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Abstract—Pairwise comparison data arise in many domains
with subjective assessment experiments, for example in image
and video quality assessment. In these experiments observers
are asked to express a preference between two conditions.
However, many pairwise comparison protocols require a large
number of comparisons to infer accurate scores, which may
be unfeasible when each comparison is time-consuming (e.g.
videos) or expensive (e.g. medical imaging). This motivates the
use of an active sampling algorithm that chooses only the most
informative pairs for comparison. In this paper we propose ASAP,
an active sampling algorithm based on approximate message
passing and expected information gain maximization. Unlike
most existing methods, which rely on partial updates of the
posterior distribution, we are able to perform full updates and
therefore much improve the accuracy of the inferred scores. The
algorithm relies on three techniques for reducing computational
cost: inference based on approximate message passing, selective
evaluations of the information gain, and selecting pairs in a
batch that forms a minimum spanning tree of the inverse
of information gain. We demonstrate, with real and synthetic
data, that ASAP offers the highest accuracy of inferred scores
compared to the existing methods. We also provide an open-
source GPU implementation of ASAP for large-scale experiments.

I. INTRODUCTION

The fields of subjective assessment and preference aggrega-
tion are concerned with measuring and modeling human judg-
ments. Participants usually rate a set of stimuli or conditions
according to some criteria, or rank a subset of them. Rating
is inherently more complex for participants than ranking [1],
[2], [3], [4]. Thus, comparative judgment experiments are
gaining attention in subjective assessment and crowd-sourced
experiments, e.g. for image quality assessement. The simplest
form of ranking experiments is comparing conditions in pairs
(pairwise comparison protocol), and hence it is the most
common ranking choice. Here observers are asked to choose
one out of two conditions according to some criteria. As
opposed to rating, in which conditions are mapped directly
to a scale by computing mean opinion scores, we need to
model and infer the latent scores from pairwise comparisons.
This problem is known as psychometric scaling. Models used
for scaling typically rely on the assumptions of Thurstone’s
model [5] or Bradley-Terry’s model [6]. The main limitation of

pairwise comparison experiments is that for n conditions there
are
(
n
2

)
= n(n−1)/2 possible pairs to compare, which makes

collecting all comparisons too costly for large n. However,
active sampling can be used to select the most informative
comparisons, minimizing experimental effort while maintain-
ing accurate results.

The need for an efficient active sampling algorithm for
preference aggregation is motivated by the recent spread of
applications reliant on: i) user preferences (i.e. recommenda-
tion systems, information retrieval and relevance estimation)
[7]; ii) matchmaking in gaming systems such as TrueSkill for
Xbox Live [8] and Elo for chess and tennis tournaments [9];
iii) psychometric experiments for behavioural psychology [10]
and iv) quality of experience (e.g. image and video quality)
[11], [12], [13], [4].

State-of-the-art active sampling methods are typically based
on information gain maximization [14], [15], [16], [4], [17],
[18], where pairs in each trial are selected to maximize the
weighted change of the posterior distribution of the scale.
However, these are computationally expensive for a large
number of conditions (n), as they require computing the
posterior distribution for n(n − 1)/2 pairs at every iteration
of the algorithm. To make active sampling computationally
feasible, most existing techniques update the posterior dis-
tribution only for the pairs that were selected for the next
comparison. We show that this leads to a sub-optimal choice
of pairs and worse accuracy as the number of measurements
increases. To address this problem, we substantially reduce the
computational cost of active sampling by using approximate
message passing for inference, and by computing the expected
information gain only for the subset of the most informative
pairs. The reduced computational overhead allows us to update
the full posterior distribution at every iteration, thus greatly
improving the accuracy. To ensure balanced design and allow
for a batch sampling mode, we sample the pairs from a
minimum spanning tree as in [17]. The proposed technique
(ASAP - Active SAmpling for Pairwise comparisons) results
in the most accurate psychometric scale, especially for a
large number of measurements. Moreover, the algorithm has
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a structure that is easy to parallelize, allowing for a fast
GPU implementation. We show the benefit of using full
posterior update by comparing to an approximate version of
the algorithm (ASAP-approx), that, similar to other methods
relies on online posterior update. Our main contributions
are: A) an analysis of existing active sampling methods for
pairwise comparison experiments under a range of condition
score distributions, using both synthetic and real image and
video quality assessment data; B) a novel active sampling
method (ASAP), offering the highest accuracy of the scale;
and C) along with the paper we include an implementation of
9 algorithms1, providing an open-source software for active
sampling in pairwise comparison experiments and including
the first GPU implementation of such a method.

II. RELATED WORK

Comparative judgment experiments arise in ranking (order-
ing conditions) and scaling applications (putting conditions on
a scale where distances convey meaning). Suppose we aim to
compare a set of n conditions S = {o1, . . . , on} (conditions
being images, players, etc.) that are evaluated according to
a feature or characteristic (subjective measurements such as
aesthetics, relevance, quality, etc.) with unknown underlying
ground truth scores s = (s1, . . . , sn), si ∈ R. In this paper,
we simply refer to these as quality scores. The simplest
experimental protocol is to compare pairs (oi, oj), oi, oj ∈ S,
i 6= j (referred to as pairwise comparisons). Although other
works exist, e.g. estimating total or partial order [19], [20],
[21], [22], [23], this paper is focused on active sampling for
psychometric scale construction, which uses pairwise compar-
isons to estimate quality scores ŝ that approximate s. This
section discusses related work, divided into four groups, based
on the type of approach: passive, sorting, information-gain
and matchmaking. The methods tested in the experiments
are highlighted in bold face. We also distinguish between
sequential methods —where the next pair is generated only
upon receiving the outcome for the preceding pair —and batch,
or parallel methods —where a batch of comparison pairs is
generated and outcomes can be obtained in parallel. Batch
methods are preferred in crowd-sourcing, where multiple con-
ditions are distributed to participants in parallel.

a) Passive approaches: When every condition is com-
pared to every other condition the same number of times, the
experimental design is referred to as full pairwise compar-
isons (FPC). Such an approach is impractical, as it requires
n(n − 1)/2 comparisons per participant. Another approach,
nearest conditions (NC), relies on the idea that conditions that
are similar in quality are more informative for constructing
the quality scale [24]. Thus, if the approximate ranking is
known in advance, one can compare only the conditions that
are neighbours in the ranking. Such initial ranking, however,
may not be available in practice.

b) Sorting approaches: Similar to NC, sorting-based
methods rank the conditions, then compare those that are of

1https://github.com/gfxdisp/asap

similar quality. Authors in [25] proposed an active sampling
algorithm using a binary tree. Every new condition descends
down the tree, branching depending on whether it is better
or worse than the condition in the current node. Authors in
[26] applied Quicksort [27] using pairwise comparisons as
the comparison operator.

Recently, [13] used the Swiss system in chess to rank
subjective assessment of visual quality. The Swiss system
first chooses random conditions to compare, then sorts the
conditions to find pairs that are similar. A related method is
the Adaptive Rectangular Design (ARD) [28] which allows
comparison of conditions far apart on the quality scale in
later stages of an experiment. The work of [29] takes a
different approach, where active sampling (AKG) is based on
the Bayesian decision process maximising Kendall’s tau rank
correlation coefficient [30].

Sorting approaches are praised for their simplicity and
low computational complexity and are thus often employed
in practice. However, these approaches use heuristics that
often result in suboptimal comparison choices, and in general
perform worse than the methods that rely on information gain.

c) Information-gain approaches: These methods are
based on information maximization. That is, the posterior
distribution of quality scores is computed and the next compar-
ison is selected according to a utility function, e.g. Kullback-
Leibler (KL) divergence [31] between the current distribution
and the distribution assuming any possible comparison [32].
This group is the most relevant to our new method. Methods
listed in this section are sequential, unless stated otherwise.

A greedy Bayesian approach, Crowd-BT, was proposed in
[16]. The entropy for every pair of conditions is computed
using the posterior distribution of each pair individually rather
than jointly. The method also explicitly accounts for reliability
of each annotator: scores and annotator quality are updated
using an alternating optimization strategy.

Authors in [14] derive the score distribution from the
maximum likelihood estimation and the negative inverse of
the Hessian of the log likelihood function. Since the original
implementation was not provided by the authors and our
implementation suffered from numerical instability, we did not
include it in our tests.

Authors in [15], [4] develop a fully Bayesian framework
to compute the posterior distribution of the quality scores.
Hybrid-MST [17] extends this idea by selecting batches
of comparisons (instead of single pairs) to maximize the
information gain in the minimum spanning tree [33] of a
comparison graph. The time efficiency of the method over its
predecessor is improved by computing the information gain
locally —within the compared pair.

A different approach is taken by [18], where authors propose
to solve a least-squares problem to elicit a latent global rating
of the conditions using the Hodge decomposition of pairwise
comparison data. Like other methods, the information gain is
computed using the posterior of only the pair of compared
conditions. We refer to this approach as HR-active.



d) Matchmaking: A matchmaking system was proposed
for gaming, together with the TrueSkill algorithm [8]. The aim
is to find the pairs of players with the most similar skill. The
skill distribution of a pair of players is used to predict the
match outcome. We refer to this approach as TS-sampling.

e) Our Work: In contrast to the previous work, our
method (i) allows for batch and sequential modes; (ii) esti-
mates the posterior using the entire set of comparison out-
comes that has been collected so far; and (iii) computes the
utility function for a subset of pairs, saving computations
without compromising on performance.

III. METHODOLOGY

Our algorithm consists of two main steps: (i) computing the
posterior distribution of score variables r using the pairwise
comparisons collected; (ii) using the posterior of r to estimate
the next comparison to be performed. In this section we first
describe the score posterior estimation and then explain our
active sampling algorithm. We then discuss some features
to make it more computationally efficient. Pseudo-code is
included in the supplementary.

A. Posterior Estimation

a) Posterior Estimation Model: Our model is similar to
Thurstone’s model Case V [5], with unobserved normally dis-
tributed independent random variables. However, our approach
is fully Bayesian, and so instead of point value scores si for
each condition oi, we assume that each score is a random
variable ri with distribution ri ∼ N (µi, σ

2
i ). Analogous

to Thurstone’s model, µi represents the score value si. σ2
i

represents the uncertainty in an estimate of si and is not
explicitly expressed in Thurstone’s model (it can be obtained,
for example by bootstrapping [34]). The probability that oi
is better than oj is then given by noting that ri − rj ∼
N (µi − µj , σ

2
ij), so that:

P (oi � oj |ri, rj) , Φ

(
µi − µj√

2σij

)
, (1)

where Φ is the cumulative standard normal distribution func-
tion and σ2

ij = σ2
i + σ2

j + β2, with β representing what is
referred in the literature to as an observer/comparison noise.
We further assume Thurstone Case V model in which β is
constant across all conditions. The choice of β determines the
relationship between distances in the scale and probabilities
of better quality. In our experiments we set β = 1.

For a pair of compared conditions At = (oi, oj) for
t ∈ {1, . . . , T}, where T is the total number of compar-
isons measured so far, we denote the comparison outcome as
yt ∈ {−1, 1}, where 1 indicates that oi was preferred and −1
indicates that oj was preferred, with no draws allowed. In the
inference step, we want to estimate the distribution of score
variables r given y and A , {A1, . . . , AT }. The posterior
distribution is:

P (r|y,A) =
P (y,A|r) · p(r)

P (y|A)
, (2)

Fig. 1: Factor graph for 2 comparisons of 3 conditions.

where we assume a factorizing Gaussian prior distribution
over scores p(r) ,

∏n
i=1N (ri; νi, α

2
i ), νi and α2

i being the
parameters of the prior, set to 0 and 0.5, respectively. The
likelihood P (y,A|r) of observing comparison outcomes y
given the ground truth scores is modelled as:

P (y, A|r) =

T∏

t=1

P (yt, At|r), (3)

where individual likelihoods can be defined as P (yt, At|r) =
I (yt = sign(ri − rj)), i.e. equal to 1 if the sign of yt is the
same as that of the difference ri − rj and 0 otherwise.

Although the score posterior can be written exactly via
Bayes rule, the binary nature of the output factor means that
the likelihood in Eq. 3 is not conjugate to the Gaussian prior.
This would lead to a non-Gaussian posterior for ri, and result
in challenging, high-dimensional integrals for our information
gain metric. A Gaussian approximation to messages yields
a multivariate Gaussian posterior with diagonal covariance
matrix, resolving both issues.

b) Posterior Estimation Inference: Figure 1 shows a
factor graph implementing the distribution P (r|y, A), used
as the basis for efficient inference, and inspired by TrueSkill
[8]. The posterior over ri is inferred via message passing
between nodes on the graph, with messages computed using
the sum-product algorithm. In the general case of n conditions
and T comparisons, we will have n score variables and
prior factors, T difference factors, difference variables, output
factors and output variables. Messages from output factors are
approximated as Gaussians using expectation propagation via
moment matching.

B. Sampling Algorithm: ASAP

The basis of the proposed active sampling algorithm is to
compute the posterior distribution over r that would arise
from each possible pairwise outcome in the next comparison,
and then use this to choose the next comparison based on a
criterion of maximum information gain.

Several utility functions can be used to compute the ex-
pected information gain (EIG). Our choice is the commonly



used Kullback-Leibler (KL) divergence [31] between the prior
and posterior distributions.

More specifically, our active sampling strategy picks con-
ditions (oi, oj) = At to compare in measurement t, such that
they maximize a measure of information gain Iijt−1:

At = argmax
(oi,oj)∈S2,i 6=j

Iijt−1, (4)

where S is the set of all conditions and subindex t−1 indicates
that we use all measurements collected up to the point in time
t. For simplicity, we define r̂t−1 as the estimated posterior
after measurement t− 1.

For each possible pair At, let P (r̂t|yt = +1, At) and
P (r̂t|yt = −1, At) denote the updated posterior distributions
(i.e. including comparison At) if oi is selected over oj
(yt = +1 for At = (oi, oj)) and vice versa. Since we cannot
anticipate the outcome of the pairwise comparison, i.e. which
condition will be selected, similarly to other active sampling
methods [17], [18], [16], [14], [15], we weight the EIG with
the probability of each outcome. We compute this probability
using Equation 1, P (oi � oj |r̂t−1); for condition oi selected
over oj and vice versa, EIG is then defined as:

Iijt−1 =P (oi � oj |r̂t−1) ·DKL (P (r̂t|yt = +1, At) ‖ p(r̂t−1))

+ P (oi ≺ oj |r̂t−1) ·DKL (P (r̂t|yt = −1, At) ‖ p(r̂t−1)) .
(5)

C. Efficiency considerations

At every iteration t, the comparisons to consider is n(n −
1)/2, where n is the total number of compared conditions.
The complexity of the posterior evaluation is O(n + t), thus
the complexity of selecting the next comparison is O(n2(n+
t)). This may be very costly when the number of conditions
is large. Here, we discuss two modifications that reduce the
computational cost, and a batch mode, which also improves
the accuracy.

a) Approximate (online) posterior estimation (ASAP-
approx): In order to quantify the improvement in accuracy
brought by the full posterior update, we follow the common
approach, and consider the use of an online posterior update
using assumed density filtering (ADF) [35]. That is, the poste-
rior r̂t−1 is used as the prior when computing the information
gain for the tth comparison, allowing our algorithm to run
in an online manner [36]. Thus, for every oi and oj pair, we
update only the scores ri and rj , resulting in O(1) complexity
per pair. No additional ADF-projection step is required since
expectation propagation has already yielded a Gaussian ap-
proximation to the posterior. The time complexity of selecting
the next comparison is thus decreased to O(n2). However,
computational efficiency comes at the cost of accuracy in
posterior estimation [36]. We refer to the algorithm using the
approximate posterior update as ASAP-approx.

b) Selective EIG evaluations: Some comparisons are less
informative than others [32], such as conditions far apart on
a scale where the outcome yt is obvious [14], [15]. Therefore
we evaluate the EIG only for the most informative pairs. For
that we use a simple criterion from Equation 1 to compute

the probability Qij that conditions oi and oj are selected
for EIG evaluation. Since Equation 1 is the probability that
condition oi is better than oj , to identify obvious outcomes we
set Qij = min(pij , pji). Thus, the probability is large when
the difference between the scores and their standard errors are
small. To ensure that at least one pair including oi is selected,
we scale Qij per condition, i.e. Q∗ij =

Qij

max∀j(Qij)
.

c) Minimum spanning tree for the batch mode: When
a sampling algorithm is in the sequential mode, one pair of
conditions is scheduled in every iteration of the algorithm.
However, selecting a batch of comparisons in a single iteration
of the algorithm is computationally more efficient and can
yield superior accuracy [17]. To extend our algorithm to
the batch mode, we treat pairwise comparisons as an undi-
rected graph. Vertices are conditions, and edges are pairwise
comparisons. We follow the approach from [17] where the
minimum spanning tree (MST) is constructed from the graph
of comparisons. The MST is a subset of the edges connecting
all the vertices together, such that the total edge weight is
minimal. The edges of our graph are weighed by the inverse
of the EIG, i.e. for an edge Eij connecting conditions Ai and
Aj the weight is given by w(Eij) = 1

Iij . n − 1 pairs are
selected for the MST, allowing us to compute the EIG every
n−1 iterations, greatly improving speed. Since each condition
is compared at least once within our batch, detrimental imbal-
anced designs [37], where a subset of conditions is compared
significantly more often than the rest, are eliminated.

IV. EVALUATION

To assess different sampling strategies, we run Monte
Carlo simulation on synthetic and real datasets. Spearman
rank ordering correlation coefficient (SROCC) and root-mean-
squared Error (RMSE) between the ground truth and estimated
scores are used for performance evaluation. We report our
results as multiples of standard trials, where 1 standard trial
corresponds to n(n − 1)/2 measurements (the number of
possible pairs for n conditions). For clarity, we present RMSE
on a log-scale, and SROCC after a Fisher transformation
(y′ = arctanh(y)). The same method, based on approximate
message passing, was used to produce the scale from pairwise
comparisons for each method. We verified that the scaled
results are consistent with the MLE-based method from [34].

A. Algorithms compared

We implement and compare different active sampling strate-
gies using original authors’ codes where possible: AKG [29],
Crowd-BT [16], HR-active [18] and Hybrid-MST [17]. Our
own implementation was used for Quicksort [26], Swiss
System [13], and TS-sampling [8].

B. Simulated Data

In order to control the ground truth distribution underlying
the data, we first run a Monte Carlo simulation with synthetic
data. In the simulation, we use P (oi � oj |ri, rj) from
Equation 1 to draw yt for comparison at trial t between
conditions oi and oj , which are determined by each algorithm.



We note that the strongest influence on the results is the
proximity of compared conditions in the target scale. When
conditions have comparable scores, they are confused more
often in comparisons, whereas when conditions are far apart
in the scale they are easily distinguished, resulting in different
performances for sampling methods. Hence, we consider 3
scenarios for 20 conditions with scores s sampled uniformly
from: (i) large range [0, 20] (scores far apart); (ii) medium
range [0, 5]; (iii) small range [0, 1] (scores close together).
Results for larger numbers of conditions are given in Sec-
tion IV-D. We run the simulation 100 times for comparisons
ranging from 1 to 15 standard trials.

a) Selective EIG evaluations: Figure 2a shows the pro-
portion of saved evaluations with selective EIG computations.
Since we initialize our algorithm with all scores set to 0, all
possible pairs have their EIG computed at first (0 standard
trials in the plot), as all conditions are close to each other.
As more data are collected, conditions move away from each
other on the scale and the EIG is computed for a subset of
pairs only. Computational saving is greater for large-range
simulations than for small-range simulations. In small-range
simulations, conditions first move away from each other, as in
the first few iterations their relative distances are likely to be
overestimated, decreasing the overall number of computations;
however, with more measurements the conditions move closer,
and the proportion of saved evaluations decreases. Figure 2b
shows the probability of the EIG being evaluated after 10
standard trials for 20 conditions sampled from the medium
range. For visualization purposes, conditions were ordered
ascending in the quality scale. Pairs of conditions along the
diagonal, i.e. close in the scale, have a higher chance of their
EIG being computed. Figure 2c shows performance of ASAP
with and without selective EIG evaluations. Thus, selectively
evaluating EIG greatly reduces the number of computations
while maintaining the same accuracy measured in RMSE and
SROCC. In the following sections, we only present the results
with selective EIG computations.

b) Minimum spanning tree for the batch mode: Figure
3 shows the results of ASAP with and without batch mode
for medium-range simulations. Without MST batch mode, the
method is likely to result in an imbalanced sampling pattern,
where certain conditions are compared significantly more often
than others. This has a detrimental effect on performance,
deteriorating the results with growing number of comparisons
[37]. Below, we only present results with MST batch mode.

c) Simulation results: Figure 4 shows the results of
the simulation for the implemented strategies. At all tested
ranges, EIG-based methods have lower RMSE, and therefore
higher accuracy, than the sorting methods (Quicksort and
the Swiss System). While TS-sampling and Crowd-BT have
good accuracy for the large range, these are among the worst
methods for the small range. ASAP-approx exerts performance
similar to the methods with online posterior update, however
offers a modest but consistent improvement in accuracy over
Hybrid-MST and HR-active. Of all tested methods, ASAP,
employing full posterior update, is the most accurate by a
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Fig. 2: (a) Percentage of saved evaluations with selective EIG
evaluations; (b) probability of EIG evaluation after 10 standard
trials for medium range; and (c) RMSE and SROCC with and
without selective EIG;
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Fig. 3: Simulation with 20 conditions sampled from the
medium range with and without MST. We observe similar
pattern for conditions sampled from small and large ranges.

substantial margin and across all ranges.
For SROCC, EIG-based methods do not show a clear

advantage over sorting methods; however, it should be noted
that EIG-based methods are designed to optimize for RMSE
rather than ranking. Even so, ASAP still performs the best
for small and medium range simulations, and one of the best
for large range, reaching SROCC of 0.99 within five standard
trials. It should be noted, however, that the problem of ordering
conditions from the large range is trivial and the best methods
compete at 0.99+ SROCC levels (almost perfect ordering).
Because of the poor performance of the sorting-based methods,
we do not consider them in the following experiments.

C. Real Data

We validate the performance of sampling strategies on
two real-world datasets: i) Image Quality Assessment (IQA)
LIVE dataset [38], with pairwise comparisons collected by [4];



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Standard trial

0.025

0.05

0.1

0.2

0.4

R
M

SE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Standard trial

0.9

0.95

0.99

0.999

SR
O

C
C

Swiss system
Quicksort
TS-sampling
Crowd-BT
HR-active
Hybrid-MST
ASAP
ASAP-approx
AKG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Standard trial

0.025

0.05

0.1

0.2

0.4

0.8

R
M

SE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Standard trial

0.6

0.9

0.99

0.999

SR
O

C
C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Standard trial

0.025

0.05

0.1

0.2

0.4

R
M

SE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Standard trial

0.9

0.95

0.99

0.999

SR
O

CC

Fig. 4: Simulation results with 20 conditions for the compared
sampling strategies.
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and ii) Video Quality Assessment (VQA) dataset [39]. Each
dataset contains complete and balanced matrices of pairwise
comparisons, with each condition compared to every other
condition the same number of times. The empirical probability
of one condition being better than another is obtained from
the measured data and used throughout the simulation. We
compute RMSE and SROCC between scores produced by each
method, and scores obtained by scaling the original matrices
of all comparisons.

a) IQA dataset: To allow multiple runs of the Monte
Carlo simulation, we randomly select 40 conditions from
the 100 available. In the original matrix, each condition is
compared 5 times with each other (5 standard trials), yielding
24750 comparisons.

Figure 5 shows the results. The performance trends are
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Fig. 6: Compared sampling strategies on VQA dataset.

consistent with the results for the simulated data for the
medium range. ASAP has the best performance both in terms
of SROCC and RMSE. It is followed by ASAP-approx,
Hybrid-MST, and TS-sampling, each having roughly the same
performance in terms of both RMSE and SROCC. Crowd-BT
and HR-active have the worst performance in terms of both
RMSE and SROCC.

b) VQA dataset: The dataset contains 10 reference
videos with 16 distortions. Each 16×16 matrix contains 3840
pairwise comparisons, i.e. each pair was compared 32 times.

Figure 6 shows the results of running simulations on the
first two reference videos. The performance trends are again,
in general, consistent with the results for the simulated data
sampled from the medium range, except that TS-sampling
performs substantially worse, and Hybrid-MST outperforms
ASAP-approx for small numbers of trials. ASAP consistently
outperforms other methods. The results for the remaining eight
reference videos are given in the supplementary.

D. Large Scale Experiments

It is often considered that 15 standard trials is the minimum
requirement for FPC to generate reliable results [40], [41],
however, this is rarely feasible in practice. Real-world large-
scale datasets barely reach 1 standard trial. To make exper-
iments with large number of conditions feasible, individual
reference scenes or videos are often measured and scaled
independently, missing important cross-content comparisons.
However, the lack of cross-content comparisons yields less
accurate scores [24]. Active sampling techniques, such as
ASAP, should accurately measure a large number of condi-
tions, while saving substantial amount of experimental effort.
To test such a scenario, we simulate the comparison of 200
conditions with scores distributed in the medium range. The
results, shown in Figure 7, demonstrate that even with a small
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Fig. 7: Large scale experiment simulation with 200 conditions
sampled from the medium range.

number of standard trials ASAP outperforms existing methods;
it is followed by ASAP-approx and Hybrid-MST.

E. Running Time and Experimental Effort

A practical active sampling method must generate new
samples in an acceptable amount time. Hence, in Figure 8 we
plot the time taken by each method as the number of conditions
grows. The reported times are for generating a single pair of
conditions, assuming that 5 standard trials have been collected
so far. CPU times were measured for MATLAB R2019a code
running on a 2.6GHz Intel Core i5 CPU and 8GB 1600MHz
DDR3 RAM. GPU time was measured for Pytorch 1.4 with
CUDA 9.2, running on GeForce GTX1080. We omit sorting
methods as they do not offer sufficient accuracy. Although
ASAP is the slowest method when running on a CPU, it can
be effectively parallelized on a GPU and deliver the results in
a shorter time than other methods running on a CPU.

In Figure 9 we show the experimental effort required to
reach an acceptable level of accuracy for 20 and 200 condi-
tions, where we define experimental effort as the time required
to reach an RMSE of 0.15. We assume that each comparison
takes 5 seconds, which is typical for image quality assessment
experiments [42], [13]. ASAP offers the biggest saving in ex-
perimental effort for both small and large scale experiments. In
an experiment with 200 conditions ASAP achieves an accuracy
of 0.15 RMSE in 0.355 standard trials. The total experimental
time is thus 9.8h (7065 comparisons), which is significantly
better than the 14.6h (10550 comparisons) for Hybrid-MST.
Similarly, for 20 conditions the entire experiment would take
40 min for ASAP and 120 min for Hybrid-MST to reach the
same accuracy of score estimates. For experiments with longer
comparison times (e.g. video comparison) or high comparison
cost (e.g. medical images) ASAP’s advantage is even greater.

V. CONCLUSIONS

In this paper, we showed the importance of choosing the
right sampling method when collecting pairwise comparison
data, and proposed a fully Bayesian active sampling strategy
for pairwise comparisons – ASAP.

Commonly used sorting methods perform poorly compared
to the state-of-the-art methods based on the EIG, and even
EIG-based methods are sub-optimal, as they rely on a partial
update of the posterior distribution. ASAP computes the full
posterior distribution, which is crucial to achieving accurate
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EIG estimates, and thus the accuracy of active sampling.
Fast computation of the posterior, important for real-time
applications, was made possible by using fast and accurate
factor graph approach, which is new to the active sampling
community. In addition, ASAP only computes the EIG for
the most informative pairs, reducing the computational cost of
ASAP by up to 80%, and selects batches using a minimum
spanning tree method, allowing to avoid imbalanced designs.

We recommend ASAP, as it offered the highest accuracy of
inferred scores compared to existing methods in experiments
with real and synthetic data. The computational cost of our
technique is higher than for other methods in the CPU imple-
mentation, but is still in the range that makes the technique
practical, with a substantial saving of experimental effort. For
large-scale experiments, in GPU implementation ASAP offers
both accuracy and speed.
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I. INTRODUCTION

We include pseudo-code for the ASAP algorithm, sampling
patterns of the ASAP, the distribution of the RMSE and
SROCC for the conditions sampled from the large range
(bottom row of Figure 4 in the main paper) and the results
for the 8 reference videos of the Video Quality Assessment
(VQA) dataset.

A. Pseudo-code

We provide a detailed description of the ASAP method in
Algorithm 1. The notation in the algorithm corresponds to that
used in the main paper. The algorithm requires as input a list
of comparisons performed so far, y and a matrix with the
probabilities of the EIG being computed —required for the
selective evaluations —Q. The algorithm outputs a batch of
pairs to be compared C and an updated probability of being
selected for the EIG evaluations, Q̂.

B. Sampling patterns
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Fig. 1: Heatmaps for 3 standard trials of comparisons of 20
ordered conditions from small, medium and large ranges

In order to better understand which conditions are favored
by ASAP, we produce heatmaps of pairings for conditions
sampled from the small, medium and large ranges. We use
3 standard trials. The heatmaps are given in Figure 1. For
better visualization, conditions are ordered ascending in their
ground truth scores in the consecutive rows and columns. For
conditions sampled from the small range, all pairs of condi-
tions are compared approximately the same number of times.
However, the number of comparisons gradually decreases for
conditions further away in the scale, i.e. further away from
the diagonal on the heatmap. For conditions sampled from the
medium and large ranges, most comparisons are selected for

Fig. 2: 75% of the RMSE and SROCC distributions for
20 conditions sampled from the large range and five best
performing methods in terms of SROCC.

conditions close in the quality scale, i.e. along the diagonal
on the heatmap. This is expected, as pairs of conditions that
are far away in the scale are less likely to be confused by
observers and are therefore less informative.

C. Confidence intervals for large range

Figure 2 presents 75% of the RMSE and SROCC distri-
butions for the top five methods in terms of SROCC for
conditions sampled from the large range (bottom row of Figure
6 in the main paper). Results for SROCC are noisier than for
RMSE, making it hard to identify the best performing method.
In terms of RMSE for a number of standard trials less than two
ASAP shows similar to others performance, however with the
number of standard trials growing, significantly outperforms
the compared methods.

D. Results: VQA dataset

This dataset contains 10 reference videos with 16 distortions
applied to them. Each 16× 16 matrix contains 3840 pairwise
comparisons - each pair was compared 32 times. Figure 3
shows the results for reference videos 3 to 10. Results for
the first two reference videos are presented in the main paper.
Consistent with other tests in the main paper, ASAP shows
superior results to other methods. ASAP-approx. has average,
similar to other EIG based methods, results. Hybrid-MST
tends to perform better for small numbers of standard trials.
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Algorithm 1: ASAP
Input: y,Q
Output: C, Q̂
# Calculate the posterior for the given state of the comparison matrix
µ,Σ = approxPosterior(y)
# Iterate over the rows of the expected information gain matrix I
for i← 1 to n do

# Iterate over the columns of the expected information gain matrix I
for j ← 1 to (i− 1) do

# Probability of selecting oi over oj
pij = P (oi � oj |ri, rj) = Φ

(
µi−µj√

2σij

)

# Selective EIG evaluations with roulette
if Qij > U [0, 1] then

# Posterior given all comparisons and assuming oi is selected over oj
µij ,Σij = approxPosterior(y; oi � oj)
# Posterior given all comparisons and assuming oj is selected over oi
µji,Σji = approxPosterior(y; oj � oi)
# KL divergence between current distribution and distribution assuming the two possible outcomes
KLij = KLDivergence(N (µ,Σ),N (µij ,Σij))
KLji = KLDivergence(N (µ,Σ),N (µji,Σji))
# Weighted information gain
Iij = pij ×KLij + (1− pij)×KLji

end
# Update the probability of being selected for the comparison
Q̂ij = min(pij , 1− pij)

end
# Scale q per condition
Q̂ij =

Q̂ij

max∀j(Q̂ij)
, ∀j

end
# Make the EIG matrix symmetric and find reciprocal of each entry
I = 1/(I + IT )
# Create the minimum spanning tree from the matrix I
G = minspantree(I)
# Nodes connected by an edge are pairs of conditions to compare
C = getConnectedNodes(G)
# Note if batch mode is not used pairs to compare are selected by C = argmax(Iij)
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Fig. 3: Compared sampling strategies on VQA dataset.


