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Abstract

A number of High Dynamic Range (HDR) video compression algorithms proposed to date have either
been developed in isolation or only-partially compared with each other. Previous evaluations were
conducted using quality assessment error metrics, which for the most part were developed for qualitative
assessment of Low Dynamic Range (LDR) videos. This paper presents a comprehensive objective and
subjective evaluation conducted with six published HDR video compression algorithms. The objective
evaluation was undertaken on a large set of 39 HDR video sequences using seven numerical error metrics
namely: PSNR, logPSNR, puPSNR, puSSIM, Weber MSE, HDR-VDP and HDR-VQM. The subjective
evaluation involved six short-listed sequences and two ranking-based subjective experiments with hidden
reference at two different output bitrates with 32 participants each, who were tasked to rank distorted
HDR video footage compared to an uncompressed version of the same footage. Results suggest a strong
correlation between the objective and subjective evaluation. Also, non-backward compatible compression
algorithms appear to perform better at lower output bit rates than backward compatible algorithms
across the settings used in this evaluation.
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1. Introduction

High Dynamic Range (HDR) imaging is able to capture, store, transmit and display the full range of
real-world lighting with much higher precision than mainstream Low Dynamic Range (LDR) (also known
as Standard Dynamic Range (SDR)) imaging. However, a significantly large amount of data needs to be
stored and processed for HDR video. To allow HDR video to be handled practically, a number of pre/post
processing (compression) algorithms have been proposed to convert HDR video data to an encoder
friendly format. However, to date, these compression algorithms have only partially been compared
with each other. This paper undertakes a comprehensive objective and subjective comparison of six
previously published or patented HDR video compression algorithms and in doing so, follows a detailed
methodology for evaluation and qualitative assessment of compressed HDR video content. In addition,
a correlation is computed between the subjective and objective results for a better understanding of the
shortcomings of current objective evaluation techniques for HDR video quality.

The primary contributions of this work are: a) An objective evaluation of six HDR video compression
algorithms using seven full-reference quality assessment (QA) metrics, b) Two subjective evaluations of
the compression algorithms at two different output bitrates, using a ranking method with hidden reference
conducted with 32 participants each; and c) An assessment of the correlation between the objective and
subjective evaluations.

In addition, the objective QA results are averaged over 39 sequences at 11 different quality settings
to generalize the overall rate-distortion (RD) characteristics of the compression algorithms.
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2. Related work

The acquisition of HDR imagery results in a large amount of floating point data which needs to be
compressed in order to be handled efficiently on existing image or video infrastructure. This problem
has been tackled through a variety of image and video compression algorithms which convert input HDR
data to video encoder input formats. A brief review of compression algorithms is available in Banterle
et al. [7].

Substantial research has also been conducted on evaluation of QA metrics for LDR image/video.
Avcıbaş et al. [1] and Sheikh et al. [41] evaluated a number of QA metrics on distorted still images
and concluded that metrics based on spectral magnitude error, perception, absolute norm and edge
stability are most suitable for detecting image artefacts. They also conclude that although multiple QA
metrics perform well on multiple image datasets none of them performed at par with subjective quality
assessment. Seshadrinathan et al. [39] conducted an objective and subjective video quality assessment
(VQA) and concluded that dedicated VQA metrics such as Motion Based Video Integrity Evaluation
(MOVIE) perform significantly better and have higher correlation with subjective results than still-image
QA metrics.

In comparison, substantially less research has been conducted on development and evaluation of
dedicated HDR QA metrics. Existing LDR QA metrics such as PSNR, SSIM [46] and VIF [40] have
been extended to handle HDR values using Perceptually Uniform (PU) encoding [3]. Recently, a few
full-reference HDR QA/VQA metrics have been proposed such as High Dynamic Range-Visible Differ-
ence Predictor (HDR-VDP) [28, 34], High Dynamic Range-Visual Quality Metric (HDR-VQM) [36] and
Dynamic Range Independent-Visual Quality Metric (DRI-VQM) [2].

A few evaluations have been conducted to test the performance of the proposed metrics. Čad́ık et al.
[10] conducted an evaluation of HDR-VQA metrics with a dataset consisting of six HDR sequences using
an HDR display and concluded that although the predictions by DRI-VQM and HDR-VDP are most
suited for HDR-HDR image pairs, executing DRI-VQM becomes prohibitively expensive for sequences
with greater than VGA resolution. Azimi et al. [4] tested the correlation between seven QA metrics and
subjective quality scores with a dataset of 40 HDR video sequences and five types of distortions. The
work demonstrates that HDR-VDP-2 [28] outperforms all other QA metrics when measuring compression
induced distortions and has the highest correlation with the subjective quality scores. However, VIF [40]
using PU encoding produces the best overall (tested against all distortions) results. Similar benchmarking
evaluations of QA metrics for HDR image/video content have been conducted by Valenzise et al. [45],
Mantel et al. [26] and Hanhart et al. [15] and Minoo et al. [32].

2.1. Evaluation of HDR video compression methods

Despite the research conducted into development and evaluation of QA/VQA metrics for both LDR
and HDR content, very little has been done to evaluate existing HDR video compression algorithms
using both QA metrics and psychophysical experiments. Koz et al. [20] conducted a comparative survey
on HDR video compression which compares the two different approaches to HDR video compression
as explained later in Section 3.1. However, this work does not bring together objective and subjective
evaluation techniques in order to provide a comprehensive evaluation of individual algorithms across a
large set of sequences.

Recently, Hanhart et al. [17] conducted an evaluation of nine HDR video compression algorithms
submitted in response to the Motion Pictures Experts Group (MPEG) committee’s Call for Evidence
(CfE) [25] to evaluate the feasibility of supporting HDR and Wide Color Gamut (WCG) content using the
High Efficiency Video Codec (HEVC) [43] encoder. The paper concludes that the proposals submitted
to MPEG can noticeably improve the standard HDR video coding technology and QA metrics such
as PSNR-DE1000, HDR-VDP2 and PSNR-Lx can reliably detect visible difference. Azimi et al. [5]
conducted a study to evaluate the compression efficiency of two possible HDR video encoding schemes
(as defined in MPEG CfE [25]) based on the perceptual quantization of HDR video content [31] and tone
mapping-inverse tone mapping with metadata. The paper concludes that for specific bitrates, subjective
evaluation results suggest that HDR video generated by the perceptual quantization scheme were rated
higher than the videos reconstructed using the inverse tone-mapping scheme. Similar evaluations on
HDR video content have been conducted by Dehkrodi et al. [6], Dong et al. [11], Rerabek et al. [38],
Hanhart et al. [16], Narwaria et al. [35].
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3. Method and Materials

This section introduces the compression algorithms, sequences and overall research method followed
for preparing the materials for the objective and subjective evaluation. The individual aspects of the
objective and subjective evaluations are presented in Section 4 and Section 5 respectively.

3.1. HDR video compression algorithms
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Figure 1: Two generic approaches to HDR video encoding and decoding

HDR video compression algorithms can be classified into two approaches: non-backward compatible
and backward compatible. The non-backward compatible approach, shown in Figure 1a, takes advantage
of the higher bit-depth support (typically 10-14 bits) in state-of-the-art video encoders [44, 43]. Using
a range of transfer functions which work on either linear RGB data or perform colorspace conversions
followed by luminance to luma mapping [21, 29, 14] they manipulate captured data in order to pack as
much information as possible within the specified bit-depth limit. The resultant optimized video stream
is then passed to the encoder.

The backward compatible approach, as shown in Figure 1b, splits the input HDR video stream into
a base and a residual stream, each with a fixed number of bits, typically 8 or 10 which can be encoded
using any existing encoder such as H.263/MPEG-2, H.264/AVC [44], H.265 (HEVC) [43] etc. A few
backward compatible algorithms [47, 27, 23] contain a tone-mapped (TM) stream which enables it to
be played on legacy video players. The residual stream contains additional information to be used for
reconstruction of HDR frames during decompression. These algorithms typically use dual-loop encoding
where the base stream is first encoded and decoded back to create the residual stream. The resultant
residual stream compensates for the distortions introduced by the encoder at a chosen quality level, thus
minimizing the loss in quality during reconstruction of HDR frames.

Six, published, state-of-the-art algorithms, two following the non-backward compatible and four fol-
lowing the backward compatible approach have been considered in this work. A brief chronological
description of each is provided below:

3.1.1. Mantiuk (hdrv)

Mantiuk et al. (2004) [29] proposed a non-backward compatible algorithm extending the existing
MPEG-4 encoder to accommodate HDR video content. The algorithm maps linear RGB or XYZ chan-
nels, to an 11-bit perceptually uniform luma space Lp and 8-bit chroma channels, u′ and v′, similar to
LogLuv encoding [21]. The method extends discrete cosine transforms (DCT) by encoding sharp contrast
edges in spatial, rather than frequency domain. This avoids ringing artefacts due to the quantization of
the high value frequency coefficients. The DCT extension in spatial domain was not implemented in this
work, since it was deemed redundant due to the advances made in video encoders since 2004.
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3.1.2. Ward and Simmons (hdrjpeg)

Ward and Simmons (2004) [47] proposed a backward compatible algorithm to encode HDR images.
The proposed algorithm extends the standard JPEG image format by tone mapping input HDR frames
using the photographic TMO [37] and storing multiplicative HDR information, defined as the ratio

between luminance of the HDR and the tone mapped frame: RI(x, y) =
Yhdr(x,y)

Yldr(x,y)
. The ratio image is

down-sampled to reduce storage requirements. The implementation in this work extends the image
compression algorithm to HDR video by using a temporally coherent version of the photographic TMO
[19] and a dual-loop encoding scheme wherein the TM stream is encoded and decoded back to create a
ratio stream. Down-sampling of the ratio frame has not been implemented as that would result in frame
quality reduction.

3.1.3. Mantiuk (hdrmpeg)

Mantiuk et al. (2006) [27] proposed a backward compatible algorithm. The base stream is a tone-
mapped LDR stream using the photographic TMO [37]. Using the dual-loop encoding scheme, the TM
stream is encoded and decoded followed by a colorspace conversion of both the HDR and decoded LDR
frames in order to compute a monotonically increasing reconstruction function (RF). The RF is required
to construct a predicted HDR frame (pHDR) which is then subtracted from the original to create a
residual frame: Resframe = HDR− pHDR. The residual frame undergoes noise reduction using a visual
model which removes invisible noise. The residual stream is then passed through the encoder, thus,
completing the second loop. The RF and other additional information are stored as auxiliary meta data.

3.1.4. Lee and Kim (rate)

Lee et al. (2008) [23] proposed another backward compatible algorithm where the base 8-bit TM
stream is created using a temporally coherent TMO [22]. Using the dual-loop encoding scheme, the TM
stream is encoded and decoded to create a ratio stream similar to [47]. Subsequently, a bilateral filter is
applied to the ratio frames to reduce noise artefacts. The ratio stream is then passed through the encoder
completing the second loop. A Lagrangian optimization technique encodes the secondary stream at a
higher quantization parameter (QP) value resulting in a reduced file size compared to other backward
compatible algorithms where the same QP values are allocated to both base and residual streams. A
block-based extension of this algorithm was later proposed by Lee et al. (2012) [24] which uses a
perceptual quantization similar to hdrmpeg. However, this extension is a not a part of this evaluation.

3.1.5. goHDR (gohdr)

goHDR Ltd. (2009) [8] proposed a backward compatible algorithm which uses two 8-bit streams to
encode luminance and chroma information separately. The base stream is created by calculating the
luminance YHDR from the HDR frame followed by bilateral filtering, log encoding and sigmoidal tone
compression of the luminance stream. Using a dual-loop encoding scheme, the residual stream is created
by decoding and inverting the TM luminance frame (Yinv) and dividing the input HDR frames with
the inverted luminance such that Resframe = HDR

Yinv
. The residual stream is again log encoded and tone

mapped using sigmoidal tone compression. The algorithm also produces a meta data which stores the
minimum and maximum luminance values at every frame and is used during reconstruction.

3.1.6. Garbas and Thoma (fraunhofer)

Garbas and Thoma (2011) [14] proposed a non-backward compatible algorithm by modifying the
Adaptive LogLuv algorithm [33] and adding temporal coherence to minimize flickering artefacts in HDR
video. The algorithm converts linear RGB values to Lu’v’ colorspace by converting real-world lumi-
nance to 12-bit luma and adjusting color information into 8-bit u′ and v′ channels similar to LogLUV
encoding[21]. The L12u

′v′ frame is passed to the encoder and an auxiliary stream stores the minimum
and maximum luminance value of every frame which is used during reconstruction.

Unless otherwise stated, the reference H.264/AVC [44] encoder was used in this work for all encoding
purposes.

Disclaimer: Although, every effort has been made to faithfully reimplement the algorithms, it cannot
be guaranteed that the re-implementations will produce the exact results as the original implementations.

3.2. HDR video footage

The objective evaluation in this work uses a large set of 39 HDR video sequences with an average
dynamic range spanning between 14 − 23 stops (≈ 42 − 69 dB). Subsequently, the average dynamic
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range for the each of 39 sequences are then measured and after careful consideration six sequences were
short-listed for the subjective evaluation. The selection ensured that the sequences represent a variety of
HDR video production techniques and contain a large variation in dynamic range. All sequences used in
this work have full HD (1920×1080) resolution. Table 1 provides a brief description of the six sequences
along with a tone mapped frame, overall dynamic range and production techniques.

Thumbnail Name Resolution Dynamic
Range
(stops)

Production
Technique

Description

Welding 1920× 1080 21.36 Spheron VR
An indoor scene of a gas welding
machine producing intermittent
sparks of very high luminance.

CGRoom 1920× 1080 23.26 Rendered

An artificially rendered scene of
the dark basement with an over-
head lamp swinging as barrels
fall from an overhead shelf.

Jaguar 1920× 1080 28.45 Canon EOS
1Ds Mark-
II

An side profile indoor shot of
a Jaguar E-Type. Bright lights
are placed in the room to arti-
ficially expanding the scene dy-
namic range.

Seine 1920× 1080 24.55 Arri Alexa

Night outdoor scene of the river
Seine in Paris with a brightly lit
ferry producing the high lumi-
nance region of the scene. Scene
post-processed.

Tears of Steel 1920× 1080 17.24 N.A.
A clip extracted from the short
film produced as a part of the
Open Movie project by Blender
Foundation.

Mercedes 1920× 1080 19.36 Arri Alexa

An outdoor daylight scene of a
Mercedes showroom with a park-
ing lot. Scene post processed.

Table 1: Overview of the scenes used for the rating based psychophysical experiment.

For the purpose of this evaluation the sequences were graded (in absolute luminance terms) such that
the pixel values are in the range ∈ (10−3, 4000) cd/m2; within the range of the SIM2 HDR display [42]. A
tone-mapped frame of each sequence along with the overall dynamic range is given in the supplementary
materials and sequences common to both objective and subjective evaluations are marked suitably.

3.3. Preparation of HDR videos (HDRVs)

Figure 2: Compression Protocol used for the evaluation.
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Input HDR frames were converted to a format, suitable for the encoder, using the described algo-
rithms, creating intermediate ‘.yuv’ files which are then passed to the encoder, in this case H.264/AVC
creating a raw video format ‘.264’. This is subsequently decoded and decompressed - thus reconstructing
the HDR frames. This pipeline allows to plot the RD characteristics of each algorithm when the ‘.yuv’
files are encoded at different quality (QP) settings. Also, the duration of all HDRVs used in this work
was fixed to five seconds i.e. 150 frames encoded at 30 frames per second. To preserve the best frame
fidelity, the encoder sub-sampling format was set to High 4:4:4 for 3-channel ‘.yuv’ streams and High
4:0:0 for luma (only) streams respectively. The Group of Pictures (GOP) structure was set to I-P-P-P
with an Intra-frame period of 30 frames. Figure 2 provides a visual description of the pipeline.

4. Objective evaluation

This section introduces the QA metrics used for objective evaluation, describes the methodology
followed and finally provides overall results for all HDR video compression algorithms across all sequences
for each of the seven QA metrics.

4.1. Quality assessment (QA) metrics

• PSNR: The Peak Signal to Noise Ratio is the most widely used QA metric for judging image/frame
quality in compression applications. Although, not always analogous to human perception, PSNR
provides an indication of video quality, even in case of HDR video. For better suitability, this work
modifies the PSNR by fixing a peak value Lpeak = 104 and averaging the values across all three
channels.

• logPSNR: This metric modifies the PSNR by taking into account the logarithmic perception of
real-world luminance. Therefore, logPSNR was derived by log encoding each channel of the decoded
and uncompressed frames as follows such that r′1 = log10(r1). Similarly, g′1 and b′1 are calculated for
both decoded and uncompressed frames. Next, the Mean Square Error (MSE), for each channel is

calculated and logPSNR is computed such that logPSNR = 20 log10(
log10(Lpeak)√

MSE
). Again for better

suitability, the peak value was fixed such that Lpeak = 104 and the mean across three channels is
reported.

• puPSNR: Aydin et al.(2008) [3] proposed a dynamic range independent extension to QA metrics
such as PSNR and SSIM which is capable of handling luminance levels from 10−5 to 108 cd/m2.
The proposed metric maps real-world luminance to perceptually uniform code values derived from
the contrast sensitivity function. The resultant code values are used in the QA metric instead of
gamma corrected RGB or luma values.

• puSSIM: Similar to puPSNR, this metric is a dynamic range independent extension to the Struc-
tural Similarity Index Metric [46] which is used to measure the structural similarity between the
reference and decoded image pairs.

• Weber MSE: This QA metric calculates the mean square error between the reference and decoded
frames using Weber ratios and is defined as:

Q =
1

C

C∑
j=1

( (i1 − i2)2

i21 + i22

)
(1)

where C represents the number of channels, i1 and i2 are the reference and decoded HDR frames
respectively.

• HDR-VDP: Mantiuk et al (2011) [28] proposed a perceptual QA metric which estimates the
probability at which an average human observer will detect differences between a pair of images in a
psychophysical evaluation. This takes several aspects of the human visual system into account such
as a wide range of viewing conditions, intra-ocular light scatter, photo-receptor spectral sensitivities
and contrast sensitivity across the full range of visible luminance. This evaluation uses the Q
correlate of version 2.2.1 [34].

6



• HDR-VQM: Narwaria et al. [36] proposed the first dedicated HDR video quality metric which
uses perceptually uniform encoding, sub-band decomposition, short-term and long-term spatio-
temporal pooling to predict the reconstruction quality of HDR video sequences. Unlike HDR-VDP
which considers only physical luminance thus disregarding color information, this metric takes into
account the color information of the video frames. Also, unlike other modified/dedicated HDR QA
metrics this QA metric was primarily designed for HDR video and thus takes temporal coherence
into account. This evaluation uses HDR-VQM - version 2.

4.2. Quality and bitrate selection

For the objective evaluation, the HDRVs were encoded at 11 different quality settings which were
controlled by the quantization parameter (QP) of the encoder such that QP = 1, 5, 10, 15, 20..., 50. While
QP = 1 represents near lossless compression and maximum output bpp, QP = 50 results in a highly lossy
compression and minimum output bpp.

For the backward compatible algorithms except rate, the same QP was set for both the base
and residual streams. For the rate algorithm, the Lagrangian optimization formula QPresidual =
0.77×QPbase + 13.42 mentioned in [23] was used with automatic RD correction switched off.

4.3. Objective results

This section provides two sets of objective results. First, the six algorithms, were evaluated against
a larger set of 39 sequences. Figure 3 demonstrates the RD characteristics i.e. quality vs. output bitrate
for each of seven QA metrics.

Second, the algorithms were evaluated against the six short-listed sequences which were to be used for
the subjective evaluation. This facilitates the correlation between the objective and subjective evaluation
results. Figure 4 demonstrates the puPSNR and HDR-VDP and HDR-VQM results. To average the
results across all scenes while providing a fair comparison, the same set of scenes must be averaged for
each method and the data must be provided for a fixed set of bitrates or quality levels. Although, quality
variation is more commonly reported at fixed bitrates, this was difficult for the given set of scenes as
each scene required significantly different bitrate to encode. Therefore, the RD curves did not overlap
and the data could not be averaged properly. However, it was possible to average across the same set of
scenes if the quality levels were fixed and bitrate values were interpolated.

Finally, the supplementary material to this paper contains; a) The RD graphs (for 11 QP values),
plotted from raw-data averaged over 39 sequences, b) The HDR-VDP and puPSNR RD graphs for six
short-listed sequences plotted from raw-data points, c) puPSNR and HDR-VDP RD graphs with quality
variation on interpolated bitrates and d) QP vs. bitrate with 95% confidence interval bounds.

4.4. Objective Analysis and Discussion

A few salient points can be inferred from the objective evaluation results:

1. Perceptual QA metrics such as puPSNR, HDR-VDP and HDR-VQM, as seen in Figures 3 and
4 demonstrate that non-backward compatible algorithms using higher bit-depth outperform their
backward compatible counterparts at lower output bitrates.

2. The RD characteristics demonstrated by the perceptual QA metrics such as puPSNR, HDR-VDP
and HDR-VQM are similar to each other.

3. The inherent design of the backward compatible algorithms require a much higher bitrate to repro-
duce an acceptable image quality (without H.264 blocking artefacts). The mean output bitrate for
hdrjpeg and gohdr (backward compatible algorithms - with residual streams containing the luma
channel only) are similar to each other. The exceptions are hdrmpeg and rate. In hdrmpeg, both
the base and residual streams contain 3-channels and are encoded with High 4:4:4 sub-sampling.
Again in rate, the Lagrangian optimization applied to the residual stream reduces the overall output
bitrate, albeit at the cost of image quality.

5. Subjective evaluation

Most full reference QA metrics, were designed to evaluate image pairs without taking psychophysical
aspects of the human visual system into consideration. Although perceptual QA metrics are good
indicators of perceived image quality, the variation in objective results emphasizes the requirement for a
comprehensive subjective evaluation.
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Figure 3: Averaged RD characteristics (quality vs output bitrate) of six HDR video compression algorithms against seven
QA metrics over 39 sequences. Output bitrates shown in logarithmic scale.
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Figure 4: Average RD characteristics for the six short listed HDR video sequences.

5.1. Design

Multiple subjective evaluations at different image quality levels are ideally required to verify and
correlate the results with objective evaluation. However, such an undertaking is very time consuming.
Therefore, this work presents the results of two ranking-based psychophysical evaluations at two different
quality levels. A ranking-based evaluation was chosen since it requires only one HDR display and
guarantees that each ranked compression technique has a unique value, thereby ensuring quick and
decisive results as opposed to a full-pairwise comparison experiment. Also, the relative rapidity of the
process, approximately 20 minutes per participant, reduces fatigue.

The primary goal of the experiments was to rank and identify the order of each algorithm, across the
six short-listed sequences, at two different quality levels. Participants were tasked to rank six algorithms
for each of the six sequences, one at a time. For each sequence they had to view HDRVs from each
algorithm at least once. They were tasked to identify and rank the given HDRVs in order of their
resemblance to the clearly labeled reference HDRV. Also a hidden reference, identical to the labeled
reference was mixed with the algorithms.

The sequences and algorithms were randomly presented in order to avoid bias. While ranking the
sequences, participants were allowed to view the HDRVs as many times as required. The motivation
behind this was to be able to distinguish between HDRVs that are relatively close in quality without the
exhaustive full-pairwise comparisons.

5.2. Materials

Software resources included HDRVs from six compression algorithms, uncompressed reference HDRVs
and a graphical user interface (GUI) for the ranking-based experiment. Hardware resources included a
SIM2 HDR display [42] with a peak luminance rating of 4000 cd/m2, an LG 22′′ LED display with peak
luminance rating of 300 cd/m2 and a computer with a solid state drive for quick loading of HDRVs.

5.2.1. HDRVs for psychophysical experiment

Two fixed bpp(s) representing two quality levels were chosen based on the objective results as shown
in Figure 4. The lower quality (LQ) level was chosen at 0.15 bpp (approximately 8.8 Mbps - similar
to online streaming quality), such that image-quality distortions are clearly visible but not obscured by
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H.264 blocking artefacts. The higher quality (HQ) level was chosen at 0.75 bpp (approximately 44.49
Mbps - similar to blu-ray quality).

Following the chosen quality levels, the six sequences were encoded at different QP settings for each
algorithm to achieve the closest possible match to the target bitrate (within 5% error margin). Subse-
quently, the reconstructed HDR frames were converted to a custom file format suitable for displaying
the HDR frames at 30 fps on a SIM2 HDR display.

5.2.2. Software for psychophysical experiment

Figure 5: Screenshot of the evaluation software

A custom GUI application, shown in Figure 5, was specifically built for the ranking-based subjective
evaluation. It presents seven thumbnails each linked to an HDRV (labeled A-G), six from different al-
gorithms and a hidden reference for each sequence, on the left side of the screen. The clearly marked
reference HDRV (or ground truth) thumbnail is presented in the center. Each thumbnail, when double-
clicked plays the linked HDRV on the HDR screen. Participants are tasked to view the reference HDRV
first and subsequently rank the HDRVs on the left side in order of resemblance with the reference by drag-
ging their preferred choice to its corresponding position (labeled 1-7) on the right side. The instructions
for carrying out the experiment is clearly described in a text box below the reference thumbnail.

5.3. Participants

A total of 64 participants were divided into two groups, 32 for each experiment (LQ and HQ), with
an age range of 20 to 50 years and from various academic and corporate backgrounds took part in the
experiments. The participants reported normal or corrected to normal vision.

5.4. Environment

Following ITU-R recommendations [18], the experiments were conducted in a room with minimal
ambient lighting (below 25 lux) which is within the recommended luminance levels for a typical dark
environment [12]. The distance between the HDR display and the participant was set to approximately
3.2 times the height of the HDR display; at a distance of ≈ 189 cm with an LCD monitor placed at
an angle of 45◦ (see Figure 6). In order to minimize glaring, the brightness and contrast of the LCD
monitor was reduced to 25%.

5.5. Procedure

The participants were introduced to the objectives of the experiment prior to the start followed by
a brief training session using a particular sequence which was subsequently discarded from the results.
Upon completion of the training, the participants were asked to proceed further and rank the decoded
HDRVs for the six short-listed sequences.

Each participant had to first view the reference HDRV on the HDR screen. Subsequently, the par-
ticipant had to view each of the seven decoded HDRVs including the hidden reference and perform a
qualitative assessment as to how much the decoded HDRVs resembled the ground truth HDRV in the
center. Based on their judgement, the participants positioned the corresponding thumbnails to one of
the blank positions on the right labeled [1-7] where 1 being an HDRV with least distortion compared to
the reference and 7 being the HDRV with most visible distortions.
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Figure 6: Psychophysical experiment setup.

5.6. Subjective results

This section provides an overview of the results obtained from the psychophysical experiments and
analyzes the same.

Let the null Hypothesis H0 be that there are no significant differences between the compression
algorithms for both LQ and HQ. The alternative H1 states that there are significant differences between
the algorithms. The statistical significance p is assumed to be 0.05. The sample size for both LQ and
HQ is 32. Also, if H1 is true, it is important to determine the coefficient of concordance which measures
the degree by which the participants mutually agree on choices.

Now, let A(N, M, S) be a 3-dimensional data array where N denotes all participants, M denotes all
compression methods (algorithms) and S denotes all six sequences. Therefore, A(N,M,S) represents the
ranks given by each participant to each method for each of the six sequences.
This implies that Ā(•,M, S) represents the mean ranks for each M and S, averaged across all participants.
Also, Ā(•,M, •) represents the mean ranks averaged across all participants and sequences keeping M
fixed. The grand average should be equal such that:

1

K

K∑
S=1

Ā(•,M, S) = Ā(•,M, •) ,where K = total number of sequences. (2)

Furthermore, for each sequence S, assuming N = 32 being the number of participants and M = 7 being the
number of methods (algorithms), let ri,j be the rank assigned to each algorithm i ∈M by each participant

j ∈ N . Thus, for each algorithm i, Ri =

N∑
j=1

ri,j is the sum of the ranks assigned by N participants.

Therefore, R̄ =
1

N

N∑
j=1

ri,j is the mean of the ranks assigned to algorithm i and R =

M∑
i=1

(Ri − R̄)2 is the

standard squared deviation. From this data, the Kendall’s coefficient of concordance W can be computed
as:

W =
12R

N2(M3 −M)
(3)

The significance of W can be analysed using chi-squared statistics such that χ2 = M(M−1)(1+W(N−1))
2

where χ2 is asymptotically distributed with M(M−1)
2 degrees of freedom. A significance between scores

suggests that the perceived image quality of two algorithms when compared with each other are different
although no conclusions can be drawn for cases of similarity.

The analyzed results show that there are statistically significant differences between the algorithms
for the six sequences. All tests show a significance p < 0.05. Therefore, H0 is rejected and H1 is
accepted. Table 2a and 2b represents each Ā(•,M, S) and Ā(•,M, •) along with W score and χ2 value
for the LQ and HQ experiments, respectively. Furthermore, by combining the results of Tables 2a and
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2b, a generalized Ā(•,M, •) can be computed for the entire subjective experiment across a total sample
size of Ntotal = 64 as given in Table 2c.

Sequence Compression Algorithms with Mean Rankings ( @ 0.15 bpp ) Kendall 

(W) 
X2 Sign. µ 

Welding reference 

(1.53) 

hdrjpeg 

(2.63) 

fraunhofer 

(3.75) 

hdrv   

(3.78) 

gohdr  

(4.25) 

rate    

(5.97) 

hdrmpeg 

(6.09) 

0.586 112.58 p < 0.01 

CGRoom reference 

(1.56) 

hdrv    

(2.13) 

fraunhofer 

(3.75) 

gohdr 

(4.47) 

hdrjpeg 

(5.28) 

hdrmpeg 

(5.41) 

rate    

(5.41) 

0.548 105.16 p < 0.01 

Jaguar reference 

(1.37) 

hdrv    

(2.75) 

fraunhofer 

(3.68) 

hdrjpeg 

(3.71) 

hdrmpeg 

(4.59 

gohdr 

(5.43) 

rate    

(6.43) 

0.607 116.50 p < 0.01 

Seine reference 

(1.68) 

fraunhofer 

(2.81) 

hdrv    

(3.71) 

gohdr 

(3.78) 

hdrjpeg 

(4.34) 

hdrmpeg 

(5.18) 

rate    

(6.46) 

0.518 99.48 p < 0.01 

TOS reference 

(1.75) 

hdrv    

(2.56) 

hdrmpeg 

(3.34) 

fraunhofer 

(3.46) 

hdrjpeg 

(5.00) 

rate    

(5.71) 

gohdr 

(6.15) 

0.587 112.76 p < 0.01 

Mercedes reference 

(1.21) 

hdrv    

(2.93) 

fraunhofer 

(3.46) 

gohdr 

(3.84) 

hdrmpeg 

(4.56)  

hdrjpeg 

(5.15) 

rate    

(6.81) 

0.669 128.46 p < 0.01 

Ā(. , M , .) reference 

(1.52) 

hdrv    

(2.97) 

fraunhofer 

(3.48) 

hdrjpeg 

(4.35) 

gohdr  

(4.65) 

hdrmpeg 

(4.86) 

rate 

(6.135) 

0.783 150.26 P < 0.01 

 

(a) Subjective ranks with Kendall W , averaged across partici-
pants at 0.15 bpp

Sequence Compression Algorithms with Mean Rankings ( @ 0.75 bpp ) Kendall 
(W) 

X2 Sign. µ 

Welding reference 
(2.75) 

fraunhofer 
(3.06) 

gohdr  
(3.12) 

hdrv   
(3.28) 

hdrmpeg 
(5.00) 

hdrjpeg 
(5.34) 

rate    
(5.43) 

0.307 58.94 p < 0.01 

CGRoom reference 
(2.75) 

fraunhofer 
(3.00) 

hdrv    
(3.06) 

gohdr 
(3.71) 

hdrmpeg 
(4.93) 

rate    
(5.00) 

hdrjpeg 
(5.53) 

0.277 53.10 p < 0.01 

Jaguar reference 
(2.28) 

fraunhofer 
(2.72) 

hdrv    
(3.00) 

gohdr 
(3.53) 

hdrmpeg 
(5.28) 

rate    
(5.46) 

hdrjpeg 
(5.71) 

0.449 86.18 p < 0.01 

Seine hdrv 
(2.63) 

reference 
(2.81) 

fraunhofer 
(3.06) 

gohdr 
(3.40) 

hdrmpeg 
(4.93) 

hdrjpeg 
(4.93) 

rate    
(6.21) 

0.400 76.88 p < 0.01 

TOS reference 
(2.91) 

hdrv    
(3.41) 

fraunhofer 
(3.46) 

hdrmpeg 
(3.62) 

gohdr  
(4.31) 

hdrjpeg 
(5.00) 

rate    
(5.28) 

0.168 32.30 p < 0.01 

Mercedes reference 
(2.81) 

hdrv    
(3.46) 

gohdr  
(3.62) 

hdrmpeg 
(3.78) 

fraunhofer 
(3.93) 

rate    
(5.15) 

hdrjpeg 
(5.21) 

0.168 32.27 p < 0.01 

Ā(. , M , .) reference 
(2.71)  

hdrv    
(3.14) 

fraunhofer   
(3.21)   

gohdr 
(3.61) 

hdrmpeg 
(4.59) 

hdrjpeg 
(5.29) 

rate    
(5.42) 

0.511 98.20 P < 0.01 

(b) averaged across participants at 0.75 bpp

(c) Subjective mean ranks with Kendall W , combined and averaged over HQ and LQ experiments

Table 2: Subjective results and groups for the LQ and HQ experiments

5.7. Analysis

Tables 2a and 2b illustrate the ranking of all methods. For those compression algorithms that
are grouped together, no significant difference was found at p < 0.05. However, there are significant
differences in-between separate groups. Larger groups, as seen mostly in Table 2b indicate ambivalence
of participants in choosing one algorithm over another. The corresponding low Kendall W reaffirms the
difficulty in comparing algorithms at higher output bitrates. However, large groups are less likely for the
LQ experiment and higher Kendall W confirms the consistency in participants’ choices as it is expected
that more differences are noted at lower qualities. The combined results obtained from Table 2c further
reduces the sizes of the groups providing a generalized subjective result with a moderately high degree
of consistency W = 0.597 between the overall participants’ choices.

Based on the mean ranks of each M from the three Ā(•,M, •) in Tables 2a, 2b and 2c, the algorithms
can be assigned an ordinal rank. Such an ordinal ranking system as given in Table 3 presents a summa-
rized information about the choices made by participants in the LQ and HQ experiments. Table 3 also
presents the ordinal ranks when the LQ and HQ results are combined.

Algorithm LQ ranking HQ ranking LQ + HQ
hdrv 1 1 1

fraunhofer 2 2 2
gohdr 4 3 3

hdrjpeg 3 5 4
hdrmpeg 5 4 5

rate 6 6 6

Table 3: Ordinal ranks for both LQ and HQ subjective experiments
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6. Discussion

This discussion combines the objective and subjective results in order to establish a correlation
between them and analyze the overall performance of the algorithms.

The reconstructed HDR frames at 0.15 bpp and 0.75 bpp from each algorithm are evaluated against
the reference sequences using the previously mentioned QA metrics. The overall results from the algo-
rithms for the six QA metrics can be sorted using the same ordinal ranking system as discussed in the
previous section. Finally, a correlation is computed by combining the objective and subjective ordinal
rankings at 0.15 bpp and 0.75 bpp using Spearman’s rank correlation test. Table 4 shows Spearman’s
correlation results for the combined LQ and HQ experiments.

PSNR logPSNR puPSNR puSSIM Weber MSE HDR-VDP HDR-VQM LQ HQ
PSNR - -0.257 0.371 0.257 -0.232 0.493 0.257 0.371 0.371

logPSNR -.257 - .657 .771 .812* .522 .771 .600 .657
puPSNR .371 .657 - .943** .725 .986** .943** .829* 1.000**
puSSIM .257 .771 .943** - .841* .899* 1.00** .943** .943**

Weber MSE -.232 .812* .725 .841* - .632 .841* .754 .725
HDR-VDP .493 .522 .986** .899* .632 - .812* .899* .986**
HDR-VQM .257 .771 .943** 1.00** .841* .899* - .943** .943**

LQ .371 .600 .829* .943** .754 .812* .943** - .829*
HQ .371 .657 1.000** .943** .725 .986** .943** .829* -

Table 4: Spearman’s Rho rank correlation between objective and subjective evaluation for the LQ and HQ experiment
respectively. ‘*’ denotes significance at p < 0.05 level and ‘**’ denotes significance at p < 0.001 level

First of all Table 4 shows that there are significant correlations between objective and subjective
evaluation. For both the LQ and HQ experiments, the correlation between perceptual QA metrics
such as puPSNR/puSSIM/HDR-VDP/HDR-VQM and subjective rankings is very high with statistical
significance at p < 0.001 level. However, the correlation in-between the QA metrics varies with the image
quality. While Table 4 shows a very high correlation in-between perceptual QA metrics such as puPSNR,
puSSIM, HDR-VDP and HDR-VQM, the correlation in-between perceptual and mathematical metrics
such as HDR-VDP and PSNR is significantly low. Finally, analogous to previous studies mentioned in
Section 2, PSNR demonstrates a significantly low correlation with subjective rankings.

The objective results suggest that dedicated non-backward compatible algorithms tend to outper-
form their backward compatible counterparts at low to moderately high output bitrates. However, the
differences are less clear to human participants. The Ā(•,M, •) groups in Table 2a include fraunhofer
and hdrjpeg in a single group which suggests no significant difference between the algorithms at 0.15
bpp. Similarly, the Ā(•,M, •) groups in Table 2b include gohdr along with the non-backward compatible
algorithms. Finally, the combined data in Table 2c shows that although fraunhofer and gohdr are part
of the same sub-group, hdrv and fraunhofer are preferred over other backward compatible algorithms.

It is important to note that even though non-backward compatible algorithms perform well at lower
bpp, the output streams cannot be played back using existing video players. Furthermore, in practice,
hardware support for 10/12 bit encoders and decoders are currently quite rare. However, the flexibility
and simplicity of the fraunhofer design facilitates an easier adaptation to upcoming 10-bit video pipelines.
On the other hand, the backward compatible algorithms can use existing 8-bit video pipelines providing
a distinct advantage in early adoption of HDR.

Out of the four backward compatible algorithms, hdjpeg, hdrmpeg and rate contain an 8-bit tone-
mapped base stream making them truly backward compatible. gohdr, the only exception, is able to
match the performance of non-backward compatible algorithms, albeit at the cost of true backward
compatibility. Also, the Lagrangian optimization in rate saves output bitrate at the cost of reconstructed
image quality. Although, Lee et al. [23] claimed, that rate performed better than hdrmpeg at lower
bitrates, the algorithm was tested on sequences with VGA resolution and an older version of HDR-VDP
[30]. Therefore, the claim might not always hold true for a large set of full HD resolution sequences.

The overall comparison results suggest that the choice of compression algorithm is largely application
specific. The best possible HDR video quality at minimal output bitrates can be delivered by non-
backward compatible algorithms. However, video pipelines with higher bit-depth support are required in
that case. On the other hand, backward compatible algorithms can deliver HDR video content using legacy
pipelines albeit at the cost of higher output bitrates. The choices are reaffirmed by the algorithms’ RD
characteristics against perceptual QA metrics which evidently has a high correlation with the subjective
evaluation.
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7. Conclusion and future work

This work endeavors to provide a detailed comparison of a number of published and patented HDR
video compression algorithms and forms the foundation against which other HDR video compression
algorithms can be evaluated in future. It establishes that non-backward compatible compression algo-
rithms enjoy a distinct advantage over their backward compatible counterparts at lower bitrates. Also,
backward compatible algorithms require dual-loop encoding to create the residual stream. This adds more
complexity to any hardware design thereby making it less suitable for real-time deployment.

The work presented in this paper opens up avenues of future research. In practice, there are no 12
bit hardware encoders and decoders and this paper presents a comprehensive evaluation of compression
algorithms which were proposed before the MPEG CfE for HDR/WCG compatibility with HEVC-Main-
10 profile. Therefore, an interesting research area which has recently gained traction following the
HDR/WCG call for proposals to would be to see how non-backward compatible compression algorithms
(including the ones presented in this work) can be adapted to perform with HEVC Main-10 profile
[43] for even lower bitrates. Subsequently, the modified non-backward compatible algorithms can be
evaluated against the recently adopted Perceptual Quantizer algorithm (SMPTE ST 2084) [31] and
Hybrid Log-Gamma algorithm [9] to test and compare their HDR reconstruction performance such as
has been considered by François et al. [13]. Efficient use of available bandwidth might finally lead to the
widespread commercial adoption of HDR.
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