IND - Just Noticeable Difference is usually defined as a meawontrast at which a subject has 75%
chance of correctly detecting visual difference in a stirsulu
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The Uniform Chromacity Scales do not incorporate lumindagel in their description
of color. This is a significant limitation, as color differeacan strongly depend on
actual luminance level. Uniform color spaces have beemdiuired to address this
problem. The first color space, CIE 19Z&a*b*, is defined by:

L* = 116(Y /Y)Y - 16 (2.10)
a = 500[(X/Xn)1/3 - (Y/Yn)1/3] (2.11)
b* = zoo[(\(/\(n)l/3 - (Z/zn)l/ﬂ (2.12)
and the second color space, CIE 1976*v*, by:
L* = 116(Y/Y,) Y2 — 16 (2.13)
ut =135 (U —up) (2.14)
v =13L5(V - V) (2.15)

The coordinates with the subscript denote the color of theference whitewhich is
the color that appears white in the scene. For color pristighusually the color of a
white paper under given illumination. Both color spacesehaeen standardized as the
studies did not show that the one is definitely better ovetterand each one has its
advantages.

Both CIE 1976L*a*b* and CIE 1978_*u*v* color spaces have been designed for low
dynamic range color range, available on print or typical Gk8plays and cannot be
used for HDR images. In Section 5.1 we address in more detadsn particular we
derive an (approximately) perceptually uniform color spar HDR pixel values.

The uniform color spaces are the simplest incarnations lafr @ppearance models.
Color appearance models try to predict not only the colariimproperties of the light,
but also its appearance under given viewing conditionsk@raecind color, surround
ambient light, color adaptation, etc.). CIECAMO02 [10] iserample of such a model
that has been standardized by CIE. The discussion of cofmaapnce models would
go beyond scope of this book, therefore reader should refgt]tand [8] for more
information.

2.3 Dynamic Range

In principle, the termdynamic ranges used in engineering to define the ratio between
the largest and the smallest quantity under consideratdth respect to images, the
observed quantity is the luminance level and there are akewezasures of dynamic
range in use depending on the applications. They are sumeddn Table 2.1.

The contrast ratiois a measure used in display systems and defines the ratiedm@tw
the luminance of the brightest color it can produce (white) ¢he darkest (black).
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name formula example context
contrastratio  CR=1: (Ypeak/ Ynoise) 1:500 displays

log exposure range B 10g;(Ypea) —10910(Ynoise 2.7 orders  HDR imaging,
L = 109,(Ypeak) — 109, (Ynoise) 9f-stops  photography

signal to noise ratio  SNR- 20- 10g;(Ypeak/ Ynoise) 53 [dB] digital cameras

Table 2.1: Measures of dynamic range and their context dicgtipn. The example
column illustrates the same dynamic range expressed erelift units.

In case the luminance of black is zero, as for instance in HBRIays [2], the first
controllable level above zero is considered as the dar&estdid infinity. The ratio is
usually normalized by the black level for clarity.

Thelog exposure ranges a measure commonly adopted in high dynamic range imag-
ing to measure the dynamic range of scenes. Here the coedidsio is between the
brightest and the darkest parts of a scene given in luminaHoe log exposure range
is specified in orders of magnitude, which permits the exgioesof such ratios in a
concise form using the logarithm base 10 and is usually &tautto one floating point
position. It is also related to the measure of allowed exposuor in photography —
exposure latitude. Thexposure latitudés defined as the luminance range the film can
capture minus the luminance range of the photographed scehis expressed using
logarithm base 2 with precision up t6;. The choice of logarithmic base is motivated
by the scale of exposure settings, aperture closure (6stopl shutter speed (seconds),
where one step doubles or halfs the amount of captured lighis the exposure lati-
tude tells the photographers how large a mistake they cae inaetting the exposure
parameters while still obtaining a satisfactory image.sTheasure is mentioned here,
because its unitd;stop step®or f-stopsin short, are often perhaps incorrectly used in
HDR photography to define the luminance range of a photogwpbene alone.

Thesignal to noise ratigqSNR) is most often used to express the dynamic range of a
digital camera. In this context, it is usually measured asr#tio of the intensity that
just saturates the image sensor to the minimum intensitycéra be observed above
the noise level of the sensor. It is expressed in decibel} jdBig 20 times base-10
logarithm.

The actual procedure to measure dynamic range is not welletbfind therefore the
numbers vary. For instance, display manufacturers oftessare the white level and
the black level with a separate set of display parametetsatiedine-tuned to achieve
the highest possible number which is obviously overestahand no displayed image
can show such a contrast. On the other hand, HDR images adtenvery few light
or dark pixels. An image can be low-pass filtered before thaahalynamic range
measure is taken to assure reliable estimation. Suchidfexverages the minimum
luminance thus gives a reliable noise floor, and smoothegespixels with very high
luminance thus gives a reasonable maximum amplitude estirBach a measurement
is more stable compared to the non-blurred maximum and noimifeminance.
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The last remaining aspect is the dynamic range that can loeiped by the human

eye. The light scattering on the optic of the eye can effeltiveduce the maximum

luminance contrast that can be projected onto to retina 8l@3-10 units. However,

since the eye is in fact a highly active sensor, which cardlgmhange the gaze and
locally adapt, people are believed to be able to perceivalsmeously the scenes of 4
or even more log-10 units [6, Section 6.2] of dynamic range.



Chapter 3

HDR Image and Video
Acquisition

In recent years several new techniques have been develupisate capable of captur-
ing images with a dynamic range of up to 8 orders of magnitudedao frame rates.

Such a range is practically sufficient to accommodate tHednbe of light present in

the real world scenes. Together with the concept of the sfieered representation of
HDR contents this motivates that the HDR acquisition teghes output pixel intensi-

ties in well calibrated photometric values. The varied téghes used in HDR capture
require, however, careful characterization. In this chapte review the HDR capture
techniques in the following section and describe the procetbr characterization of
such cameras in terms of luminance in Section 3.2.

3.1 Capture Techniques Capable of HDR

In principle, there are two major approaches to capturigg lalynamic range: to de-
velop new HDR sensors or to expose LDR sensors to light at thareone exposure
level and later recombine these exposures into one highnaigrrange image by means
of a software algorithm. With respect to the second apprahetvariation of exposure
level can be achieved in three ways. The exposure can changed, meaning that
for each video frame a sequence of images of the same sceaptisad, each with
a different exposure. The exposure can change in space tisaicthe sensitivity to
light of pixels in a sensor changes spatially and pixels i@ iomage are non-uniformly
exposed to light. Alternatively, an optical element caritdjght onto several sensors
with each having a different exposure setting. Such soéhaad hardware solutions to
HDR capture are summarized in Sections 3.1.1-3.1.4.

21
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exposure t; exposure exposure {3 HDR frame

t
fz%
[1»—4

1 1
1 1(I)0 10(I)00 Luminance [cd/m2]

Figure 3.1: Three consecutive exposures captured at inateetime step$, to, t3
contain different luminance ranges of a scene. The HDR framagged from these
exposures contains the full range of luminance in this sceibdR frame tone mapped
for illustration using a lightness perception inspirechigique [14].

3.1.1 Temporal Exposure Change

This is probably the most straightforward and the most papoiethod to capture
HDR with a single low dynamic range sensor. Although suchressecaptures at
once only a limited range of luminance in the scene, its djpgraange can encompass
the full range of luminance through the change of exposurarpeters. Therefore a
sequence of images, each exposed in such a way that a diffargye of luminance is
captured, may together acquire the whole dynamic rangeec$thne, see Figure 3.1.
Such captures can be merged into one HDR frame by a simplegiugrof pixel
values across the exposures, after accounting for a camgpanse and normalizing
by the exposure change [11, 12, 13] (for details on the algoriefer to Section 3.2).
Theoretically, this approach allows to capture sceneshifrary dynamic range, with
an adequate number of exposures per frame, and exploitsithesolution and capture
quality of a camera.

HDR capture based on the temporal exposure change has, élpwestain limitations
especially in the context of video. Correct reconstructibitdDR from multiple im-
ages requires that each of the images capture exactly the seene at a pixel level
accuracy. This requirement cannot be practically fulfilledcause of camera motion
and motion of objects in a scene, and pure merging technilgagsto motion arti-
facts and ghosting. To improve quality, such global andlldisplacements in images
within an HDR frame must be re-aligned using for instancacapflow estimation.
Further, alignment of images that constitute one frame di&e ttemporarily coherent
with adjacent frames. A complete solution that captures images per frame and
allows for real-time performance with 25 fps HDR video captis described in [15].
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An alternative solution that captures a much wider dynamge of about 140dB, but
does not compensate for motion artifacts is available fro@j.

The temporal exposure change requires a fast camera, leetbausffective dynamic
range depends on the amount of captures per frame. For destaB00Hz camera is
necessary to have a 25fps video with 8 captures per framedhajive an approximate
dynamic range of 140dB [16]. With such a short time per imag@we, the camera
sensor must have a sufficiently high sensitivity to light écdlble to operate in low light
conditions. Unfortunately, such a boosted sensitivityallgiincreases noise.

3.1.2 Spatial Exposure Change

To avoid potential artifacts from motion in the scene, thpasure parameters may
also change within a single capture [17], as an alternativihé temporal exposure
change. The spatial exposure change is usually achieved ashask which has a per
pixel variable optical density. The number of differentiopt densities can be flexibly
chosen and they can create a regular or irregular pattergarNand Mitsunaga [17]

propose to use a mask with a regular pattern of four diffeegpbsures as shown in
Figure 3.2. Such a mask can be then placed directly in froat@mera sensor or in
the lens between primary and imaging elements.

scene capture without the mask mask with optical densities
varying per pixel (varying pixel exposures)

Figure 3.2: Single exposure using a standard image sensooteapture full dynamic
range of the scene (left). The mask with per pixel varyingagpensitieses; = 4e, =
16e; = 64ep (middle) can be put in front of a sensor. Using such a maskaat kene
pixel per four is well exposed during the capture (right)eTlght image is best viewed
in the electronic version of the book.

For the pattern shown in Figure 3.2, the full dynamic rangetmarecovered either by
aggregation or by interpolation. The aggregation is pera over a small area which
includes a capture of that area through each optical denbitg at several different
exposures. The different exposures in the area are combitedne HDR pixel by
means of a multi-exposure principle explained in the pnewisection, at the cost of
reduced resolution of the resulting HDR frame. To preselmeedriginal resolution,
HDR pixel values can also be interpolated from adjacentlpikea similar manner
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as colors from the Bayer pattern. Depending on the lumindess, aliasing and
interpolation artifacts may appear.

The effective dynamic range in this approach depends onuhwar of different op-
tical densities available in the pattern. A regular pattefid densities, as shown in
Figure 3.2, such thads = 4e, = 16e; = 64ey gives a dynamic range of about 85dB
for an 8-bit sensor [17]. The quantization step in the retracted HDR frame is non-
uniform and increases for high luminance levels. The siz¢hefstep is, however,
acceptable, because it follows the gamma curve.

An alternative implementation of spatial exposure chadgiaptive Dynamic Range
Imaging (ADRI), utilizes an adaptive optical density masktead of a fixed pattern
element [18, 19]. Such a mask adjusts its optical densityppexl informed by a
feedback mechanism from the image sensor. Thus saturakeld picrease the density
of corresponding pixels in the mask, and noisy pixels dessre@he feedback, however,
introduces a delay which can appear as temporal over- omwmg@sure of moving
high contrast edges. Such a delay, which is minimally onaé&amay be longer if the
mask with adapting optical densities has high latency.

Another variation of spatial exposure change is impleneime sensor whose pixels
are composed of more than one light sensing element eachiohwhs a different

sensitivity to light [20]. This approach is, however, liggit by the size of the sensing
element per pixel, and practically only two elements areduslthough in such a

configuration, one achieves only a minor improvement in teadhic range, so far

only this implementation is applied in commercial cameFfagi(Super CCD).

3.1.3 Multiple Sensors with Beam Splitters

Following the multi-exposure approach to extending dymarange, one can capture
several exposures per video frame at once using beam spligte, 22]. The idea,
so called split aperture imaging, is to direct the light frtdme lens to more than one
imaging sensor. Theoretically this allows to capture HDEhetit making any quality
trade-offs and without motion artifacts. In practice, hoer the effective dynamic
range depends on the number of sensors used in the cameradcind solution may
become rather costly when a larger dynamic range is destather, splitting the light
requires an increased sensitivity of the sensors.

3.1.4 Solid State Sensors

There are currently two major approaches to extend the dineange of an imag-
ing sensor. One type of sensor collects charge generateldebghioto current. The
amount of charge collected per unit of time is linearly rethto the irradiance on the
chip (similar to a standard CCD chip [23]), the exposure timeowever varying per
pixel (sometimes called “locally auto-adaptive”) [24, ZH]. This can for instance
be achieved by sequentially capturing multiple exposuriéis éNfferent exposure time
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settings or by stopping after some time the exposure of tredgihat would be overex-
posed during the next time step. A second type of sensor hisésgarithmic response
of a component to compute the logarithm of the irradiancéénanalog domain. Both
types require a suitable analog-digital conversion aneégea typically a non-linearly
sampled signal encoded using 8—16 bits per pixel value. r8eM®R video cameras
based on these sensors are already commercially avaifalodd. cameras allow to cap-
ture dynamic scenes with high contrast, and compared tavamdtapproaches, offer
considerably wider dynamic range and quality independémhanges in the scene
content as frame-to-frame coherence is not required. Topepties of two of such
cameras: HDRC VGAX from IMS-CHIPS [27] and Lars Il from $itin Vision are
studied in detail in Section 3.2.4.

3.2 Photometric Calibration of HDR Cameras

Ideally, in a photometrically calibrated system the pixalxe output by a camera would
directly inform about the amount of light that this camerasveaposed to. However,
in view of display-referred representation it has becomgartant to obtain a visually
pleasant image directly from a camera rather than such aptattic image. With the
advance of high dynamic range imaging, however, the shitrophasis in require-
ments can be observed. Many applications such as HDR vidptyre of environment
maps for realistic rendering, image-based measurememisreephotometrically cal-
ibrated images with absolute luminance values per pixek ifgtance, the visually
lossless HDR video compression (Chapter 5) is based on al widai@man vision per-
formance in observing differences in absolute luminance.inkorrect estimation of
such performance due to the uncalibrated input may resulisible artifacts or less
efficient compression. The capture technologies, howegpecially in the context of
HDR, are very versatile and a simple solution to obtain thetgimetric output from all
types of cameras is not possible.

This section explains how to perform the absolute photameslibration of HDR
cameras and validates the accuracy of two HDR video cameraapplications re-
quiring such calibration. For camera response estimatanexisting technique by
Robertson et al. [28] is adapted to the specific requiremanitfDR camera systems
[29]. To obtain camera output in luminance units the absghitotometric calibration
is further determined. The achieved accuracy is estimatesbimparing the measure-
ments obtained with the absolute photometric calibratioméasurements performed
with a luminance meter and is discussed in the light of péssipplications.

3.2.1 Camera Response to Light

An image or a frame of a video is recorded by capturing thaliarace at the cam-
era sensor. At each pixel of the sensor, photons collectealliZht sensitive area are
transformed to an analog signal (electric charge) which tatin read and quantized by
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i —image index

j — pixel position index

tj — exposure time of image

yij — pixel value of input imageat position]

[ () — camera response function

Xj — estimated irradiance at pixel positigpn

w(-) — weighting function from certainty model

m— pixel value from a set of possible camera output values

Table 3.1: Symbols and notation in formulas for respondenasibn.

a controller. Such a quantized signal is further processedduce noise, interpolate
color information from the Bayer pattern, or enhance imaggity, and is finally out-
put from a camera. The camera response to irradiance, @y tighcribes the relation
between incoming light and produced output value. The Bet&the capture process
are often unknown thus the camera response is conveniardlyzed as a black box,
which jointly describes the sensor response and builtgnaiprocessing. In principle,
the estimation of a camera response can be thought of asgeauti the camera values
for each single light quantity, although this is practigalbt feasible.

The camera response to light can be inversed to retrievinatigradiance value. Di-
rectly, the inverse model produces values that are onlygstigmal (linearly related)
to the true irradiance. The scale factor in this linear refatiepends on the exposure
settings and has to be estimated by additional measurements

The HDR cameras have a non-linear and sometimes non-consmesponse to light
and their output range exceeds 8 bit. Our choice of the frasrlefor response esti-
mation explained in the following section is motivated ks/generality and the lack of
restricting assumptions on the form of the response.

3.2.2 Mathematical Framework for Response Estimation

The camera response is estimated from a set of input imagesl loa the expectation
maximization approach [28]. The input images capture éxalce same scene, with
correspondence at the pixel level, but the exposure paessnate different for each
image. The exposure parameters have to be known and theaceesponse is observed
as a change in the output pixel values with respect to a knbxange in irradiance. For
the sake of clarity, in this section the exposure time ismezlito be the only parameter,
but in general case it is necessary to know how many times oless energy has
been captured during each exposure. Since the exposurastipreportional to the
amount of light captured in an image sensor, it serves wahasequired factor. The
mathematical formulas below follow the notation given ib[Ea3.1 and consider only
images with one channel.
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There are two unknowns in the estimation process. The pyionaknown, the camera
response functioh, models the relation between the camera output values and th
irradiance at the camera sensor, or luminance in the scdrecdmera output values
for a scene are provided as input images, but the irradiaroening from the scene
is the second unknown. The estimation process starts witimial guess on the
camera response function, which for instance can be a lhesapnse, and consists of
two steps that are iterated. First, the irradiance from teme is computed from the
input images based on the currently estimated camera resp&@econd, the camera
response is refined to minimize the error in mapping pixaelesfrom all input images
to the computed irradiance. The process is terminated wieeiteration step does not
improve the camera response any more. The details of thegs@re explained below.

Estimation of Irradiance

Assuming that the camera response functiés correct, the pixel values in the input
images are mapped to the relative irradiance by using trersevfunctiorl 1. Such
relative irradiance is proportional to the true irradiafreen the scene by a factor in-
fluenced by the exposure parameters (e.g. exposure tintetharmapping is called
linearization of camera output. The relative irradianciiither normalized by the ex-
posure timd; to estimate the amount of energy captured per unit of timéenrput
imagesd at pixel position;:

11 (yij)
= . (3.1
{;
Each of thex; images contains a part of the full range of irradiance vakmsing
from the scene. This range is determined by the exposuiagge#tnd is limited by the
dynamic range of the camera sensor. The complete irradé&rhe sensor is estimated
from the weighted average of this partial captures:

_ 2iWij X
XJ —_— T .
2i Wij
The weightsw;; are determined for camera output values by the certaintyefis-
cussed later in this section. Importantly, the weights figr tnaximum and minimum

camera output values are equal to 0, because the captuaééairce is bound to be
incorrect in the pixels for which the sensor has been sa&drart captured no energy.

(3.2)

Refinement of Camera Response

Assuming that the irradiance at the senspis correct, one can recapture the camera
output valuear;/ij in each of the input imagea<y using the camera response:

}/ij = |(ti 'Xj). (3.3)

In the ideal case when the camera respdnseerfectly estimated, thﬁj is equal to
yij. During the estimation process, however, the camera reggonction needs to be
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optimized for each camera output valudoy averaging the recaptured irradiangdor
all pixels in the input imageg; that are equal tan:

Em={(,]) :yij =m}, (3.4)
1

~ Card(En) i,ngmti o 55

~1(m)

Certainty model

The presence of noise in the capture process is convenigeglgcted in the capture
model in equations (3.1, 3.3). A complete capture model dioeduire characteriza-
tion of possible sources of noise and incorporation of apate noise terms to the
equation. This would require further measurements and/sisadf particular capture
technology in the camera, thus is not practical. Insteadntise term can be accounted
for by an intuitive measure of confidence in the accuracy pfu&d irradiance. In typ-
ical 8-bit cameras, for instance, one would expect highenmighe low camera output
values, quantization errors in the high values, and goodracy in the middle range.
An appropriate certainty model can be defined by the follgw@aussian function:

(m— 127.5)2) (3.6)

w(m) = exp<—4- BT

The certainty model can be further extended with knowledigithe capture process.
Normally, longer exposure times, which allow to capture enenergy, tend to exhibit
less random noise than short ones. Therefore an improvéginggrmodel for input
imagesy;; can be formulated as follows:

wij = W(yij) 7. (3.7)

Such weighting function minimizes the influence of noise loa ¢stimation of irradi-
ance in equation (3.2). This happens apart from noise redurbperties of the image
averaging process itself.

Minimization of Objective Function

After the initial assumption on the camera responhseghich is usually linear, the re-
sponse is refined by interactively computing equations) @2l (3.5). At the end of
every iteration, the quality of estimated camera responsegiasured with the follow-
ing objective function:

0= w(yij)- (I (yij) —ti-x))* (3.8)
Ny

The objective function measures the error in the estimatadiance for input images
yij when compared to the simulated capture of the true irradianc The certainty



3.2. PHOTOMETRIC CALIBRATION OF HDR CAMERAS 29

model requires that the camera output values in the rangiglotionfidence give more
accurate irradiance estimates. The estimation processrignated as soon as the
objective functionO falls below predetermined threshold.

The estimation process requires an additional constrb@ttause two dependent un-
knowns are calculated simultaneously. Precisely, theegatiix; depend on the map-
ping of | and the equations are satisfied by infinitely many solutiorisihich differ
by a scale factor. Convergence to one solution is enforcedach iteration, through
normalization of the inverse camera respoingeby the irradiance causing the medium
camera output value ! (Mmeg).

3.2.3 Procedure for Photometric Calibration

In the following sections a step-by-step procedure for pinatric calibration of HDR
cameras is outlined.

Scene Setup for Calibration

The response estimation algorithm requires that each eaowtput value is observed
in more than one input image. Moreover, frequent obsemataf the value reduce
the impact of noise. Therefore, an ideal scene for calinds static, contains a range
of luminance wider than the expected dynamic range of theecamand smoothly
changing illumination which gives a uniform histogram ofmut values. Additionally,
neutral colors in the scene can minimize the possible impfcblor processing in a
color camera.

When calibrating HDR cameras, a static scene with a suffigi@itle dynamic range
may not be feasible to create. In such a case, it is advisalgepare several scenes,
each covering a separate but partially overlapping lundiaalange, and stitch them
together into a single image.

Capture of Images for Calibration

Input images for the calibration process capture exactlysdme scene with varying
exposure parameters. A steady tripod and remote controlcain@era are essential
requirements. A slight out-of-focus reduces edge aliadirgto sensor resolution and
limits potential sharpening in a camera, thus makes thmasitin process more stable.

HDR cameras often do not offer any adjustment of exposuranpeters or available
adjustments are not bound to have a linear influence on @pamergy. The aperture
value cannot be changed to adjust the exposure, becausdifteadhe depth-of-field,
vignetting, and diffraction pattern, thus practically obas the scene between input
images. Instead, the optical filters, such as neutral de@dD) filters, can be mount
in front of the lens to limit the amount of irradiance at thesar at a constant exposure
time. The ND filters are characterized by their optical dgnshich defines the amount
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of light attenuation in logarithmic scale. In the responstneation framework, such
optical density can be used to calculate a simulated expdsne of captured images:

ti =to- 10P1, (3.9)

wheret; is simulated exposure time of imageaptured through an optical filter of
densityD; calculated with respect to the true exposure tignéf tg is not known from
the camera specifications, it can be assumed equal to 1. @uédsiake sure that
the optical filters are spatially uniform and equally redtleeintensity of all captured
wavelengths.

Following the analysis in [30], it can be suggested to agjtviro images that are ex-
posed similarly and one that is considerably different. iiddally, when calibrating
a video camera one may capture a larger number of frames dbrafdahe exposures.
Such a superfluous number of input images will reduce thednfla of image noise on
the response estimation.

Absolute Photometric Calibration

The images of the calibration scene are input to the estimdtamework from Sec-
tion 3.2.2 to obtain a camera response. For an RGB or mudtitel camera, the
camera response has to be estimated for each color chapaehtay. Here, a camera
that captures monochromatic images with spectral effigi@ocresponding to lumi-
nance is assumed. In case of an RGB camera, an approximétioninanceY can be
calculated from color channels using RGB to XYZ color tramsf.

The relative luminance values obtained from the estimagspanse curve are linearly
proportional to the absolute luminance with a scale facegreshdent on the exposure
parameters and the lens system. Absolute calibration isdbas the acquisition of a
scene containing patches with known luminaiYceThe scale factof is determined
by minimizing relative error between known and capturedihance values:

Y =f-17Y(m). (3.10)

3.2.4 Example Calibration of HDR Video Cameras

The photometric calibration is demonstrated in this sectio two HDR video cam-
eras: the Silicon Vision Lars Ill camera and the HDRC VGAx eama The Jenop-
tik C14, a high-end, CCD based LDR camera (see Figure 3.3)s included for
comparison purposes. The Lars Il sensor is an example afadlyoauto-adaptive im-
age sensor [26]: the exposure is terminated for each ingividixel after one out of
12 possible exposure times (usually powers of 2). For eview®l,the camera returns
the amount of charge collected until the exposure was tet@ihas a 12-bit value and
a 4-bit time-stamp. The HDRC sensor is a logarithmic-typesee[31] and the camera
outputs 10-bit values per pixel [27].
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Figure 3.3: Cameras used in our experiment: HDRC VGAX (Idef), Silicon Vision
Lars Il (center), Jenoptik C14 (lower right), and Minolt&4100 luminance meter

(top).

Estimation of Camera Response

To cover the expected dynamic range of calibrated camerabgeipresented case it
was necessary to acquire three scene setups with varieddno@ characteristic (see
Figure 3.4): a scene with moderate illumination, the sanemeavith a strong light
source, and a light source with reflector shining directlyanls the cameras. Stitch-
ing these three images together yields an input for the respestimation algorithm
covering a dynamic range of more than 8 orders of magnituéeh Ecene setup has
been captured without any filter and withxal.5 ND filter and ax10 ND filter. The
response of C14 camera was estimated using a series of &Bediffy exposed images
of a GretagMacbeth ColorChecker.

The estimated responses of the three cameras are showruie Bi. The certainty
functions have been modeled using equation (3.6) such thainmam confidence is
assigned to the middle of operational luminance range amitslto zero at the camera
output levels dominated by noise. A single response cursebban estimated for the
monochromatic Lars Ill camera and separate curves havedaternmined for the three
color channels of the other cameras. As the raw sensor vafube HDRC camera
before Bayer interpolation have been available, the responrve for each channel
has been directly estimated from corresponding pixelsdeioto avoid possible inter-
polation artifacts.

Figure 3.5 shows that the response curves of the two HDR @anfieth cover a con-
siderably wider range of luminance than the high-end LDRearanthat covers a range
of about 3.5 orders of magnitude. The different shapes dfifbR response curves are
caused by their respective sensor technology and the engcotie logarithmic HDRC
VGAX camera has the highest dynamic range (more than 8 oodlensagnitude), but
an offset in the A/D conversion makes the lower third of thebitGrange unusable.
The multiple exposure values of the locally auto-adaptiaesllil camera are well vis-
ible as discontinuities in the response curve. Note thaluimgnance range is covered
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Figure 3.4: Three scene setups for the estimation of regpunses (tone mapped for
presentation). The histogram shows the luminance distoibin the stitched images
for acquisition without filter, and using ND filters witk1.5 and x 10 optical density.
This setup covers 8 orders of luminance magnitude.

continuously and gaps are only caused by the encoding. Thereacovers a dynamic
range of about 5 orders of magnitude. Noise at the switchirigte between exposure
times is well visible.

Results of Photometric Calibration

The inverse of the estimated responses convert the camtpia walues into relative lu-
minance values. To perform an absolute calibration, thea@hdacbeth ColorChecker
chart has been acquired under 6 different illumination doys. The luminance of
the gray patches was measured using a Minolta LS-100 luroénereter yielding a
total of 36 samples and an optimal scale factor was detethforeeach camera. The
accuracy of the absolute calibration for the 36 patches easebn in Figure 3.6. The
calibrated camera luminance values are well aligned to tbasored values proving
that the response curve recovery was accurate. The avelatjea error for these data
points quantifies the quality of the absolute calibratiolor fhe HDRC camera, rel-
ative error in the luminance range of 1-000 cd/n% is 13% while the relative error
for the Lars Ill camera in the luminance range of 10d0 cd/nf amounts to $%.
Note that these results can be obtained with a single atiguislUsing multiple expo-
sures, the C14 camera is capable of an average relativeoétvetow 7% in the range
0.1-25000 cd/n#, thus giving the most accurate results.
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3.2.5 Quality of Luminance Measurement

The described procedure for photometric calibration of HE#Rneras proved to be
successful, however the accuracy obtained for example Hibfieas is not very high.
Although one should not expect to match the measuremenityjadila luminance
meter, still the relative error of the LDR camera is lowertlbdHDR cameras. Besides,
both HDR cameras keep the error below 10% only in the rangaroiance that is
much narrower than their operational range. The low acguratow illumination is
mostly caused by noise in the camera and can be hardly imgiavihe calibration
process. On the other hand, the low accuracy in high lummaaege can be affected
by the calibration process: a very bright scene was requoaibserve high camera
output values. The only possibility to get a bright enougéngcwas to directly capture
a light source, but the intensity of the light source might Inave been stable during
the capture and an additional noise have been introducée testimation process.

To improve the results, the estimated response can be fit fom@iori function ap-
propriate for the given HDR sensor. Thus, for the HDRC cantleeaparameters of
a logarithmic functiory; = axlog(x;) + b are fit and for the decoded valdesf the
Lars Ill camera a linear functioy; = a*X; + b is used. The relative errors achieved
by the pure response estimation including absolute caidorand the function fit are
compared in Figure 3.7. The average relative error is equathdut 6% for the HDRC
camera and luminance values above 1 &d/for the Lars Il camera it is also about
6% for luminance values above 10 cd/inEspecially for high luminance values above
10,000 cd/n#t, the calibration via function fitting provides more acceragsults. In
addition, the fitting approach allows to extrapolate the eanresponse for values
beyond the range of the calibration scene. To verify thisexnemely bright patch
(194,600 cd/n? in the presented case) can be acquired using the calibrespdnse
of the HDR cameras and compared to the measurement of thentigier. Only the
readout from the HDRC camera derived via function fittingeigable while the HDRC
response curve seems to be bogus in that luminance rangeai$kl camera reached
the saturation level and yielded arbitrary results. Lilsyithis patch could not be
recorded with the available settings of the LDR camera.

3.2.6 Alternative Response Estimation Methods

In principle, three different approaches can be used tonasti the response of 8-bit
cameras ([6] provides a good survey, [32] gives a theolediceount of ambiguities

arising in the recovery of camera response from images takdifferent exposures).

The method of Robertson et al. [28] has been selected, beoéits unconstrained ap-
plicability to varied types of sensors in cameras. For catgoless, the remaining two
methods are briefly discussed in view of possible appliogtigphotometric calibration

of HDR cameras.

laccording to the data sheet, the 16-bit output value of Lamamera is in fact a composite of a 12-bit
mantissanand a 4-bit exponent valugi.e. y; = m- 2°,
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The algorithm developed by Debevec and Malik [12] is basedhenconcept that a
particular pixel exposure is defined as a product of the iarazk at the film and the
exposure time, transferred by the camera response fundtfos concept is embedded
in an objective function which is minimized to determine ttaanera response curve.
The objective function is additionally constrained by tlssamption that the response
curve is smooth, which is essential for the minimizationgess. Whereas this assump-
tion is generally true for LDR cameras based on CCD technywlifng response curve
is normally not smooth in locally autoadaptive HDR sensbrgthermore, the process
of recovering the response curve is based on solving a seteafrlequations. While
the size of the matrix representing these linear equat®mnsasonable for 8-bit data,
memory problems may occur for arbitrary precision datadgitio HDR acquisition so
that extensive sub-sampling is required.

The method proposed by Mitsunaga and Nayar [13] computediamatric response

function approximated using a high-order polynomial withprecise knowledge of the
exposures used. The refinement of the exposure times dhengstimation process is
major advantage, however the process itself is limited topaation of the order of

the polynomial and its coefficients. The authors state thafiossible to represent vir-
tually any response curve using a polynomial. This factue for LDR cameras based
on a CCD sensor, however it is not possible to approximatéotherithmic response

of some CMOS sensors in this manner. Polynomial approxanatiso assumes that
the response curve is continuous, which depends on the ieigcod

Grossberg and Nayar [32] show how the radiometric respamsgibn can be related to
the histograms of non-registered images with differenbeypes. This enables to deal
with the scene and camera motion while the images are captuineer the condition
that the distribution of scene radiance does not changéisayntly between images.

3.2.7 Discussion

The ability to capture HDR data has a strong impact on varigdications, because
the acquisition of dynamic sequences that can contain berth bright and dark lu-
minance (such as sun and deep shadows) at the same momeptasadented. Pho-
tometrically calibrated HDR contents offer further bergefiPerceptually enabled al-
gorithms employed in compression or tone mapping can apiptefy simulate the
behavior of human visual system. Dynamic environment mapse captured in real
time to faithfully convey the illumination conditions ofetreal world to rendering al-
gorithms. Some of such applications are discussed in $e@tt The results of global
illumination solutions can than be directly compared tortred world measurements as
illustrated in Figure 9.1 in Section 9.1. The calibrated Hid&eo cameras can further
increase the efficiency of measuring appearance of compégrials in the form of
bi-directional reflectance distribution function (BRDBgction 9.2.2.

With respect to the presented calibration methods, whée¢hative error achieved by
the function fitting approach is lower, the response estonatlgorithm is useful to
obtain the exact shape of the camera response and to givel@ocdi that the chosen



3.2. PHOTOMETRIC CALIBRATION OF HDR CAMERAS 35

a priori function is correct. It can also help to understamel hehavior of the sensor,
especially if the encoding is unknown. The low precision lid measurements in
the luminance range below 10 cdiis a clear limitation which can be explained by
the high noise level in the sensors. The quality of a high-€é@i camera such as
the Jenoptik C14 combined with traditional HDR recoveryoaitpms still cannot be
achieved consistently over the whole dynamic range of th&ldBmeras.

The function fitting approach has strong advantages in tladitglof the results and
the ability to extrapolate from the calibration data. Thefatence in extrapolated
measurements is however limited and the error cannot becpeddbecause the ex-
act shape of the response function in this range is unknowrall{; the accuracy of
the photometric calibration is not the only important qyatheasure. Depending on
the application, other issues such as the quantizationeofutminance values might
have an important influence on the quality of the measuresraerd need to be further
investigated.

In Chapter 10 we provide more information on tpiscalibrationsoftware package
[33], which can be used for photometric calibration of boR.and HDR cameras.
The package is available under the URL:

http://www.mpi-inf .mpg.de/resources/hdr/calibration/pfs.html



36 CHAPTER 3. HDR IMAGE AND VIDEO ACQUISITION
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Figure 3.5: The estimated response curves and corresgpwdighting functions from
the certainty model (value 1.0 represents the full confidanacapture accuracy, 0.0
represents no confidence). The peaks of the weighting fumtire centered at the
middle of the operational range of each camera.
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Figure 3.6: The results of absolute calibration. The egtich@aesponse curves were
fitted to the measurements of 6 gray patches of GretagMacbelbrChecker chart
under 6 different illumination conditions.
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Figure 3.7: Comparison of the relative errors in luminan@asurement achieved by
the pure response estimation including absolute caldmratnd by the function fit.
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Chapter 4

HDR Image Quality

The performance of many imaging algorithms, such as imagguoession, is often a
function of visual quality. The visual quality can be modiakely measured in subjec-
tive studies, in which a group of people assigns qualityessdo the presented video
or images. Such studies, however, are both tedious and sixpesind often result
in high variance between observers. In many areas it is mumie practical to use
instead objective quality metrics, which can estimate @gex quality without subjec-
tive judgements. This chapter gives a short classificatfchevavailable metrics and
describes in more detail a metric designed for comparing Highamic range images.

4.1 Visual Metric Classification

Although numerous image comparison algorithms are clagsés quality metrics, it
does not mean that they compute the same quality measuree @etnics are better
suited for estimating quality of low-bandwidth video tramission, where large distor-
tions are common and acceptable, and other for compreskinadical images, where
visual distortions must be avoided. Therefore, it is imaotto distinguish between all
kinds of visual metrics, and choose the one that is apprigpfia a particular applica-
tion.

A high-level classification of the visual metrics is shownFigure 4.1. Depending
whether a metric requires a non-distorted reference imsgeg limited statistics of
such an image or no image at all, it can be classified as adfdrence, limited-
reference and no-reference. Although there are extersiglees on the limited-reference
and no-reference metrics, majority of quality metrics fiegja reference image. No-
reference metrics are usually limited to a single type dabdion, such as JPEG blocky
artifacts or blurring, and cannot match in accuracy therefiérence metrics.

The simplest kind of the full-reference metrics are arittioa¢ measures, such as the
Peak-Signal-to-Noise Ratio (PSNR) or Mean-Squared-EKM&E). Despite their sim-
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Quality Metrics
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Figure 4.1: Classification of quality metrics.

plicity and known cases when they fail, these are the mostwomly used metrics in
estimating performance of video compression. In fact thR$an give quite accu-
rate estimates of quality for video compression, comparalith much more complex
perceptually weighted metrics, mostly because video cesgion itself is driven by
visual models. The structural similarity metrics, such &Nb[34], offer a trade-off
between a complexity of the perceptually-weighted metaied the simplicity of the
arithmetic metrics. They combine local statistical measiwof an image to compute
a quality estimate that achieves a good correlation withgtiedity measures found in
subjective studies.

The potentially most accurate metrics are those that mdwehtiman visual system
to predict perceivable distortions. Most of them are quiteuaate at predicting just
noticeable distortions which are near the discriminatimeshold of the human visual
system. The near-threshold metrics, such as VDP [35] or NMD®R; can quite pre-

cisely predict whether a human observer will spot any déffiere between two images
shown, but they cannot make a difference between the daterthat are far above the
threshold. For example they make little distinction betwpeor and extremely poor
quality video. This task is more suitable for the superdhmd metrics, which can
estimate not only presence, but also the magnitude of tiztdB6, 37].

The metrics can be further divided into those that producmgles quality measure
(e.g., a numerical value) for an image or a video sequencetarse that produce a
distortion map, which estimates the local magnitude ofodiiin or probability of de-
tection (usually for each pixel). The performance of a neetfnat computes a single
quality measure is usually evaluated in comparison withsthigective data, for exam-
ple from the LIVE image quality assessment database [38].



4.2. AVISUAL DIFFERENCE PREDICTOR FOR HDR IMAGES 41

This chapter does not cover the area of quality metrics ireggnbut focus on a par-
ticular metric designed especially for high dynamic rangages.

4.2 A Visual Difference Predictor for HDR Images

Most of the objective quality metrics have been designedtrate on video and im-
ages that are to be displayed on CRT or LCD displays. Whileagssimption seems to
be clearly justified in case of low-dynamic range imageso#gs problems as new ap-
plications that operate on HDR data become more common. deparal HDR quality
metric could be used for the validation of the HDR image amtkwiencodings. An-
other application may involve steering the computation nealistic image synthesis
algorithm, where the amount of computation devoted to aqudatr region of the scene
would depend on the visibility of potential artifacts.

The HDR-VDP extends a well-known Visual Difference PredlidB5] to better cope
with high contrast images and a broad range of luminanceitions. The extensions
focus on the accurate modeling of visibility threshold unttee assumption that an
observer can locally adapt to luminance levels of a scenés fMiakes the predictor
more conservative but also more reliable when scenes witfifigiant differences of
luminance are analyzed. Such local adaptation is essdatia good reduction of
contrast visibility in HDR images, as a single HDR image cantain both dimly
illuminated interior and strong sunlight.

The data flow diagram of the HDR-VDP is shown in Figure 4.2. H@ER-VDP re-
ceives a pair of images as an input (original and distor@deXample by image com-
pression) and generates a map of probability values, winiditates how likely the
differences between those two images are perceived. Batjemshould be scaled
in the units of luminance. In case of low-dynamic range insagéxel values should
be inverse gamma corrected and calibrated according to &xémmam luminance of
the display device. In case of HDR images no such processingdessary, however
luminance should be given in cdfm

-
Original Amplitude N N Cortex
Image OTF Nonlinearity CSF Transform
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Figure 4.2: Data flow diagram of the High Dynamic Range Visibifference Predictor
(HDR-VDP)

The first three stages of HDR-VDP model behavior of the opitd retina. Both a
reference and a test images are filtered by the Optical TeaRsinction (OTF), which



42 CHAPTER 4. HDR IMAGE QUALITY

simulates light scattering in the cornea, lens, and refirtee OTF used in the HDR-
VDP is shown in Figure 4.3. Figure 4.4 demonstrates the etiethe OTF on an
HDR image with a relatively bright regions. HDR images cantam high luminance
objects (sun, lamps, brightly illuminated windows) that significantly affect contrast
perception in the neighboring regions.
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Figure 4.3: Optical MTFs from the model of Deeley et al. [38] @ifferent levels of
adaptation to luminance and pupil diameters (given in ghs=is).

Optical Tranfer
Function

Figure 4.4: The result of filtering and image with the optittahsfer function (OTF)
of the human eye. The Memorial Church image courtesy of Pabkbec.

To account for the nonlinear response of photoreceptoiigl, the amplitude of the
signal is nonlinearly compressed and expressed in the oindsst Noticeable Differ-
ences (JND). Such non-linearity is very similar to the INi2aaling discussed in Sec-
tion 5.1.6, but is derived from the Contrast Sensitivity &ion (CSF), used in the next
processing step. Because the HVS is less sensitive to lowmighdspatial frequencies,
in the next step a IND-scaled image is filtered by the CSFk¥1iie original VDP, the
HDR-VDP locally adapts the CSF filtering kernel dependingtum adaptation lumi-
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nance. The adaptation luminance shifts the CSF both hdeltgand vertically. Since

the vertical shifts affecting the peak contrast sensitigite already modelled by the
amplitude non-linearity, the CSF is normalized so that tbakphas value 1, and only
horizontal shifts must be taken into account. The horidastidts of the CSF due to

adaptation luminance are shown in Figure 4.5.
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Figure 4.5: Family of normalized Contrast Sensitivity Fimes (CSF) for different
adaptation levels. The peak sensitivity shifts towardselofiequencies as the lumi-

nance of adaptation decreases.

The OTF, amplitude non-linearity and the CSF filtering stegsmostly responsible for
contrast reduction in the HVS. The next two computationatks, the cortex transform
and visual masking, decompose the images into spatial &adtational channels and
predict perceivable differences in each channel sepgra®fase uncertainty further
refines the prediction of masking by removing dependenceaskmg on the phase of
the signal. In the final error pooling stage the probabgitdé visible differences are
summed up for all channels and a map of detection probasilis generated.

4.2.1 Implementation

The source code of HDR-VDP is available under the GPL liceargkcan be down-
loaded from the web pagectp://hdrvdp. sourceforge.net/. Itis integrated with
pfstoolspackage (refer to Chapter 10), which can read most of the HEBRdiimats.
The software provides a ready-to-use metric that can beinseroad range of dig-
ital imaging applications, ranging from validation of comt@r graphics algorithms to

detection of artifacts in compressed images.
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The detailed documentation of the HDR-VDP software can bedmn the web page.
To give an impression how the software operates, the boxwbshows a typical usage
scenario:

vdporiginal.exr distorted.exr prediction.png

Predict differences between an originalriginal.exr and distorted
distorted.exr images and create the visualization of the prediction in
prediction.png.




Chapter 5

HDR Image, Video and Texture
Compression

The bit-depth precision of majority of image and video fotsnean soon become in-
sufficient for the new generation of displays. The tradiéiidmage and video formats,
such as JPEG, PNG or MPEG, employ color spaces that fail t@sept scenes of
dynamic range over 2 or 3 orders of magnitude and extended gamut. The 8-bit-
per-color-channel encoding was more than sufficient wheh armats were designed,
and the best CRT displays could achieve contrast ratio df0lghd their peak lumi-
nance did not exceed 100 pdz. Now, commercially available displays can show
contrast of 1:3,000 The prototypes of HDR displays are capable of showing eshtr
1:200,000 and have the peak luminance of 3,00/0'r&drefer to Section 7.2). More-
over, the improvements of LED display backlight make it flolssto achieve more
saturated colors and thus wider color gamut. These new adsan display technol-
ogy make essential that video and image compression fommaesxtended to support
new displays.

Despite the diversity of display technologies (LCD, PlasBiP, etc.), the most pop-
ular image and video file formats are still device dependéiite gamma correction
non-linearity, employed in most color spaces used for cesgion, was originally de-
signed for the CRT displays [40]. When technology changeisiifameveloping stan-
dards based on the characteristics of the particular typewites does not seem to be
appropriate.

In typical imaging pipelines, itis commonly assumed thatdiecoded images or video
are directly displayed. As the complexity and diversity idpdays increase, it can
be expected that the future displays will employ additiomsidering step, in which
the dynamic range and color gamut is reduced to match théaglisppabilities (tone
mapping), the content is adapted to the viewing conditiatiffefent rendering for

1For a single frame, as of 2007
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Figure 5.1: A range of perceptual effects that can be siradlaased on HDR data. From left to right:
visual glare (see light scattering at the edges of the abjjectotion blur can be correctly simulated
in linear luminance domain (right half); given absolute lnance values, color deficiency of night
(scotopic) vision can be simulated. The source images esyidf Paul Debevec, Spheron VR, and
vr architects.

bright and dark room), additional effects and enhancemamspplied. Figure 5.1
demonstrates some effects that simulate the human visstaisyr a camera, that can
be added in real-time to the video stream [41].

High dynamic range (HDR) imaging is a very attractive way apturing real world
appearance, since it assumes the preservation of compldi@caurate luminance (or
spectral radiance) values that can be found in a scene. Eeslhiprepresented as a
triple of floating point values, which can range from2ao 10°. Such a huge range
of values is dictated by both real world luminance levels Hredcapabilities of the
human visual system (HVS), which can adapt to a broad randgenufiance levels,
ranging from scotopic (1 — 10 cd/mz) to photopic (10 — 19 cd/mz) conditions.
Obviously, floating point representation results in hugenowe and storage require-
ments and is impractical for storage and transmission of@sand video. Therefore
better techniques of encoding HDR pixel values are discliss8ection 5.1.

This chapter is intended to give an overview of the curreatesof-the-art in the high-
fidelity image, video and texture coding. Section 5.2 give®weerview of the image
and Section 5.3 of the video formats that are intended toeprveshigher fidelity. As
HDR formats have just started gaining popularity, it is intpat to provide backward
compatibility with the existing LDR formats. The schemes lbackward compatible
compression of HDR images and video are described in Sebtibn Finally, Sec-
tion 5.5 reviews some recent texture compression schemes.

5.1 HDR Pixel Formats and Color Spaces

Choice of the color space and the pixel encoding used forénaagideo compression
has a great impact on the compression performance and ttpslif the encoding
format. While representing pixel values as a triple of 32floiating point numbers
gives more than sufficient precision and good flexibility &tal processing, such en-
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coding does not use memory efficiently and is not compatibite most image and
video compression standards. For this reason, several HkdRgncoding and color
spaces are used in popular HDR image formats. This secties ghn overview of these
pixel encodings.

5.1.1 Minifloat: 16-bit Floating Point Numbers

Graphics cards from nVidia and ATI can use more compact sgmtation for floating
point numbers, known dwalf-precision floatfp16 or SSE10 The S5E10 indicates that
the floating point number consist of one bit of sign, 5-bitexgnt, and 10-bit mantissa,
as shown in Figure 5.2. Such 16-bit floating point formatdde ased in the OpenEXR
image format (see Section 5.2.2).
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B 11 ce
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Sign Exponent Mantissa

Figure 5.2: Red-green-blue component encoding usinggratfision floating point
numbers

The half-precision float offers flexibility of the floating imd numbers at the half stor-
age cost of the typical 32-bit floating point format. Flogtipoint numbers are well
suited for encoding linear luminance and radiance valugshey can easily encom-
pass large dynamic ranges. One caveat of the half-predisianformat is that it can
represent numbers up to the maximum value 65,504, whictssstiean for instance
luminance of bright light sources. For this reason, the HBRdes given in absolute
luminance or radiance units often need to be scaled down lonstant factor before
storing them in the half-precision float format.

5.1.2 RGBE: Common Exponent

The RGBEpixel encoding is used in the Radiance file format, which baldiscussed
in Section 5.2.1. The RGBE pixel encoding represents caoisirgy four bytes: the first
three bytes encode red, green and blue color channels, addsthbyte is a common
exponent for all channels (see Figure 5.3). RGBE is esdlgraiaustom floating point
representation of pixel values, which uses 8 bits to reptemeponent and another 8
bits to represent mantissa (8E8). RGBE encoding takes tatyamf the fact that all
color channels are strongly correlated in the RGB color epamnd their values are at
least of the same order of magnitude. Therefore there is ad teestore a separate
exponent for each color channel.
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Red Green Blue Exponent

Figure 5.3: 32-bit per pixel RGBE encoding

The conversion between froffiR G, B, E) bytes to red, green and blue trichromatic
color valueq(r,g,b) is done using the formulas:
(R,G,B)+0.5 JE-128 EXPOSUrE . 40
(r,g,b) = 256 Ew (5.1)
(0,0,0) ifE=0

where per imagexposureparameter can be used to adjust absolute valuegEgnsl
the efficacy of the white constant equal 179. Both these tammsised in the Radiance
file format but are often omitted in other implementations.

The inverse transformation is given by:

[log, (maxXr,g,b})+128] if (r,g,b) #0

0 if (r,g,b)=0 (5.2)

256r
2E—128

E:

(R,G,B) = {

where [-] denotes rounding up to the nearest integer gidounding down to the
nearest integer.

5.1.3 LogLuv: Logarithmic encoding

One shortcoming of floating point numbers is that they areoptitmal for image com-
pression methods. This is partly because additional b#gequired to encode man-
tissa and exponent separately, instead of a single intedee.v Such representation,
although flexible, is not necessary for color data. Furtleeenprecision error of float-
ing point numbers varies across the full range of possibligegaand is different than
the “precision” of our visual system. Therefore, better poession can be achieved
when integer numbers are used to encode HDR pixels.

01 16 24 31

Sign 15-bit logL 8-bit u 8-bit v

Figure 5.4: 32-bit per pixel LogLuv encoding

ThelLogLuvpixel encoding [42] requires only integer numbers to endbddull range
of luminance and color gamut that is visible to the human #ygan optional encoding
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in the TIFF library. This encoding benefits from the fact tHea human eye is not
equally sensitive to all luminance ranges. In the dark wesesa luminance difference
of a fraction of 1 cdmz, while in the sunlight we need a difference of tens o;fmato
see a difference. This effect is often called luminance mngskBut if, instead of
luminance, a logarithm of luminance is considered, theadakde threshold values do
not vary so much and a constant value can be a plausible d@pyatien of the visible
threshold. Therefore, if a logarithm of luminance is enabdsing integer numbers,
guantization errors roughly correspond to the visibilliyeisholds of the human visual
system, which is a desirable property for pixel encoding.

The 32-bit LogLuv encoding uses two bytes to encode lumieaard another two
bytes to represent chrominance (see Figure 5.4). Chromenanencoded using the
CIE 1976 Uniform Chromacity ScalesV':

B o 5.3
U= srisvraz V= srisvra (5-3)
which can be encoded using 8-bits:

Note that thew’ andv' chromatices are used rather thanandv* of the L*u*v* color
space. Althoughu* andv* give better perceptual uniformity and predict loss of color
sensitivity at low light, they are strongly correlated wittminance. Such correlation
is undesired in image or video compression. Besidesytledv* chromatices could
reach high values for high luminance, which would be diffitalencode using only
eight bits. It is also important to note that the CIE 1976 Onif Chromacity Scales
are only approximately perceptually uniform, and in faa 8ibit encoding given in
Equation 5.4 may lead to just visible quantization errospeeially for blue and pink
hues. However, such artifacts should be hardly noticealdemplex images.

The LogLuv encoding has a variant which uses only 24 bits pel pnd still offers
sufficient precision. However, this format can be ineffextio compress using arith-
metic coding, due to discontinuities resulting from enogdivo chrominance channels
with a single lookup value.

5.1.4 RGB Scale: low-complexity RGBE coding

The RGB Scale or the RGBS encoding simplifies the RGBE for®attjon 5.1.2) to
avoid expensive exponential functions:

(r,a,b) = (R,G,B) - 165 (5.5)

The encoding was used in Valve's game engine to store HDRireesxtand buffers
using 8-bit RGBA (three channels + alpha buffer) textured.[4 he disadvantage of
this approach is a limited dynamic range of about 6 fagits.
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5.1.5 LogYuv: low-complexity LogLuv

For the applications, where the complexity of the CIE 197@fdfm Chromacity
Scales is not acceptable, a simplified version of the Loglnsoding (Section 5.1.3)
can be used:

— b r
(Y7U7\7) = <|092Y7WbY7WTY> ) (56)

whereY is the luminance term computed as:
Y = Wi I -+ Wgd + Wb, (5.7)

and the constants are equal= 0.299,wy = 0.587,w, = 0.114. With non-zero and
positive inputr, g andb values in the range from 26 to 216, the log-luminancé is
in the range [-16,16], and the chroma components are in tigerf,1] witht + v<1.
Unlike LogLuy, this simplified encoding cannot be used taetoolor values outside
the red-green-blue color triangle given by the primariesctSencoding was used for
high dynamic range texture compression [44].

5.1.6 JND steps: Perceptually uniform encoding

Most of the low dynamic range image or video formats use dedghmma correction

to convert luminance or RGB spectral color intensity int@ger numbers, which can
be latter encoded. Gamma correction is usually given inm fofrthe power function
intensity= signal’ (or signal = intensity!/¥) for an inverse gamma correction), where
the value ofy is between B and 22. Gamma correction was originally intended to
reduce camera noise and to control the current of the elebigam in CRT monitors
(for details on gamma correction, see [45]). Accidentdight intensityvalues, after
being converted intgignal using the inverse gamma correction formula, correspond
usually well with our perception of lightness. Thereforefsualues are also well suited
for image encoding since the distortions caused by imagepoession are equally
distributed across the whole scale sifjnal values. In other words, alteringignal

by the same amount for both small values and large valuegoékshould result in
the same magnitude of visible changes. Unfortunately,ish@ly true for a limited
range of luminance values, in practice up to 10protl This is because the response
characteristics of the human visual system (HVS) to lumieaohanges considerably
above 100 cyfknz. This is especially noticeable for HDR images, which cannspa
the luminance range from 18 to 10'° cd/mz. An ordinary gamma correction is not
sufficient in such case and a more elaborate model of luménparception is needed.
This problem is solved by th&ND encoding, described below.

The JND encoding is a further improvement over thegLuv encoding (see Sec-
tion 5.1.3), which takes into account more accurate cheriatic of the human eye.
The JND encoding can also be regarded as an extension of gammataorriecHDR

2HVS use both types of photoreceptors, cones and rods, iratigerof luminance approximately from
0.01to0 10 cdmz. Above 100 cdmzonly cones contribute to the visual response.
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12-bit JND L 8-bit u 8-bit v

Figure 5.5: 28-bit per pixel IND encoding

pixel values. The namdND encoding is motivated by its design, which makes the
encoded values correlate with the Just Noticeable DiffereifJND) of luminance.

The JND encoding requires two bytes to represent color and 12 bightode lumi-
nance (see Figure 5.5). Similar t@gLuvencoding, chroma is represented using the
U andV chromaticities as recommended by CIE 1976 Uniform Chrotpe8tales
(UCS) diagram. Lumal, is found from absolute luminance valuggcd/m?], using
the formula:

ay ify<y
Ihar(Y) = 9 b.ye4d if yi <y <Vh (5.8)
e-log(y)+f ify>yn
There is also a formula for the inverse conversion, from it &ima to luminance:
a - lhar if Ihar <1
Ylhao) = 0 B(lngr+d)® if I < lnge <y (5.9)
€ -exp(f'-lhgr) if Ingr > In

The constants are given in the table below:

a=17.554 e=20916 a =0.056968 € =32994

b=82681 f=-73128 | b/ =7.3014—-30 | f'=0.0047811

c=0.10013 | y; =5.6046 | ¢ =9.9872 I} =98381

d=-88417 | y,=10469 | d’'=88417 I = 12047

The above formulas have been derived from the luminanceti@tehresholds is such
a way, that the same difference of valligegardless whether in a bright or in a dark re-
gion, corresponds to the same visible differéndéeither luminance nor the logarithm
of luminance has this property, since the response of theahwisual system to lumi-
nance is complex and non-linear. The values lafy in the range from 0 to, 495 (12
bit integer) for the corresponding luminance values from1® 101 cd/m?, which

is the range of luminance that the human eye can effectiwsdy(although the val-
ues above 10would mostly be useful for representing the luminance ofttriight

3Derivation of this function can be found in [46]. The formula® derived from the threshold versus
intensity characteristic measured for human subjects aed fittthe analytical model [47].
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sources). If desired, the valueslofan be rescaled to lower range, in order to encode
luminance using 10 or 11 bits. Such lower bit encodings shsiill offer quantization
errors below the visibility thresholds, especially for@aencoding.

A useful property of the function given in Equation 5.8 isttiiés smooth C-continuous)
and defined for the full positive range of luminance valuesluding the pointy = 0,
in whichl = 0.
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Figure 5.6: Functions mapping physical luminanceéo encoded luma valuek
JND Encoding — perceptual encoding of luminance; sRGB —ineality (gamma
correction) used for the sSRGB color space; logarithmic casgion — logarithm of
luminance, rescaled to 12-bit integer range. Note thatdingchigh luminance values
using the sSRGB nonlinearity (dashed line) would requireisicantly larger number of
bits than the perceptual encoding.

Functionl(y) (Equation 5.8) is plotted in Figure 5.6 and labellelND encoding”.
Note that both formula and shape of thdD encoding is very similar to the nonlin-
earity (transfer function) used in the SRGB color space.[4]jth theJND encoding
and the sRGB nonlinearity follow similar curve on the platt khe IND encoding is
more conservative (a steeper curve means that a luminange ia projected on a
larger number of discrete luma values, V, thus lowering tjmation errors). sRGB
nonlinearity consist of two segments: a linear and a powectfan. So does th&ND
encoding, but it additionally includes a logarithmic segtrfer the luminance values
greater than 4207 (see Equation 5.8).

For comparison, Figure 5.6 also shows libgluminance encoding, used in thegLuv
TIFF format. The shape of the logarithmic function is sigrafitly different from both
the sRGB non-linearity and th&\ND encoding. Although the logarithmic function
is a simple and often used approximation of the HVS respomdbe full range of
luminance, which adheres to the Weber-Fechner law, it & ¢heat such approximation
is very coarse and does not predict the loss of sensitivitjhi low light conditions.

One difficulty that arises from the JND luminance encodinp& the luminance must
be given in absolute units of ¢m2. This is necessary since the performance of the
HVS is affected by the absolute luminance levels and therashtletection thresholds



5.1. HDR PIXEL FORMATS AND COLOR SPACES 53

luma (12 bit integer) B

OpenEXR (S5E10 float)
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Figure 5.7: Comparison of the maximum quantization errordgdffferent luminance
to luma encodings: JND encoding (12-bit integer) is giverEloyation 5.8; RGBE is
an encoding used in the Radiance HDR format; 16-bit half i§-®if floating point
format used in OpenEXR; 32-bit LogLuv is a logarithmic lumirte encoding used in
LogLuv TIFF format.

are significantly higher for low light conditions. The majsource of this problem
are the existing HDR capture techniques, such as multisaxgomethods, which give
a measurement of relative luminance (luminance factorf) giue no information on
absolute luminance levels. The conversion from relativatisolute luminance units
is however very simple and requires multiplication of all X¢olor coordinates by a
single constant. Such a constant needs to be measured ardyfama camera. The
measurement can be done by capturing a scene containindoanutight source of
known luminance or a surface of measured luminance [29Judhsa measurement is
not possible, an approximate calibration of an image to labsanits, by assuming
typical luminance levels of some objects (e.g. the sky ondiglat illuminated wall),
is usually sufficient.

The maximum quantization errors for all luminance encoslidgscribed in this chap-
ter are shown in Figure 5.7. All but thiND encoding have approximately uniform
maximum quantization error across all visible luminanckies. The edgy shape of
both RGBE and.6-bit half encodings is caused by rounding of the mantissa.JNi2
encoding varies the maximum quantization error acrossahge to mimic loss of sen-
sitivity in the HVS for low light levels. This not only makestier use of the available
range of luma values, but also reduces invisible noise iy dark scenes, which would
otherwise be encoded. Such noise reduction can significemgirove image or video
compression.
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5.2 High Fidelity Image Formats

The need for image formats capable of encoding higher dymaamges was recog-
nized very early in several fields, such as computer graphiesglical imaging or film

scanning in the motion picture production. These led torsdwmage formats, which
can be classified into three groups:

e Formats originally designed for high dynamic range imagé® quantities they
store are usually floating points values of a linear radiadaminance factdr.
There are several high-precision formats, such as RadaR@&BE, logLuv
TIFF and OpenEXR. These formats are lossless up to the fmedbtheir pixel
representation.

e Formats designed to store as many bits as a particular sesnsrovide, for ex-
ample 12-bit for a film scanner. This group includes: DigR#adture Exchange
DPX format used in the movie industry to store scanned nega®€XOM for-
mat for medical images, and a variety of so calle®WVformats used in digital
cameras. All these formats use more than 8 bits to store kmi but they
are usually not capable of storing such an extended dynangeras the HDR
formats.

e Formats that store larger number of bits but are not necessanded for HDR
images. Twelve or more bits can be stored in JPEG-2000 angl filés. All
these formats can easily encode HDR if they take advantageixel encoding
that can represent full visible range of luminance and cgéonut, such as those
described in Section 5.1.

Variety of formats and lack of standards hinders the tramrsirom traditional output-
referred LDR formats to scene-referred HDR formats. The H&#hats (Radiance’s
RGBE, logLuv TIFF and OpenEXR) have not gained widespreagance mainly
because they offer only lossless compression resultingige files sizes. The most
successful OpenEXR format has been however integratedssitbral Open Source
and commercial applications, such as Ad@bé>hotosho® starting from the release
CS2. Other specialized formats, such as DPX, DICOM and cash&AW formats,
usually do not allow storing as high dynamic range as the HR&ts. Since they are
designed to be used for a specific application, it is unlikbbt they will evolve into
general purpose image formats.

The following subsections describe the two most popular HDRge formats: the
Radiance HDR and the OpenEXR format.

4For the explanation of luminance factor, refer to Section 2.1
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5.2.1 Radiance’'s HDR Format

One of the first HDR image formats, which gained much popiylawas introduced
in 1989 into the Radiance rendering packagenerefore, it is known as the Radiance
picture format and can be recognized by the file extensiatrsoh pic. The file consist
of a short text header, followed by run-length encoded pixeixels are encoded using
the XYZE or RGBE pixel formats, discussed in Section 5.1 12 @ifference between
both formats is that the RGBE format uses red, green and bioepes, while the
XYZE format uses the CIE 1931 XYZ primaries. As a result, théZ& format can
encode the full visible color gamut, while the RGBE is lindit® the chromaticities
that lie within the triangle formed by the red, green and ldaker primaries. For more
details on this format, the reader should refer to [49] an®g. 3.3.1].

5.2.2 OpenEXR

The OpenEXR format or (the EXtended Range format), recaghizy the file name
extension .exr, was made available with an open source ®+ar{iin 2002 by Indus-
trial Light and Magic (seexttp://www.openexr.org/ and [50]). Before that date
the format was used internally by Industrial Light and Mafgicthe purpose of spe-
cial effect production. The format is currently promotedaaspecial-effect industry
standard and many software packages already support ite &matures of this format
include:

e Support for 16-bit floating-point, 32-bit floating-pointhé 32-bit integer pixels.

e Multiple lossless image compression algorithms. Some @firtbluded codecs
can achieve 2:1 lossless compression ratios on images imitlyfain.

e Extensibility. New compression codecs and image types esityebe added
by extending the C++ classes included in the OpenEXR softwatribution.
New image attributes (strings, vectors, integers, etm)bzaadded to OpenEXR
image headers without affecting backward compatibilitshveixisting OpenEXR
applications.

Although the OpenEXR file format offers several data typesrtcode channels, color
data is usually encoded with 16-bit floating point numberspvin as half-precision
floating point, discussed in Section 5.1.1.

5.3 High Fidelity Video Formats

The developments in the display and digital projection tedbgies motivated work on
high fidelity video formats. This section reviews recentathements in this area.

SRadiance is an open source light simulation and realistide®ng package. Home pagettp://
radsite.lbl.gov/radiance/
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5.3.1 Digital Motion Picture Production

Digital motion picture production involves processing lieg dynamic range images
than normally found in standard imaging setups. Cinemafugc cameras capture
the dynamic range up to 12 f-stops and the films are scannée tb-bit logarithmic
DPX format. Computer generated sequences are renderegkarliuminance units
and stored using HDR file formats.

To standardize the formats used to exchange materialsvedrah the motion picture
production, the Science and Technology Council of the Aoadef Motion Picture
Arts and Sciences formed an Image Interchange Frameworkndtee. The com-
mittee is to define a conceptual framework, file formats amdmenended practices
related to color management and exchange of digital imageasgl motion picture
production and archiving. As of 2007, the standardizatfoari ongoing process and
an early overview of the proposal can be found in [51]. Theppseed framework em-
ploys the OpenEXR HDR image format (refer to Section 5.2d?)storage and the
Color Transformation Language for color profiling. Sincestis going to be the first
device independent framework, which does not rely on outpigirred formats, this
section mentions its major concepts.

The image interchange framework assumes that all origiag¢nal, including scanned
film negatives, images from digital cameras, and 3D compgraphics are imported
into a common pixel format called “Academy Color Encodinga&g’' or ACES. The
ACES assumes unlimited color gamut and dynamic range. #iteer output-referred,
nor strictly scene-referred representation. It assumatpixel values are approxi-
mately linear to radiance and luminance (as for most HDR €ilenfts), but it does
not require that these values correspond to the actual gadysdlor values found in
the original scenes. This is dictated by the common prastédilm making, where
the colors of the original scene are intentionally altefemdisplay ACES images, two
color transforms needs to be applied: teadering transforngives desired “look”,
while the output device transformaccounts for differences between output devices,
such as preview monitors or film printers. Image editing amehjgositing visual ef-
fects is performed on the ACES images, stored in OpenEXR fésolor transforms
are specified using the Color Transformation Language (CTL)

While the framework is still under development, it introdsigaveral appealing con-
cepts. The output device transform eliminates the depexydem the output device.
The rendering transform introduces a flexible “tone-magpstep, which can be al-
tered to change the desired “look” of images. Finally, theE&file format ensures
that no information is lost due to gamut clamping or insudfitiprecision of the pixel
format.

5.3.2 Digital Cinema

High fidelity image formats are required not only in the maotipicture production
process, but also when the final version of a movie is digeiband shown in movie
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theatres. Analog movie projectors, which still offer oatsling resolution and larger
dynamic range than traditional displays, are being replagéh their digital counter-
parts, mostly because of much lower costs of movie disiobutThe quality of digital
projection is found to be comparable with the highest qualitalog projection, but
does not require expensive process of printing thousanfileofopies.

A consortium of movie studios formed Digital Cinema Initias or DCI with a goal

to establish a standard framework for digital movie disttitn and projection. In
2007, the DCI released an updated version of the specific@tib.1). The specifi-
cation assumes that single frames are encoded at the ierd®®48<1,080 (2K) at
24Hz or 48Hz, or 4,0962,160 (4K) at 24Hz using JPEG2000. Pixels are represented
as the CIE 1931 XYZ absolute trichromatic color values, st Yhvalue corresponds

to luminance. Each trichromatic color value is normalizgdh® constant 52.37, com-
pressed with the power function of tiye= 2.6 and encoded on 12-bit. The value 52.37
is slightly higher than the peak luminance of a typical pctje and sets the upper
threshold on the luminance that can be represented.

The specification takes great care of color data handlingnaakng sure that the ex-
perience of digital cinema does not differ much from analogjgetion. This is man-
ifested in quite moderate frame-rate of 24Hz, which is tgpto analog film. This
assumptions however, and in particular the choice of th& paainance of 52.37
cd/mzand the step gamma function, makes the framework less muit@mbhigh dy-
namic range movie projection.

5.3.3 MPEG for High-quality Content

The need for encoding high-fidelity video has been recetidy focus of the Joint
Video Team (JVT), which works on the family of popular MPE@rsdards. The JVT
has recently added five new profiles intended for high-quatintent to the MPEG4-
AVC/H.264 video coding standard [52]. The new profiles offaroma channels en-
coding without subsampling and with the same precision@iiia channel, so called
4:4:4 video format coding, bit depths up to 14 bits per saraptka set of supplemental
enhancement information (SEI) messages that describernkemapping curve to use
to map higher bit-depth content to lower number of bits.

The new profiles offer possibility to use the extended garoldrcspaces, defined by
IEC 61966-2-4 XvY CGo1 andxvY CGog) and ITU-R BT.1361. These color spaces are
also an optional encodings for the High-Definition Multineethterface (HDMI v1.3).
They can encode highly saturated colors, while maintaifiagkward compatibility
with the color spaces used for video coding (BT.601 and BJ).7This was possible
since both BT.601 and BT.709 recommended using only theegahithin the range
from 16 to 235, thus allowing for undershoot and overshoahtbin analog TV sig-
naling. Since such code-value margins are not necessadjgital video, they can be
used to encode extended color gamut. Unfortunately, thecow space extends color
gamut only towards more saturated colors, while offerirggghme dynamic range as
the BT.601 and BT.709, therefore it is not suitable for emogdiDR content.
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5.3.4 HDR Extension of MPEG-4

8-bit i HDR T
RGB ¥ XYZ _ ) bitstream
inter-frame DCT quantized
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Figure 5.8: Simplified pipeline for the standard MPEG videaading (black, solid) and proposed
extensions (italic, dashed) for encoding High Dynamic Ramgleo. Note that edge blocks are
encoded together with DCT data in the HDR flow.

It was demonstrated [53] that the MPEG encoding standatti, the Advanced Sim-
ple Profile (ISO/IEC 14496-2) [54] and the Advanced Video gdISO/IEC 14496-
10) [55], can be extended to handle HDR data. The scope oiresjahanges to
MPEG-4 encoding is surprisingly modest. Figure 5.8 showsmplified pipeline of
MPEG-4 encoding, together with proposed extensions. Whitéaadard MPEG-4
encoder takes as input three 8-bit RGB color channels, th Eifcoder must be pro-
vided with pixel values in the absolute XYZ color space [7ucB color space can
represent the full color gamut and the complete range oflante the eye can adapt
to. Next pixel values are transformed to the color spaceitijatoves the efficiency of
encoding. MPEG-4 converts pixel values to one of the famiily 6sCr color spaces,
which exhibit low correlation between color channels foratunal images. The pro-
posed extension uses instead the perceptually uniform HiE#R gncoding, described
in Section 5.1.6. The 11-bit, instead of 12-bit, encodinfuafa is used as it turns out
to be both conservative and easy to introduce to the exiMirBG-4 architecture.

Due to quantization of DCT coefficients, noisy artifacts rappear near edges of high-
contrast objects. This problem is especially apparent foRHideo, in particular for
synthetic sequences, where the contrast tends to be higdneirt natural LDR video.
This can be alleviated by encoding sharp-contrast edgeecim 8 8 block separately
from the rest of the signal. An algorithm for such hybrid etiog can be found in
[53].

Additional examples and the demonstration video can bedaxmthe project web
page:http://www.mpi-inf .mpg.de/resources/hdrvideo/index.html.

5.4 Backward Compatible Compression

Since the standard low-dynamic range (LDR) file formats feages and video, such
as JPEG or MPEG, have become widely adapted standards segbjpgr almost all

software and hardware equipment dealing with digital imggit cannot be expected
that these formats will be immediately replaced with theDRicounterparts. To fa-
cilitate transition from the traditional to HDR imaging.ette is a need for backward
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compatible HDR formats, that would be fully compatible wékisting LDR formats
and at the same time would support enhanced dynamic rangeotordyamut. More-
over, if such a format is to be successful and adopted by laageof the market, the
overhead of HDR information must be very low, preferablyolseB0% of the LDR file
size. This is because very few consumers will have acces®® téchnology, such
as HDR displays, at the beginning and the rest of the consumiéimot accept dou-
bling the size of the file for the sake of the data they canria talvantage of. Such
backward compatible encoding would also require that tigeral LDR content is not
modified. Although the compression of HDR can be improveciL®R image can
be slightly altered, this would also be unacceptable foromig] of applications where
it is crucial to preserve the original appearance of LDR eont

The following subsections present an overview of both @gsand potential solutions
for backward compatible image and video encoding.

5.4.1 JPEGHDR

Spaulding et al. [56] showed that the dynamic range and gaout of typical SRGB
images can be extended using residual images. Their meshmatkward compatible
with the JPEG standard, but only considers images of maaldsatamic range. Ward
and Simmons [57] have proposed a backward-compatible sitenf JPEG, which en-
ables compression of images of much higher dynamic randegGHDR). JPEG HDR
is the extension of the JPEG format for storing HDR imagetsisitizackward-compatible
with an ordinary 8-bit JPEG. A JPEG HDR file contains a tone pegpversion of
an HDR image and additionally a ratio (subband) image, whattains information
needed to restore the HDR image from the tone mapped image.rafio image is
stored in the user-data space of JPEG markers, which areatiprignored by appli-
cations. This way, a naive application will always open threetmapped version of an
image, whereas an HDR-aware application can retrieve thie iixge.

HDR Image | Compute Ratio Lyl Sub-sample Ly JPEG DCT N Sltr(;rae ethslo
d Image Ratio Image compression JPEG gwarkers
A
Tone Map HDR | JPEG DCT y JPEGfile
Image compression ”

Figure 5.9: Data flow of subband encoding in JPEG HDR format.

A data flow of the subband encoding is shown in Figure 5.9. ArRHDage is first
tone mapped and compressed as an ordinary JPEG file. Thersaige is also used to
compute the ratio image, which stores a ratio between HDRarelmapped image lu-
minance for each pixel. To improve encoding efficiency, #t@rimage is sub-sampled
and encoded at lower resolution using the ordinary JPEG oessjpn. The com-
pressed sub-band image is stored in the JPEG markers. Toerdftriloss of informa-
tion due to sub-sampling the ratio image, two correctionhoé$ have been proposed:
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enhancing edges in a tone mapped image (so cpliegtorrectior) and synthesizing
high frequencies in the ratio image during up-sampling (@lbed post-correctioi.
Further details on the JPEG HDR compression can be found’iraiid [58].

5.4.2 Wavelet Compander

Li et al. [59] propose that HDR images can be encoded using &lits, if they un-
dergo a reversible companding operation. They propose tiscale wavelet architec-
ture, which can compress an HDR image to a lower bit-deptHatadexpand it to ob-
tain a result that is close to the original HDR image. Therimfation loss is reduced by
amplifying low amplitudes and high frequencies at the carapion stage, so that they
survive the quantization step to the 8-bit LDR image. Suchnéue is conceptually
similar to thepre-correctionin JPEG HDR. Since the expansion is a fully symmetric
inverted process, the amplified signals are properly sggpreto their initial level in
the companded HDR image. To further reduce the informatiss,|the compressed
image is iteratively modified to improve the correlation tsfsubbands with respect to
the original HDR image. The authors observe a good visuditygud both the com-
pressed and companded images, but they admit that any ¢gemreancerning their
fidelity to tone mapped (i.e. undergoing just one compresiaration) and original
HDR images cannot be given. The obtained PNSR for the conggbHDR image is
even worse than for ordinary LUT (Look-Up-Table) compargihowever the results
of the multi-scale wavelet companding look visually better

Given the requirements for a backward compatible image &@bwompression, the
lack of fidelity of tone mapped images is often not acceptaditee the original mate-
rial quality cannot be compromised. Another limitation listtechnique is fixed tone
mapping operator. The emphasis on high frequencies at thpression step makes the
proposed framework less suitable for standard JPEG and ME&Biques, which use
the quantization matrices that are perceptually tunedgeadd visually non-important
high frequencies. This is confirmed by relatively poor coasgion rates reported the
authors when they attempted to combine JPEG with their codipg. It is not clear,
how the compander approach can be adopted for lossy HDR idepression, in
which temporal coherence and computation efficiency mugulaganteed.

5.4.3 Backward Compatible HDR MPEG

Encoding of movies in high fidelity format is becoming morepiontant as the quality
of consumer-level displays is starting to exceed the quafiaivailable DVD or broad-
cast content. As discussed in Section 5.3.1, high fidelitytextt is available at the
movie production stage. However, to encode motion pictuséisg traditional MPEG
compression, the movie must undergo processing called go#aling. Part of this
process is the adjustment of tones (tone-mapping) andsc@amut-mapping), so that
they can be displayed on majority of TV sets (refer to Figudh Although such
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Figure 5.10: The proposed backward compatible HDR DVD m@vaxessing pipeline. The high

dynamic range content, provided by advanced cameras an@&@i&ning, is encoded in addition to
the low dynamic range (LDR) content in the video stream. Tles fiompressed with the proposed
HDR MPEG method can play on existing and future HDR displays.

processing can produce high quality content for typical GR@ LCD displays, the
high quality information, from which advanced HDR displaysild benefit, is lost.

The HDR-MPEG encoding, similarly as the JPEG-HDR (refereot®n 5.4.1), com-
presses both LDR and HDR video stream and stores them in the Isackward com-
patible movie file (see Figure 5.10). Depending on the céifiabiof the display and
playback hardware or software, either LDR or HDR contenti$pldyed. This way
HDR content can be added to the video stream at the modersit@fcabout 30% of
the LDR stream size.

The complete data flow of the HDR-MPEG compression algorithishown in Fig-
ure 5.11. The encoder takes two sequences of HDR and LDR $rasy@put. The
LDR frames, intended for LDR devices, usually contain a tomepped or gamut
mapped version of the original HDR sequence. The LDR frames@mpressed us-
ing a standard MPEG encod@lPEG encodein Figure 5.11) to produce a backward
compatible LDR stream. The LDR frames are then decoded trohtdistorted (due
to lossy compression) LDR sequence, which is later used afeeence for the HDR
frames (se&PEG decodein Figure 5.11).

Both the LDR and HDR frames are then converted to compatifiler spaces, which
minimize differences between LDR and HDR colors. For the Hipkels, the JND

encoding discussed in Section 5.1.6 is used. For the LDRsitkes CIE 1976 Uniform

Chromacity Scales (Equations 5.3 and 5.4) are used for ¢hemoe and the SRGB
non-linear transfer function is used to encode luminance.

The reconstruction function (séénd reconstruction function in Figure 5.11) re-
duces the correlation between LDR and HDR pixels by givirglibst prediction of
HDR pixels based on the values of LDR pixels. The residuahé&as introduced to
store a difference between the original HDR values and theesgpredicted by the
reconstruction function.

To improve compression, invisible luminance and chromiearariations are removed
from the residual frame (sdglter invisible noise in Figure 5.11). Such filtering simu-
lates the visual processing that is performed by the retigddict the contrast detec-
tion threshold at which the eye does not see any differerides.contrast magnitudes
that are below this threshold are set to zero. An exampleaf filiering is shown in
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LDR frame (sRGB:ubyte) HDR frame (XYZ:float)

‘ MPEG encode ‘

| <o

‘ MPEG decode ‘

¢ IIdr Ihdr Y
Transform color space Transform color space

SRGB * |4 Uy Vig, XYZ * | iU Vhar

IIdr Ihdr
Find reconstruction
function

py

RF(l)

5| Compute residual
frame r=l, 4 -RF(l,4,)

A

‘ Filter invisible noise

> Quantize residual
v Gy frame
Huffman/Runlength v
encoding ‘ MPEG encoder ‘

7
LDR stream  Auxilary stream  Residual stream

Figure 5.11: A data flow of the backward compatible HDR MPEGoeling. See text
for details.

Figure 5.12.

Finally, the pixel values of the residual frame are quautieQuantize residual
frame in Figure 5.11) and compressed using a standard MPEG enictder residual
stream. Both the reconstruction function and the quantizdactors are compressed
using a lossless arithmetic encoding and stored in an auxiitream.

The encoding scheme was tested with a number of tone-mappiggtors, with and
without invisible noise filtering step, and compared to otH®R compression meth-
ods. The best performance was achieved for global tone-imgpperators, which do
not amplify high frequencies. As shown in Figure 5.13, theRIBIPEG compression
performed worse then the HDR extension of MPEG-4 (refer wiiGe 5.3.4), labeled
asHDRV. This is because the HDRV encoding is not backward-comigsdihd there-
fore does not need to encode any information on an LDR stréamthe HDR VDP
and the UQI metrics, the JPEG HDR (refer to Section 5.4.fppmis almost the same
as the HDR MPEG for the pre-correction and the post-cowaetpproach, but is worse



5.4. BACKWARD COMPATIBLE COMPRESSION 63

Figure 5.12: Residual frame before (left) and after (cgrfikering invisible noise.
Such filtering removes invisible information, while leagiimportant high frequency
details that are lost if ordinary low-pass filtering (dowmgding) is used (right). Green
color denotes negative and gray positive values. The MahGhurch image courtesy
of Paul Debevec.

for the full-sampling, even though the HDR MPEG does not imeasub-sampling.
JPEG HDR performs slightly worse than the HDR-MPEG for thdRSietric.

More information on this project as well as the demonstratimeo can be found on
the project web pageittp://www.mpii.mpg.de/resources/hdr/hdrmpeg/.

5.4.4 Scalable High Dynamic Range Video Coding from the JVT

The Joint Video Team (JVT), responsible for the family of MBPEtandards, is consid-
ering several proposals for the scalable bit-depth codihg.scalable bit-depth coding
is equivalent to the backward-compatible coding (henckabday) that can store HDR
data (hence enhanced bit-depth). This naming conventiakeés from the spatial scal-
able coding that provides higher resolution and the temgaedable coding that offers
higher frame-rate. The proposed extensions are concgpsirailar to the JPEG HDR
introduced in Section 5.4.1 and the HDR MPEG described ini@e8.4.3. They en-
code a tone-mapped sequence using a backward-compatiie®ding, a series of
coefficient for predicting HDR frames based on tone-mappachés (inter-layer pre-
diction), and a residual stream that encodes predictiam®rin contrast to JPEG HDR
and HDR MPEG, the proposed schemes focus on computatidiaéety, therefore
they use simplified color transforms and avoid expensivaraetic operations.

One of the proposals [61] suggests using the following fansto predict the high dy-
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Figure 5.13: Comparison of lossy HDR compression algorithMetrics: VDP 75%
- HDR-VDP percentage of visibly different pixels at P=75%QIJ} Universal Qual-
ity Index [60]; SNR - Signal-to-Noise-Ratio for the IND-@uled luma (refer to Sec-
tion 5.1.6). The results are averaged for a set of images.

namic range pixel chroma and luma components based on artapped pixel value:

Yupr = 0 Yipr+Of fset

Chupr = @ Chipr + Of fset: SEOREC, (5.10)
Crypr=a Cr pr+of fset C{f%

where thea andof fsetare prediction coefficients stored for each block &nsk pc,
ChbLprpc, Criprpc are the DC portion (mean) of the luma and chroma components
in the LDR image block. The non-intuitive part of this tramsh is the presence of
luma component in the prediction 6bypr andCrypr. Such normalizing luma factor

is necessary, since most color spaces utilized for videingoare not iso-luminant,
which means that they contain some luma information in thkeioma components.
The division by theY prpc reduces the variance in chroma due to luma component.
The HDR MPEG coding solves this problem by employing apprately iso-luminant
CIE 1976 Uniform Chromacity Scales (Equations 5.3 and 5.4).
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5.5 High Dynamic Range Texture Compression

High dynamic range textures can significantly enhancesmaiin real-time rendering
using graphics hardware. This is, however, achieved atdsieof higher memory foot-
print, which can affect rendering performance. The bo#tdnis both graphics card
memory and the bandwidth available for sending textures fexternal to graphics
card memory. Both these problems can be reduced if textueegfficiently com-
pressed prior to sending them to graphics card memory.

There exist several common techniques for compressing yoardic range textures.
The S3TC texture compression scheme, also known as DXTC lié8]became a de
facto standard that is often implemented on graphics cdtdgivides a texture into
4x 4 blocks, then encodes each block using 64 bits, resultidghiits per pixel. Two
colors are selected as base colors and stored in 16 bits Gdits; green — 6 bits, blue
— 5 bits). Then each pixel is encoded in 2 bits, which are usdith¢arly interpolate
between the two base colors. Unlike video or image compyastéxture compression
schemes are always fixed-rate to allow random access tasteXéley must be also
simple enough to offer very fast decoding and to be suitadnld&rdware implemen-
tation. Unfortunately a straightforward extension of tI8'§ to larger number of bits
that could encode HDR textures results in visible quaritma&nd blocking artifacts
[63], therefore more elaborate compression schemes aessay.

A e—o—0—e Beo—oe Ceo—e D , 7\
e | e /N e e

Figure 5.14: Shapes used for coding chroma irxd Zexture block. From [44].

Munkberg et al. [44] extended the S3TC scheme for high dyoaarige luminance
data and proposed an interesting approach to chroma emgcddie pixels are initially
transformed to the Iogov color space, described in Section 5.1.5. The luminance is
coded similarly as in the S3TC scheme, using two base logntamee values encoded

in 8 bits and 16 (for a 44 block) 4-bit indexes used to interpolate between the base
values. The interpolation can be both uniform or non-umifevith smaller steps close

to the base values. The chroma channel is subsampled edthzoftally or vertically,
halving the number of pixels to encode. Two base chroma salar coded in 15 bits
each (8 bits foim and 7 bits forv) together with eight 2-bit indexes. Then instead of
using a straight line for interpolating between the two beslers, Munkberg et al.
suggest to use one of the predefined shapes, shown in FigdreThe two base colors
are used to fix the position of two vertices (solid verticethia figure), thus allowing

for shifting, scaling and rotation of the predefined shapebétv coordinates. Then
each chroma index indicates the vertex that should be usédédode chroma. An
example illustrating the difference between linear inbdpon and shape transform
coding is shown in Figure 5.15. In overall, the Munkberg’sletcompression scheme
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requires 128 bits per-44 block, thus 8 bits per pixel, instead of 48 bits requiredifier
half precision floating point buffers (see Section 5.1.1).

Original Chroma line Shape transforms

% %

L

Line fit Shape transform fit

Figure 5.15: Shape transforms can fit better to color distigi in a block than linear
interpolation. From [44].

Roimela et al. [63] propose to abandon the S3TC scheme antheiggoperties of
the floating point numbers in their HDR texture compressiathod. Similarly as
Munkberg’s et al. scheme, the proposed encoding operatds érblocks, each en-
coded in 128 bits or 8 bits per pixel. The first 72 bits are usashtode luminance. The
luminance of each pixel is encoded separately using 4 bitls, axcommon exponent (5
bits) and the number of leading zeros (3 bits) shared for paghin a block. To com-
pute chroma pixels, red and blue color components are diiigduminance values.
Then, the chroma pixels are sub-sampled both horizontatlyartically, reducing the
number of color samples to 4. Each color component is quadhiizto seven bits, so
that 4 color samples 2 color components 7 bits can be encoded into the remaining
56 bits. Roimela’s et al. texture compression scheme lpealapts to the dynamic
range of a block, resulting in coarser quantization for tightrast blocks and lower
quantization for the blocks in smooth regions. Another ulspfoperty is relatively
low complexity and decoding to the half-precision floatirgnt numbers, which are
supported by graphics cards.

Both Munkberg’s et al. and Roimela’s et al. texture compmsschemes require
modifications of the graphics hardware for the best perfogaa Therefore, it can be
expected that future work on HDR texture compression widli®on the schemes that
allow for efficient decoding on existing hardware using freegt programs.
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5.6 Conclusions

It is quite surprising that the well studied and improvedroyears general image and
video compression standards may turn out to be inadequateefo content and dis-
plays in the coming years. Although increasing the bit-deftencoded images seems
to be the most apparent solution to this problem, it does ddtess the major issue:
how the encoded code-values should be mapped to the luneihareds produced by a
display. The ICC color profiles, commonly used for this pwg@m low dynamic range
images, have been designed for reflective print colorimatyare not suitable for high
contrast displays. The problem is even more difficult if thipoit device is unknown
and may vary from a low-contrast mobile display to a high-&rde screen display.
To fully address this issue, not only the compression algors, but the entire imag-
ing pipeline, from acquisition to display-adaptive tonepping, must be redesigned.
High dynamic range pixel encodings (Section 5.1) offer aegalnpurpose intermedi-
ate storage format, which can represent the colorimelyicalibrated images with no
display limitations. Such images could be displayed onlyanndeal display, capable
of producing all physically feasible colors, which is umii to ever exist. Therefore,
the high dynamic range images must be adjusted to the adspay capabilities by
compressing its dynamic range, clipping excessively ngkels, choosing the right
brightness level, so that all colors fit into the display ca@amut. The tone-mapping
algorithms designed for that purpose are discussed in €hépdf this book. Since
making such radical changes in the imaging pipeline woufdiee the existing soft-
ware and hardware obsolete, it is important to ensure backa@mpatibility of image
and video formats, as discussed in Section 5.4.

The specialized application areas that require higher éaagl video fidelity than of-
fered by a general purpose compression formats have almesmg up with a custom
formats, such as Radiance RGBE or OpenEXR for computer grapimimation, or
DICOM for medical images, as discussed in Section 5.2. Thpgsals of the Image
Interchange Framework committee (Section 5.3.1) work dinishg not only image
format, but also the entire imaging pipeline employed fayitdli motion picture pro-
duction. Another specialized area is texture compresssatt{on 5.5), which have
different requirements (fixed-rate coding, fast decodihgn general purpose image
compression. It can be expected that some advanced ideasifese specialized com-
pression formats will be incorporated in the future genpraipose standards, such as
the family of MPEG or JPEG formats.
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Chapter 6

Tone Reproduction

The contrast and brightness range in typical HDR imageseglsceapabilities of cur-
rent display devices or print. Thus, these media are inaateqo directly reproduce
the full range of captured light. Tone mapping is a techniigueéhe purpose of reduc-
ing contrast and brightness in HDR images to enable theictiep on LDR devices.
The process of tone mapping is performed by a tone mappinguape

Particular implementations of a tone mapping operator aried and strongly depend
on a target application. A photographer, computer grapaitist or a general user
will most probably like to simply obtain nice looking imagéda such cases, one most
often expects a good reproduction of appearance of an afigidR scene on a display
device. In simulations or predictive rendering, the go&tene mapping may be stated
more precisely: to obtain a perceptual brightness matohdsst HDR scene and tone
mapped result, or to maintain equivalent object detectarfopmance. In visualization
or inspection applications often the most important is &sprve as much of fine detail
information in an image as possible. Such a plurality of cfijes lead to a large
number of different tone mapping operators.

In this chapter we present at first short overview of existmge mapping operators.
Then we discuss the problem of tone mapping evaluation \sibgective and objec-
tive methods. Finally, we discuss tone mapping extensiottstemporal domain as
required to handle HDR video.

6.1 Tone Mapping Operators

Various tone mapping operators developed in recent yearsegeneralized as a trans-
fer function which takes luminance or color channels of anRH&ene as input and
processes it to output pixel intensities that can be digglapn LDR devices. The input
HDR image can be calibrated so that its luminance is expdeissg! units cd/m or it
may contain relative values which are linearly related tnihance (Section 3.2). The

69
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transfer function may be the same for all pixels in an imadeb@ operator) or its
shape may depend on the luminance of neighboring pixelal(tgmerator). In princi-
ple, all operators reduce the dynamic range of input dateceSinost of the algorithms
process only luminance, color images have to be convertedddor space that decou-
ples luminance and chrominance, exgy(refer to Chapter 2.2). After tone mapping,
theY xycolor space is converted to the original color space of ttegin In such an in-
verse transform, the tone mapped intensities are useddahsfdhe original luminance
as theY channel, while the chrominance is left unchanged.

6.1.1 Luminance Domain Operators

The most néve approach to tone mapping is to “window” a part of luminanegnge in
an HDR image. That is to map a selected range of luminance aslmear transfer
function to a displayable range. Such an approach, howeseders dark parts of
image black and saturates light areas to white, thus rergdtie image details in the
areas. A basic sigmoid function:

Y

L= ok (6.1)

maps the full range of scene luminarn¢en the domain[0,inf) to displayable pixel
intensitiesL in the range of0,1). Such a function assures that no image areas are
saturated or black, although contrast may be strongly cessed. Since the mapping
in equation (6.1) is the same for all pixels, it is an examla global tone map-
ping operator. Other global operators include adaptivaritigmic mapping [64], the
sigmoid function derived from photographic process: pjmphic tone reproduction
(global) [65], a mapping inspired by the response of phatgpéors in the human eye:
photoreceptor [66], a function derived through histogramadization [67]. The subtle
differences in tone mapped images using these operatoittuateated in Figure 6.1.
Usually, one obtains a good contrast mapping in the medight levels and low con-
trast in the dark and light areas of an image. Thereforeitively, the most interesting
part of an image in terms of its contents should be mappedyukim good contrast
range. The appropriate medium brightness level for the mapis in many cases
automatically determined as a logarithmic average of lamde values in an image:

YAexp<z|Og$\lY+g)> —€, (6.2)

whereY denotes luminancd\ is the number of pixels in an image, aadlenotes a
small constant representing the minimum luminance valygrdéwent 0 in logarithm.
TheYa value is then used to normalize image luminance prior to rimgppith a trans-

fer function. For example, in equation (6.1) such a nornadilin would map the lu-
minance equal t¥ to 0.5 intensity which is usually displayed as middle-gray (loefo
the gamma correction). Thé& is often called the adapting luminance, because such a
normalization is similar to the process of adaptation thtlig human vision.
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linear logarithmic

display intensity

. . HDR luminance (log, . scale)
sigmoid 10

histogram eq.

Figure 6.1: Comparison of global transfer functions witmekr mapping (standard
gamma correction with dynamic range clipping) given as #ference. The plot il-
lustrates how luminance values are mapped to the pixelsiites on a display. The
steepness of the curve determines the contrast in a select@thnce range. Lumi-
nance values for which display intensities are close to Oayehot transferred. Source
HDR image courtesy of Industrial Light & Magic.

6.1.2 Local Adaptation

While global transfer functions are simple and efficient rodthof tone mapping, the
low contrast reproduction in dark and light areas is a diaathge. To obtain a good
contrast reproduction in all areas of an image, the trarfgfastion can be locally ad-
justed to a medium brightness in each area:

YI

L=c—
Y +1

(6.3)

whereY’ denotes HDR image luminance normalized by the globally twigumi-
nanceY’ =Y /Ya andY is the locally adapting luminance. The value of globally
adapting luminance&a is constant for the whole image, while the locally adapting
luminanceyY] is an average luminance in a predefined area centered arauhdane
mapped pixel. Practically, th¢ is computed by convolving the normalized image lu-
minanceY’ with a Gaussian kernel. The standard deviation of the kesrdgfines the
size of an area influencing the local adaptation and usuatyesponds in pixels to 1
degree of visual angle. The mechanism of local adaptatiaga# inspired by similar
processes occurring in the human eyes. Figure 6.2 illestthe improvement in tone
mapping result through introduction of the local adaption.

The details are now well visible in dark and light areas ofithage. However, along
high contrast edges one can notice a strong artifact visibldark and light outlines
— the halo. The reason why such artifact appears is illestrat Figure 6.3. Along a
high contrast edge the area of local adaptation includdsttigh and low luminance,
therefore the computed average in the area is inadequad@yasf them. On the side
of high luminance the local adaptation is more and more uadémated as the tone
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Figure 6.2: Tone mapping result with global, equation (Gahy local adaptation, equa-
tion (6.3). The local adaptation (right) improves the reprction of details in dark and
light image areas, but introduces halo artifacts along bagitrast edges.
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Figure 6.3: The halo artifact along a high contrast edge) (@fd the plots illustrating
the marked vertical line in tone mapped image (middle) andRHiage (right). Gaus-
sian blur (under-) over-estimates the local adaptatiod) (near a high contrast edge
(green). Therefore the tone mapped image (blue) gets tgbthftioo dark) closer to
such an edge.

mapped pixels are closer to the edge, therefore equati®ng&dually computes much
higher intensities than appropriate. The reverse happetisecside of low luminance.
A larger blur kernel spreads the artifact over a larger asdle a smaller blur kernel
reduces the artifact but also reduces the reproductiontafisle

6.1.3 Prevention of Halo Artifacts

Many image processing techniques have been researcheevenpthe halo artifacts
out of which the notable solutions are automatic dodging laumthing (photographic
tone reproduction (local) [65]) and the use of bilaterakfilg instead of Gaussian
blur [68].

The automatic dodging and burning technique derives iaaljt from the observation
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that a halo is caused by a too large adaptation area, Figiré@. also a large area is
desired for a good reproduction of details. Therefore, the af the local adaptation
area is adjusted individually for each pixel location sugt it is as large as possible
but does not introduce halo. The halo artifact appears as asdoth very high and
very low luminance values exist in an adaptation area andifgigntly change the
estimated local adaptation. Therefore, by progressivelyeiasing the adaptation area
for each pixel, the following test can detect the appearahbalo:

IYL(X,Y, G1) = YL(X,Y, Oi11)| < €. (6.4)

For each pixel, the size of the adaptation area, defined bgtrelard deviation of
the Gaussian kernek, is progressively increased until the difference betwéentwo
successive estimates is larger than a predefined threshotie result of the Gaussian
blur for the largest; that passed the test is then used for given pixel in equaBi@®). (
The example of estimated adaptation areas is illustrateigare 6.4. The whole
process can be very efficiently implemented using the Gangsjramid structure as
described in [65].

Figure 6.4: Estimated adaptation areas for pixels markddugscross. In each case,
the green circle denotes the largest, thus the most optidsgdtation area. A slightly
larger areas denoted as red circles would change the loaptattbn estimat®¥ more
than acceptable threshold in equation (6.4) and woulddioire a halo artifact.

Bilateral filtering is an alternative technique to prevesis [68]. The reason for halos,
Figure 6.3, can also be explained by the fact that the locgbtadion for a pixel of high
luminance is incorrectly influenced by pixels of low lumiran Therefore, excluding
pixels of significantly different luminance from local adafion estimation prevents
the appearance of halo in a similar way as in equation (6 4@.bilateral filter [69] is a
modification of the Gaussian filter which includes an apgedprpenalizing function:

YW= 5 folllp—al)-Y9 g0 (Y- YI)). (6.5)
geN(P)

In the above equatiom denotes the location of the tone mapped pigelenotes pixel
locations in the neighborhodd( p) of p. The first two terms of equatiorfig, - Y9, define
Gaussian filtering with spatiads. The last termgg,, practically excludes from the
convolution those pixels whose luminance value differsnftbe tone mapped one by



74 CHAPTER 6. TONE REPRODUCTION

more tharg;. Both f andg are Gaussian functions, and luminance is usually expressed
in the logarithmic space for the purpose of such filteringe Biateral filtering process
is shown in Figure 6.5.
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Figure 6.5: Bilateral filtering of a similar scanline as irg&ie 6.3, here marked in
magenta (left). The penalizing functi@n(right plot) improves the estimation of the
local adaptation (red) by excluding pixels in the neighloadhf (magenta) whose lu-
minance value is outside the defined range (orange). Theidothl adaptation for the
pixel marked with a cross (left image) is estimated only fithi pixels in the area out-
lined in green, while the Gaussian blur would also includeslsi in the area outlined
in red. The middle plot illustrates tone mapped pixel iniges resulting from bilateral

filtering.

Compared to the automatic dodging and burning, the bilbti#ter better reproduces
details at the edges, because in most cases a relativety knep is used for estimation
of local adaptation. Although the exact computation of ¢igng(6.5) is very expensive,
a good approximation can be computed very efficiently [68, 70

6.1.4 Segmentation Based Operators

An alternative approach to tone mapping, which is in a seinsies to the local adap-
tation techniques, is based on a fuzzy segmentation of an Hi2ige into areas of
common and distinct illumination. Such algorithms focusomtimizing the relations
of contrast or luminance between the segments while leatiagelations of pixel in-
tensities within the segments unchanged or very simplystommed. The reduction
of dynamic range can be accomplished by optimizing the wheggnents because the
information within a segment is usually of low dynamic rangaile the differences of
luminance level between the segments contribute to thedyighmic range. Unlike in
local adaptation approaches which are inspired by the @hafyphotoreceptors in the
human eyes, the motivation here comes from the psychoiyk&ories of perception,
mainly Gestalt

One example of such an approach is the lightness percepti@napping [14]. The
algorithm is inspired by an anchoring theory of lightnesscpption [71] which com-
prehensively explains many characteristics of human Visygtem such as lightness
constancy and its spectacular failures which are impontethie perception of images.
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The principal concept of this theory is the perception of plar scenes in terms of
groups of consistent areas (frameworks). Such areaswiolipthe Gestalt theorists,
are defined by the regions of common illumination. The keyeaspf the image per-
ception is the estimation of lightness within each framéwibirough the anchoring
to the luminance perceived as white, followed by the comrieof the global light-
ness. Lightness is a perceptual quantity that assignstbegh to the perceived shades
of gray, and is judged relative to the brightness of a sifyildluminated area that
appears to be white.

In such segmentation approaches, the frameworks can bifiel@mvith an automatic
method for image decomposition [14] which derives from tHagples of the anchor-
ing theory of lightness perception, or alternatively by @ruguidance [72]. Corre-
spondingly, the local mapping of luminance to perceivedesofgrays can be auto-
matically adjusted with a brightness adjustment method TBor manually.

The segmentation approaches mostly do not affect the lecdiast and preserve the
natural colors of an HDR image due to the linear handling afihance. The fuzzy
definition of segments assures that artifacts do not appetiei areas where distinct
illuminations mix. The strength of such operators is esgcievident for difficult
shots of real world scenes which involve distinct regionghvgignificantly different
luminance levels, Figure 6.6.

Figure 6.6: The lightness perception tone mapping operahuces the contrast in
HDR image (left) by decompaosing the image into the areas n$istent illumination

(middle) and optimizing the contrast ratio between thesa®right). In the middle
image, blue and magenta illustrate the influence of twordistirameworks and the
transition between the two colors mark fuzzy areas influerme both frameworks.

The HDR image courtesy of SpheronVR.

6.1.5 Contrast Domain Operators

The tone mapping methods discussed so far perform the dgmanmge reducing oper-
ations directly on luminance or on color channel intensitldowever, one can observe
that an image with a wide range of luminance also containsge leange of contrast.
Therefore, as an alternative to luminance range compressantrast magnitudes in
the image can be reduced. Since contrast conveys semanfmahation in images,
such a control over contrast can be advantageous. For agstamall contrast usually
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represents the reflectance properties of surfaces, likareexmedium contrast often
defines the outlines of objects, and large contrast reptesdianges in illumination.
Particularly, large contrasts are in most cases the cauaéiglh dynamic range. By
preserving small and medium contrasts, and reducing layggasts, one can reduce
the dynamic range of illumination and at the same time pvesgood visibility of de-
tails from the original HDR image. Such a contrast based gssiog gives a better
control over transferred image information than the lumgebased operators. The
latter, however, give a better control over brightness rmappIn fact, it is hard to
impose a target luminance range for contrast based conqness

A typical contrast based tone mapping operator includefolf@ving steps. First, the
input luminance is converted to a contrast representaliba.magnitudes of contrasts
are then modulated using a transfer function for contrasé-tdne mapping step. Next,
the modulated contrast representation is integrated tweeche luminance informa-
tion, and such luminance is then scaled to fit the availableadhc range. Finally,
since the result of integration is calculated with an unknaffset, the brightness of
the tone mapped image is adjusted.

Contrast in tone mapping applications is most often medsase logarithmic ratio of
luminance:
YPp
C=log ya’ (6.6)

whereYP andYY denote luminance of adjacent pixel location. The contrstasen-
tation of an image is computed as a gradient oMpgince the logarithm of division is
equal to the difference of logarithms. For tone mappinghsugepresentation is often
multi-resolution to measure contrasts between adjaceatgffull resolution) and ad-
jacent areas in an HDR image (coarser resolutions). Theasiatare then modulated

by a transfer function as for example in gradient domain aasgon [74]:

T(C) = % (E')B 6.7)

Given thatB € (0,1), such a function attenuates gradients that are strongeittzd
amplifies smaller ones. Thus,df is equal to medium contrasts in an image, equation
(6.7) reduces the dynamic range caused by large differanddlamination and en-
hances fine scale details. More complex transfer functioeslao possible including
for instance contrast equalization [75]. As the final step,modulated contrast repre-
sentation of an HDR image has to be integrated in order tarobteensities in a tone
mapped image. The integration step is performed by solViadPbisson equation and
the brightness adjustment step is left for manual setting biger. The stages of the
contrast domain tone mapping process are illustrated iar€&ig.7.

6.2 Tone Mapping Studies with Human Subjects

The previous sections provide only an introduction to theegal ideas behind the tone
mapping problem and the reader is referred to [6] for dedadlescriptions of specific
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(a) HDR image, clipped (b) contrast representation  (c) contrast transfer map (d) tone mapping result

Figure 6.7: Contrast domain tone mapping [74]. The HDR im@jes transformed

to a contrast representation (b) which is multiplied by atst transfer function (c).

The contrast representation is then integrated to obtainermapped image (d). In (b)
white denotes strong local contrast and black no contrasfc)lblack denotes strong
contrast attenuation and white marks no change in localasint

algorithms. Existing tone mapping operators can be furgjegreralized to a transfer
function in form of a “black box” which converts scene lunica to displayable pixel
intensities. While the universal goal of such a transfer fiancis to reduce the orig-
inal dynamic range and at the same time preserve the origpggarance of HDR, a
particular realization of it can be versatile and dependshenobjectives of a target
application. In many cases one may wish to simply obtain loicking images that re-
semble the original HDRs, but the requirements may also bre precise: perceptual
brightness match, good visibility of details, equivalebjset detection performance in
tone mapped and corresponding HDR image, and so on. In vighedEchnical lim-
itations imposed by standard displays and other constradtdted to particular image
observation conditions (ambient lighting, the screenltgigm, the observer distance),
such requirements can only be met at the cost of other imageegies. For instance,
if an available dynamic range is assigned to enable goobiNgiof details (local con-
trasts), there may not be enough dynamic range left to dgjabtl contrast variations
in the scene (refer to Figure 6.8). The trade-off betweeseltenflicting goals is often
balanced through an optimization process, but sometingeddkign of an algorithm is
focused on the requirements and is oblivious to the sideetdf In the end, the overall
impact of image processing operations on the perceiveddmaglity or fidelity to the
real world appearance is not thoroughly understood.

Evaluation of tone mapping operators is an active reseagzh[@6, 77, 78, 79], which
at the current stage is more focused on choosing correchpphgsical techniques than
on providing clear guidance as to how existing operatoralshue improved to produce
consistently high quality images. Many existing evaluatinethods treat each tested
operator as a “black box” transfer function and comparedtéqumance with respect to
images produced by other operators, without explainingghsons underlying human
judgments. While some evaluation methods go one step fuatigbattempt to analyze
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(a) adaptive logarithmic mapping (b) lightness perception tone mapping (c) contrast domain tone mapping

Figure 6.8: Different levels of detail visibility in tone mpping results.The increase in
detail visibility is obtained at the cost of contrasts bedwédarger image areas. The
image (a) is the adaptive logarithmic mapping [64], (b) s lightness perception tone
mapping [14] and (c) is the contrast domain tone mapping. [TBlage courtesy of
Byong Mok Oh.

the reproduction quality of overall brightness, globalttast, and details (in dark and
light image regions) [78, 79], but again they are focusedamgaring which operator
is better for each of these tasks. Those studies do not mang deeper analysis
as to how pixels of an HDR image have been transformed and thbaimpact of
such a transformation is on desired tone mapped image ¢hesdics [80]. Another
important question is how the outcome of the transformadigwends on the particular
HDR image content.

In a vast majority of perceptual experiments with tone magminly one set of param-
eters per operator and per HDR image is considered in ordedtace the number of
images that must be compared by subjects. The choice of taepters may strongly
affect the appearance of tone mapped images and thus thatapperformance in
the experiment [81]. Another common problem is averagirgetkperimental results
across subjects based on low-cross subject variabilitis lalok of variability can of-
ten be caused by the choices imposed on the subjects by tharagpt design, which
does not offer any possibility of adjusting the image apaeee to the subject’s real
preferences. The net result of published studies is thgtdfien present contradic-
tory results even if the same HDR images are used. Cleaitystiygests that the tone
mapping evaluation methodology should be improved.

Instead of the “black box” tone mapping evaluation there some recent attempts
of “bottom-up” approach in which the goal is to identify thentlevel tone mapping

characteristics that lead to perceptually attractive iesd§1, 82]. For this purpose the
subjective preference and fidelity with respect to the realcdvimages is measured on
an HDR display for images produced by a generic operatorse/leharacteristic and
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parameters are well understood. The goal of such reseatoffired some universal
rules that facilitate a design of the operator that consilsteoroduces preferred im-
age appearance. For example, Seetzen et al. [82] foundathatdiven display peak
luminance there is a preferred level of contrast, which wérareeded leads to less pre-
ferred image appearance. The level of such optimal coritrastases with the display
peak luminance. However, the preferred peak luminancelgteubelow 6,000-7,000
cd/n?, regardless of contrast, due to discomfort glare in dim ambénvironments
(the average surrounding luminance of 400-1,200 édiave been considered).

The correlation between image brightness and preferrettagirievel has been also
confirmed by Yoshida et al. [81], which also suggests thatufe of these parame-
ters to control tone mapping may be difficult for the user. égbsn this observation,
Yoshida et al. propose a better parameterization of a linparator in logarithmic
domain, in which parameters are more intuitive and can biypsstimated from im-
age characteristics. Their operator is controlled by twapeters:anchor whiteand
contrast Theanchor whiteparameter is approximately consistent across subjects and
depends on images — it is set to a lower value if an image amtaige self-luminous
objects. Thecontrastparameter is more subjective, and therefore users shouddt be
lowed to adjust it. Yoshida et al. have shown that the parara&an be automatically
estimated for their operator based on an image charaatesbbtain a “best guess”
result. Thecontrastparameter can be predicted from the dynamic range of an image
(images of higher dynamic range must be reproduced withrloaetrast), and than-
chor whiteparameter is related to the image key value (although thdigiren can be
unreliable if an image contains large self-luminous olgecthe drawback of this ap-
proach is that the studied operator is very simple and doedetliver the image quality
obtained using the state-of-the-art algorithms discugseiection 6.1. Therefore, it
remains to be seen whether more the advanced operatorsregdit Fem the proposed
selection of parameters and an automatic estimation of Hadiles as postulated in
[81]. The problems of anchor white selection and overallgearightness control in
terms of user preferences have been further addressed]in [73

Yoshida et al. have also investigated how the dynamic randebeaghtness of a dis-
play affects the preference for tone reproduction. For didukated monitors of varying
brightness and dynamic range they did not find any major rdiffee in the strategy
the subjects use to adjust images for LDR and HDR displaysveder, they noticed

that the resulting images depend on a given task. If the gdalfind the best looking
image (preference), subjects tend to strongly enhanceastritip to four times that of
the original image contrast), even at the cost of clippingrgéd portion of the darkest
pixels. On the other hand, when the task is to achieve thefioketity with respect

to a real-world scene, the subjects avoid clipping both endark and light parts of
an image and they do not extend contrast much above the sbofran original im-

age. In both tasks, there is a tendency towards brighterasjaghich are achieved
by over-saturating the brightest pixels belonging to setfinous objects. Yoshida et
al. have also compared the user’s preference for displayarging luminance ranges.
The subjects prefer in the first order the displays that aghrand in the second or-
der, the displays that have low minimum luminance. Againilevbuch findings give

useful insights how basic image display parameters affecperceived image fidelity
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and preference, their integration to advanced tone mapgegators is still an open
research question.

6.3 Objective Evaluation of Tone Mapping

In this section, instead of subjective analysis, an objegbierceptual metric is con-
sidered to help in understanding how particular image dhteristics, such as con-
trast or brightness, are distorted by tone mapping witheetsfp the original HDR

image. While objective metrics are usually less precise theta derived directly in

psychophysical experiments, their big advantage is thaige kolume of images can
be efficiently analyzed. This is particularly important oné mapping where image
characteristics affect the tone mapped image appearaeceifsthe same operator is
used with consistently selected parameters [81].

The metric presented in this section is concerned with orledeéned suprathresh-
old distortion: contrast compression due to tone mappind,uses the knowledge of
human visual system to determine the perceived amount ¢f soimpression and to
estimate the impact of such distortions on perceived imaggity. In the following
section contrast distortions due to tone mapping are ctaraed and then the anal-
ysis of such distortions is presented for selected tone mgpmperators discussed in
Section 6.1.

6.3.1 Contrast Distortion in Tone Mapping

All successful tone mapping operators balance the tradmtéfeen plausible repro-
duction of the luminance range and preservation of det@ite can argue that the pho-
tographic tone reproduction operator [65] best reprodggpelsal contrast, while the

gradient domain compression [74] operator best preseetedisl However, the accu-
racy of such statements may depend on the particular HDRdpsayd as concluded
by evaluations of tone mapping operators [79, 78], it is cliffi for one tone mapping

operator to be well-suited to all types of images. Regasdigdechnique, each tone
mapping operator introduces a degree of distortion intedékelting LDR tone mapped

image. Drawing conclusions from previous evaluations amkegal observations, two
major contrast distortions can be identified that resutinftone mapping:

Global Contrast Change the ratio between lightest and darkest areas of the HDR is
reduced in the LDR,

Detail Visibility Change (textures and contours) the high frequency contrast of the
HDR image becomes less prominent, disappears, or becoraggerated in the
LDR.

A significant Global Contrast Change is undesirable not éoyesthetic reasons, but
also because of changes in image understandability, éegpitd detail visibility. Cer-
tain specialized tone mapping operators assign a widerndignange to detailed re-
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gions to preserve textures and contours, which results iareower dynamic range
available for global luminance changes, decreasing tielatween lightest and dark-
est areas. Detail Visibility Change occurs either becaussgmn becomes entirely
saturated or because an area is mapped to very few or veryrighthess levels. The
second case is especially interesting from the perceptiat pf view, because the
physical contrasts still exist in the LDR image, howeverdeé&ils are invisible to the
human observer. The illustration of detail visibility clygnis given in Figure 6.9.

Figure 6.9: The HDR image (A) contains subtle reflection orudase of the cup.
A global tone mapping (B) reveals the coffee beans in the @it the reflection
details become indiscernible. This apparent loss of deisilbility is predicted by the
metric and is marked with red color in image (C).

The goal of the objective metric is to determine the appadéstortion in detail visi-
bility and global contrast change, which were introducedrduthe tone mapping of
HDR image, with the focus on the luminance compression asyfeihe operators.
Instead of analyzing particular algorithms one by one, tora@ping is considered as
an unknown transformation applied to the luminance of an HDRge, resulting in
an LDR image. The output of the metric consists of a singlee/akpresenting the
global contrast change factor and a map representing theitndg of change in detalil
visibility. The units of the detail visibility map are Jusbhiceable Differences (JND),
which allows to consider the visibility in the areas of an geand also permits to use
of this information for potential perceptually based cotiens [83, 84].

For the details on the metric design the readers are referi&d].

6.3.2 Analysis of Tone Mapping Algorithms

In this section, the aforementioned objective metric isltseanalyze the performance
of 8 tone mapping methods in terms of Global Contrast ChangeDsetail Visibility
Change. The analysis was performed on a set of 18 HDR imadgkswiaverage dy-
namic range of approximately 4 orders of magnitude and dutgo between b and

4 megapixels. The set contained a variety of scenes withrdiff lighting conditions
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and included panoramic images. The following tone mapplggrahms have been
tested: global (spatially uniform) — gamma correctign= 2.2), adaptive logarithmic
mapping [64], photographic tone reproduction (global)][@hotoreceptor [66] (Sec-
tion 6.1.1); and local (detail preserving algorithms) —talgwaphic tone reproduction
(local) [65] (Section 6.1.3), bilateral filtering [68] (S&mn 6.1.3), lightness percep-
tion [14] (Section 6.1.4), gradient domain compressior] [&&ction 6.1.5). The tone
mapped LDR images were obtained either from the authorsesfetimethods or by
using publicly available implementatiopsstmo(refer to Chapter 10). Tone mapping
parameters were fine tuned whenever default values did ndupe satisfactory im-
ages.

The results of the Global Contrast Change analysis are suzedan Figure 6.10.
There is an apparent advantage of the photographic tonedegtion (local & global)
methods in conveying the global contrast impression almidkbut any change. These
methods were also among the top rated in other studies []8/)7@ontrast the gra-
dient domain compression causes a severe decrease in iz ¢potrast. Other local
methods perform moderately. Particularly, in case of thbtliess perception model
the decrease of global contrast is caused by the optimizafidifference in luminance
between the frameworks. The superior performance of tHeafjlmethods is traded for
less efficient reproduction of details as observed in thénéuranalysis.

photoreceptor + 7 - 1
photogr. (global) +— 1 A
photogr. (local) — [ A
lightness perc. + —C3— A
bilateral filtering - —
gradientdomain - —[_———}—- — — 4
adapt. logarithmic | —
gamma2.2 + —0]

-3 2 -1

- 0

global contrast change (log, scale)

Figure 6.10: The influence of various tone mapping operatarthe change of the
global contrast. The negative values denote the decregsshial contrast and 0 means
no change. The red bars show the median, whiskers denttar@b7%" percentile of
data, and the red crosses are outliers.

The Details Visibility Change has been analyzed for two satkee loss of detail visibil-
ity and the change in the magnitude of the detail visibilitiie loss of detail visibility
describes the situation in which details have been visiblthé HDR image but are
not perceivable in the tone mapped image. The change in theitade of detail vis-
ibility is considered only in the areas in which the details @aisible both in the HDR
and in the tone mapped image. The average decrease andsmofdhe visibility are
calculated separately. Following previous studies [#8, dnalysis have been further
split into the dark and light image areas. To segment thesesaB3% of the darkest
pixels in an image has been assigned to the dark area, and f3B%&hrightest pixels
to the light area. The results are summarized in Figures&ntll6.12. The results of
the increase in detail visibility are not shown because tiagybe only observed for the
gradient domain compression.
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The analysis of Figure 6.12 indicates that the dynamic rarayapression and the
change in luminance levels lead to a decreased perceptidetaifs in case of all op-
erators. The magnitude of change, however, is in most cadew i JND. This means
that the loss of detall visibility, largely observed in Figl6.11, is unlikely caused by
the stark luminance range compression, but rather evena compression causes the
magnitudes of details to drop below the visibility threghol his would suggest that
a minimal correction is sufficient to restore the visibilitfhe detail preserving tools
implemented in local tone mapping methods seem to perforthinvéght image ar-
eas, however the dark image areas are often not well repedduith the exception of
the gradient domain compression and the adaptive logadthmapping. Notably, the
adaptive logarithmic mapping, which is a global operatogsprves details exception-
ally well in dark image areas. This advantage comes at theo€asslightly higher loss
of details in light areas. The lightness perception tonepimagpperforms on par with
other local methods, being slightly advantageous in lighdige areas. The gradient
domain compression is particularly interesting, becabserésults of this detail pre-
serving method indicate both the increase and decreasédih dsibility while at the
same time the visibility of any details is not lost. Such hétrindicates good perfor-
mance of the contrast transfer function which attenuatge leontrasts and increases
the small ones as explained in Section 6.1.5.

photoreceptor | i —— . — — — ] photoreceptor '»—[)::— - '+ +
photogr. (global) + — —[Cr—  }— — — — 4 E photogr. (global) 40— 4+ “+
photogr. (local) | — —IT—o— }— — —1 + A photogr. (local) |4
lightness perc. + +— [—orT—— }— — — 4 E lightness perc. | )G~
bilateral filtering | — {— —o—— 1} — — ~ A bilateral filtering - CJ— 1 +
gradient domain |-H— 4 gradient domain  §H
adapt. logarithmic + -_—x——}— — —1 + B adapt. logarithmic | > }— 1 +
gamma22 p — — — [—— "} - A gamma22 | fd— + ., )
0 50 100 0 50 100
percentage of dark image area percentage of bright image area

Figure 6.11: The influence of various tone mapping operainrihe loss of the detail
visibility. The analysis are split into dark (left) and ligfright) image areas. The
percentage denotes the part of the dark/light image areahichwdetails have been
visible in the HDR image but are not perceivable in the tonpmed image.

Overall, the better performance of the global tone mapppeyators in the analysis of
Global Contrast Change is not surprising. However, thegperénce of the algorithms

in terms of Detail Visibility Change is very unstable acrdiss test images and there
is no obvious winner of the evaluation. Interestingly, tmhancements required to
improve the results do not necessarily need to be strong. eAthd discovery of a

new universal operator seems unlikely, such analysis rietsvthe development of
enhancement algorithms that could restore the missingnirgtion in tone mapped

images based on their HDR originals. Such enhancementsaaitdined using colors

[83] or carefully shaped countershading profiles [84].
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Figure 6.12: The average decrease of the magnitude of degillity caused by the
analyzed tone mapping operators. The analysis are sglitlark (left) and light (right)
image areas. The average is calculated over the parts watisdre visible both in
the HDR and in the tone mapped image. 0 denotes no changahbilityisand 1 JND

denotes a visible change.

6.4 Temporal Aspects of Tone Reproduction

The tone mapping algorithms discussed so far have beenngekfgr static images,
what in principle means that the illumination conditionsddominance levels are
assumed constant. In the HDR video, as also in the naturdtiwte illumination
changes. The human eyes adapt their response range to tbet@mbient light level.
Normally, the adaptation processes are mostly not notieeduse the changes in the
illumination during the course of day and night are very sl@udden changes, how-
ever, cause visible loss in the sensitivity as illustratedrigure 6.13. For instance,
when on a sunny day one immediately enters a dark theatratéreor is at first dark
and no details can be discerned — only after several sechadslbhouettes of objects
start to appear.

The adaptation of human eyes to light is a temporal procdss priecise time course of
adaptation can be measured and is shown in Figure 6.14. dtegphrt with a sudden
change in illumination which results in loss of sensitivitihe sensitivity of both rods
and cones progresses asymptotically. During the dark atlapt the process of cones
is faster but cones soon reach their maximum sensitivitye génsitivity level is for
a moment constant because the rods still have not recoveyedthe strong illumi-
nation. With time, rods dominate the vision and continueataptation process until
the maximum sensitivity. The light adaptation in the sca@pnge is extremely rapid
and nearly 75% of the process is accomplished in first 400ims.cbne system adapts
to light much slower and requires about 3 minutes to reachrthe@mum sensitivity
which then slightly decreases. Due to their asymptoticneathe adaptation processes
are often approximated with the exponential function.

Similarly as in the natural world, the luminance values ia HDR video can signifi-
cantly change from frame to frame and cause unnatural Imégstchanges in the tone
mapping results. To prevent this, tone mapping operatorgifieo implement mech-
anisms that are similar to the adaptation processes in hagyes1 The goal of these
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adaptation to light e——
adaptation to dark e——»

sudden change in illumination

Figure 6.13: Visual experience in certain time intervalgmythe temporal adaptation
to light and to dark caused by a sudden change in illuminafitve visibility improves
with time because the response range of photoreceptorstadjuthe medium illumi-
nation in the scene.

mechanisms is twofold: in principle they guarantee natapalearance of light changes
in the video stream, but also they assure the temporal cobefgetween frames. The
temporal coherence is an important issue, because smalfjeban the luminance
distribution between video frames often influence the brighs of tone mapping re-
sult what in turn causes undesired brightness oscillafiotise displayed HDR video
stream. While the first goal may require faithful modellingexhporal adaptation pro-
cesses in human vision, the temporal coherence can be adi@egn by simple models
[86].

In the luminance based tone mapping algorithms, the lighptadion is usually mod-
eled using the adapting luminance term given in equatia?).(6lo achieve temporal
coherence for video, instead of using the actual adaptingnianceYa for the dis-
played frame, a filtered valué, is used. In most implementations, the valueYpf
changes approximately according to the adaptation preséssiuman vision, eventu-
ally reaching the actual value if the adapting luminancaasble for some time. The
adapting luminance is filtered using an exponential decagtion [87]:

YRS = Ya+ (Ya—Ya)- (1—e 1), (6.8)

whereT is the discrete time step between the display of two framedas the time
constant describing the speed of the adaptation procesgendang on the required
faithfulness to the actual adaptation processes, the tim&tant can be one for all light
conditions, or can be different for rods and for cones, oneway depend on the pre-
adaptation processes [88]. Commonly chosen values fortaitap of rods and cones
are:

Trods = 04S€C TconeS: 0.1880 (6.9)

and if only the temporal coherence is required, thgesconstant is used. Further,
the time required to reach the fully adapted state depesdsadiether the observer is
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Figure 6.14: Time course of dark adaptation (a) and lighptateon (b,c) as a function
of sensitivity. Higher threshold values indicate that theseare not well adapted thus
the sensitivity is low. Dark adaptation was to complete dass, light adaptation to the
specified luminance levels. Plots after [85].

adapting to light or dark conditions. The values in equaf®®) describe the adapta-
tion to light. For practical reasons the adaptation to dankat simulated because the
full process takes up to tens of minutes as shown in Figur4. Gristead, the adapta-
tion is most often performed symmetrically neglecting thsecof a longer adaptation
to dark conditions. The complete tone mapping solution fBiRHvideo can be found
in [41] and in [27].

6.5 Conclusions

In view of the increasing availability of the HDR content® throblem of their pre-
sentation on conventional display devices is highly recegh Different goals and
approaches led to the development of versatile algoritfithese algorithms have dif-
ferent properties which correspond to the specific requérgsand applications. Fur-
thermore, due to the temporal incoherence certain metrant®ot be used for the tone
mapping of video streams. A universal method has not beerdfea far, therefore the
choice of the tone mapping method should be based on thecapiph requirements.
It is also not clear how to evaluate tone mapping operatoterins of image quality,
because their performance depends strongly on the chomarafeter values and the
actual HDR image content. The development of robust metti@d<ould be used for
the automatic parameter tuning to obtain desirable imagearance is still an open
research question. Also, the problem of color appearankiehvdepends a great deal
on luminance level has not been researched too deeply.

With respect to the HDR video streams the choice of an apjateptone mapping
method is usually a trade-off between the computationahisity and the quality of
dynamic range compression. The quality here is mainly assdsy a good local detalil
visibility. The global tone mapping methods are very fast éften lead to the loss
of local details due to an intensive dynamic range compoasssuch methods should
be used whenever high efficiency is the main requirement eftahget application.
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The adaptation mechanisms can be used to select the rangainfhce values which
should obtain the best mapping. However when the qualitygsfficient, local tone
mapping methods are necessary. The local detail enhantemémods provide a good
improvement to the global tone mapping methods still achgegood computational
performance.

The photometrically calibrated HDR video streams allowtfa prediction of the per-
ceptual effects such as reduced visual acuity and lack of idion for the rod vision,
motion blur and glare (see Figure 9.2 and refer to Chaptgr Sudch effects are typ-
ical to everyday perception of real-world scenes, but doapgear when observing a
display showing a tone mapped HDR video. Prediction of stffeltts and their simu-
lation can increase the realism of the presentation of HDReras. On the other hand,
such a prediction may also be used to identify situationswveheal-world observation
of scene would be impaired and to hint the tone mapping algario focus on the
good detail reproduction there.

In Chapter 10 we provide more information on thfstmosoftware package [33] con-
taining implementations of many state-of-the-art tone piragpdescribed in this chap-
ter. The package is available under the URL:

http://www.mpi-inf .mpg.de/resources/tmo/
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Chapter 7

HDR Display Devices

In recent years we witness important developments in HDRIajsand projection
technology. In this chapter we discuss basic requirememp®$ed on this technol-
ogy from the standpoint of selected characteristics of tiredn visual system (HVS),
which are important in image perception. We give also exampf selected technical
solutions used in HDR display technology and we discuss thefits and limitations.

7.1 HDR Display Requirements

An ideal display device should not introduce any visible gmajuality degradation
with respect to the observation conditions for the real disdenes. This means that
technical capabilities of such an ultimate display deviveusd outperform the limita-
tions imposed by the HVS. The following characteristicshaf HVS are important in
image perception:

e The contrast sensitivity function (CSF), which determities HVS ability to
resolve image patterns of various spatial frequencies. disiglay resolution
should enable to reproduce all spatial frequencies thabeagen by the human
eye. The CSF for luminance and chrominance patterns shauttbbsidered,
but in practice the former one is the limiting factor becaatigher the HVS
sensitivity to luminance.

¢ The threshold-versus-intensity (tvi) function, which deises the just noticeable
difference (JND) of luminance and chrominance that can bectied in the im-
age for given luminance adaptation conditions. In fact thidunction can be
derived by extracting the maximum sensitivity values frdra family of CSFs,
which are measured for various background luminance. That@qation step in
luminance and chrominance encoding in the display shouloeb@v one JND
to avoid contouring (banding) artifacts that are visiblgarticular when repro-
ducing smoothly changing image patterns.

89
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e The luminance range that can be simultaneously seen by tisfe\given adap-
tation conditions. The display dynamic range determinethlieyminimum and
maximum luminance values should match the HVS capabilitid®e dynamic
range decides about the maximum global contrast that cagdoeduced by the
display.

e Color gamut seen by the HVS. The display primaries deterthi@actual gamut
that can be reproduced in displayed images. The gamut aitgel with the
display dynamic range.

e The field of view which affects the immersion experience aetides upon adap-
tation conditions. The visual field measured for binoculamian vision extends
over 200 degrees (widthy 135 degrees (height).

An important question arises what are the limitations ofrentr display technology
in terms of matching the just listed HVS characteristicg tiv@ important in image
perception?

The best match can be observed between the CSF and disptétis Image pat-
terns of spatial frequency up to 50 cycles-per-degree (cad)be still reproduced on
the high-definition (HD) displays featuring the image resioin of 1,920x 1,080 pix-
els for the observer distance larger than 5 screen heigiitse 8ven the high-contrast
luminance patterns of this spatial frequency are barefpleidy the human eye, it can
be considered that the HD display technology matches the ¢&3bilities in terms of
spatial pattern reproduction. In practical TV viewing citimhs with significant ambi-
ent lighting it is often assumed that only patterns up to 3festper-degree (cpd) can
be seen and thus 3 screen heights is the recommended watlibiagce to take the
full advantage the HD image resolution. Note, that the watghlistance effectively
defines the field of view covered by the display. The HD resmtuis also sufficient
for brighter displays that might be available in the futuecdéuse the shape of CSF
does not change significantly for adaptation luminance adg@00 cd/rR (refer to
Figure 4.5).

The quantization step in encoding physical luminance androsimance values, which
can be reproduced by the display, obviously depends on itardic range. As we
discussed in Chapter 2.3 the HVS can simultaneously seaithi@dnce range up to
4-5 orders of magnitude. For natural scenes, which featne wider dynamic range,
an appropriate subset is selected through complex adaptatechanisms. For dis-
play observation conditions such adaptation strongly dép®n ambient light in the
surrounding environment as well as light emitted by the ldigfitself. The resulting
adaptation anchors the range of simultaneously visiblérante and determines the
minimum and maximum luminance values that can be seen. &eetal. [82] have
found for a darkened room the maximum luminance values tiwatbe comfortably
seen is of the order 6,000-7,000 cd/mn such conditions the minimum luminance
that can be seen is of the order of 0.01 c8i/nin practice, the display black level
is affected by the ambient light reflected in the display soreAs predicted by the
JND-space encoding (refer to Chapter 5.1.6) for such bdggiays the quantization
artifacts are easier to see, which means that 8-bit encaafisgch wide luminance
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range is not sufficient, and at least 10-bit encoding may dpeired (in fact it is safer to
assume even smaller quantization error as offered by 1BitBscoding). More than 8
bits is also required for chrominance encoding, in paréicdbr blue and purple colors
for the highest luminance levels.

For such a display specification and assumed dark environimeVS performance

will be close to optimal and further increase of the displayihance range and as well
as reduction of the quantization error cannot improve teisggmance. In practice,

modern displays rarely meet such requirements: 8-bit éggegtign is predominant and

the ANSI contrast numbers as measured for black and whitekehlezoard are of the

order from 1:50 to 1:500, which is far from desirable 4-5 osd&f magnitude. The

contrast specification provided by many display manufaectuis based on luminance
measurements for the full-on and full-off screens, whicdketo strongly exaggerated
contrast values because light leakage from neighborirghbtd dark regions is not

accounted for.

Recently, the so-called HDR display devices have been dpedlwhose specification
approaches limits imposed by the HVS in terms of reproducedrast and quantiza-
tion error. Two basic technologies have been used to acttiesgoal: dual modulation
and laser projection. Dual modulation relies on opticaltiplitation of two indepen-

dently modulated representations of the same image. B##égtthe resulting image
contrast is a product of contrast achieved for each compamage, while only stan-

dard 8-hit drivers are used to control pixel values. In lgsejectors the laser light is
scanned over the screen surfaces with light intensity thirecodulated using 12—-16-
bit drivers. In the following sections we briefly describelbtechnologies.

7.2 Dual-modulation Displays

In the basic design of a dual-modulation display the inpuRHBage is decomposed
into low resolutionbacklightimage and high resolutiocompensatioimage as shown
in Figure 7.1. The requirement of precise alignment of gixedtween the two images
can be relaxed due to blur in the backlight image, which de¢€antain high spatial
frequencies. Therefore, as the result of optical multgilan between backlight and
compensation images the achieved global contrast (lovie$jfi@guency) is a product
of contrasts in both images, while the local pixel-to-pigehtrast (high spatial fre-
guency) arises only from the compensation image. While shiet a problem for low
contrast image patterns, which are successfully repratieeeen on traditional single-
modulator LDR displays, local pixel-to-pixel contrast reguction in the proximity of
high-contrast edges may not be precise. Fortunately, titiagyglare effect caused by
imperfections of the human eye optics leads to pollutinmaéphotoreceptors, which
represent dark image regions with parasite light comingnflwight regions. Thus,
the veiling glare makes impossible to see sharply such |patérns of high contrast,
which effectively means that they do not have to be reprodilagethe display. Obvi-
ously, high contrast between more distant image regionghaan be readily seen be
the eye, is faithfully reproduced.
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Figure 7.1: Decomposition of the source image (left) in® ltbw-resolution backlight

image (middle) and the high-resolution compensation iméagages courtesy of Ger-
win Damberg, Helge Seetzen, Greg Ward of Dolby Canada anti@ay Heidrich and

Lorne Whitehead of the University of British Columbia.

The backlight and compensation images require specialémagcessing so that their
multiplication results in the reconstruction of the origitHDR image. The goal of
such image processing is to account for different imagduéeas and the optical blur
in the backlight image. For this purpose the point-spreadtian (PSF) characterizing
this blur should be modeled for all pixels of the backlightige. The overall flow of
image processing in the dual-modulation display architects shown in Figure 7.2.
At first the square root function is used to compress the lamie contrast in the input
HDR image and then the resulting luminance image is downkshtp obtain the low
resolution backlightimage. In the following step the PSkadelled for every pixel of
the backlight image, which simulates the light field (LFStteffectively illuminates
the high resolution modulator. By dividing the input HDR igeaby the LFS the high
resolution compensation image is computed. Since the cosagien image is 8-bit
encoded, some of its regions may be saturated, which résuitslesirable detail loss.
Such saturation errors are analyzed and a close-loop teystem is used to locally
increase the intensity of pixels in the backlight image tevpnt such saturation. Fig-
ure 7.1 shows an example of backlight and compensation isnageilting from such
image processing.

The dual-modulation technology has been successfully tosbdild HDR projection
[89] and display systems [2], [27, Chapter 14]. In both catasdard 8-bit LCD pan-
els have been used for modulation of the compensation inaagiemnajor construction
differences come from realization of the backlight modatator the projection sys-
tem developed by Damberg et al. [89] a passive low-resailti®D modulators with a
fixed light source has been used. Figure 7.3 illustratesisidrs introduced to a stan-
dard projection system with three transmissive LCD paneldutating RGB channels.
Three low resolution transmissive LCD panels have beereglaext to the existing
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Figure 7.2: Image processing flow required to drive low- aighfresolution modu-
lators in HDR projection/display system. Image courtesgefwin Damberg, Helge
Seetzen, Greg Ward of Dolby Canada and Wolfgang Heidricih.ange Whitehead of
the University of British Columbia.

high resolution panels. Such a design enables very faitiiiol reproduction and the
amount of blur can be controlled by changing the distancésdsn each pair of low
and high resolution RGB panels. The low resolution of thekligiet modulator leads

also to a better efficiency of light transmission becausesitienf electronic compo-

nents and other blocking elements can be reduced [89]. Dgrebal. reported that in
their projection system they achieved 2,695:1 contrasigiwis only by 5% lower than

the theoretical product of contrast reproduced by the ladgjland high (1:155) reso-
lution modulators. The authors experimented also withrgphgjector architectures by
changing the order of high and low resolution panels, orgifist a single low reso-
lution luminance modulator, which is placed between theri$fR and the lens system
i.e., after the recombination of light modulated by the ¢hnggh resolution RGB chan-
nels. The generic HDR projector architecture as proposé@bihcan be also used for
other projection technologies based on digital micro-anidevices (DMD) and liquid

crystal on silicon (LCoS).

For HDR displays passive modulators have been used as welmbch better en-
ergy efficiency has been achieved using active backlightulabors based on a matrix
of independently modulated light emitting diodes (IMLEL2).[ Interestingly, such
spatially-varying backlit device is 3-5 times power effitiehan uniform light em-

ployed in conventional LCD displays of similar brightne&3 [Chapter 14]. Also, the
color gamut can be significantly expanded if different calgb (e.g., integrated RGB
LED packages) are used instead of white light commonly usembnventional LCD

displays. Brightside Technologies developed a numberaibpype HDR displays and
their recent DR37-P model features the maximum luminance® @000 cd/m and

almost perfect black level of 0.015 cdfmwhich is limited only by parasite lighting
that may leak from neighboring active LEDs. This gives rdgahte 1:200,000 global
contrast while the measured ANSI contrast for the black ahilexcheckerboard pat-
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Figure 7.3: Example of implementation of a three LCD prajeeatuigmented with three
low-resolution backlight modulators for RGB color charmdmage courtesy of Ger-
win Damberg, Helge Seetzen, Greg Ward of Dolby Canada anthefad Heidrich and
Lorne Whitehead of the University of British Columbia.

Projected HDR Image on Screen

tern reaches 1:25,000. BrightSide DR37-P is the full HD @,921,080 display with
37" screen diagonal. For the backlight device 1,200 LEDs haee heed, which form
a symmetric hexagonal grid.

The use of IMLED matrices as backlight devices becomes mudar@ore popular in
modern LCD TV sets. Just recently LG Philips introduced anrttarket a novel Locall
Area Luminance Control in their 47TV sets with LED backlight. Also, Samsung de-
veloped Local Dimming LED technology. For these technasgthe cooling problem
is the main issue that prevents installing more powerful EEDthese displays and
making them full-fledged HDR displays. However, given the humber of lumens
per watt [Im/W] in modern LEDs increases at a higher rate thaMoore’s law, up-
grading Philips and Samsung technology to the specificéioterms of contrast and
luminance range) similar to the BrightSide’s HDR displayyrba a matter of relatively
short time. Also, it can be envisioned that with progressirigiaturization of small
high power light source arrays the active backlight tecbgplwill also be employed
for future projection systems.

Overall the dual-modulation technology offers an inexpenway of doubling the bit
depth controlling the luminance or color channels, andexchg remarkable global
contrast and the maximum luminance specifications for HDd&geption and display
systems.
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7.3 Laser Projection Systems

Laser projection technology is a promising alternativedigplaying HDR images. For
example, the Scanning Laser Display Technology develoyedBNOPTIK GmbH
[90] (refer to Figure 7.4) employs 12—16 bit image encoding directly reproduces
bright and dark pixels through modulating the amplitude GBaser beams. Acousto-
optical modulators are used to transform the RGB video $igt@optical information.
Then the three modulated laser beams are combined into direeaobeam, which is
transferred to the projection head (scanner unit) usingéinal fiber, whose length can
be up to 30 meters. This separation of large laser systemtfremompact scanner unit
is very convenient for many applications. The modulatehtlayriving to the scanner
unit is deflected in the horizontal direction using a rotgtiread with 25 mirror facets,
which results in the scan angle of abouf 2@ he vertical deflection of image scan-
lines is performed using a galvanometer mirror, which ai@¥ull deflection angle of
about 20. The flying spot of the laser beam results in the very smoaitsition be-
tween neighboring pixels (absence of visible pixel bouredar The image resolution
can be easily enhanced, motion blur is practically invesitlie to fast line scan time,
and native bit depth of amplitude modulation is very high.eTimage can be easily
projected on curved surfaces because of large depth ofresgpanging from 5 to 50
meters and good color convergence. The full on/full off casitratio is higher than
1:100,000, which in simulation applications enables dayrght simulation with the
same equipment. Another advantage of laser projectiomtdogy is enlarged color
gamut due to more saturated primaries determined by thelevaygths of lasers. With
extended contrast offered by the projector this leads teersaturated and vivid colors.
The fixed laser wavelengths and power control enables goopldral stability in color
reproduction.

free moving
scan unit
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on[ 1
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Figure 7.4: Scanning laser projection display developedEyOPTIK GmbH. Image
after Figure 1 in [90].
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The main disadvantage of laser projection technology iseraid peak luminance
level, which is limited by the power of laser diodes. Anothieriting factor is the
high cost of major system components such as lasers andntigtitilators. There is
some hope that the cost barriers will be overcome with irgingainterests in laser
television (TV). In recent years the rapid progress in theettgpment one-Watt and
higher power RGB lasers can be observed. Also, after a ssfotesgpplication of
digital micromirror device (DMD) technology in projecti@gystems, new generation
of microelectro-mechanical systems (MEMS) have been ssfakly tested as linear
light modulator arrays. Grating light valve (GLV) and gragielectro-mechanical sys-
tem (GEMS) technologies are much cheaper in manufactunizug the DMD devices
and much fasterx{ 1,000) in switching between their states. Effectively gngbles to
build just a high resolution column of pixels which througisér scanning and deflec-
tion of the reflected beam can build an image of very high tegni. For example, the
GLV switching speed of 20 nanoseconds is sufficient to buikehefour such images
during a conventional video frame, which enables to imprinebit-depth for color
channels using temporal dithering approach (effectivelmaller quantization step
can be achieved through averaging of subsequently disleages by the HVS).
For example, GEMS-based laser projection system demeedtoy the Eastman Ko-
dak Company featured superb image quality with wide colongia reduced motion
artifacts, HD resolution, and high native bit depth [91].

7.4 Conclusions

In this chapter we have outlined recent developments in HBRlaly technology. In
coming years rapid development of such technology can heigated and virtually
every month brings some announcements from the industguorching on the market
new HDR projection and display devices. Digital cinema aapions are the driving
force for the professional market of HDR projectors. For ¢besumer market, the
dual-modulation technology with LCD displays becomesipalarly attractive with
dropping prices of high power LEDs and improving their luos efficiency. Also, in-
tegrated circuits (IC), which are capable of steering leagel larger LED matrices, are
actively developed due to increasing demands from othersinigs e.g., automotive.
It seems that at the current stage every major manufacsmeparing for launching
LCD displays based on some form of local dimming technolaggédepen the black
level of the display. The availability of energy efficient DE, which feature high lumi-
nous power, will improve the image reproduction in brighgioms without imposing
excessive demands on the display cooling system. In sudtisih the main problem,
which we discuss in the next chapter, is to deliver HDR cantieat fully can exploit
the capabilities of modern display technology.



Chapter 8

LDR2HDR: Recovering
Dynamic Range in Legacy
Content

Historically CRT display devices have been predominangigdito render digital con-
tent and their capabilities in terms of reproduced contftggically up to 1:100) and
luminance range (typically 1-100 cdfjrhave a profound impact on image and video
formats, which have been specifically tailored for theseabdjpies. In such display-
referred LDR formats information for every pixel is encoddicectly in a ready-to-
use format with the goal that reproduced images should “lpoéd” on any device
and should not require any further processing. This styadégligital content storage
turned out to be far from optimal with increasing diversifydisplay and projection
technologies, which are capable of reproducing wider eshtranges (typically up to
1:400 for modern LCD and plasma displays), feature moreopired black levels and
maximum luminance values, and improve image sharpnesshé&se technologies the
precision deficiency in existing image and video formats mesult in visually dis-
turbing quantization artifacts, which modern LCD displays practically eliminate
through on-line decontouring and bit-depth expansiore(ref Section 8.1).

Such simple means are not sufficient any more for full-fledg&R displays such
as Brightside DR37-P (refer to Section 7.2). For such disptacovering HDR in-
formation in legacy LDR images and video is required, whiloften called inverse
tone mapping or simply LDR2HDR. The main problem here is td fion-linearity of
contrast compressing function applied to each LDR imagetamdercome the quan-
tization errors in the recovered HDR image. Another impar{aroblem is restoring
(inpainting) image details in highlights, light sourcesdadeep shadows, which are
typically clipped in LDR images, but can be easily displdgain HDR displays.

The LDR2HDR problem can be formally stated as the reprodoaif real-world lu-
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minance values for every pixel in an LDR image. Such statetlpm without making
extra assumptions concerning the image capturing systewekhss captured scene
itself is ill-posed and in general case cannot be solved iatsomatic way. The first
unknown factor on the way of light from the scene towards dansensor is the lens
system. The direct illumination in the scene that shoulddggstered for each sensor
pixel is polluted through indirect lighting scattered iretbamera optics due to veiling
glare and lens flare effects. Another important factor isdhmera sensor response,
which can be a complex-shaped function that is difficult twoxer faithfully from a
single LDR image. The captured image is polluted by the semsige, which makes
dark pixels less reliable. Information is lost completedy &xcessively exposed and
thus saturated pixels. Finally, the raw sensor image usualllergoes sophisticated
image enhancing, sharpening, and tone mapping (possititeefipixel clipping both
in dark and light image regions) using proprietary and galheunknown algorithms
before its encoding in any standard format. All these factoake the task of precise
scene luminance map reconstruction very difficult. In pcasthe goal of LDR2HDR
processing is formulated less strictly in terms of achigwirsually plausible image ap-
pearance on an HDR display. We summarize existing solytishih can contribute
to dynamic range expansion and are suitable for legacy \addamages:

e Bit-depth expansion and decontouring techniques (Se8tiby

Reversing tone mapped curve in LDR images (Section 8.2),

Recovering camera response curve from a single LDR imaggi¢8e3.3),

Recovering (inpainting) image details in saturated shadhghlight, and light
source regions (Section 8.4),

Handling video on-the-fly (Section 8.5),

Taking advantage of image artifacts due to acquisition lerab for recovering
useful HDR information (Section 8.6).

In the following sections we discuss the problem of upgradire existing LDR image
and video content to make it suitable for HDR display and gutipn systems such
as those discussed Chapter 7. We focus mostly on restonmigidimce component.
We do not cover another important problem of extending cgéonut, e.g., extending
chromaticity values toward higher saturation, withoutrajiag the hue as required for
projectors and displays with color primaries based on $aged LEDs. Such problems
are partially discussed in the literature on gamut expansidso, we do not address
the problem of quantized colors restoration, which is irtipatar a difficult task when
the quantization method is not known a priori [92].

8.1 Bit-depth Expansion and Decontouring Techniques

In many traditional LDR imaging pipelines, usually based2dnbits/pixel, there are
often some components which impose limitations on the nurobleits per pixel. For
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example, in DVD applications tailored for the CRT displaie tompressed image
quality is effectively equivalent to 6-bit signal becaustrmation from the two least
significant bits in the original 8-bit encoding is usuallynmeved due to the quantization
errors. Note that for new generation LCDs, which are vergtiriand feature little
noise, 10-bit accuracy of internal processing is often iregiso that the analog signal,
which steers the liquid crystals can reproduce the smatlestrast details that the
human eye can perceive. It should be noted that this cortsarvaquirement concerns
only the spatial frequencies of 4-8 cpd and for other spfiglencies a lower number
bits is sufficient (e.g., 4 bits for spatial frequencies tgeshan 27 cpd) [93]. This is
an important change with respect to the CRT technology, kvhégjuired only 6—8-
bit accuracy due to lower luminance levels (lower eye siitsitfor contrast), more
blurry and noisy pixels (more visual masking suppressiegvikibility of low contrast
details). Excessively limited bit-depth obviously resuit loss of low amplitude details
that are below the corresponding quantization error, butdcbe potentially visible
on a high quality display device. Another visual conseqeeotlimited bit-depth
is contouring, which forms false contours (also called lragdhrtifacts) in smooth
gradient regions (such contouring for chromatic chanrsatdten called posterization).
We discuss two types of techniques designed to reduce thifseta:

e Pre-processing techniques in which the high-bit depthreefee image is avail-
able and it can be used to modify the low bit-depth image varsy adding noise
or amplifying its low amplitude features, so that this infation can survive the
image quantization and can be recovered at the display.stégdescribe briefly
bit-depth expansion (BDE) and compander techniques, wietdng to this cat-

egory.

e Post-processing techniques for which the only availabigrination is the low
bit-depth image and the main goal is removing existing contg artifacts (de-
contouring). We outline adaptive filtering, coring, and gictive cancellation
techniques, which are examples of post-processing tegbsiq hese techniques
are often implemented in hardware installed in modern LC®@lasma TVs to
achieve real-time performance.

BDE techniques are designed specifically to achieve higbergved bit depth quality
than it is physically available. As in dithering techniquesually the BDE techniques
rely on adding imperceptible spatiotemporal noise to argenaior to the quantization
step. Intensity averaging in the optics of display and humanleads to recovering in-
formation below the quantization step. Modern BDE techagjtune a micro-dither
amplitude to obtain a low-spatial frequency flicker from malty high-pass spatial and
temporal noise and achieve 10-bit perceived quality on-8ltdter LCDs [94]. In de-
signing power spectral density and amplitude charactesisf the noise, it is important
to take into account the knowledge of human visual systerthathe noise remains
invisible. Otherwise, perceptible noise would not only @&t the visual quality, but
additionally could mask the low amplitude image detailsichhis just the opposite ef-
fect to the fundamental goal of BDE techniques. The noigbility can be kept under
control by setting the noise amplitude below thresholdsligted by spatio-temporal
contrast sensitivity function (CSF). Also, the spectraigly noise characteristics can
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be effectively pushed to higher, less perceptible spatiditamporal frequencies. An-
other factor that should be considered in evaluation ofenvisibility is increasing the

eye sensitivity to contrast for modern display devices duatich brighter images with
respect to CRT devices.

Li et al. [59] propose a wavelet multiband technique for thempression of an high bit-
depth image into an low bit-depth image and then the exparfitis dynamic range
back (the so-called compander). The information loss isced by amplifying (pre-
distorting) low amplitudes and high frequencies at the c@sgion stage, so that they
survive the quantization step to the 8-bit LDR image. Sifeelit-depth expansion
is a fully symmetric inverted process, the amplified sigres suppressed back to
their initial level in the companded high bit-depth imageheTauthors observe that
their compander leads to a good quality reconstruction oRHDages based just on
8-bit LDR images, whose visual quality is also acceptableweler, it seems that
this technique has more potential for HDR image compressitimer than pure bit-
depth expansion. We discuss the compression aspect oettiriue in more detail
in Section 5.4.2.

When higher bit-depth information is not available anymavhijch is often the case
for legacy content, low-amplitude details cannot be retanted, and post-processing
is focused on removing false contours [93, 95]. Adaptiveffittg relies on smoothing
contouring artifacts without introducing excessive bloran image. For example bi-
lateral filtering can be used for this purpose by removingnftbe image information
of high frequency and low amplitude. This can be achievedditirng the intensity
domain parameters of Gaussian filter tuned to expected @ongpcontrast and limit-
ing the spatial Gaussian filter support to few neighboringlsi Coring techniques are
essentially based on the same principle, but offer morecbower high frequency de-
tails filtering through multiband image representation] [$altering is applied only to
a couple of high frequency bands and its strength is smodttdyeasing towards lower
frequency bands. In adaptive filtering and coring methodisildeof low amplitude and
high frequency may be lost, which may affect the visual imagelity. For example,
excessive smoothing of the human skin texture may lead tmitatural plastic appear-
ance, which is highly undesirable effect for any commerorabdcasting and display
system.

In predictive cancellation the idea is to estimate the gaation error based on input
low bit-depth image and compensating for this error priotht® image display. To
achieve this goal, the low bit-depth imageundergoes low-pass filtering, which re-
sults in low-spatial frequency imadewhose pixels have higher precision thanHn
due to averaging (refer to Figure 8.1). Of course, this gienigain inL is obtained
only for slowly changing signals, at expense of originaltgpaesolution atP. Now,
when the quantization operat@rwith the same bit-depth accuracy asHris applied
to L, the differenceE =Q(L) — L approximates the quantization error inherentFor
but only for low spatial frequencies. Then, by subtractimg érrorE from P the most
objectionable contouring due to slowly changing image igmatd is removed. At the
same time, potential contouring at higher spatial freqigsnemains intact, but here
the eye sensitivity to contrast is lower as predicted by tB& Q\Iso, in the high con-
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trast image regions with significant high spatial frequeoagtent (e.g., some texture
patterns) visual masking can further help in hiding contayartifacts.

Predictive cancellation
de-contoured

(=)
P © P

Low-pass L
filter

Quantizer

Figure 8.1: Predictive cancellation flowchart. Thick lireshote a higher-bit precision
in the image representation. The de-contoured infEigesubmitted to a display device.

Recently, Bhagavathy et al. [95] have proposed a multiespabbabilistic dithering
method, which comprises two main steps. At first, a multieseaalysis on the neigh-
borhood of each pixel determines the likelihood of bandimgthis pixel. A pixel is
assumed to be a part of banding artifact, when the likelitafdzhnding is larger than
a predefined threshold value at least one scale. Then baretingtion is performed
for such a pixel by computing a local mean (floating-point@isity in the pixel neigh-
borhood, which is then probabilistically dithered and dimatd as required for the new
bit depth. The proposed method is less dependent of themityxbetween adjacent
false contours than methods relying on smoothing filterk wiedefined support such
as predictive cancellation. On the other hand, the propossttiod is sensitive on the
preset threshold of banding likelihood, which is used tedepixels contributing to
banding artifacts.

All discussed BDE and decontouring techniques are optiehfae much lower bit-
depth expansion than required to accommodate HDR imageided gontent, so their
adaptation to the LDR2HDR problem is an open research questAn exception
is the compander technique, which has been successfullieddpr dynamic range
compression and expansion, but only in the context of sk#iR images. Also, this
method required the HDR reference and strongly enhancesdmivast information
in the compressed image, which may not be acceptable in spptieations for which
the fidelity of compressed image appearance is importarg d€bontouring techniques
may have some potential for contrast boosting techniqussritbed in the following
section in particular for lower quality and low bit-deptlyéey video and images.

8.2 Reversing Tone Mapping Curve

For high quality LDR images with a small amount of under- andreexposed pixels,
which do not contain visible quantization and compressitifaats, deriving inverse
tone mapping function, then transforming all pixel valussg this function, and fi-
nally contrast expansion seems to be an easiest recipedsteact the corresponding
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HDR images. A number of solutions presented in the liteesfopted such a proce-
dure [97, 98, 99, 100], and they differ mostly in the preaisid inverse tone mapping
function derivation and the actual contrast expansionGaagr.

Akyuiz et. al. [97] conducted a psychophysical study on an HDRalysin which they

ranked the general preference for high quality HDR imageshacorresponding LDR
images with linearly/non-linearly scaled contrast andyitess to fully exploit the
dynamic range of an HDR display. Each source LDR image, whiéshbeen submitted
for such scaling, has been selected as the best exposed firmagtne pool of images
merged through a multi-exposure technique into the coomdipg high-quality HDR

image. It turned out that the subjects similarly ranked tlRLimages with linear
contrast scaling as the corresponding HDR images. This mggest that for a good
quality LDR image simple contrast boosting may be sufficfentnany scenes.

In another psychophysical study Meylan et al. [98, 101] coréd this observation
for scenes featuring lower dynamic range. However, theyeghat just a linear
rescaling of images that are tone mapped for standard gispiay lead to too bright
images when displayed on an HDR display. They found thatllyshetter results can
be obtained by taking into account the actual image contehbg diversifying contrast
boosting for diffuse regions and highlights. In their irsetone mapping algorithm,
they segment the diffuse and highlights image parts, whiehtlaen independently
rendered with two different linear scaling functionsandr,. This way the lower
part of display dynamic range is used to render the scenehandetnaining part is
allocated for visualization of highlights and light sowsdgefer to Figure 8.2). The
splitting point between these parts is decided based on thérmum diffuse white
W, in the input LDR image and assigned to this point display hamice valué\p;.
Parametek\,,t should be adjusted based on the image content to controivéralb
image brightness impression and can be a function of thedaibéghlight regions.
In [98] Meylan et al. describe a psychophysical experimamlich they investigate
the subject preference for varioMg,; choices. They found that for outdoor scenes
the subjects preferred to allocate a rather small part oflyfmamic range to specular
highlights to achieve overall brighter image appearanoeirfeloor scenes better visual
results were obtained when more dynamic range was allodatddghlights. Also,
the percentage of specular pixels can be important (egsth reflecting in the water
surface), in which case the subjects prefer dimmer imagesll tested cases boosting
brightness of specular highlights led to more natural iregien, which indicates that
content-dependent inverse tone mapping may be favoradikr o Figure 8.3).

In the follow-up paper Meylan et al. [102] investigate ancawtic algorithm for high-
light detection and determination of the maximum diffusate/nV,. They observe
that the highlight regions contain more high spatial freguyecontent than diffuse im-
age parts due to quick changes in the surface shading. Tlgpsed a set of low-
pass filters combined with morphological operations, whiah automatically detect
highlights (refer to Figure 8.4). The Gilchrist theory afHitness perception [71] may
provide some insight towards an automatic selectionfpfand\W,,; parameters. This
theory relies on the notion of the reference white point,chitis conceptually similar to
the concept o,. The Gilchrist theory has already been employed for tonepingp
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Figure 8.2: Display dynamic range allocation between ddéfand specular image
parts. W, refers to the maximum diffuse white in the input LDR image &g; de-
notes the corresponding intensity in the output dynamigeamhanced image. Figure
courtesy of Laurence Meylan of General Electric and Scoly D&Sharp Laboratories
of America.

[14], which is also based on linear contrast scaling witléigreented image regions
(frameworks) with clearly different luminance levels.

Banterle et al. [99] investigate non-linear contrast sgaly inverting simple tone
mapping operators based on exponential and sigmoid fursctidvisually the most
compelling results have been obtained by inverting the gdrajphic tone mapping
operator [65]. The authors observed, that when using tigoggeh, they cannot expand
the dynamic range to arbitrarily high values due to quatitimeerrors manifesting in
contouring artifacts in particular in bright image regipimswhich the sigmoid function
strongly compresses contrast. (The authors do not repypmprilem with saturated
dark pixels.) To address the contouring problem they craaténterpolation map,
which is used to smooth shading of pixels that belong to tigh himinance areas
(refer to Figure 8.5). The interpolation map is built in twefss. At first importance
sampling over the pixel intensity distribution in the indUDR image is performed
to find a set of virtual light sources that energy-wise repnéshe whole image and
are concentrated mostly in high luminance regions (Figuséc&nter)). In the second
step, density estimation over these light sources is paddrfor every pixel to obtain
a smooth interpolation map (Figure 8.5(right)). The intdation map is finally used to
blend between the original LDR image and the range-expaimiiggle obtained though
the sigmoid function inversion. The authors validate tla@proach by comparing the
reference HDR images against their range-expanded cantsiusing the HDR VDP
(refer to Chapter 4.2). A vast majority of perceivable diffieces reported by the metric
come from the highlight and light source regions in which lin@inance values of
reconstructed pixels are selected in an ad-hoc manner ¢eeféigure 8.6). This is
a general problem for all discussed so far methods that fonusnhancing contrast
and suppressing contouring artifacts, but do not pay muemtn to clipped pixels
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Figure 8.3: The view of an image with enhanced dynamic rarsgi¢ \would appear
on an HDR display is simulated. The dynamic range has beeaneeld using linear
scaling (left) and the approach proposed in [98] vilthy: = 67% (right). Because
of dynamic range limitation on print only the appearancehaf dliffuse image part
is simulated and the highlights can be properly seen onlyrorl2R display. The
original image appearance as tone mapped for reproduatiam & DR display can be
seen in Figure 8.4. Notice that the linear scaling may leaal/&zall too bright image
appearance. Images courtesy of Laurence Meylan of GenkeetriE and Scott Daly
of Sharp Laboratories of America.

both in dark and light image regions. In Section 8.4 we disaadutions aimed at this
problem.

In all LDR2HDR techniques discussed in this section, the gbapplying inverted
tone mapping was to obtain visually plausible results. €hasthods do not give any
insight what are the actual scene radiance values, whiclheaonsidered as an ulti-
mate goal of any solid-grounded LDR2HDR reconstructionthim following section
we discuss technigues aiming at this goal.

8.3 Single Image-based Camera Response Approxima-
tion

The camera response function relates the scene luminaheeswaith image pixel in-
tensities captured in an image. Thus, if the inverse canes@onse function is known,
the scene radiance map can be easily reconstructed. Thiemrald recovering the
camera response function based on multiple, differentposgd images of the same
mostly static scene is relatively well researched (refeBéation 3.2). A challeng-
ing question arises how to reconstruct the response funbtsed on a single image
without any knowledge of camera used for capturing, exjprspparameters, and the
captured scene characteristic? This is a typical situdtiplegacy images and video.

The camera response function should compensate for carmptcaroperfections and
sensor response non-linearity, as well as image enhant@meénone mapping inten-
tionally performed by camera firmware altogether. In maractical applications, the
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Figure 8.4: Highlight and light source detection in LDR ineagising a segmentation
algorithm as proposed in [102]. The detected highlight aifilaminous objects are

marked in red. Images courtesy of Laurence Meylan of Gel#eatric and Scott Daly

of Sharp Laboratories of America.

camera response function is often approximated by a singpterta correction curve in
which case some standard gamma value, e.g., 2.2 is ususllynasl. Farid [103] pro-
poses a more principled approach in which the gamma valubedfindly estimated
in the absence of any camera calibration information baedtesingle image (the so-
called blind inverse gamma correction). It turns out thahgea correction introduces
to the image several new harmonics whose frequencies arglated to the original
harmonics in the image. There is also a strong dependemnsedethe amplitudes of
the original and newly created harmonics. It can be shownsiireh higher order cor-
relations in the frequency domain monotonically increaibk imcreasing non-linearity
of gamma correction. Tools from the polyspectral analyais lze used to detect such
correlations, and by searching for the inverse gamma, winiciimizes such correla-
tions, the actual gamma correction originally applied ®ithage can be found.

In practice, the gamma function is only a crude approxinmatibthe camera response
and by applying a simple inverse gamma correction to an intlageccuracy of re-
constructed radiance map can be affected. Lin et al. [1L0z\ghat for a single LDR
image the camera response curve can be more precisely nexted based on the
distribution of color pixels in the proximity of object edgeThe most reliable infor-
mation for such reconstruction is provided by edges seiparétte scene regions of
uniformly distributed and significantly different color@iance valued®; andR; (re-

fer to Figure 8.7a). For a digitized image of the scene usicgraera featuring the
linear response, the coldg of pixel representing precisely the edge location should
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Figure 8.5: Interpolation map construction. Tone mappeagen(left) is importance
sampled to a set of virtual light sources (center), whicbulgh density estimation pro-
cess are converted in to the final interpolation map (rightages created by Francesco
Banterle. Copyright: Warwick Digital Laboratory, Univéssof Warwick.

be then a linear combinatida andl, (refer to Figure 8.7b). The partial coverage of
pixel area by each of the two regions decides about the toitvh ofl; andl, val-
ues into the pixel colof,. However, due to the non-linearity in the camera response
the actual measured coldt, may be significantly different from such a linear com-
bination of measured colomgl; and M, (refer to Figure 8.7c), which correspond to
I1 andl,. By identifying a number of suck: M1, M3, Mp > triples and based on the
prior knowledge of typical real-world camera responses yeB@n framework can be
used to estimate the camera response function. By applyuggse of this function to
each triple< M1, Mz, Mp >, the corresponding: I1,12,lp > should be obtained such
thatl, should be a linear combination of andl,. Applying such inverse response
function to all image pixels results in reconstruction of gtene radiance map. The
authors observe that their method leads to a good accuraegamstruction the radi-
ance map. The best accuracy is achieved when the selected@dg< M1, My, Mp >
triples cover a broader range of brightness values for ealcn channel. The method
may not be very accurate for images that exhibit a limitedyeaof colors. By using
< M1, Mz, Mp > triples from additional images captured with the same cantbe ac-
curacy of the camera response reconstruction can be funtipeoved. Obviously, the
radiance information in saturated image regions cannoebevered, and we address
this problem in the following section.

8.4 Recovering Clipped Pixels

Another problem with legacy images are image regions caelglsaturated due to
intensity clipping of brightest and darkest images regiohse problem of lost infor-
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Figure 8.6: Radiance maps for the original HDR image (left) &s LDR image based
reconstruction (center). Pseudo-color encoding is uselgpict radiance values with
blue, green, and red roughly corresponding to 10, 100, afdcdin?. HDR VDP

is used to predict perceivable differences (right) betwiberradiance maps shown in
(left) and (center). In the perceivable difference maphliged color denotes pixels for
which the difference is over 1 just noticeable differende¢@y unit. Images created by
Francesco Banterle. Copyright: Warwick Digital Laborgtdsniversity of Warwick.

mation reconstruction is clearly under-constrained witlueber of possible solutions
that lead to the same appearance of an LDR image. Since wmi&mver-exposed

image regions may contain only sparse information, legraipproaches that rely on
finding correspondences in a predefined database of LDR aliriBge pairs seems

to be a very difficult task. The most promising results havenbebtained so far using

inpainting and texture synthesis techniques specializegjdairing damaged images or
removing unwanted objects.

It can be observed that many LDR images, which are difficidesdor tone mapping
inversion approaches, may contain similar textures whetald remain intact in some
image regions while they are clipped in very dark or brighad@m regions. Wang et al.
[105] investigate texture transferring from such well es@d regions by drawing from
the texture synthesis literature. The authors call thgireggch HDR hallucination. The
texture transfer in the LDR2HDR setting is actually more pter due to diversity

of lighting conditions, which is usually not the case forditaonal texture synthesis.
To simplify this problem the authors employ bilateral filtey to decompose inverse-
gamma corrected LDR image (a roughly reconstructed radiamap of the scene)
into a low-frequency illumination component and a highgfrency texture component
[68]. Then saturated illumination component is recons&daia interpolation from

a linear combination of elliptical Gaussian kernels, which fitted to non-saturated
pixels around the over-exposed region. If needed, the fiftedination function can

be further manually adjusted. The high-frequency textamamonent is reconstructed
via constrained texture synthesis [106] based on the sdextare and destination
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Figure 8.7: Color distortions in edge regions due to noedity in the camera re-
sponse. (a) Two regions in the scene, which are separated blgject edge, feature
distinct spectral radiand®; andR; values. (b) Hypothetical linear image sensor maps
R; andR, values intd1 andl; values in the RGB color space. Due to the scene radiance
digitization by the sensor, the color of each pixel on theeeidga linear combination

of 11 andl, with weights proportional to the covered area on the left aght sides

of the edge. (c) A non-linear camera respofisgarps these colors resulting in their
non-linear distribution. Image after [104].

location, which are manually indicated by the user (refeFigure 8.8). To correct
for perspective shortening or properly align texture dtrces or semantic information
the user draws a pair of strokes in the source texture anihdtésh image region,
and then the source texture is automatically warped to tgned size and orientation
(refer to the stained-glass image in Figure 8.8, which titates the texture transfer
and warping form the left to the right window). Poisson editis performed [107] to
smooth out transitions between the synthesized textuetharoriginal image. Overall
the proposed technique works remarkably well and its faikases are mostly related
with the lack of appropriate source textures in the imageetdrénsferred. In such a
case another image can be also used to successfully tranigfi@ally missing texture.

8.5 Handling Video On-the-fly

Rempel et al. [100] proposed on-the-fly solution to handigdy video, which com-
bines altogether all important elements of LDR2HDR proiregsuch as reverse tone
mapping, decontouring, contrast enhancement, and segeaatling of highlight and
light source regions. All these elements have been disdussgections 8.1-8.4, but in
the proposed solution the emphasis is on its robustnesal(shot produce disturbing
artifacts), automatic operation for preset parametersdan the HDR display charac-
teristics, high computational performance and good teaipmherence of employed
image processing algorithms.

Figure 8.9 shows the algorithm overview. At first an input LibRage is transformed
from the ready-to-display, perceptually uniform, nonelim representation (luma) to a
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Figure 8.8: HDR hallucination results. For each of the twagm groups two differ-

ent exposures of the original image are shown on the left{f@mdorresponding HDR
hallucination results are shown on the right. The centrages illustrate the user
interaction, the green color denotes source texture/wtanges, blue destination tex-
ture/warp strokes, and orange illumination adjustmenages courtesy of Lvdi Wang,
Liyi Wei, Kun Zhou, Baining Guo, and Heung-Yeung Shum of Misoft Research

Asia.

linear space, which approximates luminance in the origapalce. For this purpose
simple inverse gamma operation is performed and a gamma ofi2 is used, which
is standard in video and television formats. In the next,steptrast is stretched by
simple mapping of linearized pixel values to absolute luamire values reproduced by
the target HDR display. The authors limit contrast stretgho up to 5,000:1, which al-
ways leads to improved image quality without causing artifahat may arise for some
images. Of course, even higher contrast stretching coaldltie visually better results
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Figure 8.9: Overview of LDR2HDR processing. Image courteSillan Rempel et
al. [100].

for some images, but the algorithm robustness and autompé@tion requirements
justify this hard limit on the maximum contrast. The contrstsetching may magnify
noise and compression artifacts as well as may lead to gisditouring artifacts (refer
to Section 8.1) in particular for poorer quality footage this case optionally bilateral
filtering is performed, which is tuned to the possible adifeevel while preventing

blurring image features. Since filtering is performed in pleeceptually non-uniform

luminance domain the variance of the photometric Gaussietof in the filter is ad-

justed for each luminance level to the quantization thrksisho

As found in [82, 81] to achieve good appearance of HDR imag#s lnminance and
brightness should be simultaneously increased. For thisore in the next process-
ing step, as shown in Figure 8.9, smooth brightness enhaamperformed in the
neighborhood of saturated image regions. At first such brighions are identified
by simple thresholding of pixels with RGB values over 230 (feo) and 254 (for
photographs) in at least one color channel. The resultighbpixel mask is strongly
blurred with a filter, whose parameters are tuned to remowa of@nergy with spatial
frequencies higher than 0.5 cpd from the mask signal (Figureé(upper-right) shows
an example of brightness enhancement mask in red). For thaimag low spatial
frequencies the human eye is not very sensitive as predistélde contrast sensitiv-
ity function (CSF), which effectively means that such sndmtightness enhancement
proportional to the intensity of pixels in the mask shoultlinbroduce visible artifacts.
An edge-stopping function is introduced to the blurred magbrevent brightness en-
hancement in neighboring darker regions which are sehfian the bright pixels by
strong edges. An efficient implementation of mask blurring adge-stopping filters
are achieved using Gaussian image pyramids. Figure 8.Mssthe results obtained
using this method.

8.6 Exploiting Image Capturing Artifacts for Upgrad-
ing Dynamic Range

Scattering of light inside the lens is very apparent in thewee of high dynamic range
images, defining a limit to the dynamic range that can be cagtwith a camera [108].
Such scattering can be modeled with point spread functié8&) and removed using
deconvolution [109]. However, precise estimation of thé&PSnot trivial especially
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Figure 8.10: On-the-fly video LDR2HDR processing: (uppt}linput LDR image,
(upper-right) brightness enhancement mask, (lower-teft) virtual exposures of the
reconstructed HDR image featuring contrast 9,300:1, awdg(i-right) the same HDR
image shown on a Brightside DR37-P HDR display partiallyezed by a 10% neutral
density filter to demonstrate details in bright image regidmages courtesy of Allan
Rempel et al. [100].

that its shape is non-uniform across the image. Deconwolutiay also lead to high
guantization noise in strongly veiled image regions, duagafficient precision of real
scene information. Recently, Talvala et al. [110] have destrated that by placing
a structured occlusion mask between the scene and the cadieret and indirect
(scattered) light falling on the camera sensor can be segghr&or a given position
of the mask, the sensor elements, which are occluded by tbk, raee illuminated by
only scattered light. By jittering the mask position andtcaimg HDR images for each
such position the amount of scattered light can be estimfatedach pixel and then
removed from the final HDR image. A practical problem withsttéchnique is that
the scene must be static, and the mask must be placed nearwtie is order to be
in camera focus so that its contribution to the intensity @fifoccluded by the mask
pixels is reduced.

8.7 Conclusions

As we discussed in Chapter 7 in coming years rapid developafiéfDR display tech-
nology can be anticipated. The process of standardizatioto$sy HDR image and
video formats is just initiated (refer to Chapter 5), howegenumber of years will be
required before standards accepted by the industry willrgeneFor this reason the
problem of legacy content enhancement is so urgent. Inéisjsact, robust on-the-fly
solutions as presented in Section 8.5 are of particular itapoe, since they can be em-
bedded in the new generation of displays and tuned to olitaibest performance for
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a given display type. This solution enables to enjoy HDR enhwithout waiting for
painful format standardization and broadcasting HDR-&thbideo signal. However,
such dynamic range enhancement is ill-posed problem intwgtriecise reconstruction
of original HDR content is difficult and often not possibleorkhis reason the devel-
opment of algorithms enabling blind reconstruction of tamegping will be important
research topic in coming years. Also, robust detection ghilights and light sources
in the original LDR footage and then restoration of missinfipimation in saturated
image regions is another challenge. In professional agjbics off-line dynamic range
restoration, perhaps involving the user interaction féected frames, and then prop-
agation of restored information for the remaining frames) be envisioned. In this
chapter we did not discuss the problem of color gamut entmect which will be
important with constantly improving display technologésabling wider gamuts, and
thus enabling more saturated and vivid colors.



Chapter 9

HDRI in Computer Graphics

Recent developments in computer graphics and HDR imagingdstrate strong mu-
tual dependence. Computer graphics is a continuous sofirdBR image and video

content. Synthetised HDR images are a natural outcome af erggineering oriented
aspects of computer graphics such as physically-baseckimgglering, but recently
also entertainment applications such as cinematograpthy@amputer games greatly
benefit from more precise HDR pixel representations. On therchand, the HDR

images and video captured in the real-world are a precionssmf the input data for

image-based rendering and modeling in graphics. In thiptehave discuss these im-
portant aspects of convergence between graphics and HD@ighalo be aligned with

the main topic of this book, whenever possible we focus on HizlRo applications,

but in some cases only static HDR images have been used sbdan be envisioned

that with quickly progressing HDR video cameras technalagnage sequences will
effectively replace static images in many of the discussed hpplications.

9.1 Computer Graphics as the Source of HDR Images
and Video

At present, multi-exposure techniques and specialized HBReras are the main
source of HDR images and video (refer to Chapter 3). While thkivexposure tech-

nigues have been invented and applied first for the traditifim technology [12, 111],

they gained real popularity when digital cameras with mépwantrolled exposures
have been available. The development of full-fledged HDRezamis just a matter of
recent years. However, historically the first HDR imageemasling photographs have
been obtained in lighting engineering and realistic reimdecommunities. While these
two communities have been working mostly independentlyirainat different goals,

they have had common interests in physically-based ligtgimulation. Such simula-
tion was always important in lighting engineering, but oftienited to the estimation of

113
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numerical values of illumination at selected points in tlesigned environments, e.g.,
workspace. The progress made in the meantime in graphics sigdificant impact on
lighting engineers and designers, who showed more and migrest in realistic image
synthesis as well. In particular, the work of Greg Ward argdphiblicly available RA-
DIANCE system [112, 113] popularized image synthesis irititdging community. In
computer graphics, image synthesis has always been one ofgjor goals, but just in
mid-eighties researchers started to combine realistigénsynthesis with physically-
based lighting simulation [114, 115, 116]. The first insfima on how to deal with
this problem came to graphics from the heat transfer litgeafmostly finite element
methods [117]) and lighting engineering (also Monte Cartihods [118, 119]).

Physically-based lighting simulation required valid ihplata expressed in radiomet-
ric or photometric units. It was relatively easy to acquivets data describing light
sources, because high-profile manufacturers of lightingpegent measured, and of-
ten made available directional emissive characterisfittsair luminaires (the so-called
goniometric diagrams). It was far more difficult to obtaididaeflectance characteris-
tics of materials (the so-called bi-directional reflecdgstribution function - BRDF).
However, the assumption of Lambertian (perfectly diffusdlectance model has been
predominant at early days of lighting engineering and séialgraphics, which greatly
simplified the computation. It was relatively easy to estarthe surface albedo (a sin-
gle scalar value), which fully characterizes the refleataioc Lambertian surfaces. In
nineties, lighting simulation methods progressed to lanure general environments
efficiently, and more advanced BRDFs have been measurest {oeSection 9.2.2) or
expressed using physically-valid analytical models.

Physically-based lighting simulation with the use of plegdly-valid data, which de-
scribe the rendered scenes, resulted in a good approximetidlumination distri-
bution with respect to the corresponding real-world enwinents. Also, pixels in
rendered images were naturally expressed in terms of raglianluminance values,
which is the distinct characteristic of HDR images. To stewmeh images efficiently
first compact HDR image formats have been developed, sutted®@BE format (re-
fer to Chapter 5.1.2) proposed by Ward as a part of his RADIENfackage [49].
Also, early tone mapping techniques appeared to enablesiniaglay on devices with
limited dynamic range [120, 121, 122]. Figure 9.1(left) whaa typical example of
realistic image rendered using Monte Carlo methods. Figuidright) shows the cor-
responding HDR image that was captured in the actual redBEwsoene.

While realistic rendering software is a source of HDR imagebvadeo for almost two
decades, recently available graphics processing unit8Y@rd major game consoles
upgraded their rendering pipelines to the floating pointisien, which effectively en-
abled HDR image rendering. Thus, in the years to come comgataes and other
real-time applications running on these platforms will beraportant source of HDR
image sequences. In the simplest case such HDR-enabléorpiatcould be directly
connected to an HDR display offering even more immersivegyarperience. In fact,
due to lack of standardization such a direct connectiorido@gjuire some engineering
efforts to accommodate specific signal requirements erigh&ide DR37-P requires
special steering of an LED array in its backlit device [2].iSThroblem has been suc-
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Figure 9.1: Atrium of the University of Aizu: (left) rendete
image, and (righty HDR photograph. Accompanying web page
http://www.mpi-inf .mpg.de/resources/atrium/ provides with the com-
plete data set required to render this image. Also, the tesfdllighting simulation
have been compared to the measurement data in the actual scen

cessfully solved by Ghosh et al. [123], who additionally @m¢ed the immersive game
experience by adding surround lighting that can be seentheinser’s peripheral field
of view. However, even without having the access to an HDRlajs computer games
benefit greatly from many HDR visual effects which are diffica model convincingly
using LDR game pipelines:

e Glare (dazzling) effects around strong lights and briglghhghts, which are
modeled using an image processing approach by applyingarpgrof care-
fully tuned low-pass filters with different spatial supptotevery bright pixel.
The filter pyramid effectively spreads bright pixel intdgsin the neighborhood
causing characteristic blooming pattern, which reducedrast and thus detalil
visibility in the proximity of bright image regions. An alteative, cheaper, but
less general way of glare modeling is to impose sprites ¢preputed bit maps
with the bloom pattern) around strong light sources (ligttections are more
difficult to handle). The sprites apart from the blooming eg@ance can add
camera-triggered effects such light streaks (stars) chlmgéliffraction over the
diaphragm blades and ghosts caused by internal reflectitheimultiple-lens
optical system. The sprites are feasible only for a smalllmemof bright, regu-
larly shaped, and small light sources such as the sun, cdlitiets, lamps, and
SO on.
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Figure 9.2: Real-time GPU rendering with HDR effects. Jléealistic reflection
with Fresnel’s effects on the surface of the white plastit BAsually correct motion
blur, depth of field, and glare effects. (right) Interestivgumetric refraction and
reflection effects inside the foggy box. All computation fpemed for HDR pixel
intensities. Real-time tone mapping applied prior to thagendisplay. Images courtesy
of Ivo lhrke, Gernot Ziegler, Art Tevs, Christian Theobaltans-Peter Seidel of MPI
Informatik and Marcus Magnor of Technische UnivexsBraunschweig.

e Exposure control with dark and light adaptation using a tma@ping technique
for dynamic sequences.

o Depth-of-field effect with the shape of aperture stop.

e Motion blur performed for HDR pixels to avoid intensity clping typical for
LDR approaches.

e Bright reflections (refractions) of strong light sourcegy(ethe sun) in the sur-
faces of low reflectance (transmission), which cannot beodgped in the LDR
setting due to light intensity clamping.

Figure 9.2 presents some of discussed effects as rendesethodern GPU with real-
time performance. In game applications the main goal of ringlehese effects is
to improve the visual attractiveness and believabilityroges, while their physical
correctness is of secondary importance. Some of the dsdwdtects such as glare are
presented in the computer graphic literature as an intggualof widely understood
tone mapping (refer to Chapter 6).

9.2 HDR Images and Video as the Input Data for Com-
puter Graphics

Machine vision and computer graphics are rapidly converdiaciplines. Image-based
rendering is a prominent example of such convergence, wimen@uter graphics tech-
nigues enable changes in the scene viewpoint, lightingitiond, object appearance,
or even image content. When video is used as an input, all theddications can be
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performed in temporal domain, and additionally kinemagind dynamics can be ma-
nipulated. Image-based rendering still outperforms tiatal 3D rendering in terms of

achieved realism, and obviously acquiring images is muskee¢han building scene

model using standard 3D graphics tools. Vision and grapticgling is even more

obvious in augmented reality applications in which realld/émages and video must
be seamlessly mixed with rendered objects. Finally, imaaged modeling can be
used for efficient acquisition of data required in graphisshsas 3D scene geometry
or material reflectance characteristics.

HDRI technology has great potential in all discussed imaaged techniques used in
graphics, because it is less sensitive for extreme lightomgditions. This means that
virtually all pixels convey potentially useful informatipwhile using traditional cam-
eras such information can be lost in under- and over-expiosage regions. HDR cam-
era has also great potential as a radiometrically (photocadly) correct measurement
device (refer to Chapter 3.2), which in single image prosidellions of independent
measurements acquired at once for all pixels. Such physicetctness is required in
particular in realistic image synthesis, which is one of iti@nstream applications in
3D graphics. In the following sections we present appliatiof HDR imaging for
acquisition of scene lighting and surface reflectance, whi®atly contribute to the
final appearance of rendered objects.

9.2.1 HDR Video-based Lighting

Traditionally, in realistic 3D image synthesis lightingi®deled by specifying a certain
number of directional, point, or area (usually rectangatagircular shape is assumed)
light sources distributed in the scene. In physically-dasmdering the computation
of interreflection is additionally performed to account ffmdirect lighting illuminating
the scene. In cinematography more control over lightingriistion may be required
for artistic reasons, and indirect lighting is often reglddy inserting into the scene a
huge number of individually-controlled local lights. Ahetr important reason for such
a non-physical approach are huge costs to compute thedfigstion given the com-
plexity of scenes in modern computer-generated moviesy f@akently one bounce of
indirect lighting has been used in high profile productidke Ehrek 2. Game industry
relies mostly on direct lighting and lack of interreflectioompensates using ambient
lighting, which in more advanced cases may be modulateddbas@urely geometri-
cal visibility considerations (the so-called ambient ostbn technique). However, in
all discussed cases resulting images have usually a simiielt, which can be easily
distinguished from photographs. The exception are cinegnaphic applications in
which more realistic effects are achieved through time somnsg tweaking of local
lighting parameters.

Much better realism can be achieved when a synthetic 3D soedel is illuminated
by camera-captured real world lighting (refer to Figure)9.Bhe technique is called
image-based lighting (IBL), and the problem of costly ildlection computation is
less-pronounced for this technique since images captuheda@ct and indirect light-
ing simultaneously. The only problem is to account for irdéection between the
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Figure 9.3: Realistic rendering of the dragon model with sueed bi-directional tex-
ture function (BTF) of leather [124]. Captured real-worightting, which is visible
at background, is used to illuminate the model. Image ceyrté Gero Miller, Ralf

Sarlette, and Reinhard Klein of the University of Bonn.

illuminated object and the scene, but this is often nedigib.g., in the game scenario
moving characters usually do not contribute much into extitighting of the whole
scene. However, what makes the IBL so compelling comes ftarside of human
visual system (HVS), which is strongly adapted to real-adidghting conditions and
makes many implicit assumptions about statistical regidarin such a lighting [125].
The geometrical structure and other statistics of realdMaghts are often needed to
disambiguate information about surrounding objects. N the same amount of
light may fall onto the human eye retina when reflected framngly illuminated sur-
faces that are poor reflectors and identically-shapedsesfthat are good light reflec-
tors located in a dim environment. The human visual systemeessily distinguish
both situations by discounting the illuminants, which cantgbionally is an ill posed
problem of lightness determination that requires somerapans about the scene
lighting to be solved [126, 127]. Through psychophysicgleriments with computer
generated images Fleming et al. [125] have shown that theahuhserver ability
to notice even subtle differences in the material appearé&rface reflectance char-
acteristics) is much better under real-world lighting atinds than commonly used
point light sources. Realistic lighting improves also tbéity to discriminate between
rendered objects, whose shape is only slightly differe@B]1 This observation has
strong implications in the industrial design practices] &or example images of new
car models used for advertisement purposes are predoryinandered as illuminated
by captured real-world lighting (e.g., using the SpheroG#bR camera [129]). On
the other hand, the HVS sensitivity to the differences ireméince properties strongly
depends on the object shape [130].

Clearly, real-world lighting is desirable in many engiriagrapplications and would
improve the believability of virtual reality systems natarsly lacking realism in ren-
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dering. Real-world lighting is indispensable in many mixedlity applications, in
which virtual objects should be seamlessly merged with bwedd scene [131].

Traditionally, real-world lighting is captured into thevéronment map (EM), which

represents distant illumination incoming to a point froraukands or even millions of
directions that are distributed over a sphere (hemisphEl@R technology is required
for the environment map acquisition to accommodate highrasts in the real world

lighting. For static conditions low dynamic range camenad a multi-exposure tech-
nigue can be used to capture two HDR images, which fully caxapherically-shaped
mirror light probe [12]. For dynamic light capture an HDR &a camera with fish-
eye lens is the best solution to obtain hemispherical enmient map, which we call
the video environment maps (VEM). Existing multi-expostgehniques for video are
limited just to two exposures [15], which may not offer su#fit dynamic range for
robust capturing of high contrast lighting.

An important question concerning visually tolerable distms in captured HDR EM
and VEM arises due to the limitations in camera resolutioth g@ometry distortions
introduced by a fish eye lens. Ramanarayanan et al. [132Jucbed a psychophys-
ical study in which they investigated the impact of these factors on the visual
equivalence in object material and shape perception.netliput that even significant
amount of blur in EM lighting still leads to visually equialt images, in particular for
less glossy objects, which act as low-pass filters for reftetighting [133]. Lighting
geometry distortions may be more objectionable, which re¢hat stronger warps of
environment maps can be wrongly interpreted as change ioljeet shape. In this
case, the HVS would expect that perceivable distortionhénEM reflection come
rather from imperfections in the object surface than de@atrshapes of light sources,
which is less likely scenario in the real-world environnsertiowever, these problems
are negligible for lens distortions and image resolutidfered by existing HDR video
cameras.

Two rendering techniques: precomputed radiance tranBfF)and environment map
importance sampling are prevailing solutions in intersctendering with EM lighting.
Both techniques naturally support rotations of EM and caedsily extended to handle
VEM. We briefly characterize these techniques and then wesfoa their successful
applications with the use of VEM. For more general discussibIBL techniques,
which concerns mostly static lighting, please refer to are&nt survey in Chapter 9
of [6].

Video Environment Maps in Precomputed Radiance Transfer

Interactive rendering of realistic objects illuminated layge light sources is a diffi-
cult problem, in particular, if such light transport effeas shadows, interreflections,
and sub-surface scattering are taken into account. Foesdeat are illuminated by
the EM the most costly computation comes from testing Migjbénd integrating in-
coming lighting over all hemi-spherical directions (spbakfor non-opaque objects).
PRT techniques relegate these costly computation to prepsing, which dramatically
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reduces the computation load at the rendering stage [134].

Essentially PRT computes the illumination of each pointia $cene (often mesh ver-
tices are only considered) as a linear combination of intitighting, which may come
from all directions over the sphere, but at the same timeas&imed that light source
(environment map) is far away from the scene. A direct consede of this assumption
is that for all non-occluded points in the scene, the sanidaémt lighting always comes
from a given direction, which greatly simplifies the compiaia and bookkeeping of
incident lighting. This is also a realistic assumption fatdoor scenes illuminated by
sky lighting, but may fail for some indoor scenes with sgbtigarying direct lighting
(at the end of this section we discuss how to overcome thigaiion).

To encode incoming lighting an efficient spherical basisfiom such as spherical har-
monics (SH) is commonly used in PRT techniques. The SH basisitvery powerful
property: The integral over a product of two spherical fiors reduces to the dot
product of the SH coefficients of these two functions. Letacsal that the global il-
lumination problem is essentially equivalent to the soltdf such an integral, but for
the product of three functions: reflectance (BRDF), vidijpiland incoming lighting
[135]. For this reason the reflectance (for Lambertian sedgust a scalar value) and
visibility information is usually concatenated into a dedunction called the trans-
fer function. The transfer function encapsulates the wlighd transport information
from the directional light sources (represented by pixelthe EM) to each point in
the scene, and it is computed at the pre-processing stagea@ed as SH coefficients.
The transfer function includes the direct EM visibilityfdgsion information for each
point in the scene, as well as directional visibility and rggeattenuation information
for indirect light transport. The lighting function is pegted on the SH basis functions
on-the-fly for each VEM frame, which enables dynamic liggtsimulation. Such a
projection is very fast and can be easily done at interasieds (e.g., for the VGA-
resolution video of 640« 480 pixels per frame).

Lighting and transfer functions for Lambertian surfaces asually projected into 25
SH basis functions for each sample point. In general, tlhiddg¢o good visual results,
but only slowly changing and smooth lighting can be repredy®.g., soft shadows.
Thus, lighting details that require high spatial frequepajterns, cannot be repro-
duced, e.g., sharp shadow boundaries. For more generatagibe functions (BRDF)
for which the incoming lighting directions are importantpeatrix of spherical har-
monic coefficients with the transfer vectors for each of éhdsections must be con-
sidered. In practice, matrices of 2525 coefficients are commonly used [134]. Since
the transfer vectors (matrices) are stored densely ovesabee surfaces (usually for
each mesh vertex) an important issue is the data compresgiich can be efficiently
performed using standard tools such as principal comparaiysis (PCA) and clus-
tering [136]. Recently, the limitation of low frequency ting, which is inherent for
the SH basis, has been lifted using the wavelet basis fure{ib35]. Using the ap-
proach proposed by Ng et al. both soft and sharp shadows ceentlered, but very
dense mesh is required to reconstruct the lighting fungiir@cisely and it is not clear
how to include interreflections into this framework.

Another serious drawback of PRT techniques is the assum{iiad the scene is static
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Figure 9.4: HDR video environment maps (VEM) acquisitiostsyn equipped with
two photometrically-calibrated HDRC VGAX (IMS CHIPS) caras for the sky light-
ing and windshield view capturing.

for the transfer function computation at the preprocesstage. If the interreflection
computation is not required, this assumption can be relased the SH exponentia-
tion approach [137], which can efficiently handle soft shvaslfor deformable objects.
However, PRT techniques are useful in many technical agidias in which scenes
with static geometry and dynamic lighting are considered global illumination at

interactive rates is important.

We present an example of such an application in which PRThtguaks has been used
in a virtual reality (VR) system aimed at simulation of ligtg in the car interior. The
interior can be illuminated by VEMSs that have been captuceddrious driving condi-
tions and are visible through the car windows. Figure 9.4vsitbe acquisition system
mounted on the roof of a car, which is composed from two HDRe@idameras with
fish-eye lenses for the windshield view and sky lighting napyy. The main goal of
the VR system is to study the impact of such dynamic real-aMaghting, which is cap-
tured for the actual driving conditions, on the visibilitjioformation displayed on the
LCD panel mounted in the car cockpit. This application sceria similar to the sim-
ulation of free driving in an environment in which buildindsees, and other occluders
change the amount lighting penetrating the car interioiis Téquires that a global il-
lumination solution responds interactively to lightingatiges for an arbitrary position
of the driver head (virtual camera position), which can b&lgachieved using PRT.
Figure 9.5(left) shows a snapshot of interactive PRT randefFigure 9.5(right) shows
the result of off-line rendering using a more precise padleihg method, which also
employs the captured VEM to model input lighting. To imprdlie immersion expe-
rience the CAVE environment with five stereo-projected ensds used for displaying
the car interior. Also, a head tracking system is employadaaitor the driver’s head
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Figure 9.5: Snapshots of the car interior (left) renderedtatactive speeds using PRT
techniques, and (right) computed off-line using the plalbfeaccurate path tracing
algorithm. Calibrated HDR VEMs have been used to model itighting. Notice the
cockpit reflections in the windshield for the path tracingage. Images courtesy of
Tom Annen of MPI Informatik.

Figure 9.6: The LCD panel appearance as a result of the gitdmaination compu-

tation for VEM lighting: (left) full global illumination, ¢enter) display emitted light
only, and (right) reflected light. To compute the reflecteghlj BRDF-driven impor-

tance sampling and PRT lighting querying has been perforni@eéges courtesy of
Tom Annen of MPI Informatik.

position, which is important to properly warp the car inberimages projected on the
CAVE screens. The head tracking system enables also to righitedeflections in the
LCD panel as seen from the drivers’ point of view.

Figure 9.6 shows the appearance of LCD panel under the glhimaination conditions
for dynamic VEM lighting as displayed on an HDR monitor. Adindered images are
inherently HDR because physically-correct car model ariibreged VEM lighting
have been used for the global illumination computation,clvhs performed with the
floating-point precision. Since the dynamic range of an HD&hitor is significantly
higher than the one of a typical LCD panel that is mounted & dhr cockpit, the
visibility of information displayed for the driver can bested for many external light-
ing conditions. Through the calibration of the HDR displag teal world luminance
values can be reproduced for the LCD panel by taking intowaidooth the panel emis-
sivity as well as reflected lighting resulting from the glbilamination simulation.
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Importance Sampling for Video Environment Maps

Many practical rendering algorithms achieve the best perémce for very simple di-
rectional and point light sources. Such types of light ardl sugted for the shadow
computation and shading using graphics hardware and raydraln fact, more ad-
vanced area light sources are usually decomposed into &satlosimple lights. The
same approach can be applied for the EM lighting, which i®ogmsed into a set of
representative directional light sources due to the iriligtht source distance assump-
tion. Such a set should be equivalent to the source EM in tefmtighting energy,
but also resulting shadows should be visually equivalettiéamutcome of brute force
integration of incoming lighting over all pixels in the EMh& human perception helps
to achieve the latter goal, because for typical display olagen conditions it is safe
to assume that the just discriminable change in contrast bausver 1%. In case all
directional lights carry the same energy, which is the ogtioondition in terms of im-
age variance (noise) reduction, having more than 100 ligintces that illuminate each
point in the scene, makes the influence of each light undiéable. This leads to
smooth shading without banding or contouring artifactse phactical number of light
sources to achieve this goal is roughly 200—-300 because kgint& can be occluded,
and then the relative contribution of each non-occludelt Isgpurces could be greater
than the discriminability threshold. This larger numbeligiit sources is also required
because the full EM contains all possible directions overgphere, and each point
in the scene, which represents an opaque surface, can bendited only by light-
ing coming from the upper hemisphere with the pole deterthimethe normal vector
direction.

A number of techniques for the EM decomposition into vispatjuivalent set of direc-
tional light sources have been developed in recent yearsielesr, a vast majority of
these techniques have been designed for static EM, and thegtdjeneralize well for
the VEM case. The main problem is the computation performawbich is far from
interactive and precludes the VEM frames processing ofilyhdirectly for captured
light. Another serious problem is lack of temporal coheesnghich means that sig-
nificantly different set of directional light can be selettven for moderate and local
changes between the VEM frames. This results in severe fiickartifacts that are
not acceptable.

Havran et al. [138] have proposed an algorithm specificalsighed for on-the-fly
VEM processing. To reduce temporal flickering they use tmeesset of initial sam-
ples over the unit 2D square for each VEM frame. The sampleg@nerated using
the quasi-random 2D Halton sequence, which means that theyell stratified over
the unit square surface. The Halton sampling enables addwgsamples without af-
fecting the position of existing samples, while good sanspiatification properties are
always preserved. This is important for the progressivegenguality refinement and
maintaining constant frame rate by adjusting the numbeiirettional lights on-the-
fly. In order to improve light sampling properties Lloyd'daration over the initial
sample positions is performed at the pre-processing stalgieh results in the blue
noise properties of the sampling pattern [139, 140]. Figuréleft) illustrates the re-



124 CHAPTER 9. HDRI IN COMPUTER GRAPHICS

Figure 9.7: Distribution of samples for uniform intensitgf() and real-world captured
(right) environment maps. The left image demonstrates a gtratification and blue
noise properties of the initial sample distribution. Thpeaperties are partially main-
tained in the distribution of samples in the right image, atthis a warped version of
the sample positions in the left image. The importance saggipplied to the sam-
ples in the right image prevents folding and preserves meidtood relations between
samples as imposed by their initial position in the left imag

sulting position of samples as mapped from the unit squatieetdemi-sphere, which
would be close to the optimal sampling pattern in terms dblésnoise reduction for
the uniform energy EM. In practice, the position of direntiblight sources is adjusted
accordingly to the local energy distribution in the EM. A®w®im in Figure 9.7(right)
the directional lights are more densely concentrated ighber EM regions, in partic-
ular around the sun location, while darker regions are smed only sparsely. This
is achieved using the importance sampling procedure, whiakell established in the
Monte Carlo literature [141]. The pixel luminance valuesttie EM are treated as
a discrete 2D probability density function (PDF). Then tified Halton samples are
transformed to samples drawn from the discrete PDF and rdappspherical coordi-
nates. This procedure is described in detail in [142]. In, fidavran et al. used slightly
more involved sample transform method [143], which exkibitique continuity and
uniformity properties. The method guarantees the bi-cwiitlf property for any non-
negative PDF, which means that a small change in the inpuplsgposition over the
unit square is always transformed into a small change indgbelting position of light
source over the EM hemisphere. This property greatly imggsdgmporal coherence.

Havran et al. [138] have built a complete system, which eematile HDR VEM acqui-
sition and rendering with captured lighting at interacthpeeds (refer to Figure 9.8).
A photometrically-calibrated HDRC VGAX (IMS CHIPS) camewith a fish-eye lens
is used for the VEM acquisitions [144]. The inverse camespoese (refer to Chap-
ter 3.2) is used to transform captured RGB values into thedante map. This lumi-
nance map is submitted to the importance sampling procédueeonstruct a represen-
tative set of directional light source. Since even locahgfes in the VEM frame lead to
global changes of the PDF, the direction of virtually alhligources may change from
frame to frame, which causes unpleasant flickering in thders¥d images. Havran et
al. apply a perception-inspired, low-pass FIR filteringhe trajectory of each light
motion over the hemisphere as a function of time. Since tleeggrin the environment
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Figure 9.8: The HDR video capture and rendering systemipipdlustrating the dis-
tribution of tasks between CPU and GPU.

map can fluctuate, in particular for scenes with incandedigmting, filtering over
all environment map energy is performed as well. A bettebibtation of temporal
artifacts is achieved, when a certain number of frames fitwenfaiture is considered.
For this reason, a delay of 4 VEM frames is introduced, whickdsentially not ob-
jectionable because frame grabbing in their system wonkscisonously in respect to
usually slower rendering. All computation discussed sddarerformed on the CPU
side of their system.

The GPU part is responsible for rendering. The luminance acgpired by the camera
is at first displayed as the background and then all objectiserscene are rendered.
Directional lights decomposed in CPU from each HDR VEM fraabeng with the
shadow mapping technique are used to illuminate the scedreestratification and pro-
gressiveness properties of the Halton sequence permin@dabre lights for selected
angular regions in the EM without affecting the directiofigloeady distributed lights.
The directional light sources, which represent strong temsitsuch as the sun, can be
clustered to reduce the cost of computing shadows. Firaihgered GPU frames are
tone mapped (refer to Chapter 6.1) and displayed.

The system presented by Havran et al. does not require atly posprocessing, can
handle fully dynamic geometry and arbitrary reflectance etoévaluated on a GPU
(refer to Figure 9.9). The system does not support inteatidie, but it seems that the
instant global illumination algorithm [145] fits well its @ritecture. The main use of
the proposed system can be envisioned in augmented reggiligations in which real

and synthetic objects are illuminated by consistent ligghtat interactive frame rates
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Figure 9.9: A snapshot obtained using the Havran et al. systeft: distribution of
directional lights (marked as the green dots) over a VEM &a® captured using the
fish-eye lens (top) and shown in polar projection (bottomighR Stanford BUNNY
illuminated by the 72 directional lights.

Figure 9.10: Comparison of the fidelity in the shadow andtiighreconstruction for
the real-world and synthetic angel statuette illuminatgddpnamic lighting. Real-
world lighting is captured by the HDR video camera locatethim front of the round
table with an angel statuette placed atop (the right imadg sirhe captured lighting is
used to illuminate the synthetic model of the angel statugltbwn in the display (the
left image side).

(refer to Figure 9.10).

Grosch et al. [146] have built such an augmented realityesystapable of the diffuse
interreflection computation (refer to Figure 9.11). As i3] an HDR video camera
is used to capture dynamic lighting and at the same time anétBR video camera
captures the scene view. The latter view is augmented irtiraal by adding virtual
objects, which are illuminated by direct and indirect liggtcomponents from the real
scene (the influence of the virtual objects on the sceneiifiation is ignored). Direct
lighting is computed using importance sampling of VEM, whiadditionally takes
into account the visibility of virtual objects. Figure 9.4@mmarizes the indirect light-
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ing computation, which is performed for digitized geometnd material reflectance
properties of the real world scene. The hemisphere withucagtlighting (effectively
VEM as in [138]) is decomposed into a number of angular seaod for each such
a sector a basis irradiance volume (i.e., directional itistion of incoming lighting
at the nodes of a uniform grid in the scene [147]) is pre-camgbuising the radiosity
method. To find the actual indirect lighting at a given nodmtdbutions from all ba-
sis irradiance volumes are re-scaled based on the captiEktiighting and summed
up at interactive speeds. The indirect lighting at any patrthe virtual object is tri-
linearly interpolated based on illumination stored forgtdioring nodes. Figure 9.13
shows the comparison of the Cornell Box scene augmentedhéthirtual teapot with
respect to the ground-truth real world view with the teagmtmed using a 3D printer.
As can be seen the system proposed by Grosch et al. can Bitmindel virtual ob-
jects illuminated by distant direct and spatially varyinglirect lighting at interactive
framerates.
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Figure 9.11: Virtual Bunny illuminated by daylight as camd by an external HDR
video camera and indirect lighting simulated for the CdrBek interior. It is assumed
that the interior geometry and its reflectance propertieskapwn to perform such a
simulation. Image courtesy of Thorsten Grosch. Copyrigatniversity of Koblenz-

Landau.

Wan et al. [148] proposed another algorithm suitable to leaW&M. They introduce a
guad-tree over the sphere based on the adaptive subdivisgmmerical quadrilaterals,
which they call theQ?-tree structure. They adaptively sample the EM based on an
importance metric, which leads to finer quad-tree subdinisn brighter EM regions
(refer to Figure 9.14). A directional light source is crehfer every quad (stratum),
which is a leaf-node in th€?-tree. The radiance emitted by all pixels in a given
quad is summed and assigned to the corresponding lightesowtwse direction is
jittered with respect to the quad centroid. To maintain terapcoherence, the authors
adjust theQ?-tree from the previous frame by splitting leaf-node quamdsich gain
radiance (thus importance) with respect to the previousdraAnalogously, leaf-node
guads are merged in the regions that become darker. A cadaiber of such merge-
and-split iterations is considered, so that lighting cleangre mirrored by the current
Q?-tree structure, and at the same time coherence with théopieframes is preserved
whenever possible. The number of iterations decides whégtging represented by
Q?-tree is more up-to-date, or more temporally coherent. Thiecas show that using
their approach low-discrepancy sampling patterns arergtete
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Figure 9.12: Combining basis illumination. For each soligjla sector of the fish-
eye lens an irradiance volume basis is computed using thesipdmethod. The di-
rectional illumination distribution is computed for eacbde of the uniform grid and
compressed using spherical harmonics for more efficieragéoand access. The actual
indirect lighting is obtained by combining basis illumiiwat scaled by the actual light-
ing captured for each sector of the fisheye lens. Image @udkeThorsten Grosch.
Copyright the University of Koblenz-Landau.

The distant lighting assumption inherent for traditiondl Eighting holds well for
many outdoor situations, but often fails for indoor scenbsthe latter case, when
captured lighting is represented just by a single envirartmep and decomposed into
a set of directional lights, the appearance of shadows gastriiamic objects may look
unrealistic. In environments with dominant directionghlis the resulting shadows are
casted always in the same direction irrespectively of theadyic object position. This
problem can be significantly ameliorated when the direetitights are replaced with
a representative set of point light sources with their fixedition in the scene. Korn
et al. [149] have built an augmented reality system aimedatds achieving such
goall. In their system they use two photometrically-calibratedRC VGAXx (IMS
CHIPS) cameras with fisheye lenses [144] as shown in Figd& The HDR cameras
are attached to the table and their fisheye lenses are upwaoted. Additionally, a
webcam camera can be seen, which is directed towards a ntarkbe table, where
a virtual object is to be placed. The display shown in Figudb $resents the EM
images captured by the cameras as well as the view from theanebhugmented with

1Good background information concerning the lighting retamsion using a stereo-camera pair, and
then the scene augmentation with virtual objects is provige8ato et al. [150]. However, their system is
off-line and only static scenes are considered.
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Figure 9.13: Comparison of virtual teapot appearance) @esftlluminated by captured
direct and simulated indirect lighting with respect to gslrworld counterpart printed
using a 3D printer (right). Image courtesy of Thorsten Ghogeopyright the Univer-
sity of Koblenz-Landau.

Figure 9.14: Adaptive sphere subdivision using @retree technique. Image after
Figure 6 in [148].

a virtual object, which is illuminated by captured lighting

The decomposition of VEM captured by the two video camertisarset of point light
sources is performed as follows. In one of the captured Elghibpixels are selected,
and their corresponding positions in the second EM are faisitfy the epipolar geom-
etry. This narrows the search space to pixels located almngdrresponding epipolar
line. In fact, the epipolar lines are distorted into curvas tb the image geometry im-
posed by the fisheye lenses. In practice, Korn et al. prected@00 epipolar curves
and stored them in a look-up table to improve the correspurelsearch efficiency.
When the corresponding light sources are found in the caghiké, then based on the
known camera parameters and the distance between the ca®ieréght source posi-
tions can be derived by means of simple triangulation. Tgiet [positions are tracked
from frame to frame and updated along with changes in lightia captured by the
cameras. Figure 9.16 shows the real world scene and thesponding augmented
scene with added a virtual box. Note a good match of shadohwighws achieved
automatically due to real-world lighting capture.
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Figure 9.15: Light capturing system with stereo HDR videmeeas (attached to the
table). The webcam captures the scene view with the markd@ghviracks position

of the virtual object. The resulting augmented scene is showthe display as well
as two environment maps used to illuminate the scene. Imageaesy of Thorsten

Grosch. Copyright the University of Koblenz-Landau.

9.2.2 HDR Imaging in Reflectance Measurements

High-quality modeling of surface reflectance propertiestgbutes greatly to the real-
istic appearance of rendered objects. At present, analyBflectance models are still
predominant in low-end applications due to their compastnéut their use is often
difficult due to non-intuitive and perceptually non-unifdy scaled parameters [151],
which often do not have any physical meaning and cannot bsuneg for real world
materials. Also, the class of real-world materials thatlsarwonvincingly represented
using the analytical reflectance models is limited. For te&sons many industrial
and cinematographic applications, which require high ifigelr at least plausibility
in the appearance of complex materials, relies on measungidelstional reflectance
distribution function (BRDF).

Bi-directional Reflectance Distribution Function Acquisition

The BRDF is a 4D function, which is defined as the ratio of radé&outgoing in the
direction(6,, @) to irradiance (the radiant power per unit area) incidenb @amhaterial
sample from the directiofi@, @). For opaque surfaces the BRDF is measured for all
combinations of incoming and outgoing light directions otfe hemisphere. Special-
ized gonioreflectometers with robotically controlled piosis of the light source and
detector with respect to the flat material sample are usethéohigh-quality BRDF
measurement. Such a measurement can be performed muchufsstga calibrated
camera, which captures a curved material sample [152, 163his case each pixel,
which represents the material sample, effectively pravitkeasurement data. Instead
of capturing the spherical material probe, the appearahmEabworld curved objects
with spatially varying BRDF can be captured using a rel&igenall number of HDR
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Figure 9.16: Real-world scene (left) and its augmented @wpart (right). The box
floating over the table is a virtual object, which augmenéswideo stream captured by
the webcam (refer to Figure 9.15). The box is illuminatedigiting captured by the
two HDR cameras. Images courtesy of Thorsten Grosch. Cgiyttie University of
Koblenz-Landau.

images [154]. Sparse BRDF sampling ovér, @) and(6,, @) direction pairs for each
point on the object surface is compensated by exploitingpla¢ial coherence of BRDF
for neighboring regions, and by fitting the measured datantaralytical reflectance
model whose parameters change over the object surfacereFgli7 shows the ac-
quisition setup used by Lensch et al. Figure 9.18 presentdjat, whose geometry
and spatially varying reflectance has been captured, agéniered under arbitrary
lighting conditions.

Bi-directional Texture Function Acquisition

All BRDF measurement techniques discussed so far are gifimbmaterials, which
do not exhibit complex spatial structure. While such strreetonust be rendered to
convey the material look-and-feel, it is usually impraatito include such fine scale
details into the geometrical model. Also, complex lighengictions within the fine
structure due to light sub-surface scattering and selfi@vang cannot be captured by
global illumination simulation due to excessive costs. skheffects can be captured
in the bi-directional texture function (BTF), which is a 6Exture representation that
generalizes the BRDF by adding information on the samplat@Db position(u,v)
over the surfacé. Effectively each BTF sample is parametrized by its posifia v)
at A, and the incoming and outgoing light directiof®, @) and (6,, @). Figure 9.3
shows an example of realistic rendering of dragon modelreaveith a leather BTF
and illuminated by a captured HDR EM. Figure 9.19 shows a BEasurement setup,
in which a CCD camera is used to capture the material samjideblyaa robot. Kodak
DCS Pro 14N has been used in this system to capture 12-bit R@gds with a resolu-
tion 4,500x 3,000, but for more glossy material samples capturing HD&jes could
be required. A practical problem here is the capture timevef 6,500 images, which
must be multi-fold increased when a multi-exposure teamig used. This problem
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could be alleviated, when an HDR camera would be used, whichhfs particular
application should offer very high resolution as well. Fooreinformation on BTF
acquisition and rendering refer to an excellent survey atthpic by Mieller et al.
[155].

Reflectance Field Acquisition

The reflectance field as introduced by Debevec et al. [1567 8 function, which
relates incoming lighting from the directidi&, @) at any point(u;, ;) at the surfacé\
to outgoing lighting in the directiolif,, @) at any point(uo, Vo) atA. The reflectance
field dimensionality can be reduced to 6D by assuming thétihg is distant (a simi-
lar assumption as for the environment map lighting in Sec®@.1), which effectively
means that incoming lighting does not vary over the surfd@efor each poin{u;,v;).
By making another simplifying assumption that the camegmavpboint is fixed, only
a single outgoing lighting directio(B,, @) is considered for each poifitiy, Vo) at A,
what further reduces the reflectance field dimensionalitgdee tractable 4D. Note that
even such a 4D slice over the general 8D reflectance fielgpst¥ides information on
important aspects of light transfer within the materialuging subsurface scattering.
In cinematography and game applications the human skin ismpartant example of
material, which without modeling of the sub-surface scattgeffect has an unnatu-
ral plastic look. Debevec et al. [156] demonstrated thatdthaeflectance field of a
human face can be reconstructed from a set of images withrigating around the
face at various heights. Essentially a set of basis imagesfmus light directions has

Figure 9.17: Photograph of a setup used for capturing diyate@rying BRDF [154].
In a photo studio covered with dark felt the following setlgneents can be seen (from
left to right): an HMI metal halide bulb serving as a pointhigsource, metal spheres
whose highlight configuration serves to track the light seysosition, object whose
BRDF is acquired, and a Kodak DCS 560 camera used for mytibsxre HDR images
acquisition. Image courtesy of Hendrik P. A. Lensch, JantKallichael Goesele,
and Hans-Peter Seidel of MPI Informatik and Wolfgang Heldibf the University of
British Columbia.
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Figure 9.18: Digitalization of the Max Planck bust using #egjuisition setup [154]
shown in Figure 9.17: (upper left) photograph, (upper jigitquired 3D geometric
model, (lower left) rendered image based on the acquirethggg model and spatially
varying BRDF distribution for the same viewpoint as the pigpaph in (upper left), and
(lower right) rendered image based on the same acquiredirasdte(lower right), but
illuminated by different lighting and seen from a differefgwpoint. Images courtesy
of Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, and Hretsr Seidel of MPI
Informatik and Wolfgang Heidrich of the University of Bsti Columbia.

been created, which then by their linear combination wiffedént weights enables to
render the image of face under arbitrary lighting and thesutace scattering effect
is properly considered. Since during the acquisition thmdwu face must remain static
it is desirable to use high speed camera. The follow-up rebdss been focused on
lifting the restriction of dimensionality for the captureeflectance fields by allowing
arbitrary camera position [157], spatially varying ligigi[158], or even full 8D re-
flectance field [159]. Fuchs et al. [160] showed how to redbeenumber of basis
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Figure 9.19: Acquisition setup for bi-directional textdtection capturing [155]. A
planar 10cnx 10cm texture sample is attached to the robot's samplehualdeh may
change its orientation with respect to a fixed HMI bulb andlam@unted CCD camera
(Kodak DCS Pro 14N). Images courtesy of Gerdilldr, Jan Meseth, Mirko Sattler,
Ralf Sarlette, and Reinhard Klein of the University of Bonn.

images and still achieve the good quality in the scene taiig for 4D reflectance
fields (with the fixed camera and distant lighting assumggtias in [156]). HDR im-
age capture has been commonly used as it is required to hetnoitgly glossy objects
and improves the overall acquisition accuracy. Figure St#fws the acquisition setup
from [160] in which a multi-exposure technique [111] is eoy#d to capture HDR
sequences using Jenoptik CEcool or C14plus cameras (cetenadpter 3.2 for more
details on the C14plus camera). Figure 9.21(left) showsnair@ment map used to
relight the scene with the bottle containing a colored lighigure 9.21(right). No-
tice subtle light transport effects including anisotropytie reflectance field due to the
interplay of cylindrical bottle’s shape with glossy surdamnaterial.

Translucent Objects Acquisition

Another important category of real-world materials arestacent objects character-
ized by complex light scattering inside the material. Thigltiple light scattering
enables to see light shining through the object and washegisible surface details
by reducing contrast of reflected light. The latter effectimilar to the ambient term
in simple reflectance models, but sub-surface scatteringadd significant spatially
varying and usually low spatial frequency lighting compatneipart from the human
skin other examples of translucent materials include nmilkerble, and many organic
objects such as some fruits. Jensen et al. [162] were thediesldress the problem
of physics-based translucency modeling and renderingy praposed an approxima-
tion to a diffusion model suitable for rendering of homogeue materials, and they
measured physical parameters required by this model. inrtteasurement setup they
illuminate material with strong narrow beam of light and ttapp HDR images using
a multi-exposure technique, which is necessary to caphaexponential fall off of
scattered light intensity away from the point of illumirati(they reported up to five
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Figure 9.20: Photograph of a setup used for capturing of Eheeflectance field [160].
Spotlight projectors placed on the floor illuminate a tentimaf black cloth and indi-
rectly illuminate the captured scene, which is arrangedprof the boxes. A camera
mounted on the tripod records the HDR sequences with dyradipnzhanging lighting
due to computer controlled changes in the orientation ofglight projectors. Image
courtesy of Martin Fuchs, Volker Blanz, Hendrik P. A. Lensahd Hans-Peter Seidel
of MPI Informatik.

Figure 9.21: Rendering of the bottle containing a colorediti (right) as re-lighted

by a real-world environment map (left) [160]. The image hesrbreconstructed using
1024 HDR images captured for different lighting conditiarsing the setup from Fig-

ure 9.20. Images courtesy of Martin Fuchs, Volker Blanz, dité&nP. A. Lensch, and

Hans-Peter Seidel of MPI Informatik.

orders of magnitude in the measured light fall-off). Goeslal. [161] have proposed
a measurement setup to capture inhomogeneous transliject @ppearance (refer to
Figure 9.22). In their system, they use a narrow laser beasedaentially illuminate
a dense set of locations on the object surface, and theirgssttattered light distri-
bution is captured using an HDR video camera (refer to Fiu?28 to see captured
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HDR Camera K

Laserprojector

Turntable with Object

Figure 9.22: Acquisition setup for measuring the appearamicinhomogeneous
translucent materials [161]. A narrow laser beam, deflebted high precision 2D
galvanometer scanner, sweeps over the object’s surfabheasimple spacing of about
1 mm. The distribution of scattered lighting for each lalemination sample is cap-
tured by an HDR video camera. For a given camera positionidgssof the object
are captured using a turntable. This process is repeateddoually changed camera
positions, so that the full 36Qange of relative laser and camera positions is covered.
The two spotlights visible on both sides of the HDR video camie the right image
are used only for object geometry acquisition, which is rietulssed here. Images
courtesy of Michael Goesele, Hendrik P. A. Lensch, Jochamgl&hristian Fuchs,
and Hans-Peter Seidel of MPI Informatik.

sample images for various objects). The use of HDR video canisemandatory in
this application given the amount of images to be capturededisas extremely high
dynamic range in scattered lighting. The authors used adilVision Lars Ill HDR
video camera of resolution 768496 equipped with a high quality lens to reduce flare
effects (refer to Chapter 3.2 for more details on this cajnefhe captured data are
re-sampled over the vertices of dense mesh, which desdhibasbject geometry, and
are used to compute scattered and reflected lighting undiéraay illumination.

9.3 Conclusions

In this chapter we have discussed cross-correlations ketdevelopments in computer
graphics and HDRI. Realistic graphics and more recentlyntbgie industry relying
on digital technology are rich sources of high quality HDRemt. In coming years
the role of modern GPUs and game consoles will be increasing-line HDR content
generation, which will be even more important with the imping availability of HDR
display devices (refer to Chapter 7). HDRI contributes tapdics as well by providing
captured lighting and object appearance. HDRI-baseditiglttominates now in spe-
cial effects, mixed reality applications, and car advertient due to much better visual
quality of resulting images, good match of virtual and rest jpf scenography as well
as freedom concerning the place and time of HDR light capdurit can envisioned
that soon virtual TV studios, driving simulators, and gamds benefit to a greater
extent from this technology. In all these applications, rible of HDR video will be
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Figure 9.23: Translucent Objects Acquisition: (top rowg test objects used to cap-
ture their translucent appearance under indoor illumamsgind (bottom row) the same
objects illuminated by a spot-shaped laser beam as captyrad HDR video camera
using the acquisition setup shown in Figure 9.22 [161]. lesagourtesy of Michael

Goesele, Hendrik P. A. Lensch, Jochen Lang, Christian Fuoits Hans-Peter Seidel
of MPI Informatik.

increasing since the dynamic aspect of lighting is impdriamany discussed appli-
cations. In surface reflectance or even more general rafleetield capturing HDRI
becomes a standard practice. Here the use of HDR video camretaad to shortening
of the acquisition time which is in particular important whieumans or animals are
captured. In acquisition setups that require higher sadgisity such as bi-directional
texture function HDR still cameras could be a better chomealise at least at present
they provide higher image resolution at much lower costs.
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Chapter 10

Software

To facilitate the work with HDR images and video, Mantiuk ét E83] have devel-
oped a set of software tools that provide a wide range of inaagkvideo processing
functionality. The tools share a common design patterndasesystem pipes which
permits to combine them in the form of filters in a processiimelne, similar to the
netpbmtoolkit. Such a pipeline starts with an input program thatdsa list of im-
ages and forwards the data in a uniform manner to the next T subsequent tools
can perform certain image processing operations inclucliogping, rotating, and tone
mapping. The last tool in the pipeline usually stores thegssed content.

The communication in the pipeline is facilitated by a gemprbtocolpfswhose imple-
mentation is offered as a C++ library. The protocol is alsaightforward to implement

in other languages. The tools exchange data using the pgwesionly supported by
many operating systems. Such a design eases the impleioeraénew tools and
permits to transparently combine programs written in waiprograming languages
including MATLAB®and GNU Octave scripts, Perl, Python and many others. The
design principles, including the choice of data repreg@man the pipeline, are de-
scribed in more detail in [33].

The main package of the softwarepfstoolsand it is currently extended withfstmg
pfscalibration andHDR Visible Differences Predictor (VDPThe whole software is
Open Source and can be compiled on several operating sysitemsupported by an
active news-group that gathers users and developers.

10.1 pfstools

pfstoolsis the main package of the software. It implements the gegernmunication
protocol in the stand-alone libratppfs, and contains numerous basic image process-
ing tools including an HDR capable viewgxstoolssupports many HDR and standard

139



140 CHAPTER 10. SOFTWARE

file formats including: Radiance RGBE, OpenEXR, Tiff, Logl.tPFM, PPM, RAW
formats of digital cameras, and practically all 8-bit fotsyethrough ImageMagicR).

Project page:
http://www.mpi-inf.mpg.de/resources/pfstools/

10.2 pfscalibration

pfscalibrationpackage provides an implementation of the method develop&bbert-
son et al. [28] for the recovery of the response curve of emljitcameras. Tools
provided in this package can be used for photometric cdidraf both off-the-shelf
digital cameras and HDR cameras as described in ChapteargiZpr the recovery of
high dynamic range images from the set of low dynamic rangesxres as explained
in Chapter 3.1.1.

Project page:
http://www.mpi-inf .mpg.de/resources/hdr/calibration/pfs.html

10.3 pfstmo

pfstmopackage contains implementations of the state-of-thésag mapping opera-
tors, including those described in Chapter 6.1. The impteatens are suitable for
convenient processing of both static images and animations

Project page:
http://www.mpi-inf .mpg.de/resources/tmo/

10.4 HDR Visible Differences Predictor

HDR Visible Differences Predictor (VDR)elongs to the category of visual metrics,
which can predict whether differences between two images/ible to the human
observer or not (refer to Chapter 4). Such metrics are uge@$ting either visibility
of information (whether we can see important visual infaiorg or visibility of noise
(to make sure we do not see any distortions in images, e.gtodossy compression).
The unique feature of the HDR VDP is that it can work with thiériange of luminance
that can be seen by the human eye in the real world scened) effigctively means
that visual differences between any pair of HDR images cgpréeicted.

Project page:
http://www.mpi-inf.mpg.de/resources/hdr/vdp
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