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Abstract

To efficiently deploy eye-tracking within 3D graphics applications, we present a new probabilistic method that
predicts the patterns of user’s eye fixations in animated 3D scenes from noisy eye-tracker data. The proposed
method utilises both the eye-tracker data and the known information about the 3D scene to improve the accuracy,
robustness and stability. Eye-tracking can thus be used, for example, to induce focal cues via gaze-contingent
depth-of-field rendering, add intuitive controls to a video game, and create a highly reliable scene-aware saliency
model. The computed probabilities rely on the consistency of the gaze scan-paths to the position and velocity of a
moving or stationary target. The temporal characteristic of eye fixations is imposed by a Hidden Markov model,
which steers the solution towards the most probable fixation patterns. The derivation of the algorithm is driven
by the data from two eye-tracking experiments: the first experiment provides actual eye-tracker readings and the
position of the target to be tracked. The second experiment is used to derive a JND-scaled (Just Noticeable Differ-
ence) quality metric that quantifies the perceived loss of quality due to the errors of the tracking algorithm. Data
from both experiments are used to justify design choices, and to calibrate and validate the tracking algorithms.
This novel method outperforms commonly used fixation algorithms and is able to track objects smaller then the
nominal error of an eye-tracker.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.6]: Methodology and
Techniques—

1. Introduction

The human gaze is probably the best pointing device, which
is faster, more intuitive and require less effort than a com-
puter mouse or a touch screen. Our visual system relies on
constantly changing gaze, which scans the scene to create a
percept of it. Given the importance of eye motion, it is disap-
pointing that neither display devices, nor rendering methods
make use of this property of the visual system. However, if
we could precisely predict the gaze position, we could not
only gain a very effective pointing device, but also enhance
display with gaze contingent capabilities. For example, ac-
commodation related focal cues could be simulated to en-
hance the visual experience [HLCC08] without a need for
multi-focal displays [AWGB04].

The cost of eye tracking is falling (a do-it-yourself de-
vice can be constructed for less than 30 EURs [AMB10,
MKNB12]) and so obtaining the gaze position information
is affordable. Our observation is that it is not the cost of the

eye-tracking systems, but their accuracy that is the main lim-
iting factor. This is hard to overcome as most eye-trackers
rely on faint corneal reflections and are affected by head
movements, lids occluding the pupil, variation in lighting,
shadows, and sunlight interfering with the infrared (IR) light
sources. But even if a perfect registration of the eye position
and orientation was possible, eye movements do not strictly
follow the attention patterns of the visual system [HNA∗11].
Even if an observer is focused on a single point, the eye will
wander around that point because of the saccadic eye move-
ments and tremors.

In this work we propose a gaze-tracking algorithm that
combines eye-tracker data with information about the 3D
scene and any animation in the scene to greatly improve
the accuracy and stability of eye-tracking. Our method con-
sists of a probabilistic model, which assigns a likelihood that
one of the predefined target points is attended. The likeli-
hood relies on the consistency of the gaze scan-paths with
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the position and velocity of a target. The temporal character-
istic of eye fixations is imposed by a Hidden Markov model,
which steers the solution towards the most probable fixa-
tion patterns. The derivation of the algorithm is driven by
the data from two eye-tracking experiments: the first exper-
iment provides a large quantity of eye-tracker readings for
3D animations, together with the positions of the object that
should be tracked. The second experiment is used to derive
a quality metric scaled in just-noticeable-differences (JNDs)
that quantifies the perceived loss of quality due to the errors
of the tracking algorithm. The data from both experiments
is used to justify design choices, calibrate and validate the
tracking algorithms.

The main contributions of this work are to:

• Demonstrate that the accuracy of eye-tracking (Sec-
tion 4.2) and the existing state-of-the-art of fixation esti-
mators is insufficient for real-time computer graphics ap-
plications (Section 7).
• Derive a JND-scaled quality metric for 3D eye-tracking

applications from experimental data (Section 5).
• Propose a new gaze-tracking method that utilises the in-

formation about a 3D scene and animation within the
scene. The 3D scene serves as prior knowledge for the al-
gorithm and improves the accuracy greatly above the eye-
tracking error (Section 6.1).
• Demonstrate successful use of eye-tracking in the simula-

tion of focal depth cues, as a pointing device in a computer
game, and a saliency model (Section 8).

2. Background

2.1. Human eye movement and visual fixation

The field of view for both eyes spans more than 180◦ hor-
izontally and 130◦ vertically, although, we are able to see
details only in the fovea — the 2◦ patch of the retina located
in the middle of the macula. The eye muscles enable fast
gaze shifting to orient the eye such that the object of inter-
est is projected onto the fovea. There are five types of eye
movements: saccades - fast movements used to reposition
the fovea, smooth pursuits - active when eyes track mov-
ing targets, vergence - used for depth perception to focus the
pair of eyes over a target, vestibular ocular reflex - used to
compensate head movement, and optokinetic reflex - used to
account for the motion of the visual field [Duc07, Sun12].

From the gaze tracking technology perspective, the most
important are saccadic movements and smooth pursuits (see
Figure 1). Saccades last 10–100 msec and are too short for
the brain to process the images transmitted by the visual sys-
tem [RMB94]. In a smooth pursuit the eye follows the object
of interest and matches its velocity. In our proposed tracking
system we focus especially on smooth pursuits as it is com-
mon in graphics to follow moving objects.

Between saccades or during smooth pursuits the eyes tend

Figure 1: Types of eye movement: the fast saccades over
20 [deg/s] are marked in green, the slower stabilised sac-
cades suggesting existence of fixations are depicted as the
blue lines and crosses, the red circles show the locations of
the reference marker on which an observer was asked to look
at (the marker is initially moving from the bottom to the top
and then to the left). The movement of the slow saccades (fix-
ations) defines direction of the smooth pursuit. The bright
green lines represent gaze data captured with an eye tracker.

to remain fixated for a 200-400 msec [SEDS81] on the most
significant areas of an image (called the Region-of-Interest,
ROI). After that, the eye moves towards a new zone of inter-
est. This fixation period allows the brain to process informa-
tion and see images.

2.2. Eye tracking

The gaze directions (or gaze positions) are captured by eye
trackers. These devices do not measure the fixations but only
collect “raw” gaze points that can be used to estimate the po-
sition of a fixation. We review fixation estimation algorithms
in Section 3.2.

The most popular eye trackers employ the pupil-corneal
reflection (P-CR) technique. An eye tracker usually consists
of an IR camera and an IR light source, which are directed at
the eye. The camera captures the image of the eye (see exam-
ple in Figure 2) with the dark circle of the pupil (or white de-
pending on the location of the light source [MM05]) and the
bright corneal glint, which is a reflection of the infrared light
from the outer surface of the cornea (this reflection is also
called the first Purkinje image [MM05]). The pupil follows
the gaze direction during eye movement while the corneal
reflection stays in the same position. The relative position
between the reflection and the centre of the pupil is used
to estimate the gaze direction. Such an estimate is robust to
small head movements.

Modelling the geometric mapping between the registered
features of the eye and the display coordinates is difficult be-
cause of the initial position of the head is unknown and eye
movement is complex. Therefore, the majority of eye track-
ers employ a non-linear approximation technique, in which
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an observer is asked to look at a set of target points dis-
played one by one in different locations of the screen. The
relation between the relative position of the pupil centre and
the known position of the target points is used to fit the co-
efficients of a pair of second-order polynomials [MM05].

Figure 2: Image of the dark pupil and the bright corneal
reflection taken in the infrared light spectrum.

The accuracy of an eye tracker refers to the difference
between the actual and captured gaze direction measured in
the degrees of viewing angle. The average accuracy of a typ-
ical P-CR eye tracker is close to 0.5◦ (see discussion in Sec-
tion 4.2). This roughly corresponds to a circular region of
40 pixels diameter on a 22” display of 1680x1050 pixels ob-
served from 65 cm. There are other gaze tracking techniques
that offer better accuracy but require using chin rests or bite
bars, or are intruisive, requiring electrodes around the eye,
or a coil embedded into a contact lens (see [Duc07, MM05]
for the review). The intruisive techniques are not suitable for
casual end-user applications.

3. Related work

In this section we review existing applications of eye track-
ing and commonly used fixation algorithms.

3.1. Gaze tracking in computer graphics

Information about the gaze direction with the model of the
visual acuity degradation (eccentricity-dependent CSF) can
be used to reduce the complexity of computation in the
parafoveal and peripheral regions of vision. This property
is applied in view-dependent polygon simplification tech-
niques that vary the level-of-detail (LOD) [LH01,MD01]. It
can be also used to reduce sampling in ray casting [MDT09],
volume rendering [LW90] or for a gaze-dependent ambient
occlusion rendering [MJ12].

Gaze tracking can simulate a number of visual phenom-
ena that depend on gaze direction and are difficult to repro-
duce on a display. For example, the blurring due to accom-
modation of the eye can be simulated by rendering scenes
of reduced depth-of-field (DoF), focused at the current gaze
position (see Section 8.1). Local light adaptation can be
simulated in tone-mapping that adapts to the gaze posi-
tion [RFM∗09].

Jacob [Jac93] studied the application of eye trackers as the
HCI interface, especially for people with disabilities. In this

work we demonstrate the use of eye tracker as an intuitive
and very fast controller in a computer game (see Section 8.2
and [Sun12]).

For most of the mentioned applications, a high accuracy
for the gaze direction estimation was not crucial. They were
tested on rather simple scenes with objects occupying a
large area. However, most practical applications require cor-
rect identification of objects whose dimensions are below
the accuracy of an eye tracker. This issue has been noticed
in [HLCC08] where a so called "autofocus" technique was
developed to supplement eye-tracker data with a computa-
tional attention model [Itt00] in a region of inaccurate gaze
estimation. Such computational attentions models, however,
were also found unreliable for scenes with complex contex-
tual information.

3.2. Fixation techniques

The Dispersion Threshold Identification (I-DT) algo-
rithm [Wid84] estimates fixation points in screen coordi-
nates from eye-tracker gaze points. Since fixation points
tend to cluster closely together because of their low ve-
locity, I-DT identifies fixations as groups of consecutive
points within a particular spatial dispersion window. Ad-
ditionally, the duration of a fixation is limited to a time
window ranging from 150 to 400 msec. The dispersion
is usually measured in terms of centroid-distance — the
average distance between the gaze points and their cen-
troid computed for a time window of duration equal to a
window length.Another fixation technique, called Velocity-
Threshold Identification (I-VT) [EV95], separates fixation
points and saccadic points based on their point-to-point ve-
locity. If such velocities are less than a chosen velocity
threshold, consecutive gaze points are collapsed into a fix-
ation. Extension of this algorithm uses two-state hidden
Markov models (HMMs) [SA98], in which the states cor-
respond to saccades and fixations, which differ in their the
velocity distributions. Although this technique improves the
accuracy of fixation, the velocity-based algorithms still tend
to produce inconsistent results at or near threshold values (it
is difficult to find the proper threshold) [SG00] or for slow
eye movements [ULIS07].

Generally, the main drawback of the fixation algorithms
is that their accuracy depends on the selected parameters,
which in turn depend on a scene content [Bli09]. Poorly
selected parameter values can completely change the re-
sults of identification [SSC08]. The optimal parameters vary
with an observer or even an observation session [Duc07,
Bli09]. Interestingly, it has been shown that various fixa-
tion algorithms generate different results for the same gaze
data [SSC08]. Eye trackers manufacturers often use propri-
etary techniques in their systems that are tuned for a par-
ticular application [Kar00]. Finally, the fixation techniques
are not suitable for capturing the smooth pursuit movement,
which is common in computer graphics applications.

c© 2013 The Author(s)
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4. Eye-tracking accuracy in 3D applications

The accuracy of eye-tracking is usually reported for sim-
ple static scenes, where an observer is asked to look at the
spot target, and the distribution of the eye-tracker readings
determines the error. Furthermore, the error is usually re-
ported for the data processed with one of the fixations algo-
rithms, which reduces the noise levels as compared to raw
eye-tracker readings. However, we found that this testing
scenario is not representative of dynamic 3D scenes with a
multitude of moving objects, occlusions and camera move-
ments. To collect more representative data, we measured
eye-tracker readings for complex animated scenes, where
the observers were instructed to follow a given target. The
results will serve us as a data set for: a) more representa-
tive estimate of eye-tracker accuracy (Section 4.2); b) cali-
bration and testing existing fixation algorithms for complex
animated scenes (Section 7); and c) the basis for modelling,
testing and calibration of a new algorithm (Section 6.1).

4.1. Data collection procedure

Apparatus. Our experimental setup consists of the P-CR
RED250 eye tracker [SMI09] controlled by the proprietary
SMI iViewX software (version 2.5) running on a dedicated
PC. RED250 eye tracker captures locations of the corneal
reflection (the first Purkinje image) and centre of the pupil
for both eyes. The data is collected at 250 Hz, but we no-
ticed that some samples are lost and the effective opera-
tion frequency is about 20% lower. The RED250 eye tracker
is mounted under a 22” Dell E2210 LCD display with the
screen dimensions 47.5x30 cm, and the native resolution of
1680x1050 pixels (60Hz). Another PC (2.8 GHz Intel i7
930 CPU equipped with NVIDIA GeForce 480 GTI 512MB
graphics card and 8 GB of RAM, Windows 7 OS) was used
to run our evaluation software, and to store experimental re-
sults.

Figure 3: An example frame from the test animation. The
green circle with a red centre located in the middle of the
dragon denotes the reference target. Other circles show lo-
cations of defined targets of potential focusing (these mark-
ers are not displayed during the experiment).

Stimuli and procedure. An observer was shown one of

three animations, labelled as A, B, and C, each with differ-
ent objects and marker paths (the animations are included
in the supplementary materials). The observer was asked to
follow with the eyes the colour marker moving in the 3D
scene (see example in Figure 3) while the eye-movements
were recorded. The marker followed moving objects to in-
stigate smooth motion pursuit, it jumped from one object to
another at various depth levels to cause saccades, it stayed
still for a longer moment, moved behind occluding objects
for a short time-periods and also jumped from background
to foreground objects. For every animation a set of target
points of attention was distributed over the scene to act as
potential fixation targets. We specified 8 targets for anima-
tion A, 9 for B, and 110 for animation C. The last case seems
to be the most realistic for practical applications, although a
smaller number of targets is also convenient to restrict the
number of potential fixation targets.

Each observer sat at a distance of 65 cm from the display.
The distance was restricted by a chin-rest. The actual exper-
iment was preceded by a 9-point calibration and validation
procedure. This procedure took about 20 seconds and in-
volved looking at the markers displayed at 9 different points
of the screen. This data was used to compute the coefficients
of the polynomial mapping eye tracker camera coordinates
to the display screen coordinates. Values for two eyes were
averaged. We decided not to use the SMI iViewX proprietary
calibration procedure because it caused a decrease in the ac-
curacy of the eye tracker to average error equal to 2.9◦. Ev-
ery experimental session was preceded by a short training
session where no data was recorded.

Participants. Gaze points were collected from 39 individual
observers (age between 22 and 42 years old, 36 males and 3
females). From that group a different set of 20 observers was
allocated to each of the tested scenes. All participants had
normal or corrected to normal vision. No session took longer
than 4 minutes. The participants were aware that the gaze
position is registered, but they were naive about the purpose
of the experiment.

4.2. Eye tracker noise

The specification of the RED250 eye tracker reports the
mean error equal to 0.5◦. But we managed to achieve such
accuracy only in a separate experiment with static targets
(16 regularly spaced points on the screen). For these mea-
surements, the procedure was repeated 10 times for every
participant so that the training effect was likely to improve
the results.

In our experiment with moving targets the mean error av-
eraged over all sessions was equal to 1.83◦ (std=1.07◦). This
error, corresponding to a circular region of diameter 150 pix-
els, is too high to effectively use eye-tracking in most com-
puter graphics applications where important objects are of-
ten smaller than the error region. The error for individual ob-
servers was even higher, with the worst case equal to 3.59◦.

c© 2013 The Author(s)
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In the best session the error was equal to 0.8◦. Accuracy
was calculated as the mean difference between the target and
gaze points and converted into an angular measure based on
the distance between the eye and the eye tracker [HNA∗11].
Blinks and outliers with the error above 5◦ were removed
from the calculations [TOB11].

5. Quality metric for eye-tracking

The experiment presented in the previous section gave us
an objective measure of eye-tracking accuracy. We found,
however, that such an objective measure poorly corresponds
with the subjective experience of using a gaze-contingent
application. We implemented gaze-contingent simulation of
a depth-of-field (DoF) effect (more on that in Section 8.1)
and experimented with different fixation algorithms. Our ob-
servation was that several factors affect the quality of eye-
contingent DoF rendering. One obvious factor is the error
rate (Erate), which is the percentage of time a wrong object
is tracked. However, in practice minimising the error rate
does not necessary improve the quality of the DoF render-
ing. This is because the fixation algorithms calibrated for a
low error rate usually produce rapid changes of fixation from
one object to another, which are very distracting. Such rapid
changes can be described by the number of times per second
an algorithm changes fixation to a wrong object, which we
call error frequency (E f req). Therefore, a good fixation algo-
rithm should minimise both error rate and error frequency.
But, in order to do that, it is necessary to know what is the
relative importance of each factor and how to combine both
of them to form a single quality metric for DoF rendering.
Such a quality metric is very important as we will use it to
both calibrate (optimise) and evaluate fixation algorithms.

5.1. Quality assessment experiment

To find a quality metric, we conducted a quality assess-
ment experiment. In the experiment the observers compared
nine animations (each lasting 18 seconds) that differed in the
way in which the fixation point deviated from the reference
course. Each animation contained a scene in which a green
ball was moving around the dragon figure (see Figure 4). The
DoF algorithm was meant to focus on the green ball using a
simulated fixation data. The lost of correct fixation was sim-
ulated to generate both long but stable (low error frequency,
high error rate) and frequent but short (high error frequency,
low error rate) focusing errors due to inaccurate fixation.

Each observer, sitting at a distance of approximately
65 cm from the display, was asked to compare the quality of
two animations displayed sequentially and choose the one
he preferred. All pairs of animations were compared in this
forced-choice experiment giving 36 comparisons for each
session. The data was collected for 7 observers between 24
and 42 years old, six males and one female. All participant
had normal or corrected to normal vision. No session took

Figure 4: An example frame from the real time simulation of
the depth of field effect.

longer than 30 minutes. Otherwise, the setup was identical
as for the eye-tracking data collection experiment (see Sec-
tion 4.1).

5.2. Quality metric

To transform pair-wise comparison results into a quality
scale, we used the Bayesian approach to JND scaling. The
details of the approach can be found in [SF01]. In brief, the
method maximises the probability that the collected data ex-
plains the experiment under the Thurston Case V assump-
tions [Eng00, ch. 8]. The optimisation procedure finds a
quality value for each animation that maximises the prob-
ability, which is modelled by the binomial distribution. Un-
like standard scaling procedures, the Bayesian approach is
robust to unanimous answers, which are common when a
large number of disparate conditions are compared, which
was the case of our experiment.

After finding the JND-scaled quality values for each an-
imation, we fitted the function, Q(Erate,E f req), explaining
the relation between the error rate, error frequency and the
quality expressed in JND units:

Q =−0.03312·Erate−4.358·E f req
0.4682 +4.516. (1)

The measured quality values and the fitted functions are
shown in Figure 5. The plot clearly shows that the error fre-
quency has a much larger impact on perceived quality than
the error rate. The quality peaks sharply as the error fre-
quency is reduced.

6. Gaze tracking for dynamic 3D scenes

We experimented with several fixation algorithms, but we
found that none of them could produce satisfying real-time
DoF simulation, regardless of the selected parameters (more
on this in Section 7). This is mostly due to the limited accu-
racy of eye-trackers, as discussed in Section 4.2. However,
in the case of our applications we have much more informa-
tion than just the raw eye-tracker readings available to stan-
dard fixation algorithms. The 3D rendering delivers informa-
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Figure 5: Results of the quality experiment after JND-
scaling are shown as black circles. The surface shows the
best fitting function (SSE=0.9167). The lines are plotted be-
tween the measured JND-values and the fitted function.

tion about objects in the scene, their positions and movement
paths. In the following sections we derive a gaze-driven ob-
ject tracking algorithm (GDOT) that combines the informa-
tion from the eye-tracker and the 3D scene to improve the
accuracy of eye-tracking. The goal is to simulate a dynamic
and high quality DoF effect, but we also demonstrate the
utility of this algorithm in other applications.

The overview of the tracking system is shown in Fig-
ure 6. The rendering engine supplies the gaze-tracking mod-
ule with the current positions of the potential targets of at-
tention and the eye-tracker sends the current gaze positions.
Because the frequency of eye-tracker readings is higher than
that of the display, gaze positions are resampled to match the
display refresh rate, but also to reduce the noise in the eye-
tracker readings and the inconsistencies in sampling. The
targets are the spots that are likely to attract attention. Sev-
eral targets are distributed over larger 3D objects and usually
a single target is allocated to each smaller object. The task of
the GDOT module is to select the most likely target of atten-
tion for the current time instance. This needs to be performed
in an on-line system where only the information about past
animation frames is available. The ID of the fixated target is
passed back to the rendering engine, where it could be used
for a desired application, such as DoF rendering.

The following subsections describe the details of the algo-
rithm. The choice of the parameters is discussed in Section 7.
For convenience, a MATLAB code of the off-line algorithm
is included in the supplementary materials.

6.1. Gaze-driven object tracking

For a target to be attended, it must be close to the gaze point,
and it should move with a similar velocity as the eye scan-
path. Hence, the probability of fixating at the target i is:

P(oi) = P(pi∪vi) = 1− (1−P(pi))(1−P(vi)) , (2)

Figure 6: The design of the gaze-tracking system, combin-
ing a 3D rendering engine with the gaze-directed target-
tracking.
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Figure 7: Position (left) and velocity (right) error distribu-
tion for the tracked object.

where P(pi) is the likelihood that the gaze point is directed
at the target oi (position is consistent) and P(vi) is the like-
lihood that the eye scan-path follows the target (velocity is
consistent). The sum of probabilities (∪) is used for the po-
sition and velocity consistency because it is likely that either
position or velocity is inconsistent even if the target is at-
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tended. The position inconsistency is often caused by imper-
fect eye-tracker calibration, so that the gaze-points always
hit near but rarely at the target position. The velocity consis-
tency is usually very low for stationary targets which have
zero velocity while the eye-tracker readings indicate a con-
stant movement of the eye. However, the consistency starts
to be very high when the target moves and the smooth pur-
suit eye-motion is getting registered by the eye-tracker.

A close distance between the eye-tracker gaze point and
the target is the strongest indicator that an object is attended.
However, care must be taken to properly model the likeli-
hood that a particular distance indicates that an object is at-
tended. Because the distance specifies all points on the circle
around the target point, the circumference of the circle will
grow relative to the distance and consequentially the prob-
ability of observing such a distance, P(di). This probability
is due to the geometric properties of the distance and has
no importance for the selection of the attended object. In
discrete terms the histogram of observing a distance for the
target needs to be normalised by the area of the annulus cov-
ering all pixels belonging to a particular bin of the histogram.
Such a normalised histogram is shown in the left of Figure 7.
Such normalisation is the consequence of the Bayesian rule:

P(pi) =
P(di|oi)P(oi)

P(di)
= ωp exp

(
−d2

i

2σ2
s

)
, (3)

where di is the Euclidean distance between the gaze point
and object oi, expressed in the screen coordinates. P(di|oi)
is the probability of observing distance di between the gaze
point and the object when the object is tracked. Figure 7 indi-
cated that such probability can be well approximated by the
half-normal distribution, with the parameter σs describing
the magnitude of the eye-tracker error. ωp is the importance
of the position consistency relative to velocity consistency
(from 0 to 1).

If the position consistency becomes unreliable, the ob-
ject can still be tracked if its velocity is consistent with the
smooth pursuit motion of the eye. The velocity computed
directly from scan-paths is an unreliable measure as it is
dominated by the eye-tracker noise, saccades and the tremor
of the eye. Fortunately, the smooth pursuit motion operates
over longer time periods and thus can be extracted from the
noisy data with the help of a low-pass filter. For simplicity,
we employ a box-filter. The choice of the filter length is dis-
cussed in Section 7.

We found that the consistency of velocity P(vi) is the most
robust if it is defined in terms of the angle between the low-
pass filtered gaze-path velocity vector ut and the target ve-
locity vector vt,i, and is independent of the magnitude of
these velocities. The correlate of such an angle is:

ν =
ut◦vt,i + ε

||ut|| ||vt,i||+ ε
, (4)

where ◦ is a dot product and ε is a small constant (0.001),
which prevents division by 0 when either a target or a gaze
point are stationary. Based on our experimental data, shown
on the right of Figure 7, the arccos of this correlate follows
exponential distribution. Hence, the likelihood of consistent
velocity is expressed by:

P(vi) =
P(νi|oi)P(oi)

P(νi)
= ωv exp

(
−arccos(ν)

σv

)
, (5)

where σv describes the allowable magnitude of the angular
error. Analogous to ωp, ωv is the importance of velocity con-
sistency relative to the position consistency.

A naive target tracking algorithm could compute the prob-
ability for each target at a given point in time (or frame) and
choose the object with the highest probability. This, how-
ever, would result in frequent shifts of tracking from one
target to another. We experimented with temporal low-pass
filters that could reduce the fluctuations of the gaze point
readings gt, gaze point velocities ut and corresponding prob-
abilities P(pi) and P(vi). Such an approach is similar to inte-
gration in the I-DT algorithm. However, we found that such
filtering introduces an additional time delay (phase shift),
which cannot be avoided if the gaze-tracking is needed for
an on-line and real-time system.

An elegant way to penalise implausible interpretation of
the data without excessive time delay is to model the at-
tention shifts between targets as a Hidden Markov process.
Each state in such a process corresponds to tracking a partic-
ular target. Since the fixation cannot be too short, the prob-
ability of staying in a particular state is usually much higher
than the probability of moving to another state (in our case
95% vs. 5%, refer to Figure 8). This way the eye is more
likely to keep tracking the same target than to rapidly jump
from one target to another.

...

Figure 8: State transitions for the Hidden-Markov-Model
(HMM) of fixations. Each state o1,...,on represents a single
target. The probability of transition between targets is much
lower than the probability of remaining in the same state
(keeping focus on a target).

The solution of the HMM gives the most likely sequence
of states (tracked targets) at a given point in time. The
strength of this approach is that the best sequence is selected
irrespectively of the best sequence in the previous point in
time, so that as the new data arrives, the decision to select a
particular target in the previous instance of time can be re-
vised in favour of a more likely sequence. Because of that,
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it is advantageous to introduce a short delay between adding
new probability values to the model and retrieving the result-
ing state. For the first order HMM, used in our solution, the
best sequence can be efficiently computed using a dynamic
programming algorithm called the Viterbi algorithm [Vit67].

6.2. Alternative tracking algorithms

Although the algorithm described in the previous section ap-
pears simple, it performed better than several more complex
alternative algorithms that we tested against our data set. The
alternatives included several temporal filters mentioned in
the previous section, combination of these filters with the
HMM, and the algorithm in which the gaze-points were clas-
sified into saccades and fixations using the HMM based I-
VT algorithm. Only fixations were used to compute the gaze
velocities. The calibration procedure reduced the temporal
constants of all the filters to 0, indicating that the filters de-
graded resulting quality instead of improving it. The benefit
of fixation/saccade segmentation was minimal as compared
to the added complexity of the system. The Kalman filter is
commonly used for the problems where a smooth trajectory
needs to be estimated from noisy data [YLNP12]. However,
the actual eye movements are erratic, with sudden saccadic
movements occurring even when we consciously track a sin-
gle object. Such movements would be very difficult to pre-
dict with the Kalman filter.

7. Evaluation and results

To fairly compare tracking and fixation algorithms, it is
necessary to find the best set of parameters for each algo-
rithm. To avoid over-fitting, we performed cross-validation
with a random 50%/50% division of the experiment data
(Section 4) into training and testing sets. The downhill
simplex method with multiple starting points was used
for a derivative-free optimisation of the parameters, which
avoided local minima.

In addition to the proposed GDOT, we tested commonly
used I-DT and I-VT algorithms, introduced in Section 3.2, as
well as a simple tracking scheme, which used non-processed
eye-tracker raw data to select the closest target. We are not
aware of any other method that would use 3D scene infor-
mation to improve the accuracy of eye tracking. To our best
knowledge, I-DT and I-VT are the two algorithms most often
used in commercial eye-trackers. But it must be also noted
that our technique is not directly comparable to I-DT and
I-VT as these are context-free methods while our method re-
quires the knowledge of the scene.

The optimisation of our algorithm did not include the
width of the temporal velocity filter and the delay of the
HMM retrieval (refer to Section 6.1) because both values
are discrete and thus not suitable for the continuous opti-
misation method we used. Instead, we confirmed that there
is little correlation between these two and other parameters

and then performed an exhaustive search in the 2D param-
eter space. The highest quality was found for the temporal
velocity filter of 120 frames (2 seconds), and the HMM re-
trieval delay of 18 frames (300 ms at 60 Hz).

Table 1 reports the best fitting parameters for each method
and scene, as well as the result of global fitting when one
set of parameters is used for all scenes. For each algorithm
there is at least one parameter that differs significantly from
one scene to another. This confirms the difficulty of finding
a single set of parameters that would be suitable for a wide
range of scenes. However, we observed that GDOT is less
affected by this variability (refer to Figure 10).

Figure 9 compares the quality, error rate and error fre-
quency (refer to Section 5) for all tested algorithms. The
proposed GDOT has a far superior overall quality as com-
pared with other algorithms, mostly because of the consis-
tency of predictions (low error frequency), but also because
it could track longer attended objects (smallest overall error
rate). This result has been also confirmed informally by run-
ning our gaze-contingent applications (see Section 8) using
different algorithms, and in each case only GDOT offered a
sufficient level of performance.

Table 1: Optimised parameters for fixation techniques com-
puted for individual scenes and globally for all sessions.

param. A B C global
I-VT velocity

[deg/sec]
3.22 5.90 4.76 4.02

I-DT
duration
[sec]

175 181 200 181

dispersion
[pixels]

245 173 178 208

win. length
[sec]

45.3 18.5 11.4 20.1

GDOT
σs [pixels] 469 244 443 465
σv 0.65 0.68 0.38 0.73
ωp 1 1 1 1
ωv 0.54 0.39 0.70 0.41

7.1. Time-characteristic of object tracking

The time-characteristics of each algorithm, shown in Fig-
ure 10, provide better insight into why the proposed algo-
rithm was judged as significantly better. Each plot shows one
session from the experiment, where the ID of the coloured
objected that observers were asked to follow is shown as a
bold red line. The blue line is the ID of the object identified
by the corresponding tracking/fixation algorithm.

The raw gaze data (top plot) resulted in a relatively low er-
ror rate, lower than for more advanced I-VT and I-DT algo-
rithms. However, raw gaze points also gave an unacceptable
level of flickering, resulting in much higher error frequency.
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Figure 9: Quality of tracking, error rate, and error fre-
quency for individual scenes and for global parameters op-
timised for all scenes. The bars show the mean and standard
deviation of 10 repetitions of 2-fold cross validation.

This result motivated us to derive a JND-based quality met-
ric in Section 5, which correctly reflects a much worse visual
experience when using raw eye-tracker data.

For the majority of sessions the proposed GDOT correctly
identified all targets and the dominant source of error was the
delay when switching between targets. Part of the delay was
caused by the fact that the observers in the experiment were
not able to move their gaze instantaneously when the marker
jumped from one object to another. Hence, no algorithm is
able to give zero error for our data. However, the major part
of the delay is due to the temporal velocity filter and the
delay in the HMM state retrieval in the algorithm. The JND
error measure strongly penalised wrong predictions as more
disturbing than the delays, so that the optimisation resulted
in a higher time-constants.
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Figure 10: Object tracking results for an example experi-
mental session (scene A, observer mka-1). The red lines are
the IDs of the reference targets, the blue lines denote the pre-
dicted target.

8. Applications

The proposed GDOT algorithm was tested in thee practical,
graphics oriented applications: a gaze-dependent depth-of-
field rendering, a gaze-contingent controller in a computer
game, and an eye-tracker-supported saliency model. For all
applications we associated tracked target points with moving
objects, and used a regular grid of points for larger objects.
We found this operation straightforward and requiring little
effort.

8.1. Focal-cues induction

It has been shown that people prefer depth-of-field (DoF)
visualisation actively controlled by the temporal gaze di-
rection because it enhances immersion in the virtual envi-
ronment [HLCC08,MBT11]. Such a gaze-contingent induc-
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tion of focal-cues can be seen as a substitute for a multi-
focal plane display [AWGB04], which poses a huge techni-
cal challenge to build. To achieve gaze-contingent DoF vi-
sualisation, we implemented the DoF rendering algorithm
based on the reverse mapping technique with reduced colour
leakage [PC83, MBT11]. A frame from such a DoF simula-
tion is shown in Figure 4. As compared to other implementa-
tions of similar rendering, the GDOT algorithm significantly
improves accuracy and stability of the intended focus plane
identification, even for fast moving objects. We found that
the existing solutions based on the I-DT result in frequent
unwanted changes of focus, which are highly distracting for
the observers.

8.2. Gaze-contingent controller in a computer game

Another appealing application of our tracking algorithm is
using an eye-tracker as a game controller. Figure 11 shows a
frame from a shooter-type game controlled with the help of
our algorithm. A video clip is included in the supplementary
video. During the gameplay, it is possible to display infor-
mation about an opponent’s spaceship just by looking at it.
Also the camera starts to follow the attended target to cre-
ate a more attractive way of aiming player’s weapons. When
experimenting first with the I-DT algorithm, it was found
challenging to keep a constant focus on the fast moving ob-
jects. GDOT correctly identifies targets that are followed by
the smooth pursuit motion of the eye. The proposed method
is also able to identify the objects that are smaller than the
radius of the eye tracker error.

Figure 11: Screenshot from the Invasion game. The informa-
tion about the spaceship is displayed only when a player is
looking at it.

8.3. Scene-aware saliency model

Saliency models predict the likelihood that a particular part
of the scene will be observed or will remain unattended.
The classical techniques predict saliency from low-level fea-
tures such as luminance and colour contrast [Itt00]. How-
ever, these techniques can be unreliable because of the
task-driven, top-down nature of the visual attention [TG80,
THLB11].

Eye-tracking is believed to capture the attention patterns,

which reflect both top-down and bottom-up attention pro-
cesses. But in practice such data is very noisy, restricted to
relatively large objects and regions, and is even less reliable
when the scene is animated. Our algorithm can be used to
determine the objects that are the most likely to be scruti-
nized and thus it predicts the saliency of objects rather than
the saliency of pixels. This is an important distinction, be-
cause most applications of saliency require the knowledge
of objects that are actually observed by the user, rather than
the pixels which could be briefly scanned by the gaze. It must
be noted, however, that our method will not detect the patters
of the low-level attention mechanism that constantly scans a
scene in a search for the best gaze allocation [THLB11].

9. Conclusions and future work

In this work we have shown how using information about a
3D scene and the motion of objects can greatly improve the
accuracy of eye-tracking. The proposed probabilistic model
aggregates the likelihood of attending each individual target
across time using the prior knowledge about an eye-tracker
error distribution and temporal fixation patterns of the eye. It
is notable that the algorithm is motivated and then optimised
by a JND-scaled quality metric, derived from experimental
data. Such a metric was necessary as the quality of object-
tracking cannot be explained by a simple objective measure.
The proposed algorithm is shown to outperform standard fix-
ation algorithms both in terms of objective measures as well
as the JND-scaled quality metric.

As a future work, we will introduce our algorithm
into novel applications, such as gaze-contingent simula-
tion of afterimages [RE12]; locally adaptive tone-mapping
[RFM∗09]; a novel controller for gaming; and as a sup-
port input for other pointing devices, such as a mouse or a
touchscreen. When used with stereo displays, the accuracy
of tracking could be further improved by incorporating the
information about the vergence of the eyes [DPHW11], so
that the gaze position and velocity is registered in a 3D space
instead of a display plane.
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