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Figure 1: Predicted visibility differences between the test and the reference imagegest image contains interleaved vertical stripes of
blur and white noise. The images are tone-mapped versions of an HDR e two color-coded maps on the right represent a probability
that an average observer will notice a difference between the imageBwmiil. maps represent the same values, but use different color maps,
optimized either for screen viewing or for gray-scale/color printing. Thebpbility of detection drops with lower luminance (luminance
sensitivity) and higher texture activity (contrast masking). Image copdeklDR-VFX, LLC 2008.

Abstract results produced by a new algorithm (usually images) are statisti-
cally significantly better than the results of another state-of-the-art
Visual metrics can play an important role in the evaluation of novel method. A human observer can easily choose which one of the two
lighting, rendering, and imaging algorithms. Unfortunately, current images looks better; yet running an extensive user study for numer-
metrics only work well for narrow intensity ranges, and do not cor- ous possible images and algorithm parameter variations is often im-
relate well with experimental data outside these ranges. To addresgractical. Therefore, there is a need for computational metrics that
these issues, we propose a visual metric for predicting visibility could predict avisually significant differencbetween a test image
(discrimination) and quality (mean-opinion-score). The metric is and its reference, and thus replace tedious user studies.
based on a new visual model for all luminance conditions, which _ . . I . .
has been derived from new contrast sensitivity measurements. TheY|Su@l metrics are often integrated with imaging algorithms to
model is calibrated and validated against several contrast discrimi-a(:h'eve t.he best compromise betwefen. efficiency gnd percep-
nation data sets, and image quality databases (LIVE and TID2008g). (4@ quality. A classical example is image or video com-
The visibility metric is shown to provide much improved predic-  P'€SSIon, but the metrics have been also used in graphics
tions as compared to the original HDR-VDP and VDP metrics, es- to control globa! illumination SOI‘.Jt'OnSMySZI.(OWSk' etal. 199.9
pecially for low luminance conditions. The image quality predic- Ramasubramanian et al. 199@r find the optimal tone-mapping
tions are comparable to or better than for the MS-SSIM, which is cUrve Mantiuk etal. 2008 In fact any algorithm that minimizes

considered one of the most successful quality metrics. The code offo0t-mean-square-error betweena pair of Images, could instead use
the proposed metric is available on-line. a visual metric to be driven towards visually important goals rather

than to minimize a mathematical difference.

CR Categories: 1.3.0 [Computer Graphics]: General—; The main focus of this work is a calibrated visual model for scenes
of arbitrary luminance range. Handling a wide range of luminance
Keywords: visual metric, image quality, visual model, high dy- is essential for the new high dynamic range display technologies or

namic range, visual perception physical rendering techniques, where the range of luminance can
_ vary greatly. The majority of the existing visual models are in-

Links: ©DL ®IPDF @ Wes tended for very limited luminance ranges, usually restricted to the
) range available on a CRT display or priftdly 1993 Lubin 1995

1 Introduction Rohaly et al. 1997Watson and Ahumada Jr 2005Several visual

models have been proposed for images with arbitrary dynamic
range Pattanaik et al. 1998antiuk et al. 2005 However, these

so far have not been rigorously tested and calibrated against ex-
perimental data. The visual model derived in this work is the
result of testing several alternative model components against a
set of psychophysical measurements, choosing the best compo-
nents, and then fitting the model parameters to that data. We
will refer to the newly proposed metric as the HDR-VDP-2 as
it shares the origins and the HDR capability with the origi-
nal HDR-VDP Mantiuk et al. 200h However, the new metric
and its components constitute a complete overhaul rather than
an incremental change as compared to the HDR-VDP. As with
its predecessor, the complete code of the metric is available at
http:// hdrvdp. sourceforge. net/.

Validating results in computer graphics and imaging is a challeng-
ing task. It is difficult to prove with all scientific rigor that the
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The proposed visual model can be used as the main component in
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thevisual difference predictgiDaly 1993 Lubin 1995, which can unless they introduce visible contrast distortions. Dynamic-range
estimate the probability at which an average human observer will independent metricsAydin et al. 2008 Aydin et al. 2010 rely on
detect differences between a pair of images (scenes). Such metricshe invariance of the visual system to the changes in tone-curve and
are tuned towards near-threshold just-noticeable differences. Butallow comparing tone-mapped images to a high-dynamic-range ref-
the straightforward extension of that visual model can also be usederence. These metrics, however, have not been rigorously tested
for predicting overalimage qualityfWang and Bovik 200(or dis- against experimental data and are mostly meant to give good qual-
tortions that are much above the discrimination threshold. We show itative results in terms of visualized distortion maps, rather than
that the proposed quality metric produces results on par with or bet- quantitative predictions, such as a mean opinion score or the prob-
ter than the state-of-the-art quality metrics. ability of detection.

The main contribution of this work is a new visual model that:

e generalizes to a broad range of viewing conditions, from sco-
topic (night) to photopic (daytime) vision; The overall architecture of the proposed metric, shown in Figure

e is a comprehensive model of an early visual system that ac- mimics the anatomy of the visual system, but does not attempt to
counts for the intra-ocular light scatter, photoreceptor spectral match it exactly. Our first priority was an accurate fit to the experi-
sensitivities, separate rod and cone pathways, contrast sen-mental data, second the computational complexity, and only then a
sitivity across the full range of visible luminance, intra- and plausible modeling of actual biological mechanisms.
inter-channel contrast masking, and spatial integration;

e improves the predictions of a suprathreshold quality metric.

3 Visual difference predictor

The visual difference predictor consist of two identical visual mod-
els: one each for processing a test image and a reference image.
The main limitation of the proposed model is that it predicts only lu- Usually a test image contains and a reference image lacks a feature
minance differences and does not consider color. Itis also intendedthat is to be detected. For example, for visibility testing it could be

for static images and does not account for temporal aspects. a windshield view with and without a pedestrian figure. For mea-
suring compression distortions the pair consists of an image before
2 Related work and after compression.

Psychophysical models Psychophysical measurements have de- Since the visual performance differs dramatically across the lumi-
livered vast amounts of data on the performance of the visual sys-nance range as well as the spectral range, the input to the visual
tem and allowed for the construction of models of early vision. model needs to precisely describe the light falling onto the retina.
Although human vision research focuses mostly on simple stim- Both the test and reference images are represented as a set of spec-
uli such as Gabor patches, there have been several attempts téral radiance maps, where each map has associated spectral emis-
develop a general visual model for complex images. Two such sion curve. This could be the emission of the display that is be-
models that are widely recognized are the Visual Difference Pre- ing tested and the linearized values of primaries for that display.

dictor [Daly 1993 and the Visual Difference MetridJubin 1999§. For convenience, we predefined in our implementation several de-
More recent research was focused on improving model predic- fault emission spectra for typical displays (CRT, LCD-CCFL, LCD-
tions [Rohaly et al. 1997 Watson and Ahumada Jr 200%redict- RGB-LED) as well as the D65 spectrum for gray-scale stimuli spec-
ing differences in color imaged.gvell et al. 200§, in animation ified in the luminance units afd/m?. The pre-defined spectrum for

sequencesMyszkowski et al. 1999 and high dynamic range im-  atypical CRT is shown in Figuré.

ages Mantiuk et al. 2005 The following sections are organized to follow the processing flow

Visual models for tone-mapping Sophisticated visual mod-  shown in Figure2, with the headings that correspond to the pro-
els have been proposed in the context of tone-mapping high dy- cessing blocks.

namic range imagesFerwerda et al. 1996Pattanaik et al. 20Q0 ) ]

Pattanaik et al. 1998 The model of Pattanaik et al1999 com- 3.1 Optical and retinal pathway

bines the elements of color appearance and psychophysical moc’l'lntra-ocular light scatter. A small portion of the light that

e}s.lito pred]ct char&ggs In scene appegranCﬁ under ghel full rang& ,vels through the eye is scattered in the cornea, lens, inside
0 |dur(111|nat|o? cfon |t_|ons|: H_owewre]r, S|rr]10e t esebmo els are |r|1- the eye chamber and on the retirRitgchel et al. 2000 Such
tended mostly for visualization, they have not been rigorously cattering attenuates the high spatial frequencies but more im-
tested against the psychophysu_:al and cqlor appearance data anaortantly it causes a light pollution that reduces the contrast of
are not intended to be used as visual metrics. the light projected on the retina. The effect is especially pro-
Quality metrics predict subjective judgment about the sever- nounced when observing scenes of high contrast (HDR) containing
ity of an image distortion \Vang and Bovik 2006 They are sources of strong light. The effect is commonly knowressbility
meant to predict the overall image quality, which is correlated 9lare [Vos and van den Berg 19p&ind has been thoroughly mea-
with the results of subjective quality assessment experiments sured using both direct measurement methods, such as the double-
[ITU-R-BT.500-11 200P Although the quality measurementsvary —pass techniqueAtal and Navarro 199 and using psychophysi-
greatly from psychophysical visual performance measurements,cal measurement, such as the equivalent veiling luminance method
many quality metrics employ visual models similar to those found [van den Berg etal. 1991

in the visual difference predictors. However, the recent work in
quality assessment favors statistical metrics, such as structural sim
ilarity metrics Wang et al. 2004Wang et al. 2008

We model the light scatting as a modulation transfer function
(MTF) acting on the input spectral radiance méajrs:

a —
Feature invariant metrics. The assumption behind structural sim- 7 {Lo}le] = F{L}[c]- MTF. @
ilarity metrics is that people are more sensitive to certain types of The.# {-} operator denotes the Fourier transform. For better clar-
distortions than to others. For example, changes in material andity, we omit pixel or frequency coordinates from the equations and
illumination properties of a scene may be noticeable in terms of a use upper case symbols for images and bold-font symbols for im-
just noticeable difference (JND), but non-relevant in terms of over- ages in the Fourier domaif] denotes an index to the set of images,
allimage quality Ramanarayanan et al. 2J0Another example is which is the index of the input radiance map,in the equation
changes in the shape of a tone-curve, which often remain unnoticedabove.
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Figure 2. The block-diagram of the two visual metrics for visibility (discrimination) andlily (mean-opinion-score) predictions and the

underlying visual model. The diagram also summarizes the symbolshreadhout the paper.

We experimented with several glare models proposed in the

MTF

PSF

o

literature, including [jspeert et al. 1993Artal and Navarro 1994 e - CIE-99 135/1
Marimont and Wandell 1994 Vos and van den Berg 1999 08 S . L 1
Rovamo et al. 1998 We found that only Vos and van den Berg’s \, <;, 5 |
model [L999 could approximately fit all experimental data (Color 5 s N < ,"\
glare at scotopic levels, discussed in Secpnand even that fit 2 \ % -3 /‘ \
was not very good. Vos and van den Berg’s model is also defined g o4 \\ £ J i\
as the glare-spread-function in the spatial domain, which makes g N
it difficult to use as a digital filter due to the high peak &t 0o 0.2 1B s
achieve a better match to the data, we fit a generic MTF model, N
proposed by ljspeert et al1993: % o5 0 05 1 15 2 a2 0 2
spatial frequency [log cpd] visual angle [deg]
MTF = a e P, @)
k=1.4 Figure 3: Comparison of our fitted intra-occular light scat-
ter model with the model from the CIE-99 135/1 report

wherep is the spatial frequency in cycles per degree. The values
of all parameters, includingy andby, can be found on the project
web-site and in the supplementary materials. FigRighows the
comparison of our fitted model with the most comprehensive glare
model from the CIE-99 135/1 repoNds and van den Berg 1999

To account for the cyclic property of the Fourier transform, we con-
struct an MTF kernel of double the size of an image and we pad the ] )
image with the average image luminance or a user supplied sur-fraction of light sensed by each type of photoreceptors can be com-
round luminance value. puted as:

[Vos and van den Berg 19P9 Left panel shows the modulation
transfer function of the eye and the right panel its corresponding
point spread function. The MTF for the CIE-99 135/1 glare spread
function has been computed by creating a densely sampled digital
filter and applying the inverse Fourier transform.

Vmiseld = [ oLmisr(h)- Fld(h)dr, )
whereo is the spectral sensitivity of L-, M-, S-cones or rods, and

c is the index of the input radiance map with the emission spec-
tra f[c]. We use the index separatoro denote several analogous
Most studies show little evidence for the wavelength dependency €quations, each with different index letter. Giverinput radiance

of the intra-occular light scatteM{hitaker et al. 199B(except for maps, the total amount of light sensed by each photoreceptor type
chromatic aberration), and therefore the same MTF can be used for'S:
each input radiance map with different emission spectra. A more
accurate model could account for a small wavelength dependence
caused by the selective transmission through the iris and the sclera,
as reported by van den Berg et @l9p1].

Note that our MTF is meant to model only low-frequency scattering
and it does not predict high frequency effects, such as wavelength
dependent chromatic aberrationMdrimont and Wandell 1994

and diffraction, which is limited by the pupil size.

N
RimisSR = ZlLo[C] VL msrIC]- 4

Luminance masking Photoreceptors are not only selective to
Photoreceptor spectral sensitivitycurves describe the probabil-  wavelengths, but also exhibit highly non-linear response to light.
ity that a photoreceptor senses a photon of a particular wavelength.The ability to see the huge range of physical light we owe mostly
Figure4 shows the sensitivity curves for L-, M-, S-cones, based on to the photoreceptors, whose gain control regulates sensitivity ac-
the measurements by Stockman and Sha20€(, and for rods, cording to the intensity of the incoming light. The effect of these
based on the data fronC[E 195]. We use both data sets for our  regulatory processes in the visual system are often descridad as
model. When observing light with the spectruit], the expected minance masking
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Figure 5: The luminance transducer functions for conges=tty)
Figure 4:  Spectral sensitivities of the photoreceptors from and rods (g).

[Stockman and Sharpe 2d@thd [CIE 1957 (bottom). The curves
inthe upper part of the plot show the measured emission spectra for an overlap in spectral sensitivity, measuring luminance sensitiv-
a CRT display (inverted and arbitrarily scaled to distinguish from ity of an isolated photoreceptor type for people with normal color
the bottom plots). vision (trichromats) is difficult. However, there exists data that
lets us isolate rod sensitivitgr. The data comes from the mea-
Most visual models assume a global (i.e. spatially-invariant) state surements made for an achromat (person with no cone vision)
of adaptation for an image. This is, however, an unjustified sim- [Hess et al. 1990. 392]. Then the cone sensitivity is assumed to
plification, especially for scenes that contain large variations in lu- be the difference between the normal trichromat and the achromat
minance range (e.g. HDR images). The proposed visual model contrast sensitivity. Given the photopic luminarnce r. 4-ry and
accounts for the local nature of the adaptation mechanism, which assuming that, = ry = 0.51, we can approximate the L- and M-
we model using a non-linear transducer functigp r: cone sensitivity as:

RLmiR =tymR(RMIR)s 5) sym(r) = 0.5 (sa(2r) —sr(2r)). )

whereR yr is a photoreceptor response for L-, M-cones and rods. The luminance transducer functions for cones and rods, derived
We omit modeling the effect of S-cones as they have almost no from the sensitivity functions, are shown in Figie

effect on the luminance perception. The transducer is constructedThe |uminance transducer functiofsy r(R) make an assump-

by Fechner’s integratioMantiuk et al. 200% tion that the adapting luminance is spatially varying and is equal

to the photopic R_ + Ry) or scotopic Rr) luminance of each

d pixel. This is equivalent to assuming a lack of spatial maladap-
H tation, which is a reasonable approximation given the finding on
(6) spatial locus of the adaptation mechanidte fand MacLeod 1998

wherer is the photoreceptor absorbed ligR (ur). fmin is the MacLeod et al. 1992 Since numerous mechanisms contribute to

- . . . . overall adaptation (fast neural, slow photo-chemical, pupil con-
minimum detectable intensity (16.cd/n?), A_r(r) |s_the detgc_:n_o_n tractions) it is difficult to determine the spatial extent of the lo-
threshold,s g are L-, M-cone, and rod intensity sensitivities.

is the adiustment for the peak sensitivity of the visual system cal adaptation or the minimum size of a feature to which we can
Speak 1S jus P sensitivity - visual system, adapt. However, the fast adaptation mechanisms, which let us per-
which is the main parameter that needs to be calibrated for each

data set (refer to Sectids). The transducer scales the luminance ceive scenes of high dynamic range, are mostly spatially restricted

response in the threshold units, so that if the difference between and occur before the summation of cone signals in the horizontal
andr is just noticeable, the differencéry) —t(r2) equals to 1. cells [Lee etal. 199P In particular, the rapid adaptation mecha-

nism (within 20— 200m9 is believed to reside within individual
To solve for the transducer functiotisyr, we need to know how photoreceptors or to operate on signals from individual receptors
the sensitivity of each photoreceptor tysgr) changes with the  [He and MacLeod 1998VlacLeod et al. 1992 Although individ-

intensity of sensed light. We start by computing the combined sen- ual rods exhibit considerable gain changes, the scotopic vision con-
sitivity of all the photoreceptor types: trols its adaptation mainly through post-receptoral mechanisms, lo-

cated presumably in the bipolar cells. The spatial adaptation pool
sa(l) =s(r) +-su(rm) +sR(1R), @) for rods in the human retina is about 10 minutes of arc in diameter
wherel is the photopic luminance. Such combined sensitivity [Hess etal. 1990p. 82], which in most cases is sufficiently small
is captured in the CSF function (see Secti)n and is approx- 0 assume an adaptation luminance equéite- Ry andRg.

imateq by the peak contrast sensitivity at each luminance level Photoreceptor response is more commonly modeled by an S-shaped
[Mantiuk et al. 2005 function (on a log-linear plot), known as the Michaelis-Menten or
sa(l) = max(CSF(p,1)), (8) Naka-Rushton equation. Such S-shaped behavior, however, can
p be observed only in the experiments in which a stimulus is briefly
wherep is the spatial frequency ards adapting luminance. This  flashed after adapting to a particular luminance level, causing mal-
adaptation. Since we assume a stable adaptation condition, there is

assumes that any variation in luminance sensitivity is due to pho- q ider | ¢ ivity d | malad
toreceptor response, which is not necessarily consistent with bio- Egnnee to consider loss of sensitivity due to temporal maladapta-

logical models, but which simplifies the computations.

u 1 T s mR(H)

t (r) = Speak ———————dU = Speak
LIMIR ped JTmin ArL|M\R(u) ped JTmin u

Achromatic response To compute a joint cone and rod achromatic
response, the rod and cone responses are summed up:

P=R+Pu+Fr

We did not find a suitable data that would let us separately model
L- and M-cone sensitivity, and thus we need to assume that their

responses are identicadi = sy. Due to strong interactions and (10)



The equally weighted sum is motivated by the fact that L- and M-
cones contribute approximately equally to the perception of lumi-
nance. The contribution of rodBR, is controlled by the rod sen-
sitivity transducetr so no additional weighting term is necessary.
This summation is a sufficient approximation, although a more ac-
curate model should also consider inhibitive interactions between
rods and cones.

3.2 Multi-scale decomposition

Both psychophysical masking studi€dtjomeyer and Julesz 1972
Foley 1994 and neuropsychological recordings
[De Valois et al. 198P suggest the existence of mechanisms
that are selective to narrow ranges of spatial frequencies and
orientations. To mimic the decomposition that presumably happens
in the visual cortex, visual models commonly employ multi-scale
image decompositions, such as wavelets or pyramids. In our model
we use the steerable pyramidinoncelli and Freeman 2002
which offers good spatial frequency and orientation separation.
Similar to other visual decompositions, the frequency bandwidth of
each band is halved as the band frequency decreases. The image
decomposed into four orientation bands and the maximum possible
number of spatial frequency bands given the image resolution.

We initially experimented with the Cortex Transform
[Watson 198F and its modification Daly 1993, including the
refinements byl[ukin 2009. The Cortex Transform is used in both
the VDP [Daly 1993 and the HDR-VDP Mantiuk et al. 2005
However, we found that the spectrally sharp discontinuities where

the filter reaches the O-value cause excessive ringing in the spatialf

domain. Such ringing introduced a false masking signal in the

not offer as tight frequency isolation as the Cortex Transform but it
is mostly free of the ringing artifacts.

3.3 Neural noise

It is convenient to assume that the differences in contrast detection
are due to several sources of noiBaly 199Q. We model overall

1 MTF(p,La)sa(La)
nCSHf,0] CSF(p,La)

p is the peak sensitivity for the spatial frequency bdnd/hich can
be computed as

Nncsr[f, 0] = (12)

_ Mppd

=50
wherenppq is the angular resolution of the input image given in
pixels per visual degree, arfd= 1 for the highest frequency band.
L, is adapting luminance, which we compute for each pixel as the
photopic luminance after intra-occular scatter (refer to Equakjon
La=R_.+Rwv.

Our approach to modeling sensitivity variations due to spatial fre-
quency assumes a single modulation factor per visual band. In prac-
tice this gives a good approximation of the smooth shape of the CSF
found in experiments, because the filters in the steerable decompo-
sition well interpolate the sensitivities for the frequencies between
the bands. The exception is the lowest frequency band (base-band),
Whose frequency range is too broad to model sensitivity differences
for very low frequencies. In case of the base-band, we filter the
bands in both the test and reference images with the nCSF prior to
computing the difference in Equatidil and setN,csp= 1. For

the base-band we assume a single adapting luminance equal to the
mean ofL,, which is justified by a very low resolution of that band.

(13)

Contrast masking. The signal-dependent noise componiggt,sk
models contrast masking, which causes lower visibility of small dif-
erences added to a non-uniform background. If a pattern is super-
imposed on another pattern of similar spatial frequency and orienta-
tion, itis, in the general case, more difficult to detdelpy 1994.

SThis effect is known asisual maskin@r contrast maskingp differ-

entiate it fromluminance maskingrigure11 (left) shows a typical
characteristic obtained in the visual masking experiments together
with the fit from our model. The curves show that if a masking pat-
tern is of the same orientation and spatial frequency as the target
(intra-channel masking0®), the target detection threshold first de-
creasesf@cilitation) and then gets elevateth@sking with increas-

noise that affects detection in each band as the sum of the signaling masker contrast. The facilitation, however, disappears when
independent noise (neural CSF) and signal dependent noisel(visuathe masker is of different orientatiom{er-channel maskindg(°).

masking). If thef-th spatial frequency band aieth orientation of
the steerable pyramid is given BﬂR[f,o] for the test and reference
images respectively, the noise-normalized signal difference is

|Br[f,0] - Bg[f,0]|P

: .
VNS, 0] +N2 0]

The exponenp is the gain that controls the shape of the masking
function. We found that the valye= 3.5 gives good fit to the data
and is consistent with the slope of the psychometric function. The
noise summation in the denominator of Equatidhis responsi-

ble for the reduced effect of signal-independent noise, obserred a
flattening of the CSF function for suprathreshold contrast.

(11)

D[f,0] =

Neural contrast sensitivity function. The signal dependent noise,
Nhcsr, can be found from the experiments in which the contrast
sensitivity function (CSF) is measured. In these experiments the
patterns are shown on a uniform field, making the underlying band-
limited signal in the reference image equal to 0. However, to use the
CSF data in our model we need to discount its optical component

Inter-channel masking is still present, but has lower impact than in
the intra-channel case. Although early masking models, including
those used in the VDP and the HDR-VDP, accounted mostly for
the intra-channel masking, findings in vision research give more
support to the models with wider frequency spread of the masking
signal [Foley 1994 Watson and Solomon 19p7We follow these

findings and integrate the activity from several bands to find the
masking signal. This is modeled by the three-component sum:

k
NmasH f,0] = ;eflf (nf BM[fvo])q+
K q
= <nf BM[U]) + (14)
N i—5%(o}
an

f (nt11Bm[f+1,0+nf_1Bu[f —1,0))%,

where the first line is responsible for self-masking, the second for
masking across orientations and the third is the masking due to two

that has been already modeled as the MTF of the eye, as well as theneighboring frequency bandsgf, kxo andky, are the weights
luminance-dependent component, which has been modeled as thehat control the influence of each source of maski®dn the sec-

photoreceptor response. The neural-only part of the CSF is found
by dividing it by the MTF of the eye optics (Equatidn and the
joint photoreceptor luminance sensitivig (Equation?7). Since

the noise amplitude is inversely proportional to the sensitivity, we
get:

ond line is the set of all orientations. The expongrmontrols the
slope of the masking function. The biologically inspired image de-
compositions, such as the Cortex TransfoWafson 198}, reduce

the energy in each lower frequency band due to a narrower band-
width. To achieve the same result with the steerable pyramid and



to ensure that all values are in the same units before applying theSpatial integration. Larger patterns are easier to detect due

non-linearityq, the values must be normalized by the factor to spatial integration Spatial integration acts upon a rela-
nf=2-(f-1) (15) tively large area, extending up to 7 cycles of the base frequency
' [Meese and Summers 2007Since our data does not capture the
The By |[f,0] is the activity in the band and orientatioro. Sim- extent of the spatial integration, we model the effect as the summa-
ilarly as in [Daly 1993 we assumenutual-maskingand compute tion over the entire image
the band activity as the minimum from the absolute values of test >S
and reference image bands: SI(s) = max(S) 'S (21)

Bul[f,0] = min{|Br[f,oll, [Br[f, ][} n"CSAf,0].  (16) whereS= 2~1(DP) is the contrast difference map from Equa-
The multiplication by theN,cse unifies the shape of the mask-  tion 20. The_ maps is mpdulated by the effe_ct of stimuli siz_e
ing function across spatial frequencies, as discussed in detail in(the fraction in the equation) so that the maximum value, which

[Daly 1993. is used for the single probability resue, is replaced with the
S ) sum. The sum should be interpreted as another probability sum-
3.4 Visibility metric mation, which acts across the spatial domain rather than across the

bands. Such a summation is consistent with other models, which
so that the valu® = 1 corresponds to the detection threshold of employ spatial pooling as the last stage of the detection model

. : . : X [Watson and Ahumada Jr 2005
a particular frequency- and orientation-selective mechanism. The
valuesD(f, o] are given in contrast units and they need to be trans- The simple model above is likely to over-predict the spatial inte-
formed by the psychometric function to yield probability valles gration for suprathreshold stimuli, which is found to decline when
1 B the pattern is masked by another pattern of the same characteristic
PIf,0] = 1 - expllog(0.5) D7[f,0]), " (intra-channel masking), but is still present when the masker has a
where 3 is the slope of the psychometric function. Although different characteristic (inter-channel masking). Meese and Sum-

Psychometric function Equationll1scales the signal in each band

the commonly reported value of the masking slopg3is= 3.5 mers R007 summarized these findings and demonstrated that they
[Daly 1993, we need to account for the masking gain contpol can be explained by the models of visual masking. However, we
in Equation1l and set it to = 3.5/p = 1. The constant lo@.5) found that their model cannot be used to detect more than one tar-
is introduced in order to produde= 0.5 when the contrastis atthe  get and thus it is not suitable for predicting differences in complex
threshold D = 1). images.

Probability summation. To obtain the overall probability for all 3.5 Implementation details
orientation- and frequency-selective mechanisms it is necessary to o o ) - o
sum all probabilities across all bands and orientations. The proba- Visualization. Obtaining a single-valued probability of detection is

bility summation is computed as iDply 1993 important for many applications, but it is often necessary to inspect
how the distortions are distributed across an image. For this pur-
Pnap=1-— |_| (1—P[f,0]). (18) pose we created several visualization schemes that use color maps
(1.0) to represent the probability of detection for each piRaldp). Two
After substituting the psychometric function from Equatioh we examples of such a visualization are shown in Figlrdf good
get: color reproduction is possible (i.e. the maps are shown on a dis-

play), the color-coded probability map is superimposed on top of
Pnap=1— ﬂ exp(log(O.S)DB[f,o]) a context image, which is a luminance-only, contrast-compressed
(.0) version of the test image. The context image can be disabled if

(19) the map needs to be readable on a gray-scale print-out and light-

=1-exp|log(0.5) » DF[f.0 |. ness variations must represent the probabilities. Both tri- and di-
(f,0) chromatic color maps are available, where the latter type reduces

o ambiguities for color deficient observers.
It is important to note that the product has been replaced by sum-

mation. This lets us use the reconstruction transformation of the Timing. The run-time of the metric is linear in the number of im-
steerable pyramid to sum up probabilities from all bands. Such age pixels, taking 16 seconds to compare 1M pixel images using
reconstruction involves pre-filtering the signal from each band, up- unoptimized matlab code on one core of a 2.8 GHz CPU (see sup-
sampling and summing up all bands, and is thus the counterpart ofplementary).

the sum of all band-differences in Equatid® Therefore, in prac- . .

tice, instead of the sum we use the steerable pyramid reconstructiord Contrast sensitivity function

-1 on the differences with the exponent equal to the psychomet-

ric function slopeB: The contrast sensitivity function (CSF) is the main reference in our

model for visual performance across the luminance range. It de-

Pmap= 1—exp(log(o‘S)Sl(ngl(Dﬁ))) , (20) termines luminance masking, static noise in cortical bands, and it
normalizes the masking signal across bands. Therefore, it is essen-
whereSl s the spatial integration discussed below. tial to use an accurate model of contrast sensitivity.

Pmap gives a spatially varying map, in which each pixel represents We experimented with the two most comprehensive CSF models,
the probability of detecting a difference. To compute a single prob- proposed by DalyJ993 and Barten 1999. But we found that
ability for the entire image, for example to compare the predic- they give poor fits to both our experimental data and other data sets,
tions to psychophysical data, we compute the maximum value of including ModelFest\Vatson and Ahumada Jr 200%-or that rea-

the probability map:Pyet = max{Pmap}. Such a maximum value  son we decided to fit a custom CSF that is more suitable for predict-
operator corresponds to the situation in which each portion of an ing visible differences. This does not imply that the CSF models by
image is equally well attended and thus the most visible difference Daly and Barten are less accurate, but rather that their functions
constitutes the detection threshold. A similar assumption was alsomay capture conditions that are different from visual inspection of
used in other studie®fly et al. 1994 static images.



Compared with Daly's CSF Compared with Barten's CSF

As it is not the focus of this work, we only briefly describe the ex-

periment in which we measured CSF for a large range of luminance. s

We made these measurements because we found available psy

chophysical data either incomplete, for example lacking the lower !

frequency part or the full range of luminance levels, or the condi- e \
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tions used for measurements were very different from the condi- ; \
tions in which images are compared. For example, most CSF mea-
surements are conducted for an artificial pupil and a short flicker, {
which differs greatly from the conditions in which images are usu-
ally compared. We also did not want to combine measurements
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from several studies as they often use very different experimental L =20cam?
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conditions and protocols. o L=150 cam?
The stimuli consisted of vertical sine-gratings attenuated by the ™% s o 05 1 1s o5 o o5 1 15
log, , Spatial frequency [cpd] log, , Spatial frequency [cpd]

Gaussian envelope. The of the Gaussian constituted size of the
object, which was 1.5 visual deg. for most stimuli. To collect data
on spatial integration, additional sizes of 0.5 and 0.15 visual deg. Figure 6: The CSF measurement results compared to two popular
were measured for 1 and 8cycles-per-degree (cpd). The stimuli CSF models by Dalyl[993 and Barten [1999. The Dashed lines
design was inspired by the ModelFest data set. The backgroundr€Present our measurements and the solid lines the two compared
luminance varied from 0.02 to 158i/m?. The luminance levels ~ Models. The model parameters, including stimuli size, were set to
below 10cd/n? were achieved by wearing modified welding gog- match our measurements. The predictions of both models differ
gles in which the protective glass was replaced with neutral den- from _t_he measurements probably because of different experiment
sity filters (Kodak Wratten Gelatin) with either 1.0 or 2.0 density Cconditions.

value. Although the maximum tested background luminance is only

150cd/n?, the changes of the CSF shape above that level are mini- wherep is the spatial frequency in cycles-per-degree pndy are

mal (compare the plots for 20 and 15@/mZ in Figure®6). The fre- the fitted parameters. The parameters are fitted separately for each
quency range of the sine grating varied from from 0.125 to 16 cpd adaptation luminanck, (see supplementary). For the luminance
(cycles per degree). The stimuli were shown on a 24” LCD display Values in between the measured levels we interpolate the parame-
with 10-bit panel and RGB LED backlight (HP LP2480zx). Two ters using the logarithmic luminance as the interpolation coefficient.
additional bits were simulated by spatio-temporal dithering so that Sa(l) is the joint luminance-sensitivity curve for cone and rod pho-
the effective bit-depth was 12 bits per color channel. Stimuli were toreceptors, and is given in EquatiBnThis sensitivity is modeled
observed from a fixed distance of 93 cm, which gave an angular res-as

olution of 60 pixels per visual degree. The display was calibrated P\ P7 — g

using a photo-spectrometer. The display white point was fixed at sa(l) =ps ((T) + 1) ~ (23)

D65.

The parameterp, and ps are adjusted so that the CSF divided by
The procedureinvolved a 4-alternative-forced-choice (4AFC) ex- thesa(l) peaks at 1. This let us usg directly in Equatior9. The
periment in which an observer was asked to choose one of themodel also yieldsICSFvalue needed in Equatiact?2 whenMTF
four stimuli, of which only one contained the pattern. We found andsy are setto 1.
4AFC more efficient and faster in convergence than 2AFC be-
cause of the lower probability of correct guesses. The stimuliwere 5 Calibration and validation
shown side-by-side on the same screen and the presentation time
was not limited. We used this procedure as more appropriate for The value of the visual model largely depends on how well it can
the task of finding differences in images than temporal flicker in- predict actual experimental data. Therefore, we took great cate to fi
tervals used in most threshold measurements. The QUEST proceihe model to available and relevant psychophysical data. We also
dure Watson and Pelli 1993vith a fixed number of trials (from 20 ran extensive experiments to capture critical characteristics of the
to 30, depending on the observer experience) was used to find thevisual system.

threshold. The data was collected for five observers. Each observers. th del | ti tible. thoalibration invol it
completed all the tests in 3—4 sessions of 30—45 minutes. Ince the moadel IS not invertble, lbration Involves an itera-

tive optimization (the simplex search method), in which parameters
The resultsof the experiment compared to the CSF models by Daly are adjusted until the best prediction for a threshold data set is found
and Barten are shown in Figu The effect of stimuli size is ~ (SI(S) closest to 1). Each pair of images in such a data set is gen-
shown in Figure8 together with the fit of the full visual model. Fig- ~ erated so that the contrast between them is equal to the detection or
ure6 shows that Daly’s CSF model predicts much lower sensitivity discrimination threshold.

for Iqw-frequency patterns. .BOth Dal%/ng and Barten's CSF models To validateeach data fitting, we use a different procedure, in which
p_r_ec_ilct much lower sensitivity fortl/m and a much I_arger SEN- contrast between test and reference images is reduced or amplified
sitivity difference between 26i/n? and 15@d/n¥. The inconsis- il the metric results iPyer = 0.5. Then, the factor by which the
tency between the models and the data resultin poor predictions for .o ptrast has been modified is considered as a metric error. Both cal-
those luminance levels. Since adjusting the model parameters didipation and validation are computationally expensive procedures,
not improve the fits, we decided to fit a new CSF model, which is \yhich require running the full metric thousands of times. There-
specifically intended for visual difference metrics. fore, the calibration was performed on a cluster of about 10 CPU
cores. The running time varied from an hour to a few days, depend-

The CSF modelis based on a simplified version of Barten's CSF ing on the complexity of the calibration task.

[Barten 1999Eq. 3.26]:
MTF (p) Following [Watson and Ahumada Jr 200%e report fitting error

, (22) as a root-mean-square-error (RMSE) of the contrast differeace b
\/(1+ (P1p)P2)- (L—e~(P/77%) P tween the mean measurement and the model prediction given in dB

CSF(p) = pasa(l)
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Figure 7: Visual model predictions for thklodelFestdata set. Figure 9: Visual model predictions for théareshold versus in-
Error bars denote standard deviation of the measurements. The tensity curve data set. These are the detection thresholds for
R value is the prediction mean square root error gy, is the circular patterns of varying size on a uniform background field
reduced chi-square statistic. [Blackwell 1944,
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Figure 8: Visual modelhpredlctlolns for t?]@S_': rf]or \k/]wde lumi- -~ Figure 10: Visual model predictions for thelor glare at scotopic
nance rangedata set. The two plots on the right show sensitivity |evelsdata set. The leftmost point represent the threshold without
variation due to stimuli size. glare source.

contrast_unit_% For the data sets which provided information about o predictions of the proposed metric for this data set. The
the distribution of the meazsurements we also rgportxtﬁstatl_s- mean prediction error is.2dB, which is higher than for the mod-
tics. Intuitively, values ofy“ close or below 1 indicate good fitto g5 explicitly calibrated for the ModelFest dataX dB, refer to

the experimental data. [Watson and Ahumada Jr 2005However this value is still much

Given the degrees of freedom that the visual metric offers, it is 10Wer than the standard deviation of the ModelFest measurements

relatively easy to fit each data set separately. However, the main (3.79dB).

challenge of this work is to get a good fit fafl data sets using  csf for wide luminance range Since the ModelFest stimuli are

Fhe same:allbratlon. parameters. The qnly parameter that was ad- shown on a 3@:d/mz background only, they are not sufficient to
justed between calibration and validation steps was the peak sen-ajiprate our metric, which needs to work for all luminance levels.
sitivity, Speak (Equation6), which usually varies between data sets \ye ysed our CSF measurements, which are discussed in Séction
due to differences in experimental procedures or individual varia-  yajidate detection across the luminance and frequency range, as
tions [Daly et al. 1994 The values of the peak sensitivity parame- \ye|| as to test the spatial integration (Equat@t). As shown in

ter as well as more detailed results can be found in the supplemen-rigreg, the metric well predicts the loss of sensitivity due to fre-

tary materials. quency, luminance and size variations. Although good predictions

Several measures have been taken to reduce the risk of over-fittingc@n be expected as this data set was used to derive the CSF for
the model. Each component of the model (CSF, OTF, masking) the visual model, this test checks the integrity of the entire metric.
was fitted separately using the data that isolated a particular phe-The plot reveals some prediction fluctuations throughout frequen-
nomenon. For example, the glare data can be predicted by both thefies, which are caused by the non-linearities applied to the signal
nCSF and the MTF, but is relevant only for the model of the MTF. &fter the steerable-pyramid decomposition. Such non-linearities af-

This measure also reduced the degrees of freedom that need to b&ct the signal that is split into two separate bands and then recon-
calibrated for each fitting. For all fittings the ratio of data points to Structed.

the degrees of freedom was at least 4:1. Threshold versus intensity curve One of the most classical mea-
ModelFestis a standard data set created to calibrate and validate vi- Surements of the threshold variation with adapting luminance was
sual metrics, containing 43 small detection targets @360 uni- performed by Blackwell and his colleagueBidckwell 194§. In

form background\Vatson and Ahumada Jr 2005igure 7 shows a laboratory built for the purpose of these measurements, over

400,000 observations were recorded and manually analyzed to de-
11 dB contrast = 20log;o(AL/L), which corresponds to the contrast ~ termine detection thresholds for circular disks of different sizes
AL/L~12%. (from 0.06 to 2 diameter) shown on a uniform adapting field (from
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Figure 11: Visual model predictions for theoley’s masking data
[Foley 1994 on the left andCSF flattening data set on the right.
The degree values in the legend correspond to the orientation of the
masking pattern with respect to the test pattern (0 deg. - vertical).
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Figure 12: Visual model predictions for theomplex imagegata
set.

1075 to 10°® cd/m?). This is an excellent validation set for our

ing, where test and mask sine gratings share the same orientation
(0°), and inter-channel masking, where test and mask gratings dif-
fer in orientation by 90. The predictions generated by the metric
do not change the shape of the masking function with the making
signal orientation, which is the limitation of the current masking
model. We also do not model facilitation that is causing the 'dip’

in the 0deg curve. Georgeson and Georged®@87 found that

the facilitation disappears with variation in phase or temporal off-
set. This effect is regarded as fragile and absent in complex images
[Daly 1993.

CSF flatteningis observed for contrasts above the detection thresh-
old [Georgeson and Sullivan 19[7&nd is an essential characteristic
for any visual model that needs to predict visibility in complex im-
ages. To capture this effect we measured the detection threshold
for Gabor patches from 4 to 16 cpd superimposed on an actual im-
age (portrait, see supplementary) in three different regions: the re-
gion with almost no masking (hair), with moderate masking (face)
and with strong masking (band). As shown in Figtide(right) the
sharp decrease in contrast sensitivity at high frequencies in uniform
region (hair) is even reversed for strong masking (band). The mode
correctly reverses the shape of the CSF, though the reversal is exag-
gerated for the high masking region. This data set captures a very
important characteristic that is often missing in visual models. The
visual model that relies on a CSF alone would make worse predic-
tions for strongly masked regions than the visual model without any
CSF weighting.

Complex images To test the metric prediction in likely scenarios,
we measured thresholds for the data set, in which several types of
distortions (biliniear upsampling or blur, sinusoidal grating, noise
and JPEG compression distortions) were superimposed in complex
images. This is the most demanding data set and it produces the
highest errors for our metric, as shown in Figi2 This data set is
especially problematic as it does not isolate the effects that would
produce a systematic variation in the relevant parameter space (spa-
tial frequency, masking signal, etc.), and thus does not allow to
identify the potential cause for lower accuracy. We assume that
the prediction error is the net result of all the mechanisms that we
do not model exactly: inter-channel masking, spatial pooling, the
signal-well-known effect $mith Jr and Swift 1985 as well as a

model because it both covers a |arge luminance range and was meamultitude of minor eﬁects, which are difﬁCU|t, if possible, to model.

sured for circular stimuli, which is very different than the sine grat-
ings on which the CSF is based. Fig@&shows that our model ac-
counts well for both luminance and size variations, which confirms
a good choice of sensitivity curvegr. Additionally, it indicates
that a CSF-based model with probability summation well integrates
complex stimuli data with multiple spatial frequencies. We also ob-

Despite these problems, the overall metric predictions follow most
data points and demonstrate the good performance of the metric for
complex images.

5.1 Comparison with visibility metrics

i i i VDP'93 HDR-VDP 1.7 | HDR-VDP-2
served that the fit improved after introducing separate rod and cone e 4378, (T4) [ 3348, (075 | 27848, [06)
pathways. CSF Ium. range 15dB, (9.4) | 7.53dB, (24) | 1.9dB, (0.15)
. . . . Blackwell's T.v.I. 275dB 412dB 354dB
Color glare at scotopic levels This data set validates metric pre- Glare at scotopic lum| 15dB, (2.2) | 2.68dB, (0.071) | 1.07dB, (0.011)
icti - i isj i Foley’s masking data| 7.73dB 7.07dB 1.98dB
dlctlor_ls for rod-mediated vision in the presence of colored _glare CSP AN 9508 (58] | 5970813 S E1dE(Z5)
[Mantiuk et al. 2009 and was used to adjust the intra-ocular light Complex Images 7,058, (4.6) | 7.01dB, (4.5] | 5.3dB, (2.6)

scatter parameters (Equatidn The stimuli are 1 cpd dark Gabor

patches (@02cd/nP) seen in the presence of a strong source of Taple 1: Prediction error for the HDR-VDP-2 compared to the

glare. The prototype display with individually controlled red, green \/pp [Daly 1993 and the HDR-VDP Mantiuk et al. 2005 The

and blue LED backlight was used to create narrow bandwidth glare /gjyes represent the root-mean-square-error andxfg statistic

light. The advantage of this is that the metric can be tested for spec-j, parenthesis (where information is available).

tral sensitivity of both rod and cone photoreceptors. The predictions

compared to the experimental results shown in Fidiufelemon- - .

strate that the metric correctly predicts the wavelength dependence’Veé compare HDR-VDP-2 predictions with two other met-
rics: the Visual Difference Predictor (VDP), which we reim-

on glare in the scotopic range. plemented based on the book chapt®aly 1993 and after
Foley’'s masking measurementgFoley 1994 were used to cal- some correspondence with the author; and with the visual dif-
ibrate the inter-channel masking mechanism as well as validate ference predictor for high dynamic range images (HDR-VDP
the choice of masking non-linearity. Figuid (left) shows that 1.7), for which we use the publicly available C++ code from
the metric follows the masking slopes for both in-channel mask- htt p: // hdr vdp. sour cef or ge. net/. The same data sets


http://hdrvdp.sourceforge.net/

are used for comparison as for the calibration and validation de- puted on the linear and logarithmic values. As the measure of pre-
scribed in the previous section. The peak sensitivity parameter diction accuracy we selected Spearman’s rank order correlation co-
of each metric was adjusted individually for each data set. Addi- efficient as itis not affected by non-linear mapping between subjec-
tionally, we optimized the masking slope of both the VDP and the tive and objective scores. The pooling function that produced the
HDR-VDP for thecomplex imagedata set and found a value of 0.9  strongest correlation with the quality databases was:

optimal for the VDP and the original masking slope 1.0 to be the F o

|
best for the HDR-VDP. Q= 1 > wi log (Il lZDZ[ho}(i) +s> ;o (24)

F.
The results of the comparisons are summarized in Thfdee sup- © &
plementary for more details). The new CSF function, described
in Section4, improved theModelFestpredictions as compared to
the VDP and the HDR-VDP. But the most noticeable improvement
is for the CSF for wide luminance rangendBlackwell’s t.v.idata
sets, which revealed problems with low luminance predictions in
both the VDP and the HDR-VDP. The prediction errors are espe-
cially large for the VDP and a luminance lower thad&d/n?, as
this metric was not intended to work in that luminance range.

wherei is the pixel index,e is a small constant (1®) added to
avoid singularities wheb is close to 0, andl is the total number of
pixels. Slightly higher correlation was found for exponents greater
than 2, but the difference was not significant enough to justify the
use of a non-standard mean. The per-band weightingvas set

to 1 to compare different aggregating functions, but then was opti-
mized using the simulated annealing method to produce the highest
correlation with the LIVE database. The weights that maximize
Both the HDR-VDP and the HDR-VDP-2 handle predictions for ~COrTelation are listed in the supplementary materials.

glare at scotopic luminanckevels relatively well, though the new
model predictions are better due to separate cone and rod pathway
The poor prediction for low luminance and the lack of glare model

The objective quality predictions do not map directly to the subjec-
Sive mean opinion scores (MOS) and there is a non-linear mapping
function between subjective and objective predictions. Following

make the VDP unsuitable for this data set. ITU-R-BY.500.11 recommendation2(03, we fit a logistic func-
The improvement in masking predictions is most noticeabl&der tion to account for such a mapping:

ley’s maskingdata set, as both VDP and HDR-VDP do not predict _ 100 o5
inter-channel masking. Although the non-linearities/ibP com- Qvos= 1+exp(on (Q+ ) (25)

pensate to some extent changes in the shape of CSF due to masking
signal, the lack o€ SF flattenings an issue in HDR-VDP. The new
model also improves the predictions for t@mplex imagedata set
containing a wide range of image distortions, though the improve-
ment is not well quantified due to limited number of test images.

The LIVE database was used to fit the logistic function and to find
the per-band weightw/s, while the TID2008 database was used
only for testing. The TID2008 database contains a larger number
of distortions and is a more reliable reference for testing quality
<L . . metrics, but the distortions are mostly concentrated in the central
6 Predicting image quality part of the MOS scale with a lower number of images of perfect or
Sometimes it is more important to know how a visual difference af- Very poor quality. This biases fitting results toward better predic-
fects overall image quality, than to know that such a difference ex- tions only in the central part of the MOS scale.

ists. The subjective severity of visual difference is usually measured

by quality metrics, which quantify the visual distortion with a sin- pixel values, in all experiments we converted LIVE and TID2008

gle yalu_e of qual_ity score. Su_ch a quality score can be measured indatabase images to trichromatic XYZ values assuming a standard
subjective experiments in which a large number of observers rate or cp display with CCFL backlight, SRGB color primaries, 2.2
rank images ITU-R-BT.500-11 200P The automatic (objective) — oomma 18@d/m? peak luminance andctl/m? black level.

metrics attempt to replace tedious experiments with computational

algorithms. 6.2 Comparison with quality metrics

The HDR-VDP-2 has been designed and calibrated to predict visi- \we compared the quality predictions of the HDR-VDP-2 with
bility rather than quality. However, in this section we demonstrate severa| state-of-the-art quality metrics, including Structural Sim-
that the metric can be extended to match the performance of statej|arity |ndex (SSIM) Wang et al. 2008 its multi-scale exten-
of-the-art quality metrics. sion (MS-SSIM) fVang et al. 2008 mDCT-PSNR Richter 2009
and still the most commonly used, the PSNR metric. The re-
cent comprehensive comparison of quality metrics against the
The goal of the majority of quality metrics is to perceptually lin- 102008 database found the MS-SSIM to be the most accurate
earize the differences between a pair of images, so that the mag/Ponomarenko et al. 20§9thus we compare our predictions with
nitude of distortion corresponds to visibility rather than mathemat- the best available method. Figui shows the correlation be-
ical difference between pixel values. The HDR-VDP-2 achieves fween each metric and the subjective DMOS scores from the LIVE
this goal when computing the threshold-normalized difference for @nd TID2008 quality databases. The continuous lines correspond
each band[f,0] (Equation11). However, this gives the differ- O the logistic mapping function from Equatidtb. The HDR-
ence value for each pixel in each spatially- and orientation-selective YDP-2 has the highest Spearman’s correlation coefficient for both
bands. The question is how to pool the information from all pixels databases, which means that it gives the most accurate ranking of
and all bands to arrive at a single value predicting image quality. ~ images. The HDR-VDP-2 also ranks first in terms of RMSE for the
LIVE database, but second for the TID2008 database, for which
To find the best pooling strategy, we tested over 20 different com- MS-SSIM produces smaller error. The correlation coefficients are
binations of aggregating functions and compared the predictions also the highest for individual distortions (see supplementary), sug-
against two image quality databases: LI\&hpikh et al. 2006and gesting that our metric is good at ranking each distortion type indi-
TID2008 [Ponomarenko et al. 2009The aggregate functions in-  vidually, but is less successful at differentiating the quality between
cluded maximum value, percentiles (50, 75, 95) and a range of the distortions. The differences in the correlation coefficient and
power means (normalized Minkowski summation) with the expo- RMSE for the HDR-VDP-2 and MS-SSIM are statistically signifi-
nent ranging from 0.5 to 16. Each aggregating function was com- cant atar = 0.05.

Since the HDR-VDP-2 operates on physical units rather than

6.1 Pooling strategy
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Figure 13: Predictions of quality metrics for the LIVE (top) and TID2008 (bottom) das®s. The prediction accuracy is reported as
Spearman’sp, Kendall's T, root-mean-square-error (RMSE), and the reduggdstatistics. The solid line is the best fit of the logistic
function. Only the LIVE database was used for fitting. See supplementamglésged and more detailed plots.
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