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Figure 1: Distribution of the latent color code representation for different frames. We see that frames with similar content and
similar color retouching have been encoded close together in the latent space. All frames are taken from the BBC documentary
Blue Planet IT Episode “Green Seas". Note that the model trained to encode the style of frames in 2 dimensions (see Sec. 3.4.2) is

used in this plot for better visualization.

ABSTRACT

Many image enhancement or editing operations, such as forward
and inverse tone mapping or color grading, do not have a unique
solution, but instead a range of solutions, each representing a dif-
ferent style. Despite this, existing learning-based methods attempt
to learn a unique mapping, disregarding this style. In this work,
we show that information about the style can be distilled from
collections of image pairs and encoded into a 2- or 3-dimensional
vector. This gives us not only an efficient representation but also an
interpretable latent space for editing the image style. We represent
the global color mapping between a pair of images as a custom nor-
malizing flow, conditioned on a polynomial basis of the pixel color.
We show that such a network is more effective than PCA or VAE at
encoding image style in low-dimensional space and lets us obtain
an accuracy close to 40 dB, which is about 7-10 dB improvement
over the state-of-the-art methods.
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1 INTRODUCTION

Several applications in image and video processing require map-
ping source to target colors, such as mapping High Dynamic Range
(HDR) to Standard Dynamic Range (SDR) frames (tone mapping),
SDR to HDR frames (inverse tone mapping), RAW to color-graded
frames or retouched images. Tone mapping and inverse tone map-
ping have become particularly relevant with the introduction of
HDR formats and standards, which necessities mastering content
separately for both SDR and HDR devices for best presentation.
The research on forward and inverse tone mapping dates several
decades [Eilertsen et al. 2017b; Mantiuk et al. 2008; Reinhard et al.
2002; Stockham Jr 1972; Tumblin and Rushmeier 1993]. Most tone
mapping methods propose hand-crafted recipes [Reinhard et al.
2002; Stockham Jr 1972; Tumblin and Rushmeier 1993], or opti-
mization criteria [Mantiuk et al. 2008], which should produce the
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most desirable image. Rather than following this line of research
to find the right recipe, we learn the mapping from collections
of (source, target) image pairs manually prepared by skilled color
artists. With the advent of deep learning and large datasets, recent
works treat the relationship between paired images as a one-to-one
mapping, which they typically learn with Convolutional Neural
Networks (CNNs). The notable conceptual flaw of this approach
is that tone mapping, color grading, retouching, and inverse tone
mapping do not have a single solution. If the task is given to several
skilled color artists, each one is likely to produce a different result.
This was shown both in early research on tone mapping [Yoshida
et al. 2006], and in the Adobe-MIT 5k dataset [Bychkovsky et al.
2011], where each image was differently retouched by 5 photogra-
phers. Each color artist conveys a different style, and methods that
automate this process should respect and preserve such intended
style. Because the style information is not present in the input
image, existing methods that learn a CNN based image-to-image
mapping can learn at most a single style. The possibility of an in-
definite number of equally plausible solutions, makes a CNN based
image-to-image translation network incapable of modelling the
intended style without an additional meta-data as style encoding.

To this end, in this work, we deviate from the conventional
approach of learning an one-to-one mapping function from the
source to the target domain. Instead, we propose an orthogonal
direction of research to distill the artistic style from pairs of source
and target images and encode it in a low dimensional style vector.
More specifically, we present a customized conditional Invertible
Neural Network (INN), which captures the one-to-many nature
of the problem. Unlike other works, our lightweight architecture
operates in a pixel-wise manner to map the target pixels to a latent
style, given the source pixels as conditioning inputs. The proposed
bi-directional training, lets us converge the pixel-wise mapping
to a single low dimensional latent style vector as the meta data
for the entire image. As shown in Fig. 1, our trained INN can map
images of similar styles to neighboring points in the latent style
space. The proposed method allows us to distill the underlying
global mapping between the source and the target image pair into
a latent representation vector at inference time.

The main benefit of extracting style is that it lets us efficiently
encode very precise color mapping from a source to target image.
Such an encoding could be used for simultaneous transmission of
HDR and SDR content, where each HDR frame is accompanied by
a 2—4 dimensional vector, which lets us reconstruct SDR frames
with almost perfect accuracy (~40 dB). The encoding can also be
used to easily edit the color mapping (color grading, retouching,
tone-mapping) using just a pair of sliders instead of much more
complex interfaces used for those tasks. Finally, if we wish to per-
form fully automated mapping in an “average" style, we can run
inference on our network while setting the style vector to 0.

The main contributions of this work are:

o We show that it is necessary to distill a style from image pairs
to effectively learn a highly accurate color mapping (~40 dB)
and that the style can be encoded in a 2—-4 dimensional vector.

e We propose an INN-based generative model that can learn
the distribution of styles and encode it in a low-dimensional
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vector. The model can be trained on moderately sized datasets
(500 image pairs) and achieves a dramatic gain in perfor-
mance of over 10 dB compared to the methods that disregard
style.

o The utility of the color mapping with a style vector is demon-
strated in video transmission, semi-automatic color-grading,
and inverse tone mapping.

In this work, we distill the style between the source-target image
pairs, which have been manually color graded by color artists. Such
color mappings for video content are only global in nature (the
same for all pixels in an image, M : R® — R?) and do not contain
any local (spatially varying) changes. However, our method can be
easily extended to a manual local mapping, by splitting frames into
a number of tiles, as done in [Eilertsen et al. 2015].

2 RELATED WORK

Our work addresses the problem of learning color mapping from
pairs of images, found in tone-mapping [Bychkovsky et al. 2011;
Gharbi et al. 2017; Rana et al. 2020], inverse tone mapping [Eilertsen
etal. 2017a; Liu et al. 2020; Marnerides et al. 2018; Santos et al. 2020],
image enhancement and automatic retouching [He et al. 2020; Kim
et al. 2021; Park et al. 2018; Wang et al. 2019; Yan et al. 2016; Zeng
et al. 2020]. The majority of existing methods attempt to learn
one-to-one mapping from a large collection of image pairs, such as
that found in MIT-Adobe FiveK dataset [Bychkovsky et al. 2011].
The mapping can be represented using polynomial basis functions
[Yan et al. 2016], 3D LUTs with trainable weights [Zeng et al. 2020],
a linear combination of representative colors [Kim et al. 2021],
color-to-color multi-layer perceptron (MLP) [He et al. 2020], an
encoder-decoder architecture [Chen et al. 2018; Ignatov et al. 2017;
Wang et al. 2019; Yan et al. 2016], a bilateral grid of affine color
transformation matrices [Gharbi et al. 2017], or a Reinforcement
Learning (RL) policy that mimics the sequence of operations that
a human expert would take [Park et al. 2018]. All those methods
attempt to extract local and global features from an input image so
that the mapping function can adapt to image content. We show
that this information alone is insufficient to obtain a highly accurate
mapping.

Several works address the problem of learning different styles of
image mapping, but none attempt to achieve the same goals as our
work. PieNet [Kim et al. 2020b] and StarEnhancer [Song et al. 2021]
learn embedding of a style (or personalization) of image-to-image
mapping. They assume that all images processed by a single expert
(from the Adobe-MIT-5K dataset) share the same style. We found
this assumption to be overly optimistic, as experts often vary style
between images. For that reason, we assign a separate style vector
to each image pair. This lets us obtain an accuracy close to 40 dB,
while both methods report only about 25 dB on the same dataset.
Neither of the methods attempts to reduce the dimensionality of
the style vector to make it better suited to coding and manipulation
of images.
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3 METHODOLOGY

3.1 Problem formulation

We aim to model a global, spatially invariant color mapping be-
tween pairs of images or video frames. Furthermore, such a map-
ping should be controlled by a low-dimensional style vector. Let
{x’,y’}fi1 represent N images pairs. Each RGB pixel p in those
pairs is related by a global mapping M:

xh = M(yh.2'), 1)

where i is the image index and z’ is the low-dimensional vector
that encodes style parameters specific to each pair. Please note that
we use y for source and x for target color to be consistent with the
normalizing flow notation used later.

Such a mapping can be effectively expressed as a parametric func-
tion using Polynomial Color Correction (PCC) basis functions [Fin-
layson and Drew 1997; Finlayson et al. 2015]:

x, = Clyh) - M, @
where C (y;',) is the polynomial basis function for the pixel y;-,:

C(yp) = C([r.g.b]) = [r.g.b,1%, g%, b, rg, gb, br, ..., 1", g* b7,

| o
and M’ is the 34%3 style matrix (a representation of z'). We found
that at least a 4P degree PCC with 34x3 = 102 parameters is needed
for our diverse set of scenes (further discussed in Sec. 6.1). However,
such a large latent representation is not interpretable and cannot be
intuitively modified to edit the style. While the obvious approach
is to use one of the dimensionality reduction techniques such as
Principal Component Analysis (PCA) and Variational Autoencoder
(VAE), we found them to be ineffective for our problem, as we will
show in Sec. 4.3. Instead, we propose to use a custom adaptation of
normalizing flows [Rezende and Mohamed 2015] to represent the
style mapping.

3.2 Our approach

We cast the problem of finding a suitable approximation of M
from Eq. 1 as a generative modeling task using supervised learning.
We learn a conditional mapping from a known latent distribution
to the target domain using a parametric model gg with weights 6.
After training, the learned network gy and extracted latent vector
z! reproduce the required per-pixel mapping,

X}, = 9o (25 ¢p) . (4)

The conditioning vector c;'J could be equal to the source pixel value,
)
the conditioning vector contains the polynomial basis functions:
c;, =C (y;,), Intuitively, when the polynomial basis is supplied, the
network only needs to learn the appropriate linear combination,
similar to matrix M’ from Eq. 2. This dimensionality expansion
approach is akin to positional encoding, used to represent multi-
dimensional functions in NeRF methods [Mildenhall et al. 2020;
Tancik et al. 2020]. We also observed that adding global information
to the conditioning vector, such as the image histogram or VGG
features [Simonyan and Zisserman 2014] to c}, has little effect, as
shown in the ablation studies in Sec. 6.1.

= y;. However, we found that performance is much better if

CVMP 22, December 1-2, 2022, London, United Kingdom

3.3 The latent distribution model

To approximate the global mapping M with a parametric per-pixel
function. We choose the class of generative models called normal-
izing flows [Dinh et al. 2016; Kingma and Dhariwal 2018; Rezende
and Mohamed 2015]. They employ invertible layers with tractable
determinants of jacobian to learn a non-trivial mapping from a
known latent to the target distribution. The bidirectionality of nor-
malizing flows makes them particularly suitable since we wish to
both (1) extract a latent style vector from a set of pixels (reverse
discriminative pass) and (2) reconstruct a pixel from the given in-
put and latent vector (forward generative pass). This enables us to
manipulate the image style by converting it to a latent space as an
intermediate step (see Fig. 8).

Given many samples from the target distribution X, the objective
is to train gy using Maximum Likelihood Estimation (MLE) to con-
vert them into samples of a latent distribution Z. If gy is invertible,
the change of variables formula expresses the probability of a target
sample x ~ X as a function of the probability of the transformed
latent z ~ Z:

px(xle) = pz (95" (x:0)) - [detVg5! (x;)| )

Here c is a conditioning vector, which corresponds to the polyno-
mial coefficients M’ in our implementation (see Eq. 2).

If the latents follow a known distribution such as a standard
normal or uniform, Eq. 5 gives us an exact expression for the prob-
ability of any data point. For efficient MLE training, gg should be
differentiable, and the determinant of its jacobian should be easy
to compute. In practice, a normalizing flow is a deep architecture
consisting of invertible layers whose jacobians are diagonal, lower-
triangular, or the identity matrix.

3.4 Network architecture

Our INN, depicted in Fig. 2, is composed of a series of 8 invertible
blocks each consisting of (1) affine coupling layer, (2) random per-
mutation and (3) batch normalization with ActNorm [Kingma and
Dhariwal 2018]. The coupling layers [Dinh et al. 2016] increase
the expressive power of the INN by incorporating complex, non-
invertible sub-networks s(-) and #(+). To keep the total number of
trainable parameters small, we use simple 2-layer MLPs for both

s(-) and t(-).

3.4.1 Conditional coupling. Affine coupling [Dinh et al. 2016] is a
key operation of most normalizing flow architectures that increases
the expressibility of the network for unconditional generative mod-
eling. This involves splitting the inputs u of an intermediate layer
into two equal parts u; and uy. The first, u; is transmitted un-
changed, while uy goes through an affine transformation where
parameters are some functions of up, realized through complex,
non-linear subnetworks s(u;) and ¢(uj).

However, we are interested in modeling the conditional distri-
bution px (x|c) as described in Eq. 5. For this, we use conditional
coupling described in [Ardizzone et al. 2020; Lugmayr et al. 2020] by
appending c from Eq. 3 to the inputs of s(-) and ¢(-). Now, the out-
put of the conditional coupling layer is given by the concatenated
vector [vq, v2] where
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Figure 2: The network architecture used for our pixel-wise conditional INN. Here the sub-networks s(-) and ¢(-) are fully
connected networks with 2 hidden layers each. We use 8 invertible blocks in our architecture.

Vi =uq, vy =uz O exp(s([ug,c])) +t([ug,c]).  (6)

Since the subnetworks in a coupling block are never inverted
themselves, we can append ¢ without losing the invertibility of
the INN. Moreover, the operation has a lower-triangular jacobian
whose determinant is the product of diagonal elements.

3.4.2 Dimensionality of latent. Central to an efficient style map-
ping framework is the dimensionality of the latent vector. Mapping
the style of an image from the target domain to a low-dimensional
style vector allows easy user-interactive image manipulation and
editing. Our default architecture depicted in Fig. 2 encodes style
in 3 latent dimensions, matching the dimensionality of an input
pixel. However, some applications may require differently sized
style vectors. As alternatives, we demonstrate the adaptations that
enable the INN to operate with fewer or more latent dimensions.

To encode style in fewer dimensions, we split off some features
after 4 invertible blocks. As depicted in Fig. 3 (left), these features are
forced to follow the standard normal distribution using MLE. The
remaining features continue through 4 more invertible blocks. The
total number of invertible blocks is 8, to match our 3-dimensional
INN from Fig. 2. This splitting of intermediate features is similar to
the multiscale version of the normalizing flow described in [Dinh
et al. 2016].

For a higher-dimensional latent style vector, we construct an in-
vertible model on an augmented input space Xayg. Similar to [Huang
et al. 2020], each input vector x is appended with samples from a
standard normal distribution as shown in Fig. 3 (right). This allows
us to improve the expressibility of the latent space at the cost of an
increased dimension (from 3 to 4) for final image manipulation.

3.5 Optimization and inference

Similar to other normalizing flows, we train our INN by MLE where
the likelihood is given by Eq. 5. The network thus learns to con-
ditionally map a target pixel to a latent vector. However, when
presented with an entire frame, there is no easy way to extract a
single low-dimensional vector that captures style. For that, we aug-
ment MLE training with a reconstruction loss to force the per-pixel

representations of the same frame to lie closer in the latent space
(see Fig. 1).

Likelihood loss: To restrict the magnitude of gradients for
backpropagation, it is customary to minimize the negative log-
likelihood (NLL) instead of likelihood since the logarithmic trans-
form is monotonic. The NLL loss is:

LNLL(XpsY,D) = —IOng(ggl(Xp;cp)) - l°g|Vg§1(Xp;Cp)|
)
- log|Vg§1(xp;cp)|

B log 27 + (951 (xps cp))2
N 2

This result follows since we choose a standard normal z,~N (0, 1)
as the base distribution with the following log-likelihood:

1 1
log pz(2) = — log2r - = ||z I )

The first term is a constant w.r.t. z and can be dropped during
training. Due to this loss, the INN learns a bijective mapping from
the distribution of pixels to the chosen latent, conditioned on the
encoded input pixel. Through MLE, we encourage per-pixel latents
to follow a standard normal distribution as shown in Fig. 4 (right).

Reconstruction loss: Our secondary requirement is for pixels of
the same frame to cluster together in the latent space Z. We achieve
this by first passing all K pixels of frame i through the INN in
reverse, and computing the centroid of their latent representations,

K
d= 2 ) g5t (b CR)), ©)
p=1

where 7! is the per-frame style vector. Then, we reconstruct the
frame with K forward passes of the INN using the single extracted
style latent z* but different conditional inputs. Finally, we compute
the reconstruction loss Lyec for each pixel of an image as follows:

Lree(xboyh) =Il 90(z: C(yh) — xb Il (10)
The reconstruction loss enforces a similar value of the style vector
z for the entire frame. We also observe that this simple constraint
on the latent representation allows mapping of dissimilar frames
in the input space to distant and distinct regions in the latent space
(see Fig. 1).
Optimization of our INN is done bi-directionally with the total
loss as the sum of the NLL loss £y 1, and the reconstruction loss
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Figure 3: Changes in INN architecture to decrease the latent style vector to 2 dimensions (left) or increase to 4 dimensions

(right).

Lrec. After successful training, the INN can be used to extract an
overall per-frame style vector. This is achieved by running a reverse
pass for each pixel of a given image and computing the centroid
according to Eq. 9. In Fig. 4, we show the change in the latent space
for the training samples due to the addition of Lyec.

4 RESULTS

In this section, we evaluate the efficacy of our method in encoding
the style of a target domain image into a low-dimensional latent
space for the task of forward and inverse tone mapping. First, we
compare our approach of conditioning color mapping on a style
with the traditional approach of conditioning on the input image
(Sec. 4.2, comparison with HDRNet). Then, we demonstrate that
the existing combination of PCC with dimensionality reduction
approaches (PCA and VAE) gives far inferior results as compared
to our INN (Sec. 4.3). We report results in terms of PSNR (for RGB
values) and FLIP [Andersson et al. 2020] here, and CIELab in the
appendix. We choose these metrics because they are sensitive to
color differences (unlike SSIM).

4.1 Datasets

We rely on two sources of SDR-HDR pairs. For images, we use
Adobe-MIT 5K dataset [Bychkovsky et al. 2011]. Each RAW image
in this dataset was tone-mapped (retouched) by 5 experts, who
produced results in different styles. We report the results for expert
C in the main paper, and for other expert in the supplementary ma-
terials. All images are rescaled to the height of 480 pixels for faster
training and then split into a random 80/20% train/test sets. Due to
the pixel-wise formulation of our INN, the same trained model can
be employed on images of different resolutions at inference time.
Due to the lack of any publicly available manually color graded
video datasets, we decoded 3 Blu-ray movies, namely “BBC Planet
Earth II Episode 3 - Jungles”, “BBC Blue Planet II Episode 5 - Green
Seas" and “The Lego Batman Movie". 4K HDR content is often
sold with two disks — one color graded for 4K HDR and another
for 1080p SDR displays. We took advantage of that by extracting
content from both disks. The frames from SDR and HDR streams
were time-synchronized by finding the offset that maximized cross-
correlation. Finally, the frames were manually inspected to ensure
close correspondence. For good diversity, we construct a sequence
from each video by collecting every 120 frame. For each video
sequence, the first 80% of frames are used for training and the
remaining 20% for testing. On average, we have 500-800 frames in
the training set per movie. Each frame is rescaled to a resolution

of half HD (960 x 540). Both SDR and HDR RGB pixel values are
display encoded (BT.2020 + PQ for HDR, BT.709 + sRGB for SDR).

Publicly available datasets proposed in methods like [Chen et al.
2021; Kim et al. 2019] do not include manual color grading, but
instead rely on Youtube’s automatic HDR to SDR conversion pro-
cess. The primary objective of our work is to model manual color
grading, making such datasets unsuitable for the task of distilling
color artist’s style.

4.2 Conditioning on style vs. image content

The central assumption of current deep learning tone mapping
methods is that the right mapping can be found by analyzing global
and local image features [Gharbi et al. 2017]. Based on that as-
sumption, the existing methods employ large convolutional and/or
fully connected networks operating on an entire image. In contrast,
our INN operates at the pixel level to effectively distill the image-
specific style vector without analyzing the image content. Here,
we test which approach can better predict the results of manual
tone-mapping and color grading. We train our INN separately on
pairs of HDR-SDR frames taken from each movie from the movies
dataset (see Sec. 4.1). Our pixel-wise training scheme allows us to
operate on high-resolution images. Inference for each frame of half
HD resolution (960 % 540) takes 0.025 seconds. Each model is trained
for 80 epochs with an initial learning rate of 5e — 4 with gradual
learning rate scheduling. Additionally, for a more challenging set-
ting, we train our INN on the Adobe-MIT 5K dataset [Bychkovsky
et al. 2011].

As a representative example of existing learning-based tone map-
ping, we compare our results with HDRNet [Gharbi et al. 2017]
(implemented in PyTorch [Ge 2021]), retrained on the same data as
our method. The numerical results and quality metric distributions,
shown in Fig. 6, demonstrate a dramatic improvement of 10-16 dB
as compared to HDRNet. This shows that information about the
style is necessary to faithfully reproduce manually color-graded
or retouched images. Although HDRNet is a much larger network,
consisting of 482K trainable parameters compared to 31K for our
INN, it cannot infer the target image based on the source image
alone. A few example images shown in Fig. 5 demonstrate that
HDRNet fails to reproduce accurate color and tones of the target
images. Similar to HDRNet, we see from Table 1 that other state-
of-the-art image enhancement methods that do not model style
struggle to reconstruct image-specific retouching with an accuracy
higher than 25 dB. Please note that due to the novelty of our ap-
proach of encoding style as meta data, a direct comparison between
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Figure 4: The figure shows the distribution of the latent color representation for different frames from the training set with (left)
and without (right) the reconstruction loss L;ec. We see that the latent vectors of the training set follow a normal distribution.
Frames are taken from the BBC documentary Planet Earth “Jungles” and the INN trained to encode the style of frames to 2
dimensions is used for better visualization.
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Figure 5: Qualitative comparisons with different methods on 3 datasets for the task of forward tone mapping. The target for
MIT5k dataset is the expert retouched image. Additional results are provided in the appendix.

Table 1: Comparison of our INN with state-of-the-art methods that assume one-to-one mapping for Expert C from the MIT5k
dataset [Bychkovsky et al. 2011]. The substantial improvement in performance clearly demonstrates how distilling style can
lead to almost perfect reconstruction accuracy. The values for our and HDRNet methods were obtained using the same train/test
splits, and the values from other methods are taken from the respective works.

HDRNet UPE GleNet 3DLUT StarEnh Curl DPE CRSNet DLPF Ours
[Gharbi et al. [Wang et al. [Kim et al. [Zeng et al. [Song et al. [Moran et al. [Chen et al. [He et al. 2020] [Moran et al.
2017] 2019] 2020a] 2020] 2021] 2021] 2018] : 2020]
PSNR 22.49 23.24 25.88 24.92 25.46 24.04 23.76 24.23 23.93 39.22
Params. 482K M - <600K 14M 14M 3.34M 36K 1.8M 314K

our work and the different image enhancement methods is not fair.
However, in Table 1, we show the results to delineate the need of
our approach of style conditioning over conventional CNN based
image-to-image mapping to achieve near perfect reconstruction.
Next, we train our INN-based mapping for the task of inverse
tone mapping. While inverse tone-mapping often involves bit-depth

expansion and hallucination of over- and under-exposed pixels [Eil-
ertsen et al. 2021], here we focus on the problem of learning global
SDR—HDR color mapping. We use the same movie datasets as for
the tone-mapping task but swap the source and target frames. The
results shown in Fig. 7 demonstrate a substantial improvement of
10-12 dB over HDRNet.
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Figure 7: Comparison of results on different datasets for the task of inverse tone mapping on the movies dataset. To adapt
PSNR to HDR images, we use perceptually uniform PU21 transform [Mantiuk and Azimi 2021]. The labels for the violin plots
are consistent with Fig. 6. The results for Ours, PCA and VAE are reported for the model that encodes the style representation

into 3 dimensional latent vector.

4.3 Other dimensionality reduction techniques

As explained in Sec. 3.1, the color mapping can be expressed as
PCC (Eq. 2) and then the size of the style matrix can be reduced
using standard dimensionality reduction methods, such as PCA or
VAE. Here, we compare those standard approaches with our INN.

Principal component analysis: We ran PCA on training pairs
to reduce the flattened style matrix Mg,; into the required number
of latent dimensions (2-4). During test time, Mg, is reconstructed
from the principal components and used to map the colors. We
observe from Fig. 6 (forward tone mapping) and Fig. 7 (inverse tone
mapping) that the strict linearity assumption of PCA results in poor
performance. Qualitative result comparisons are provided in Fig. 5.

Variational autoencoder: Next, we replaced the linear projection
with a deep auto-encoder architecture. Since we are interested in an
interpretable latent space such as the one depicted in Fig. 8, we opted
for a VAE where the latent follows a normal distribution [Kingma

and Welling 2013]. The input to the VAE is the original matrix of
polynomial coefficients M. The goals is to train the VAE so that the
matrix can be predicted from a low-dimensional latent vector. The
training loss includes a reconstruction loss between predicted (after
matrix multiplication using decoded matrix M) and ground truth
pixels and the evidence lower-bound. For a fair comparison with our
method, we chose a fully connected network with approximately
the same number of parameters. We empirically found the best
results for a network with 6 hidden layers for the encoder and the
decoder, with a total of 31K trainable parameters. The network
was trained for 500 epochs with an initial learning rate of 5e — 4
with gradual learning rate scheduling. The weights given to the
reconstruction and the evidence lower-bound were A = 1,8 = 1le -3,
respectively. Although the VAE attains higher quality scores than
PCA and its results are comparable to HDRNet (which does not use
a style vector), VAE still performs much worse than our INN (see
Fig. 6 and 7).
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Figure 8: Example mapping obtained by manipulating a 2-dimensional style vector. Both dimensions control brightness and
color temperature. Such style space enables assisted color grading, which mimics the range of styles found in the training

image pairs.

5 APPLICATIONS
5.1 Assisted color grading

Color grading is a manual, labor-intensive process that requires
a substantial set of skills. Our method can be used to partially
automate this process. First, we ask the color artist to manually
color grade N scenes, which we use to train our model. Then, we
require the color artist to adjust only two or three parameters for
the remaining scenes. Such adjustment is much easier than using
color grading tools with dozens of different color adjustments. The
added benefit of using our mapping is that the style is likely to be
more consistent across the movie than if a manual color grading
tool was used.

Since we do not have access to RAW video frames, typically
used for color grading, we demonstrate this application using HDR
frames from Blu-ray movies as input and the SDR frames as the
color-graded target. Our results, from Sec. 4, have already demon-
strated that our mapping can faithfully reproduce the SDR target
frames. Figures 8 and 10 show example frames generated by adjust-
ing a 2-dimensional style vector. Each frame comes from a different
movie, for which a separate INN was trained. The style space allows
for convenient exploration of tone and color adjustments that have
been applied to previously color graded frames. The dimensions of
the space are easy to interpret: they represent the change of color
temperature, contrast and brightness. In a supplementary video, we
demonstrate a mock interface of the real-time color grading tool.

43
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Figure 9: Rate-distortion curves, comparing the learned INN
to JPEG XT. HDR Image quality (y-axis) is measured by com-
puting PSNR on PU21 encoded images [Mantiuk and Azimi
2021].

5.2 Transmission of SDR and HDR video
content

The current practice is to encode and distribute SDR and HDR
content separately (on Blu-ray or via streaming), which approxi-
mately doubles the required storage space. There exist methods for
concurrent SDR+HDR image [Artusi et al. 2019] and video coding
[Mantiuk et al. 2006], but they require transmitting a substantial
amount of additional data. Here we show that our color mapping
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Figure 10: Additional results showing assisted color grading by manipulating a 2-dimensional style vector on two datasets - Planet
Earth Episode 1 Islands (top) and Lego Batman movie (bottom). Both dimensions control brightness and color temperature.

can substantially reduce, or even eliminate, the need for auxiliary
data.

We compare our inverse tone mapping INN from Sec. 4 with the
coding used in JPEG XT (Profile A with open-loop encoding). The
frames are encoded individually using either JPEG XT or a regular
JPEG + our learned color mapping. JPEG XT encodes HDR images
by storing a tone-mapped version of an HDR image (base layer), a

custom mapping function that predicts the HDR image from the
tone-mapped image, and the difference between the predicted and
the original HDR image (extension layer). Both base and extension
layers are encoded using a standard JPEG codec. We replicate such
encoding but replace the custom mapping used in JPEG XT with
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RGB PCC-2 PCC-3 PCC-4 PCC-4+VGG  PCC-4 +Hist Ding2 Dings Dingy
PSNR 28.98 31.52 33.02 41.68 30.130 35.69 I\)/i‘; ;;gz ;g (Z);} ;? z;
Len(ep) } ’ i 34 % “ows T s785 T ies iiso

Table 2: Ablation studies over the choice of conditioning vector (left) and over the dimensionality of the latent style vector for
different methods (right). All results are reported for the “BBC Planet Earth Jungles" movie in terms of PSNR (dB).

our generative color mapping INN. Then, we measure the rate-
distortion curves for a test set from the “Jungles” movie. The rate-
distortion curves, shown in Fig. 9, depict a consistent improvement
in performance when using our INN (employing both the base
and extension layers). At an extremely low bit rate of 0.5, the INN
without an extension layer produces the best quality images (PU-
PSNR of over 30 dB).

5.3 Assisted dynamic range expansion for HDR
displays

The vast majority of video content has been color graded for SDR
displays and cannot take advantage of the higher luminance and
contrast offered by HDR displays. Here, we show that it is possible to
use our mapping function to expand SDR content for HDR displays.
It should be noted, however, that our mapping will not be able to
reconstruct details in the saturated parts of an image [Eilertsen
et al. 2017a].

This process is identical to color grading, explained in the pre-
vious section, except we infer the HDR frames from their SDR
counterpart. Similar to forward tone mapping, in this application
we require only a small portion of the HDR frames to be manually
color graded by color experts. Results of such assisted dynamic
range expansion are included in the appendix.

6 ABLATION STUDY

To achieve the best performance, we conduct an ablation study
over the choice of the conditioning vector ¢, for training the INN.
Furthermore, we provide a study over the dimensionality of the
style vector.

6.1 Conditioning vector

First, we study the effect of using different degrees of polynomials
in PCC as our per-pixel conditioning vector. We conducted an
ablation study over the 15! (RGB), 24, 3" and 4P degree polynomial
expansion. Second, we study the effect of using image statistics as
the conditioning vector in addition to the 4th degree polynomial. We
train our INN architecture in such that each pixel-wise conditioning
vector (PCC) is concatenated with high level features extracted
from the entire image using an additional feed-forward network
H. For this task, we use a pre-trained VGG network, similar to
[Ardizzone et al. 2020; Denker et al. 2021] as the feed-forward
network. The final conditioning vector for a given pixel is given as
¢p = [C(yp), H(y)], where the weights of H(-) are simultaneously
being updated alongside the weights of the INN. Finally, we train
our INN using the 4th degree polynomial concatenated with the
histogram of the luma channel as the conditioning vector. Table 2
(left) shows that the INN performs best when no additional image
statistics are added to the 4M-degree PCC conditioning vector. Note

that different conditioning vectors have different lengths, as shown
in the second row of Table 2 (left).

6.2 Dimensionality of the style vector

Next, we investigate the impact of changing the dimensionality
of the latent style vector. Mapping the style of a target domain
image to a low dimensional latent representation allows easy user-
interactive image manipulation. To this end, we provide additional
network architectures in Sec. 3.4.2 to train our INN for 2 and 4 latent
style encodings. In Table 2 (right) we further provide a comparison
of similar dimensions of the latent representations for PCA and
VAE.

7 CONCLUSIONS

This work highlights the importance of modeling style when learn-
ing global image transforms, such as those between differently
color-graded SDR-HDR images. We conclusively show that extract-
ing a style vector from a target image considerably improves the
reconstruction quality. This is due to the existence of an infinite
number of equally plausible solutions, each representing a unique
color artist’s choice. Our proposed conditional INN effectively mod-
els this one-to-many mapping by extracting and encoding this
artistic choice from examples of image pairs into a low-dimensional
style vector. We show that our method significantly outperforms
state-of-the-art deep architectures that ignore style, as well as al-
ternate dimensionality reduction methods that incorporate latent
style but cannot encode it efficiently. Moreover, our invertible frame-
work enables interactive style manipulation by adjusting the low-
dimensional latent vector. The main focus of our work is color
mapping for video content, which is global in nature (the same for
all pixels in an image, M : R® — R3). However, our method can
be easily extended to a manual local mapping by splitting frames
into a number of tiles, as done in [Eilertsen et al. 2015].
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APPENDIX

In this appendix, we further report quantitative results for both
forward and inverse tone-mapping on different datasets using ad-
ditional metrics (Sec. 1). We also investigate whether a single INN
can effectively capture all the expert styles from the MIT-Adobe
FiveK dataset (Sec. 1.3). Finally in Sec. 2, we show improvement in
performance due to the proposed bi-directional training with NLL
L1 and the reconstruction loss Lyec.

1 ADDITIONAL RESULTS

1.1 Forward tone mapping

The violin plots in Fig. 11 compare our INN with HDRNet, PCA
and VAE using the CIE DE 2000 [Sharma et al. 2005] metric. Similar
to Fig. 6 in the main document, there is a substantial improvement
in reconstruction quality due to correctly extracting and utilizing
style.

For the MIT-Adobe FiveK dataset, we provide results for all the
experts in Fig. 12. These are consistent with images retouched by
expert C reported in the other figures. Here, a separate network is
used for each expert to better compare with existing works.

1.2 Inverse tone mapping

For the task of inverse tone mapping, Fig. 13 shows similar violin
plots for 2 more metrics: FLIP and CIE DE 2000. Before running the
SDR metrics, we encode the reconstructed and ground truth HDR
images with PU21 encoding.

1.3 Image content vs. style conditioning

Additionally, we trained a single INN for all 5 experts of MIT-Adobe
FiveK, something that can not be done with HDRNet because of
the lack of conditioning on style. Since we learn a one-to-many
mapping, the same network produces outputs in different styles
by utilising different latent vectors. Fig. 14 shows that our single
INN successfully captures the style of all the experts. We further
report the quantitative comparison of our single trained INN on
the individual test set for each expert in Table 4. Refer to Fig. 15
and Fig. 16 for qualitative comparisons on selected scenes. The
deep-learning methods, like HDRNet, that model expert retouching
with one-to-one mappings are unsuitable for this task since a single
network cannot learn different styles corresponding to the experts.
We see that our INN performs much better than PCA and VAE and
produces artifact-free images that better match the required style.

2 BI-DIRECTIONAL TRAINING

When trained with the NLL loss £y, our INN learns to condition-
ally map a target pixel to a latent vector. However, when presented
with an entire frame, there is no easy way to extract a single low-
dimensional vector, that captures the style of the mapped frames.
Recall that we augment MLE training by forcing the per-pixel rep-
resentations of the same frame to lie closer in the latent space.

In Table 3, we show the effect of our proposed bi-directional
training, by addition of the reconstruction loss Ly alongside LNy
The NLL loss makes the style vectors resemble a predetermined
latent distribution (the standard normal in our experiments), while

CVMP 22, December 1-2, 2022, London, United Kingdom

the reconstruction loss ensures that pixels from the same frame
have similar style vectors.

Table 3: Ablation study on the effect of bi-directional training for the
task of forward tone-mapping for the “BBC Planet Earth II Episode
3 - Jungles" dataset.

\ \ L | L+ Lrec
PSNR T 36.80 41.68
FLIP | 0.108 0.070
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Figure 11: Comparison of results on different datasets for the task of forward tone mapping for CIE DE 2000 metric. Our method achieves a
substantial improvement in performance compared to other dimensionality reduction methods across datasets. The purple ‘+ in the plots
show the mean and black ‘x’ show the lowest 5" percentiles. Note that the y-axis for CIE DE 2000 metric has been reversed.
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Figure 12: Comparison of our results with other methods on the remaining 4 experts from the MIT-Adobe FiveK dataset. Note that our method
achieves a substantial improvement in performance compared to other dimensionality reduction methods across experts. The purple ‘+ in the
plots show the mean and black ‘<’ show the lowest 5" percentiles. Note that the y-axis for FLIP and CIE DE 2000 metric have been reversed.

Table 4: Additional quantitative results for each expert from the MIT-Adobe FiveK dataset for a single model trained on all experts. Results
are reported in terms of PSNR, FLIP and CIE DE 2000 metric. Note that HDRNet is unsuitable for this task since a single network cannot learn
different styles corresponding to the experts.

‘ Expert A Expert B Expert C Expert D Expert E
PSNR T 36.4 38.1 38.9 38.2 36.0
FLIP | 0.116 0.104 0.099 0.100 0.124
CIEDE | 2.11 2.02 1.91 1.93 2.38
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Figure 13: Here we show the results for the task of inverse tone mapping on two other metrics: FLIP and CIE DE 2000. To adapt the metrics to
HDR images, we use perceptually uniform PU21 transform [Mantiuk and Azimi 2021]. The purple ‘+’ in the plots show the mean and black ‘X’
show the lowest 5/ percentiles. Note that the y-axis for FLIP and CIE DE 2000 metric have been reversed.
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Figure 14: Here we show a comparison of our method with PCA and VAE when a single model is trained for all experts from the MIT-Adobe
FiveK dataset. We report the results in terms of PSNR, FLIP and CIE DE 2000 metric. Note that the y-axis for FLIP and CIE DE 2000 metric have
been reversed. The test set in this case contains 5000 images, 1000 for each expert. Additional inference results for each expert individually are
reported in Table 4.
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Figure 15: Qualitative comparison of methods that simultaneously capture the different styles of all experts of the MIT-Adobe FiveK dataset.
The bottom row shows the reference images. Quantitative results over all test images are plotted in Fig. 14. Note that HDRNet is unsuitable for
this task since a single network cannot learn different styles corresponding to the experts.
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Figure 16: Here we show qualitative comparison of methods that simultaneously capture the different styles of all experts of the MIT-Adobe
FiveK dataset for a different image. The bottom row shows the reference images.
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