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Abstract—Standard image quality metrics, such as PSNR or
SSIM, cannot be directly computed on linear high dynamic range
colour values because such values non-linearly related to our
perception of visible differences. In this work, we develop a new
encoding function (PU21) to convert absolute high dynamic range
(HDR) linear colour values into approximately perceptually
uniform (PU) values, which can be used with standard quality
metrics. The proposed PU21 function is based on a recent
contrast sensitivity model, fitted to the measurements up to
10 000 cd/m2. Unlike the conventional simplified approach of
deriving PU functions based on peak sensitivities, we model
realistic coding artefacts to find visibility thresholds for our
derivation. Furthermore, the new PU accounts for the effect
of glare on image quality. The proposed PU21 improves the
accuracy of quality predictions for standard metrics of PSNR,
VSI, FSIM, SSIM, and MS-SSIM in their correlation with
subjective scores on HDR images included in UPIQ, one of the
largest HDR image quality datasets.

Index Terms—high dynamic range, image quality metric,
contrast sensitivity, Perceptually Uniform encoding, banding
artifacts, glare

I. INTRODUCTION

Objective image and video quality metrics are vital com-
ponents in development of many imaging applications such
as acquisition, compression, communication, display systems,
computer vision, and machine learning. While a large number
of image and video quality metrics are designed for the as-
sessment of standard dynamic range (SDR) content, far fewer
metrics are available for high dynamic range (HDR) content.
The two most commonly used HDR metrics are HDR-VQM
[1] and HDR-VDP [2]. Although those metrics model many
aspects of the human visual system (HVS), such as luminance
and contrast masking, and can offer superior performance, they
are too complex to be used in many applications. Because they
are non-differentiable, they are unsuitable to be used as a loss
function in optimization problems. When short execution times
are essential, a simple arithmetic or structural metric, such as
PSNR or SSIM [3], is often preferred.

Metrics such as PSNR and SSIM expect their input to be
in an approximately perceptually uniform domain — Eucliden
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distances between just-distinguishable colours must not vary
drastically across the colour space. Most SDR colour spaces,
using gamma or similar pixel coding, are sufficiently percep-
tually uniform to directly use them with traditional quality
metrics. However, HDR content is often represented as linear
radiance values, which are strongly perceptually non-uniform.
Therefore, HDR linear pixel values must be converted to
an approximately perceptually uniform colour space before
computing quality values [4].

Aydın et al. [5] proposed a perceptually uniform (PU) en-
coding for HDR quality assessment, converting absolute HDR
linear RGB or luminance values into perceptually uniform
values. The approach was shown to be an effective method
for adapting existing SDR quality metrics to HDR content [6],
[7]. Perceptual Quantizer (PQ) electro-optical transfer function
(EOTF) [8], intended for encoding HDR pixel values, was
also used for the similar purpose, even though it has not been
designed for quality assessment [9].

In this work, we improve upon both PU and PQ functions
and develop a new perceptually uniform encoding, specifically
modelling the sensitivity to distortions in HDR content. Firstly,
we make use of a contrast sensitivity function (CSF) that con-
sists of measurements at background luminance values as low
as 0.0002 cd/m2 to as high as 10 000 cd/m2 [10]. Secondly, we
make more realistic assumptions about the spatial-frequency
composition of typical image artefacts and use a recently
proposed HDR banding model to predict sensitivity across
HDR luminance range. Finally, we account for the effect of
glare on detection thresholds. All those changes substantially
improve the accuracy of popular quality metrics, including
PSNR, SSIM, MS-SSIM, FSIM and VSI, when tested on one
of the largest HDR image quality datasets.

II. BACKGROUND AND RELATED WORK

Image quality has been traditionally evaluated disregarding
the characteristic of the display on which the content is to
be viewed. We discourage this practice, especially for HDR
content, as the visibility of distortions can vary substantially
with the display’s peak luminance [11]. To assess image
quality in a display-dependent manner, we will follow the
processing shown in Fig 1. The HDR content, regardless of its
representation in display-encoded colour space such as PQ and
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Fig. 1. Display-dependant HDR image quality assessment pipeline using
the PU encoding with existing quality metrics for display-encoded and linear
colour space input. Display-dependant SDR image quality assessment pipeline
for display-encoded input is also shown.

Hybrid-Log-Gamma (HLG) or in relative linear space, must
be tone mapped for a particular HDR display. Tone mapping
ensures that the displayed image does not exceed the peak
display luminance, which could be as high as 4 000 cd/m2 and
as low as 400 cd/m2 for some HDR displays. Next, a display
model is used to simulate the amount of light that is emitted
from the display in the physical units of luminance ( cd/m2).
The luminance is then perceptually encoded and passed to a
quality metric. Such a pipeline can be also used to evaluate the
quality of SDR content in a manner that accounts for display
brightness.

A. Display Model

Display models are used to predict light emitted from a
display when driven with display encoded pixel values. The
response of many displays can be modelled as:

L = (Lpeak − Lblack)f(V ) + Lblack + Lamb (1)

where L is luminance emitted from the display, and V is
display-encoded luma varying between 0 and 1. Lpeak is the
peak luminance, and Lblack is the black level of the target
display. Lamb is the ambient light that is reflected from the
surface of a display. f is the EOTF, the inverse of the opto-
electronic transfer function (OETF). In case of SDR, the EOTF
represents the inverse of the gamma or sRGB non-linearity. For
HDR it could be any of the HDR perceptual transfer functions
such as PQ [8] or HLG [12]. The output from the display
model represents the luminance values emitted from the target
display.

B. Perceptually Uniform Encodings

Since linear HDR colour values are strongly perceptu-
ally non-uniform, they are unsuitable for coding or quality
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Fig. 2. Comparison of the new CSF model from [10] (solid lines) with
Barten’s [16] (dashed lines, left), and Daly’s (dashed lines, right) CSF models.
Barten model was used to derive the PQ EOTF and Daly’s model was used
for PU08. The new CSF function, based on the recent measurements [17], is
significantly different from both models.

evaluation. The simplest encoding that improves perceptual
uniformity is the logarithmic function, originally proposed in
the context of encoding HDR pixels in [13]. While logarithmic
function is a good first-order approximation of the sensitivity
to light, it does not account for the lower sensitivity of the
HVS at low luminance levels. This problem was addressed
in [14] where encoding was derived from the psychophysical
threshold-versus-intensity function. The derivation relied on
the principle that a unit increment in the encoded space should
correspond to the just-noticeable difference in the luminance
space. In [5] the encoding was re-purposed to be used with
quality metrics but it was derived from the peaks sensitivities
of Daly’s CSF [15]. The perceptual encoding in [5], which
we will refer to as PU08 in this paper, was optimized to
approximate gamma-encoding within the range from 0.1 to
80 cd/m2, the typical range of luminance that SDR displays
could reproduce. Based on the same principles, PQ function
[8] was derived from Barten’s CSF [16] and was standardized
in ITU-R Recommendation BT.2100 as the EOTF for high
dynamic range content.

III. NEW PERCEPTUALLY UNIFORM ENCODING — PU21

In this paper we extend and improve upon PU08 [5] and
propose a new perceptually uniform encoding for HDR image
and video quality assessment. The new encoding, which we
will call PU21, is derived from the latest contrast sensitivity
data (Sec. III-A), models realistic coding artefacts (Sec. III-B),
and accounts for glare (Sec. III-D). The proposed PU21
improves the accuracy of quality predictions for a range of
standard metrics on tested HDR images (Sec. IV).

A. New Contrast Sensitivity Function

PU21 is based on a new CSF [10] that was fitted to the data
from five independent datasets, predicting contrast thresholds
at luminance levels between 0.0002 cd/m2 and 10 000 cd/m2.
One of the most recent of these datasets include contrast
sensitivity measurements conducted on a very bright HDR
display [17]. The main difference between the new CSF and
the previous models [16], [18], used for PU08 and PQ, is the
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Fig. 3. PQ function has been derived from the peak sensitivities of the CSF
(black circles). The new banding model relies on the probability summation
of a number of frequency components, shown as diamond-shaped markers.

drop of sensitivity at luminance values above 100 cd/m2 (refer
to 3). The previous CSF models assumed the sensitivity at
high luminance level stays constant. Due to this difference, the
PU21 derived from the new CSF model assumes that artifacts
in very bright areas are less visible and therefore less severe.

B. HDR Banding Model

Derivation of an encoding function requires the assumption
about the type of artefacts it should model. Both PQ and
PU08 were derived assuming that the content contains arte-
facts whose fundamental frequency corresponds to the peak
sensitivity of the CSF. Given this assumption, we can select the
sensitivity values at the peaks and reduce a multi-dimensional
CSF to single dimension of luminance (see Fig. 3). This
assumption, however, is rather unrealistic as it entails that
artefacts have a Gabor or wavelet-like shape with underlying
frequency corresponding to the peak. In practice, most coding
artefacts are caused by quantisation and result in banding
or contouring artefacts. To model the sensitivity to banding
artefacts, we rely on the banding detection model from [19],
which extends the previous model [20] by accounting for a
far greater luminance range.

The diagram of the banding model from [19] can be found
in Fig. 4. The model predicts both luminance and chromatic
banding artefacts, taking as input the background colour in
LMS colour space and the direction in which the colours
change within a smooth gradient of colours (∆L, ∆M , ∆S).
In this work, we only consider banding in luminance and
assume the background chromacity corresponds to D65 white
point. The model assumes the worst-case scenario of a smooth
gradient that is quantised. It decomposes the quantisation
error into its spatial frequency components using an analytical
Fourier transform of a saw-tooth function. The transform
results in a series of frequencies, ρ1, .., ρn (shown as diamonds
in Fig. 3) and amplitudes, m1, ..., mn. The amplitudes are
modulated using the CSF (denoted as sA/R/B in Fig. 4) from
[10] and then pooled together using the probability summation
to find the probability of banding detection. If such probability
exceeds a pre-determined threshold, the banding artefacts are
predicted to be visible.

Quantized Smooth

Probability
summation

Fig. 4. HDR Banding detection model. The difference between the quantized
and smooth (unquantized) signals is transformed into the Fourier domain to
find the spatial frequencies (ρi) and amplitudes (mi) of the banding artefacts
(top box). Those are used to find a detection threshold using an energy
model (bottom blocks) operating on a colour-opponent signals (∆A, ∆R,
∆B), that are normalized by the luminance Y. ∆R refers to L-M difference
(red-green) and ∆B refers to L-S difference (yellow-violet). The signal for
each colour and frequency component is modulated by the spatio-chromatic
CSF (s{A,R,B}(·)) from [10], which is a function of luminance Y , spatial
frequency ρ, and stimulus size a.

To determine the sensitivity to banding artefacts at each
luminance level, we perform a binary search to find the
contrast associated with the height of the saw-tooth function
that results in visible banding. The sensitivity is the inverse
of that contrast: S = L/∆L. The detection contrast for the
banding model and peak sensitivities of the CSF are shown
on the left of Fig. 5.

C. Numerical Integration

Once we find the sensitivity associated with each luminance
level, we can derive PU encoding by integrating the inverse
of detection thresholds, as demonstrated in [21, Sec. 2.4]
and [14]. Here, we focus on a practical aspect of numerical
integration. Because the thresholds have either complex form,
or are found numerically, the integration used to find the
PU encoding must be also numerical. Since the sensitivity to
luminance is highly non-linear, the thresholds must be sampled
on the logarithmic scale of luminance; i.e. we are integrating
over l = log10(L) rather than luminance L. Such a substitution
of variables requires the introduction of a Jacobian determinant
into our numerical integral:

P (Lk) =

k∑
i=1

S(Li)

Li
Li log(10)∆ =

k∑
i=1

S(Li) log(10)∆ ,

(2)
where P (Lk) is the perceptually uniform value at luminance
Lk, S(Li) is the sensitivity, Li log(10) is the Jacobian de-
terminant, and ∆ is the difference between the logarithms of
two luminance levels: ∆ = log10 Li+1 − log10 Li. The values
Li are distributed on the logarithmic scale between 0.005 and
10 000 cd/m2.

D. Glare-Adaptive Perceptually Uniform Encoding

The existing PU functions, derived from the threshold
functions for fully adapted eye, assume the ideal viewing
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Fig. 5. Left: contrast detection thresholds for each variant of the PU21 curve.
Right: The PU21 encoding functions, rescaled so that the values between
0.1 and 100 cd/m2 correspond to 256 steps. Banding functions are derived
from the banding model and peaks from the peak sensitivities of the CSF.
PQ (scaled by 256) and PU08 are included for comparison. The dashed lines
represent analytical functions fitted to the numerical derivation of the PU21
curves.

conditions: a dark room and a mostly uniform (low dynamic
range) image. In practice, content is typically viewed at non-
negligible ambient light levels and HDR content can contain
very bright areas, which both introduce glare — scattering of
the light in the eye’s optics and on the retina. Such a glare can
make details in darker image parts harder to see. The effect
of glare in visible thresholds is ignored in both PQ and PU08
design and hence those functions do not reflect how artefacts
are perceived when glare is present in an image.

To account for glare, we need to modify the sensitivity
values. Assuming the amount of glare is uniform in the image
and equal to Lg , the sensitivity corrected for glare can be
computed as:

Sg(L) =
S(L+ Lg)L

(L+ Lg)
. (3)

The above function assumes that the glare will increase the
luminance on the retina by Lg , thus decreasing the physical
contrast by a factor of L/L+Lg. The sensitivity values with
and without glare-adaptive encoding are plotted on the left of
Fig. 5. Note how glare affects sensitivity at lower luminance
values the most. The assumption of the uniform amount of
glare across the image is a simplification that let us use
PU21 encoding as a spatially invariant operator. Modeling of
spatially-varying glare requires convolution with large kernels
[2], which could be too expensive for simple metrics.

E. PU Encoding Functions

We follow the steps above to compute four combinations
of possible PU functions: using the peak CSF sensitivities (as
PU08 and PQ) or the HDR banding model, and with or without
the glare-adaptive encoding. Here, we assume the glare of
Lg = 0.5 cd/m2. Because we want the PU-encoded images
to result in similar quality metric predictions as their SDR
counterparts, we introduce one more step: the PU values are
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Fig. 6. Quality predictions for the HDR images of the UPIQ dataset. Different
markers denote different PU21 functions used to encode HDR pixel values.
The PU21 based on the new banding model that accounts for glare results in
higher correlation with the subjective judgements for majority of the metrics.
The result for PU08 and MS-SSIM is missing because MS-SSIM cannot
handle negative pixel values, which are produced by PU08 encoding.

rescaled by a constant, so that the range of luminance between
0.1 cd/m2 and 100 cd/m2 is mapped to the 256 steps of the PU
values. This luminance range is typical for many SDR displays
and therefore should be mapped to 256 code values found in
8-bit SDR images. PU08 encoding contained a similar step.
However, the values below 0.5 cd/m2 were mapped to negative
values, making PU08 usuitable for many quality metrics. As
the final step, we fit analytical invertible functions to the
numerical solutions so that the the encoding can be easily
implemented with a single equation1. All the variants of the
new PU21 functions are shown on the right of Fig. 5.

IV. RESULTS

To evaluate the new PU21 encoding and to choose the best
variant from the four developed combinations, we employ the
new PU21 encodings to predict HDR image quality in UPIQ
dataset [22]. This dataset consists of over 3779 SDR and
380 HDR image pairs. The dataset was created by aligning
and rescaling quality scores from 2 SDR (TID2013 [23],
LIVE [24]) and 2 HDR datasets [25], [26]. We use only
the HDR portion of the dataset for our evaluation as this
is the target application of PU21. UPIQ test images contain
more than 25 types of distortions, such as noise, blur, and
compression. We selected this dataset because it is the largest
HDR image quality dataset available. Furthermore, the HDR
images in UPIQ dataset are scaled in absolute colourimetric
units, eliminating the need for tone mapping. We use four
variants of the new PU21 encoding, PU08 and PQ to encode
each image pair, following the procedures shown in the Fig. 1.
We test the commonly used image quality metrics: PSNR,
SSIM, VSI [27], FSIM [28], and MS-SSIM [29].

The correlations between metric predictions and subjective
quality scores are shown in Fig. 6 in terms of Spearman
Correlation Coefficient (SROCC). Out of the four variants of
the new PU21 encoding tested, the one that combines the
sensitivities derived from the HDR banding model and ac-
counts for glare outperforms the other three. When comparing

1The PU21 code is available at: https://github.com/gfxdisp/pu21



glare/no-glare variants, accounting for glare clearly improves
metrics performance. When comparing PU functions based on
peak sensitives versus HDR banding model, using the latter,
which better models the coding artefacts, clearly shows an
advantage over using only peak sensitives.

The new PU21 based on HDR banding model and with glare
adjustment clearly improves metrics predictions as compared
to both PU08 and PQ EOTF. Overall, the new PU21 based on
the HDR banding model and with glare encoding yields the
highest correlation with subjective results. This is valid for all
tested metrics, except for SSIM, for which its performance
is comparable to that of the PU08 encoding. Applying PU21
does not impose any changes on the quality metric and can be
coupled with any metric to improve its performance on HDR
image quality prediction.

V. CONCLUSIONS

We proposed a new, more comprehensive perceptually uni-
form (PU) encoding function to adapt the existing quality
metrics to HDR content. The proposed PU21 relies a new
contrast sensitivity function that accounts for luminance levels
well beyond the range supported by current HDR displays.
It models the visibility of realistic coding artifacts, such
as quantisation, which can be predicted using a new HDR
banding model. The change of vision sensitivity and hence
image quality in presence of glare is also considered in
the PU21 by adding a glare-adaptive encoding. Performance
evaluations on HDR images in UPIQ, one of the largest image
quality datasets, showed that the proposed PU21 based on the
HDR banding model and including glare-adaptive encoding
improves the performance of the most commonly used image
quality metrics of PSNR, VSI, FSIM, SSIM and MS-SSIM
compared to the old PU08 and PQ.
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