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ABSTRACT

The paper discusses the use of existing metrics, such as HDR-
VDP and extensions of MS-SSIM and PSNR, for prediction
of quality in high dynamic range (HDR) images and video.
The discussion is based on the experience in using those met-
rics to evaluate and improve image compression for the new
JPEG XT standard, and video compression for the LumaHDR
open source codec. The paper explains why existing non-
HDR metrics perform very poorly on HDR data and how to
improve their predictions. Since most HDR metrics require
calibrated data, intended for an HDR display, such calibration
step is explained. One of the popular HDR quality metrics,
HDR-VDP, is briefly introduced with the update on the latest
improvements. Finally, several studies comparing objective
HDR metric performance are summarized.

Index Terms— HDR quality, objective metrics, HDR-
VDP, perceptual metrics

1. INTRODUCTION

The recent interest in compression of high dynamic range
(HDR) images and video sparked renewed interest in objec-
tive quality metrics, which could be used for evaluation of
new HDR compression methods. The lack of well established
HDR metrics, however, led to some confusion as to which
metrics are suitable for the task. As the requirements for qual-
ity assessment of HDR are different from standard (low dy-
namic range) images and video, both the metrics and the way
they need to be used are different. This paper is intended to
clarify those differences and provide practical remarks on us-
ing HDR objective quality metrics. The paper also reviews a
selection of the available objective metrics, with the focus on
the work by the author.

Early attempts of computing quality for high dynamic
range content involved calculating quality indices at multiple
exposures and averaging such predictions [1]. Although such
approach gives better predictions than computing quality in
linear luminance domain [2], it adds unnecessary complexity
and computation, which can be avoided with perceptually
uniform spaces, discussed in Section 2.2. In contrast to tra-
ditional image quality metrics, perceptually uniform color
spaces make the quality prediction dependent on the bright-

ness and contrast of a display. Because of that, they require
input images to represent absolute photometric values, as dis-
cussed in Section 2.3. One of the first comprehensive image
difference metrics intended for HDR images was HDR-VDP
[3] by the author of this paper. The metric, however, was
intended for predicting probability of detecting differences
in different parts of an image and was not intended to pre-
dict the overall image quality. That functionality was added
in HDR-VDP-2, discussed in Section 3. In this paper we
do not discuss but acknowledge the latest quality metric,
HDR-VQM [4], which employs perceptual uniform encod-
ing, subband decomposition and spatio-temporal pooling to
predict quality of HDR video. This paper is focused on im-
age fidelity and it does not cover HDR metrics intended for
tone-mapping [5, 6].

2. PRACTICALITIES OF HDR METRICS

2.1. LDR luma vs. HDR luminance

Although image quality could be, in principle, computed di-
rectly on HDR pixel values using existing LDR metrics, such
approach is conceptually incorrect. This is because the ma-
jority of LDR metrics assume that the input values are ap-
proximately perceptually uniform. While luma values in LDR
images have this property, the same cannot be said about /u-
minance values found in HDR images.

Fig. 1 shows an example of this problem. The rectangles
shown in this figure contain a random noise of the same am-
plitude in terms of luma values. Depending on the medium
(paper or a display) on which this figure is seen, the visibil-
ity of noise is similar across all brightness levels, with per-
haps slightly lower visibility for the brightest and the dark-
est patches. The PSNR computed from luma values (LDR-
PSNR) is obviously the same for all 4 brightness levels. The
rectangles can be transformed from LDR luma to HDR lumi-
nance by inverse gamma mapping; raising the luma values to
the power 2.2. When the PSNR is computed from HDR lumi-
nance values (HDR-PSNR), the metric results differ widely
between brightness levels: the brightest patch has the qual-
ity 20 dB worse then the darkest patch, which definitely does
not reflect the perceived difference. This shows that com-
puting PSNR and other LDR metrics directly on HDR lumi-
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Fig. 1. PSNR values can differ substantially depending how
they are computed. The four rectangular patches contain
white noise on 4 background brightness levels. When PSNR
is computed for LDR luma values (LDR-PSNR), the distor-
tion (noise) has the same impact on PSNR. However, if the
images are converted to HDR luminance values by inverse
gamma function (2.2), the HDR-PSNR values vary widely
between different brightness levels. The PSNR computed on
perceptually uniform values (PU-PSNR) corrects for differ-
ences in noise visibility at different brightness levels and pro-
duces values that better correlate with perceived quality.

nance values results in overpredicted visibility of distortions
for bright regions of an image.

The obvious solution is to convert perceptually non-
uniform luminance into perceptually uniform luma. But
unfortunately the “gamma correction” formula cannot be
used to convert HDR luminance values to LDR luma. This
is because “gamma” well approximates the non-linearity of
luminance perception only within a small range of values,
restricted to the luminance range of CRT displays, for which
it was intended. Outside that range, “gamma correction”
greatly overestimates the visibility of very bright features.
Similarly, CIE Lab or similar uniform color spaces are not
suitable as they were not intended for HDR images.

The simplest approach to transform HDR pixel values into
approximately perceptually uniform units is to compute the
logarithms of pixel luminance. Such approach is commonly
used in many tone-mapping operators but also in some HDR
pixel encodings [7]. The logarithm unifies contrast differ-
ences assuming the Weber-Fechner law of contrast percep-
tion [8], making the resulting values better aligned with the
perceived brightness of HDR pixels. However, the Weber-
Fechner law is only a rough approximation, which overpre-
dicts distortion visibility at low luminance levels. A better
uniformity can be achieved with perceptual uniform encod-
ing, discussed in the next section.

2.2. Perceptual uniform encoding

Aydin et al. [9] proposed a simple luminance encoding
that makes it possible to use existing LDR metrics, such as
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Fig. 2. Perceptually uniform (PU) encoding for evaluating
quality of HDR images. The absolute luminance values are
converted into luma values before they are used with standard
image quality metrics, such as MSE, PSNR or SSIM. Note
that the PU encoding is designed to approximately match the
magnitude of SRGB non-linearity within the range 0.1 — 80
cd/m? so that the results for low dynamic range images are
consistent with those computed in the SRGB color space.
This, however, requires that some PU-encoded values are neg-
ative.

PSNR or SSIM, with HDR images. The encoding transforms
physical luminance values (represented in cd/m?) into an ap-
proximately perceptually uniform (PU) representation (refer
to Figure 2). The transformation is derived from luminance
detection data. It is further constrained so that the lumi-
nance values produced by a typical CRT display (in the range
0.1-80 cd/m?) are mapped to the 0255 range to mimic the
sRGB non-linearity. This way, the quality predictions for
typical low-dynamic range images are comparable to those
calculated using pixel values while the metric is also able to
operate on a much greater range of luminance.

Our earlier example of rectangular noise patches in Fig-
ure 1 includes also the results for PSNR computed for PU-
encoded values. The PU-PSNR is actually larger for the dark-
est patch and the brightest patches, as the noise is slightly
less visible for those (though this may depend on the display
medium). The PU-PSNR predictions arguably better corre-
sponds with the visibility of the noise on those patches, espe-
cially when compared to HDR-PSNR values.

The PU encoding shown in Figure 2 is a revision from
the original work [9]. The revision uses a more recent Con-
trast Sensitivity Function from [10] instead of the historical
t.v.i. measurements to derive the curve. The source code for
the encoding can be found at http://goo.gl/rpfkB9.
PU encoding is not the only option for transforming HDR
images into perceptual space and some recent papers used in-
stead Perceptual Quantizer (PQ) [11]. PQ was originally pro-
posed as a transfer function used for encoding HDR video.
The function is conceptually very similar to PU encoding with



the difference that other contrast sensitivity function was used
for its derivation.

2.3. Display-referred metrics

One important feature of PU encoding and most HDR metrics
is that they are sensitive to absolute luminance levels. An im-
age shown on bright display is more likely to reveal artefacts
than the same image shown on a dark display, so a metric
should reflect that. Most LDR metrics do not account for the
differences between displays as they base their predictions on
pixel values, which are the same regardless of the contrast or
brightness of a display. In contrast to that, HDR metrics often
operate on the output luminance produced by a given display.

This property of HDR metrics poses certain difficulty as
most HDR images and video are represented in relative units,
which do not directly correspond to physical absolute lumi-
nance produced by a display. Ideally, the content intended
for an HDR metric should be mapped to a target display, so
that the HDR pixel values represent absolute color and lumi-
nance values emitted from that display. In the simplest case
such mapping may involve just multiplication by a constant,
so that the peak image value is mapped to the display peak lu-
minance, for example 4,000 cd/m? for a bright HDR display.
If the content must be processed automatically, it is possible
to tone-map both images and video using a display adaptive
tone-mapping', which can tone-map for both LDR and HDR
displays.

2.4. RGB vs. luminance-only metrics

The PU-encoding is typically used on the image luminance
channel, while ignoring color information. An obvious ex-
tension is to compute PU-encoded values for red, green and
blue color channels and then compute aggregate PSNR for all
of them, as commonly done in case of LDR images. Such ap-
proach should be able to detect distortion in color, which can
be missed by a luminance-only metric.

In practice, however, PU-PSNR computed for all color
channels may perform substantially worse than for luminance
alone. Table 1 shows the ranking of HDR image metrics
according to several metric performance indices from [12].
In almost all cases, the color RGB metrics (with _RGB suffix)
perform significantly worse than luminance-only counter-
parts (_Y suffix). A better performance of luminance-only
metrics was also demonstrated in [2]. One potential reason
for worse performance of RGB metrics is that they do not
differentiate between highly visible luminance distortions
from much less visible chroma distortions. At the same time
luminance-only metrics do not perform poorly for color dis-
tortions because most color distortions affect both luminance
and chroma channels.

IDisplay adaptive tone-mapping is provided in pfstools software:
http://pfstools.sourceforge.net
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Fig. 3. Comparison of HDR-VDP performance before (HDR-
VDP v2.1.3) and after training (HDR-VDP v.2.2) with the
dataset of 2932 images. The results for PU-SSIM and PU-
PSNR (see Section 2.2) are also included. The error bars
denote 95% confidence interval for cross-validation results
(70/30 split). Figure adapted from [4].

3. HDR-VDP-2

HDR-VDP-2? is the visibility (discrimination) and quality
metric capable of detecting differences in HDR images [10].
The metric originates from the classical Visual Difference
Predictor [13], and its extension — HDR-VDP [3]. What
makes HDR-VDP-2 different from other quality metrics,
such as HDR-VQM [14], or MSSIM [15], is that it is based
on a comprehensive model of detection and discrimination,
which has been calibrated and validated on a large dataset
of psychophysical data, including ModelFest [16], historical
Blackwell’s t.v.i. measurements [17], and newly measured
contrast sensitivity data [18].

Most quality metrics are trained with quality data alone.
Such data usually consists of a set of distorted images and
the corresponding mean-opinion-scores (MOS) — one num-
ber per image. Since quality datasets contain at most a few
thousands of images (more often a few hundreds), the data
used to train such metrics is rather limited, especially when
compared to datasets used in computer vision and machine
learning, which can contain millions of images. The best ev-
idence that quality datasets are often inadequate in terms of
sample size is demonstrated by a number of papers compar-
ing the performance of quality metrics with subjective data,
in which the reported metric performance can vary widely be-
tween the datasets.

In the absence of very large quality datasets, especially

2HDR-VDP-2 source code is available at
http://hdrvdp.sourceforge.net



Table 1. Accuracy (PLCC and RMSE) and consistency (OR) indexes for several objective metrics computed for the dataset of
80 images. No evidence for statistical difference was found for metrics whose performance indexes are underlined. The table

adapted from [12].

(a) Pearson Linear Correlation Coefficient (PLCC).
LOG_PSNR_RGB PSNR SNR PU2PSNR_RGB W_RMSE RGB MRSE W_RMSE.Y PU2PSNR_Y LOG_PSNR_.Y PU2SSIM PU2MSSIM HDRVDP_Q

0.6548 0.6800 0.7128 0.7340 0.7386

0.7527  0.8812

0.8839 0.8881 0.9231 0.9447 0.9510

(b) Root-Mean-Square Error (RMSE).
LOG PSNR RGB PSNR SNR PU2PSNR RGB W RMSE RGB MRSE W RMSE_Y PU2PSNR_Y LOG PSNR_Y PU2SSIM PU2MSSIM HDRVDP_Q

0.9487 0.9204 0.8805 0.8526 0.8466

0.8266  0.5941

0.5873 0.5770 0.4831 0.4133 0.3882

(c) Outlier ratio (OR).
PSNR W_RMSE_RGB SNR MRSE LOG_PSNR_RGB PU2PSNR_RGB W_RMSE.Y PU2PSNR_.Y LOG_PSNR.Y PU2SSIM PU2MSSIM HDRVDP_Q

0.7625 0.7375 0.7208 0.7167 0.7000 0.6917

0.6208

0.5958 0.5833 0.5583 0.5250 0.3500

for HDR images and video, one strategy is to build a metric
that relies on low-level vision, which is mostly well under-
stood and can be tested against a substantial amount of psy-
chophysical data. The assumption here is that when the brain
makes quality judgments, it operates on a signal that has been
distorted by early vision. Therefore, a quality metric should
mimic this behavior and also model early vision. This may
lead to metrics, which are potentially more robust to new data
even if trained with limited datasets.

For those reasons, HDR-VDP-2 accounts for many early
vision phenomena, such as scattering of the light in the eye
and optics (glare), rod and cone vision, local adaptation, lumi-
nance masking, spatial contrast sensitivity, contrast masking,
neural noise in visual channels and contrast constancy. Such
early vision processing makes the metric sensitive to many
factors, which most metrics ignore. HDR-VDP-2 predictions
will be different depending on display brightness, viewing
distance and spectral emission of the color primaries used in
the display. But, also because of that, the data supplied to
HDR-VDP-2 needs more effort to prepare. The images need
to be calibrated in absolute units of cd/m?, as discussed in
Section 2.3. As the metric is sensitive to the viewing dis-
tance, it is necessary to provide image angular resolution in
pixels per visual degree. The spectral emission curves for red,
green and blue primaries can be optionally specified, or one of
the default curves, for CRT and LCD displays with different
backlight, can be selected.

The metric has undergone several software revision, from
which the latest improves quality predictions. The qual-
ity prediction for earlier releases (prior to 2.2) was trained
solely with the low dynamic range quality datasets (LIVE
and TID2008), as no datasets for high dynamic range were
available. From version 2.2, HDR-VDP-2 is calibrated and
cross-validated with over 2900 distorted images, coming from
four different datasets: CSIQ and TID2008 for LDR images,
and datasets from image compression and tone-mapping stud-
ies [19, 20] for HDR images. Interestingly, the improvement
in quality predictions only required altering metric parame-

ters without any changes to the model. We found the model
derived from the LDR image data performs equally well on
the HDR image data. The performance of HDR-VDP v2.2,
compared to HDR-VDP v2.1.3, PU-PSNR and PU-SSIM is
shown in Figure 3.

4. METRIC PERFORMANCE

Table 1 and Figure 3 are the examples of two studies demon-
strating good performance of HDR-VDP-2 for compressed
images. HDR-VDP-2 was also shown to correlate well with
subjective studies in [21, 2, 22]. It must be noted, however,
that studies performed before 2015 used the earlier version of
the metric (v2.1.3). [23] found HDR-VDP-2 (v2.1.3) to well
predict compression artifact, however VIF in PU-space per-
formed much better for other types of distortions, including
intensity shifting, salt and pepper noise and low-pass filtering.
The study in [14] demonstrated that HDR-VQM and SSIM
(in PU space) performed better than HDR-VDP-2 (v2.2) for
video content. But the study in [22] showed a better perfor-
mance of HDR-VDP-2 (v2.2) for content compressed with
HDR extension of HEVC. Given that most studies have been
performed on datasets of less than 100 images or video se-
quences, it is difficult to draw general conclusions on the per-
formance of HDR metrics and larger datasets are needed to
better assess their predictive power.

5. CONCLUSIONS

The paper discussed several practical issues to be considered
when using HDR quality metrics, including the need to con-
vert HDR pixel values into the perceptually uniform space,
requirement for display-referred data, and the advantage of
luminance-only metrics. A brief overview of HDR-VDP-2
gives a rationale for the metric that is based on the model of
early human vision. Several independent studies confirmed
good performance of HDR-VDP-2, though in some studies
simple metrics based on PU-encoding, or the specialized
video metric HDR-VQM, proved to be better.
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