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Figure 1: Predicted visibility differences between the test and the reference images. The test image contains interleaved vertical stripes of
blur and white noise. The images are tone-mapped versions of an HDR input. The two color-coded maps on the right represent a probability
that an average observer will notice a difference between the image pair.Both maps represent the same values, but use different color maps,
optimized either for screen viewing or for gray-scale/color printing. The probability of detection drops with lower luminance (luminance
sensitivity) and higher texture activity (contrast masking). Image courtesy of HDR-VFX, LLC 2008.

Abstract

Visual metrics can play an important role in the evaluation of novel
lighting, rendering, and imaging algorithms. Unfortunately, current
metrics only work well for narrow intensity ranges, and do not cor-
relate well with experimental data outside these ranges. To address
these issues, we propose a visual metric for predicting visibility
(discrimination) and quality (mean-opinion-score). The metric is
based on a new visual model for all luminance conditions, which
has been derived from new contrast sensitivity measurements. The
model is calibrated and validated against several contrast discrimi-
nation data sets, and image quality databases (LIVE and TID2008).
The visibility metric is shown to provide much improved predic-
tions as compared to the original HDR-VDP and VDP metrics, es-
pecially for low luminance conditions. The image quality predic-
tions are comparable to or better than for the MS-SSIM, which is
considered one of the most successful quality metrics. The code of
the proposed metric is available on-line.
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1 Introduction

Validating results in computer graphics and imaging is a challeng-
ing task. It is difficult to prove with all scientific rigor that the
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results produced by a new algorithm (usually images) are statisti-
cally significantly better than the results of another state-of-the-art
method. A human observer can easily choose which one of the two
images looks better; yet running an extensive user study for numer-
ous possible images and algorithm parameter variations is often im-
practical. Therefore, there is a need for computational metrics that
could predict avisually significant differencebetween a test image
and its reference, and thus replace tedious user studies.

Visual metrics are often integrated with imaging algorithms to
achieve the best compromise between efficiency and percep-
tual quality. A classical example is image or video com-
pression, but the metrics have been also used in graphics
to control global illumination solutions [Myszkowski et al. 1999;
Ramasubramanian et al. 1999], or find the optimal tone-mapping
curve [Mantiuk et al. 2008]. In fact any algorithm that minimizes
root-mean-square-error between a pair of images, could instead use
a visual metric to be driven towards visually important goals rather
than to minimize a mathematical difference.

The main focus of this work is a calibrated visual model for scenes
of arbitrary luminance range. Handling a wide range of luminance
is essential for the new high dynamic range display technologies or
physical rendering techniques, where the range of luminance can
vary greatly. The majority of the existing visual models are in-
tended for very limited luminance ranges, usually restricted to the
range available on a CRT display or print [Daly 1993; Lubin 1995;
Rohaly et al. 1997; Watson and Ahumada Jr 2005]. Several visual
models have been proposed for images with arbitrary dynamic
range [Pattanaik et al. 1998; Mantiuk et al. 2005]. However, these
so far have not been rigorously tested and calibrated against ex-
perimental data. The visual model derived in this work is the
result of testing several alternative model components against a
set of psychophysical measurements, choosing the best compo-
nents, and then fitting the model parameters to that data. We
will refer to the newly proposed metric as the HDR-VDP-2 as
it shares the origins and the HDR capability with the origi-
nal HDR-VDP [Mantiuk et al. 2005]. However, the new metric
and its components constitute a complete overhaul rather than
an incremental change as compared to the HDR-VDP. As with
its predecessor, the complete code of the metric is available at
http://hdrvdp.sourceforge.net/.

The proposed visual model can be used as the main component in
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thevisual difference predictor[Daly 1993; Lubin 1995], which can
estimate the probability at which an average human observer will
detect differences between a pair of images (scenes). Such metrics
are tuned towards near-threshold just-noticeable differences. But
the straightforward extension of that visual model can also be used
for predicting overallimage quality[Wang and Bovik 2006] for dis-
tortions that are much above the discrimination threshold. We show
that the proposed quality metric produces results on par with or bet-
ter than the state-of-the-art quality metrics.

The main contribution of this work is a new visual model that:
• generalizes to a broad range of viewing conditions, from sco-

topic (night) to photopic (daytime) vision;
• is a comprehensive model of an early visual system that ac-

counts for the intra-ocular light scatter, photoreceptor spectral
sensitivities, separate rod and cone pathways, contrast sen-
sitivity across the full range of visible luminance, intra- and
inter-channel contrast masking, and spatial integration;

• improves the predictions of a suprathreshold quality metric.

The main limitation of the proposed model is that it predicts only lu-
minance differences and does not consider color. It is also intended
for static images and does not account for temporal aspects.

2 Related work
Psychophysical models. Psychophysical measurements have de-
livered vast amounts of data on the performance of the visual sys-
tem and allowed for the construction of models of early vision.
Although human vision research focuses mostly on simple stim-
uli such as Gabor patches, there have been several attempts to
develop a general visual model for complex images. Two such
models that are widely recognized are the Visual Difference Pre-
dictor [Daly 1993] and the Visual Difference Metric [Lubin 1995].
More recent research was focused on improving model predic-
tions [Rohaly et al. 1997; Watson and Ahumada Jr 2005], predict-
ing differences in color images [Lovell et al. 2006], in animation
sequences [Myszkowski et al. 1999], and high dynamic range im-
ages [Mantiuk et al. 2005].

Visual models for tone-mapping. Sophisticated visual mod-
els have been proposed in the context of tone-mapping high dy-
namic range images [Ferwerda et al. 1996; Pattanaik et al. 2000;
Pattanaik et al. 1998]. The model of Pattanaik et al. [1998] com-
bines the elements of color appearance and psychophysical mod-
els to predict changes in scene appearance under the full range
of illumination conditions. However, since these models are in-
tended mostly for visualization, they have not been rigorously
tested against the psychophysical and color appearance data and
are not intended to be used as visual metrics.

Quality metrics predict subjective judgment about the sever-
ity of an image distortion [Wang and Bovik 2006]. They are
meant to predict the overall image quality, which is correlated
with the results of subjective quality assessment experiments
[ITU-R-BT.500-11 2002]. Although the quality measurements vary
greatly from psychophysical visual performance measurements,
many quality metrics employ visual models similar to those found
in the visual difference predictors. However, the recent work in
quality assessment favors statistical metrics, such as structural sim-
ilarity metrics [Wang et al. 2004; Wang et al. 2003].

Feature invariant metrics. The assumption behind structural sim-
ilarity metrics is that people are more sensitive to certain types of
distortions than to others. For example, changes in material and
illumination properties of a scene may be noticeable in terms of a
just noticeable difference (JND), but non-relevant in terms of over-
all image quality [Ramanarayanan et al. 2007]. Another example is
changes in the shape of a tone-curve, which often remain unnoticed

unless they introduce visible contrast distortions. Dynamic-range
independent metrics [Aydin et al. 2008; Aydin et al. 2010] rely on
the invariance of the visual system to the changes in tone-curve and
allow comparing tone-mapped images to a high-dynamic-range ref-
erence. These metrics, however, have not been rigorously tested
against experimental data and are mostly meant to give good qual-
itative results in terms of visualized distortion maps, rather than
quantitative predictions, such as a mean opinion score or the prob-
ability of detection.

3 Visual difference predictor
The overall architecture of the proposed metric, shown in Figure2,
mimics the anatomy of the visual system, but does not attempt to
match it exactly. Our first priority was an accurate fit to the experi-
mental data, second the computational complexity, and only then a
plausible modeling of actual biological mechanisms.

The visual difference predictor consist of two identical visual mod-
els: one each for processing a test image and a reference image.
Usually a test image contains and a reference image lacks a feature
that is to be detected. For example, for visibility testing it could be
a windshield view with and without a pedestrian figure. For mea-
suring compression distortions the pair consists of an image before
and after compression.

Since the visual performance differs dramatically across the lumi-
nance range as well as the spectral range, the input to the visual
model needs to precisely describe the light falling onto the retina.
Both the test and reference images are represented as a set of spec-
tral radiance maps, where each map has associated spectral emis-
sion curve. This could be the emission of the display that is be-
ing tested and the linearized values of primaries for that display.
For convenience, we predefined in our implementation several de-
fault emission spectra for typical displays (CRT, LCD-CCFL, LCD-
RGB-LED) as well as the D65 spectrum for gray-scale stimuli spec-
ified in the luminance units ofcd/m2. The pre-defined spectrum for
a typical CRT is shown in Figure4.

The following sections are organized to follow the processing flow
shown in Figure2, with the headings that correspond to the pro-
cessing blocks.

3.1 Optical and retinal pathway

Intra-ocular light scatter . A small portion of the light that
travels through the eye is scattered in the cornea, lens, inside
the eye chamber and on the retina [Ritschel et al. 2009]. Such
scattering attenuates the high spatial frequencies but more im-
portantly it causes a light pollution that reduces the contrast of
the light projected on the retina. The effect is especially pro-
nounced when observing scenes of high contrast (HDR) containing
sources of strong light. The effect is commonly known asdisability
glare [Vos and van den Berg 1999] and has been thoroughly mea-
sured using both direct measurement methods, such as the double-
pass technique [Artal and Navarro 1994], and using psychophysi-
cal measurement, such as the equivalent veiling luminance method
[van den Berg et al. 1991].

We model the light scatting as a modulation transfer function
(MTF ) acting on the input spectral radiance mapsL[c]:

F {LO} [c] = F {L} [c] ·MTF . (1)

TheF {·} operator denotes the Fourier transform. For better clar-
ity, we omit pixel or frequency coordinates from the equations and
use upper case symbols for images and bold-font symbols for im-
ages in the Fourier domain.[·] denotes an index to the set of images,
which is the index of the input radiance map,c, in the equation
above.
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Figure 2: The block-diagram of the two visual metrics for visibility (discrimination) and quality (mean-opinion-score) predictions and the
underlying visual model. The diagram also summarizes the symbols usedthroughout the paper.

We experimented with several glare models proposed in the
literature, including [Ijspeert et al. 1993; Artal and Navarro 1994;
Marimont and Wandell 1994; Vos and van den Berg 1999;
Rovamo et al. 1998]. We found that only Vos and van den Berg’s
model [1999] could approximately fit all experimental data (Color
glare at scotopic levels, discussed in Section5), and even that fit
was not very good. Vos and van den Berg’s model is also defined
as the glare-spread-function in the spatial domain, which makes
it difficult to use as a digital filter due to the high peak at 0◦. To
achieve a better match to the data, we fit a generic MTF model,
proposed by Ijspeert et al. [1993]:

MTF = ∑
k=1..4

ak e−bk ρ , (2)

whereρ is the spatial frequency in cycles per degree. The values
of all parameters, includingak andbk, can be found on the project
web-site and in the supplementary materials. Figure3 shows the
comparison of our fitted model with the most comprehensive glare
model from the CIE-99 135/1 report [Vos and van den Berg 1999].
To account for the cyclic property of the Fourier transform, we con-
struct an MTF kernel of double the size of an image and we pad the
image with the average image luminance or a user supplied sur-
round luminance value.

Note that our MTF is meant to model only low-frequency scattering
and it does not predict high frequency effects, such as wavelength
dependent chromatic aberrations [Marimont and Wandell 1994]
and diffraction, which is limited by the pupil size.

Most studies show little evidence for the wavelength dependency
of the intra-occular light scatter [Whitaker et al. 1993] (except for
chromatic aberration), and therefore the same MTF can be used for
each input radiance map with different emission spectra. A more
accurate model could account for a small wavelength dependence
caused by the selective transmission through the iris and the sclera,
as reported by van den Berg et al. [1991].

Photoreceptor spectral sensitivitycurves describe the probabil-
ity that a photoreceptor senses a photon of a particular wavelength.
Figure4 shows the sensitivity curves for L-, M-, S-cones, based on
the measurements by Stockman and Sharpe [2000], and for rods,
based on the data from [CIE 1951]. We use both data sets for our
model. When observing light with the spectrumf [c], the expected
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Figure 3: Comparison of our fitted intra-occular light scat-
ter model with the model from the CIE-99 135/1 report
[Vos and van den Berg 1999]. Left panel shows the modulation
transfer function of the eye and the right panel its corresponding
point spread function. The MTF for the CIE-99 135/1 glare spread
function has been computed by creating a densely sampled digital
filter and applying the inverse Fourier transform.

fraction of light sensed by each type of photoreceptors can be com-
puted as:

vL|M|S|R[c] =
∫

λ
σL|M|S|R(λ ) · f [c](λ )dλ , (3)

whereσ is the spectral sensitivity of L-, M-, S-cones or rods, and
c is the index of the input radiance map with the emission spec-
tra f [c]. We use the index separator| to denote several analogous
equations, each with different index letter. GivenN input radiance
maps, the total amount of light sensed by each photoreceptor type
is:

RL|M|S|R =
N

∑
c=1

LO[c] ·vL|M|S|R[c]. (4)

Luminance masking. Photoreceptors are not only selective to
wavelengths, but also exhibit highly non-linear response to light.
The ability to see the huge range of physical light we owe mostly
to the photoreceptors, whose gain control regulates sensitivity ac-
cording to the intensity of the incoming light. The effect of these
regulatory processes in the visual system are often described aslu-
minance masking.
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Figure 4: Spectral sensitivities of the photoreceptors from
[Stockman and Sharpe 2000] and [CIE 1951] (bottom). The curves
in the upper part of the plot show the measured emission spectra for
a CRT display (inverted and arbitrarily scaled to distinguish from
the bottom plots).

Most visual models assume a global (i.e. spatially-invariant) state
of adaptation for an image. This is, however, an unjustified sim-
plification, especially for scenes that contain large variations in lu-
minance range (e.g. HDR images). The proposed visual model
accounts for the local nature of the adaptation mechanism, which
we model using a non-linear transducer functiontL|M|R:

PL|M|R = tL|M|R(RL|M|R), (5)

wherePL|M|R is a photoreceptor response for L-, M-cones and rods.
We omit modeling the effect of S-cones as they have almost no
effect on the luminance perception. The transducer is constructed
by Fechner’s integration [Mantiuk et al. 2005]:

tL|M|R(r) = speak

∫ r

rmin

1
∆rL|M|R(µ)

dµ = speak

∫ r

rmin

sL|M|R(µ)

µ
dµ ,

(6)
where r is the photoreceptor absorbed light (RL|M|R), rmin is the

minimum detectable intensity (10−6cd/m2), ∆r(r) is the detection
threshold,sL|M|R are L-, M-cone, and rod intensity sensitivities.
speak is the adjustment for the peak sensitivity of the visual system,
which is the main parameter that needs to be calibrated for each
data set (refer to Section5). The transducer scales the luminance
response in the threshold units, so that if the difference betweenr1
andr2 is just noticeable, the differencet(r1)− t(r2) equals to 1.

To solve for the transducer functionstL|M|R, we need to know how
the sensitivity of each photoreceptor type (sL|M|R) changes with the
intensity of sensed light. We start by computing the combined sen-
sitivity of all the photoreceptor types:

sA(l) = sL(rL)+sM(rM)+sR(rR), (7)

where l is the photopic luminance. Such combined sensitivity
is captured in the CSF function (see Section4), and is approx-
imated by the peak contrast sensitivity at each luminance level
[Mantiuk et al. 2005]:

sA(l) = max
ρ

(CSF(ρ, l)) , (8)

whereρ is the spatial frequency andl is adapting luminance. This
assumes that any variation in luminance sensitivity is due to pho-
toreceptor response, which is not necessarily consistent with bio-
logical models, but which simplifies the computations.

We did not find a suitable data that would let us separately model
L- and M-cone sensitivity, and thus we need to assume that their
responses are identical:sL = sM . Due to strong interactions and
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Figure 5: The luminance transducer functions for cones (tL = tM)
and rods (tR).

an overlap in spectral sensitivity, measuring luminance sensitiv-
ity of an isolated photoreceptor type for people with normal color
vision (trichromats) is difficult. However, there exists data that
lets us isolate rod sensitivity,sR. The data comes from the mea-
surements made for an achromat (person with no cone vision)
[Hess et al. 1990, p. 392]. Then the cone sensitivity is assumed to
be the difference between the normal trichromat and the achromat
contrast sensitivity. Given the photopic luminancel = rL + rM and
assuming thatrL = rM = 0.5l , we can approximate the L- and M-
cone sensitivity as:

sL|M(r) = 0.5 (sA(2r)−sR(2r)) . (9)

The luminance transducer functions for cones and rods, derived
from the sensitivity functions, are shown in Figure5.

The luminance transducer functionstL|M|R(R) make an assump-
tion that the adapting luminance is spatially varying and is equal
to the photopic (RL + RM) or scotopic (RR) luminance of each
pixel. This is equivalent to assuming a lack of spatial maladap-
tation, which is a reasonable approximation given the finding on
spatial locus of the adaptation mechanism [He and MacLeod 1998;
MacLeod et al. 1992]. Since numerous mechanisms contribute to
overall adaptation (fast neural, slow photo-chemical, pupil con-
tractions) it is difficult to determine the spatial extent of the lo-
cal adaptation or the minimum size of a feature to which we can
adapt. However, the fast adaptation mechanisms, which let us per-
ceive scenes of high dynamic range, are mostly spatially restricted
and occur before the summation of cone signals in the horizontal
cells [Lee et al. 1999]. In particular, the rapid adaptation mecha-
nism (within 20− 200ms) is believed to reside within individual
photoreceptors or to operate on signals from individual receptors
[He and MacLeod 1998; MacLeod et al. 1992]. Although individ-
ual rods exhibit considerable gain changes, the scotopic vision con-
trols its adaptation mainly through post-receptoral mechanisms, lo-
cated presumably in the bipolar cells. The spatial adaptation pool
for rods in the human retina is about 10 minutes of arc in diameter
[Hess et al. 1990, p. 82], which in most cases is sufficiently small
to assume an adaptation luminance equal toRL +RM andRR.

Photoreceptor response is more commonly modeled by an S-shaped
function (on a log-linear plot), known as the Michaelis-Menten or
Naka-Rushton equation. Such S-shaped behavior, however, can
be observed only in the experiments in which a stimulus is briefly
flashed after adapting to a particular luminance level, causing mal-
adaptation. Since we assume a stable adaptation condition, there is
no need to consider loss of sensitivity due to temporal maladapta-
tion.

Achromatic response. To compute a joint cone and rod achromatic
response, the rod and cone responses are summed up:

P = PL +PM +PR. (10)



The equally weighted sum is motivated by the fact that L- and M-
cones contribute approximately equally to the perception of lumi-
nance. The contribution of rods,PR, is controlled by the rod sen-
sitivity transducertR so no additional weighting term is necessary.
This summation is a sufficient approximation, although a more ac-
curate model should also consider inhibitive interactions between
rods and cones.

3.2 Multi-scale decomposition

Both psychophysical masking studies [Stromeyer and Julesz 1972;
Foley 1994] and neuropsychological recordings
[De Valois et al. 1982] suggest the existence of mechanisms
that are selective to narrow ranges of spatial frequencies and
orientations. To mimic the decomposition that presumably happens
in the visual cortex, visual models commonly employ multi-scale
image decompositions, such as wavelets or pyramids. In our model
we use the steerable pyramid [Simoncelli and Freeman 2002],
which offers good spatial frequency and orientation separation.
Similar to other visual decompositions, the frequency bandwidth of
each band is halved as the band frequency decreases. The image is
decomposed into four orientation bands and the maximum possible
number of spatial frequency bands given the image resolution.

We initially experimented with the Cortex Transform
[Watson 1987] and its modification [Daly 1993], including the
refinements by [Lukin 2009]. The Cortex Transform is used in both
the VDP [Daly 1993] and the HDR-VDP [Mantiuk et al. 2005].
However, we found that the spectrally sharp discontinuities where
the filter reaches the 0-value cause excessive ringing in the spatial
domain. Such ringing introduced a false masking signal in the
areas which should not exhibit any masking, making predictions
for large-contrast scenes unreliable. The steerable pyramid does
not offer as tight frequency isolation as the Cortex Transform but it
is mostly free of the ringing artifacts.

3.3 Neural noise

It is convenient to assume that the differences in contrast detection
are due to several sources of noise [Daly 1990]. We model overall
noise that affects detection in each band as the sum of the signal
independent noise (neural CSF) and signal dependent noise (visual
masking). If thef -th spatial frequency band ando-th orientation of
the steerable pyramid is given asBT|R[ f ,o] for the test and reference
images respectively, the noise-normalized signal difference is

D[ f ,o] =
|BT [ f ,o]−BR[ f ,o]|p

√

N2p
nCSF[ f ,o]+N2

mask[ f ,o]
. (11)

The exponentp is the gain that controls the shape of the masking
function. We found that the valuep = 3.5 gives good fit to the data
and is consistent with the slope of the psychometric function. The
noise summation in the denominator of Equation11 is responsi-
ble for the reduced effect of signal-independent noise, observed as
flattening of the CSF function for suprathreshold contrast.

Neural contrast sensitivity function. The signal dependent noise,
NnCSF, can be found from the experiments in which the contrast
sensitivity function (CSF) is measured. In these experiments the
patterns are shown on a uniform field, making the underlying band-
limited signal in the reference image equal to 0. However, to use the
CSF data in our model we need to discount its optical component
that has been already modeled as the MTF of the eye, as well as the
luminance-dependent component, which has been modeled as the
photoreceptor response. The neural-only part of the CSF is found
by dividing it by the MTF of the eye optics (Equation1) and the
joint photoreceptor luminance sensitivitysA (Equation7). Since
the noise amplitude is inversely proportional to the sensitivity, we
get:

NnCSF[ f ,o] =
1

nCSF[ f ,o]
=

MTF (ρ,La)sA(La)

CSF(ρ,La)
. (12)

ρ is the peak sensitivity for the spatial frequency bandf , which can
be computed as

ρ =
nppd

2f , (13)

wherenppd is the angular resolution of the input image given in
pixels per visual degree, andf = 1 for the highest frequency band.
La is adapting luminance, which we compute for each pixel as the
photopic luminance after intra-occular scatter (refer to Equation4):
La = RL +RM .

Our approach to modeling sensitivity variations due to spatial fre-
quency assumes a single modulation factor per visual band. In prac-
tice this gives a good approximation of the smooth shape of the CSF
found in experiments, because the filters in the steerable decompo-
sition well interpolate the sensitivities for the frequencies between
the bands. The exception is the lowest frequency band (base-band),
whose frequency range is too broad to model sensitivity differences
for very low frequencies. In case of the base-band, we filter the
bands in both the test and reference images with the nCSF prior to
computing the difference in Equation11 and setNnCSF = 1. For
the base-band we assume a single adapting luminance equal to the
mean ofLa, which is justified by a very low resolution of that band.

Contrast masking. The signal-dependent noise componentNmask
models contrast masking, which causes lower visibility of small dif-
ferences added to a non-uniform background. If a pattern is super-
imposed on another pattern of similar spatial frequency and orienta-
tion, it is, in the general case, more difficult to detect [Foley 1994].
This effect is known asvisual maskingorcontrast maskingto differ-
entiate it fromluminance masking. Figure11 (left) shows a typical
characteristic obtained in the visual masking experiments together
with the fit from our model. The curves show that if a masking pat-
tern is of the same orientation and spatial frequency as the target
(intra-channel masking, 0◦), the target detection threshold first de-
creases (facilitation) and then gets elevated (masking) with increas-
ing masker contrast. The facilitation, however, disappears when
the masker is of different orientation (inter-channel masking, 90◦).
Inter-channel masking is still present, but has lower impact than in
the intra-channel case. Although early masking models, including
those used in the VDP and the HDR-VDP, accounted mostly for
the intra-channel masking, findings in vision research give more
support to the models with wider frequency spread of the masking
signal [Foley 1994; Watson and Solomon 1997]. We follow these
findings and integrate the activity from several bands to find the
masking signal. This is modeled by the three-component sum:

Nmask[ f ,o] =
ksel f

nf

(

nf BM [ f ,o]
)q

+

kxo

nf

(

nf ∑
i=O\{o}

BM [ f , i]

)q

+

kxn

nf

(

nf+1 BM [ f +1,o]+nf−1BM [ f −1,o]
)q

,

(14)

where the first line is responsible for self-masking, the second for
masking across orientations and the third is the masking due to two
neighboring frequency bands.ksel f, kxo and kxn are the weights
that control the influence of each source of masking.O in the sec-
ond line is the set of all orientations. The exponentq controls the
slope of the masking function. The biologically inspired image de-
compositions, such as the Cortex Transform [Watson 1987], reduce
the energy in each lower frequency band due to a narrower band-
width. To achieve the same result with the steerable pyramid and



to ensure that all values are in the same units before applying the
non-linearityq, the values must be normalized by the factor

nf = 2−( f−1). (15)

The BM [ f ,o] is the activity in the bandf and orientationo. Sim-
ilarly as in [Daly 1993] we assumemutual-maskingand compute
the band activity as the minimum from the absolute values of test
and reference image bands:

BM [ f ,o] = min{|BT [ f ,o]|, |BR[ f ,o]|} nCSF[ f ,o]. (16)

The multiplication by theNnCSF unifies the shape of the mask-
ing function across spatial frequencies, as discussed in detail in
[Daly 1993].

3.4 Visibility metric

Psychometric function. Equation11scales the signal in each band
so that the valueD = 1 corresponds to the detection threshold of
a particular frequency- and orientation-selective mechanism. The
valuesD[ f ,o] are given in contrast units and they need to be trans-
formed by the psychometric function to yield probability valuesP:

P[ f ,o] = 1−exp(log(0.5)Dβ [ f ,o]), (17)

where β is the slope of the psychometric function. Although
the commonly reported value of the masking slope isβ = 3.5
[Daly 1993], we need to account for the masking gain controlp
in Equation11 and set it toβ = 3.5/p = 1. The constant log(0.5)
is introduced in order to produceP= 0.5 when the contrast is at the
threshold (D = 1).

Probability summation. To obtain the overall probability for all
orientation- and frequency-selective mechanisms it is necessary to
sum all probabilities across all bands and orientations. The proba-
bility summation is computed as in [Daly 1993]

Pmap= 1− ∏
( f ,o)

(1−P[ f ,o]). (18)

After substituting the psychometric function from Equation17, we
get:

Pmap= 1− ∏
( f ,o)

exp(log(0.5)Dβ [ f ,o])

= 1−exp

(

log(0.5) ∑
( f ,o)

Dβ [ f ,o]

)

.

(19)

It is important to note that the product has been replaced by sum-
mation. This lets us use the reconstruction transformation of the
steerable pyramid to sum up probabilities from all bands. Such
reconstruction involves pre-filtering the signal from each band, up-
sampling and summing up all bands, and is thus the counterpart of
the sum of all band-differences in Equation19. Therefore, in prac-
tice, instead of the sum we use the steerable pyramid reconstruction
P−1 on the differences with the exponent equal to the psychomet-
ric function slopeβ :

Pmap= 1−exp
(

log(0.5)SI(P−1(Dβ ))
)

, (20)

whereSI is the spatial integration discussed below.

Pmap gives a spatially varying map, in which each pixel represents
the probability of detecting a difference. To compute a single prob-
ability for the entire image, for example to compare the predic-
tions to psychophysical data, we compute the maximum value of
the probability map:Pdet = max{Pmap}. Such a maximum value
operator corresponds to the situation in which each portion of an
image is equally well attended and thus the most visible difference
constitutes the detection threshold. A similar assumption was also
used in other studies [Daly et al. 1994].

Spatial integration. Larger patterns are easier to detect due
to spatial integration. Spatial integration acts upon a rela-
tively large area, extending up to 7 cycles of the base frequency
[Meese and Summers 2007]. Since our data does not capture the
extent of the spatial integration, we model the effect as the summa-
tion over the entire image

SI(S) =
∑S

max(S)
·S, (21)

whereS= P−1(Dβ ) is the contrast difference map from Equa-
tion 20. The mapS is modulated by the effect of stimuli size
(the fraction in the equation) so that the maximum value, which
is used for the single probability resultPdet, is replaced with the
sum. The sum should be interpreted as another probability sum-
mation, which acts across the spatial domain rather than across the
bands. Such a summation is consistent with other models, which
employ spatial pooling as the last stage of the detection model
[Watson and Ahumada Jr 2005].

The simple model above is likely to over-predict the spatial inte-
gration for suprathreshold stimuli, which is found to decline when
the pattern is masked by another pattern of the same characteristic
(intra-channel masking), but is still present when the masker has a
different characteristic (inter-channel masking). Meese and Sum-
mers [2007] summarized these findings and demonstrated that they
can be explained by the models of visual masking. However, we
found that their model cannot be used to detect more than one tar-
get and thus it is not suitable for predicting differences in complex
images.

3.5 Implementation details

Visualization. Obtaining a single-valued probability of detection is
important for many applications, but it is often necessary to inspect
how the distortions are distributed across an image. For this pur-
pose we created several visualization schemes that use color maps
to represent the probability of detection for each pixel (Pmap). Two
examples of such a visualization are shown in Figure1. If good
color reproduction is possible (i.e. the maps are shown on a dis-
play), the color-coded probability map is superimposed on top of
a context image, which is a luminance-only, contrast-compressed
version of the test image. The context image can be disabled if
the map needs to be readable on a gray-scale print-out and light-
ness variations must represent the probabilities. Both tri- and di-
chromatic color maps are available, where the latter type reduces
ambiguities for color deficient observers.

Timing . The run-time of the metric is linear in the number of im-
age pixels, taking 16 seconds to compare 1M pixel images using
unoptimized matlab code on one core of a 2.8 GHz CPU (see sup-
plementary).

4 Contrast sensitivity function
The contrast sensitivity function (CSF) is the main reference in our
model for visual performance across the luminance range. It de-
termines luminance masking, static noise in cortical bands, and it
normalizes the masking signal across bands. Therefore, it is essen-
tial to use an accurate model of contrast sensitivity.

We experimented with the two most comprehensive CSF models,
proposed by Daly [1993] and Barten [1999]. But we found that
they give poor fits to both our experimental data and other data sets,
including ModelFest [Watson and Ahumada Jr 2005]. For that rea-
son we decided to fit a custom CSF that is more suitable for predict-
ing visible differences. This does not imply that the CSF models by
Daly and Barten are less accurate, but rather that their functions
may capture conditions that are different from visual inspection of
static images.



As it is not the focus of this work, we only briefly describe the ex-
periment in which we measured CSF for a large range of luminance.
We made these measurements because we found available psy-
chophysical data either incomplete, for example lacking the lower
frequency part or the full range of luminance levels, or the condi-
tions used for measurements were very different from the condi-
tions in which images are compared. For example, most CSF mea-
surements are conducted for an artificial pupil and a short flicker,
which differs greatly from the conditions in which images are usu-
ally compared. We also did not want to combine measurements
from several studies as they often use very different experimental
conditions and protocols.

The stimuli consisted of vertical sine-gratings attenuated by the
Gaussian envelope. Theσ of the Gaussian constituted size of the
object, which was 1.5 visual deg. for most stimuli. To collect data
on spatial integration, additional sizes of 0.5 and 0.15 visual deg.
were measured for 1 and 8 cycles-per-degree (cpd). The stimuli
design was inspired by the ModelFest data set. The background
luminance varied from 0.02 to 150cd/m2. The luminance levels
below 10cd/m2 were achieved by wearing modified welding gog-
gles in which the protective glass was replaced with neutral den-
sity filters (Kodak Wratten Gelatin) with either 1.0 or 2.0 density
value. Although the maximum tested background luminance is only
150cd/m2, the changes of the CSF shape above that level are mini-
mal (compare the plots for 20 and 150cd/m2 in Figure6). The fre-
quency range of the sine grating varied from from 0.125 to 16 cpd
(cycles per degree). The stimuli were shown on a 24” LCD display
with 10-bit panel and RGB LED backlight (HP LP2480zx). Two
additional bits were simulated by spatio-temporal dithering so that
the effective bit-depth was 12 bits per color channel. Stimuli were
observed from a fixed distance of 93 cm, which gave an angular res-
olution of 60 pixels per visual degree. The display was calibrated
using a photo-spectrometer. The display white point was fixed at
D65.

The procedure involved a 4-alternative-forced-choice (4AFC) ex-
periment in which an observer was asked to choose one of the
four stimuli, of which only one contained the pattern. We found
4AFC more efficient and faster in convergence than 2AFC be-
cause of the lower probability of correct guesses. The stimuli were
shown side-by-side on the same screen and the presentation time
was not limited. We used this procedure as more appropriate for
the task of finding differences in images than temporal flicker in-
tervals used in most threshold measurements. The QUEST proce-
dure [Watson and Pelli 1983] with a fixed number of trials (from 20
to 30, depending on the observer experience) was used to find the
threshold. The data was collected for five observers. Each observer
completed all the tests in 3–4 sessions of 30–45 minutes.

The resultsof the experiment compared to the CSF models by Daly
and Barten are shown in Figure6. The effect of stimuli size is
shown in Figure8 together with the fit of the full visual model. Fig-
ure6 shows that Daly’s CSF model predicts much lower sensitivity
for low-frequency patterns. Both Daly’s and Barten’s CSF models
predict much lower sensitivity for 2cd/m2 and a much larger sen-
sitivity difference between 20cd/m2 and 150cd/m2. The inconsis-
tency between the models and the data result in poor predictions for
those luminance levels. Since adjusting the model parameters did
not improve the fits, we decided to fit a new CSF model, which is
specifically intended for visual difference metrics.

The CSF modelis based on a simplified version of Barten’s CSF
[Barten 1999, Eq. 3.26]:

CSF(ρ) = p4sA(l)
MTF (ρ)

√

(1+(p1 ρ)p2) ·
(

1−e−(ρ/7)2)−p3
, (22)
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Figure 6: The CSF measurement results compared to two popular
CSF models by Daly [1993] and Barten [1999]. The Dashed lines
represent our measurements and the solid lines the two compared
models. The model parameters, including stimuli size, were set to
match our measurements. The predictions of both models differ
from the measurements probably because of different experiment
conditions.

whereρ is the spatial frequency in cycles-per-degree andp1...4 are
the fitted parameters. The parameters are fitted separately for each
adaptation luminanceLa (see supplementary). For the luminance
values in between the measured levels we interpolate the parame-
ters using the logarithmic luminance as the interpolation coefficient.
sA(l) is the joint luminance-sensitivity curve for cone and rod pho-
toreceptors, and is given in Equation8. This sensitivity is modeled
as

sA(l) = p5

(( p6

l

)p7
+1
)−p8

. (23)

The parametersp4 andp5 are adjusted so that the CSF divided by
thesA(l) peaks at 1. This let us usesA directly in Equation9. The
model also yieldsnCSFvalue needed in Equation12 whenMTF
andsA are set to 1.

5 Calibration and validation

The value of the visual model largely depends on how well it can
predict actual experimental data. Therefore, we took great care to fit
the model to available and relevant psychophysical data. We also
ran extensive experiments to capture critical characteristics of the
visual system.

Since the model is not invertible, thecalibration involves an itera-
tive optimization (the simplex search method), in which parameters
are adjusted until the best prediction for a threshold data set is found
(SI(S) closest to 1). Each pair of images in such a data set is gen-
erated so that the contrast between them is equal to the detection or
discrimination threshold.

To validateeach data fitting, we use a different procedure, in which
contrast between test and reference images is reduced or amplified
until the metric results inPdet = 0.5. Then, the factor by which the
contrast has been modified is considered as a metric error. Both cal-
ibration and validation are computationally expensive procedures,
which require running the full metric thousands of times. There-
fore, the calibration was performed on a cluster of about 10 CPU
cores. The running time varied from an hour to a few days, depend-
ing on the complexity of the calibration task.

Following [Watson and Ahumada Jr 2005] we report fitting error
as a root-mean-square-error (RMSE) of the contrast difference be-
tween the mean measurement and the model prediction given in dB
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Figure 8: Visual model predictions for theCSF for wide lumi-
nance rangedata set. The two plots on the right show sensitivity
variation due to stimuli size.

contrast units1. For the data sets which provided information about
the distribution of the measurements we also report theχ2 statis-
tics. Intuitively, values ofχ2 close or below 1 indicate good fit to
the experimental data.

Given the degrees of freedom that the visual metric offers, it is
relatively easy to fit each data set separately. However, the main
challenge of this work is to get a good fit forall data sets using
the samecalibration parameters. The only parameter that was ad-
justed between calibration and validation steps was the peak sen-
sitivity, speak (Equation6), which usually varies between data sets
due to differences in experimental procedures or individual varia-
tions [Daly et al. 1994]. The values of the peak sensitivity parame-
ter as well as more detailed results can be found in the supplemen-
tary materials.

Several measures have been taken to reduce the risk of over-fitting
the model. Each component of the model (CSF, OTF, masking)
was fitted separately using the data that isolated a particular phe-
nomenon. For example, the glare data can be predicted by both the
nCSF and the MTF, but is relevant only for the model of the MTF.
This measure also reduced the degrees of freedom that need to be
calibrated for each fitting. For all fittings the ratio of data points to
the degrees of freedom was at least 4:1.

ModelFestis a standard data set created to calibrate and validate vi-
sual metrics, containing 43 small detection targets at 30cd/m2 uni-
form background [Watson and Ahumada Jr 2005]. Figure7 shows

11 dB contrast = 20· log10(∆L/L), which corresponds to the contrast
∆L/L≈12%.
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Figure 9: Visual model predictions for thethreshold versus in-
tensity curve data set. These are the detection thresholds for
circular patterns of varying size on a uniform background field
[Blackwell 1946].
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Figure 10: Visual model predictions for thecolor glare at scotopic
levelsdata set. The leftmost point represent the threshold without
glare source.

the predictions of the proposed metric for this data set. The
mean prediction error is 2.8 dB, which is higher than for the mod-
els explicitly calibrated for the ModelFest data (≈1 dB, refer to
[Watson and Ahumada Jr 2005]). However this value is still much
lower than the standard deviation of the ModelFest measurements
(3.79dB).

CSF for wide luminance range. Since the ModelFest stimuli are
shown on a 30cd/m2 background only, they are not sufficient to
calibrate our metric, which needs to work for all luminance levels.
We used our CSF measurements, which are discussed in Section4,
to validate detection across the luminance and frequency range, as
well as to test the spatial integration (Equation21). As shown in
Figure8, the metric well predicts the loss of sensitivity due to fre-
quency, luminance and size variations. Although good predictions
can be expected as this data set was used to derive the CSF for
the visual model, this test checks the integrity of the entire metric.
The plot reveals some prediction fluctuations throughout frequen-
cies, which are caused by the non-linearities applied to the signal
after the steerable-pyramid decomposition. Such non-linearities af-
fect the signal that is split into two separate bands and then recon-
structed.

Threshold versus intensity curve. One of the most classical mea-
surements of the threshold variation with adapting luminance was
performed by Blackwell and his colleagues [Blackwell 1946]. In
a laboratory built for the purpose of these measurements, over
400,000 observations were recorded and manually analyzed to de-
termine detection thresholds for circular disks of different sizes
(from 0.06 to 2◦ diameter) shown on a uniform adapting field (from
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Figure 11: Visual model predictions for theFoley’s masking data
[Foley 1994] on the left andCSF flattening data set on the right.
The degree values in the legend correspond to the orientation of the
masking pattern with respect to the test pattern (0 deg. - vertical).
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Figure 12: Visual model predictions for thecomplex imagesdata
set.

10−5 to 103.5 cd/m2). This is an excellent validation set for our
model because it both covers a large luminance range and was mea-
sured for circular stimuli, which is very different than the sine grat-
ings on which the CSF is based. Figure9 shows that our model ac-
counts well for both luminance and size variations, which confirms
a good choice of sensitivity curvessA|R. Additionally, it indicates
that a CSF-based model with probability summation well integrates
complex stimuli data with multiple spatial frequencies. We also ob-
served that the fit improved after introducing separate rod and cone
pathways.

Color glare at scotopic levels. This data set validates metric pre-
dictions for rod-mediated vision in the presence of colored glare
[Mantiuk et al. 2009], and was used to adjust the intra-ocular light
scatter parameters (Equation2). The stimuli are 1 cpd dark Gabor
patches (0.002cd/m2) seen in the presence of a strong source of
glare. The prototype display with individually controlled red, green
and blue LED backlight was used to create narrow bandwidth glare
light. The advantage of this is that the metric can be tested for spec-
tral sensitivity of both rod and cone photoreceptors. The predictions
compared to the experimental results shown in Figure10 demon-
strate that the metric correctly predicts the wavelength dependence
on glare in the scotopic range.

Foley’s masking measurements[Foley 1994] were used to cal-
ibrate the inter-channel masking mechanism as well as validate
the choice of masking non-linearity. Figure11 (left) shows that
the metric follows the masking slopes for both in-channel mask-

ing, where test and mask sine gratings share the same orientation
(0◦), and inter-channel masking, where test and mask gratings dif-
fer in orientation by 90◦. The predictions generated by the metric
do not change the shape of the masking function with the making
signal orientation, which is the limitation of the current masking
model. We also do not model facilitation that is causing the ’dip’
in the 0 deg curve. Georgeson and Georgeson [1987] found that
the facilitation disappears with variation in phase or temporal off-
set. This effect is regarded as fragile and absent in complex images
[Daly 1993].

CSF flattening is observed for contrasts above the detection thresh-
old [Georgeson and Sullivan 1975] and is an essential characteristic
for any visual model that needs to predict visibility in complex im-
ages. To capture this effect we measured the detection threshold
for Gabor patches from 4 to 16 cpd superimposed on an actual im-
age (portrait, see supplementary) in three different regions: the re-
gion with almost no masking (hair), with moderate masking (face)
and with strong masking (band). As shown in Figure11 (right) the
sharp decrease in contrast sensitivity at high frequencies in uniform
region (hair) is even reversed for strong masking (band). The model
correctly reverses the shape of the CSF, though the reversal is exag-
gerated for the high masking region. This data set captures a very
important characteristic that is often missing in visual models. The
visual model that relies on a CSF alone would make worse predic-
tions for strongly masked regions than the visual model without any
CSF weighting.

Complex images. To test the metric prediction in likely scenarios,
we measured thresholds for the data set, in which several types of
distortions (biliniear upsampling or blur, sinusoidal grating, noise
and JPEG compression distortions) were superimposed in complex
images. This is the most demanding data set and it produces the
highest errors for our metric, as shown in Figure12. This data set is
especially problematic as it does not isolate the effects that would
produce a systematic variation in the relevant parameter space (spa-
tial frequency, masking signal, etc.), and thus does not allow to
identify the potential cause for lower accuracy. We assume that
the prediction error is the net result of all the mechanisms that we
do not model exactly: inter-channel masking, spatial pooling, the
signal-well-known effect [Smith Jr and Swift 1985], as well as a
multitude of minor effects, which are difficult, if possible, to model.
Despite these problems, the overall metric predictions follow most
data points and demonstrate the good performance of the metric for
complex images.

5.1 Comparison with visibility metrics

VDP’93 HDR-VDP 1.7 HDR-VDP-2
ModelFest 4.32dB, (1.4) 3.3dB, (0.75) 2.78dB, (0.6)
CSF lum. range 15dB, (9.4) 7.53dB, (2.4) 1.9dB, (0.15)
Blackwell’s t.v.i. 27.5dB 41.2dB 3.54dB
Glare at scotopic lum. 15dB, (2.2) 2.68dB, (0.071) 1.07dB, (0.011)
Foley’s masking data 7.73dB 7.07dB 1.98dB
CSF flattening 3.95dB, (5.8) 5.97dB, (13) 2.61dB, (2.5)
Complex images 7.05dB, (4.6) 7.01dB, (4.5) 5.3dB, (2.6)

Table 1: Prediction error for the HDR-VDP-2 compared to the
VDP [Daly 1993] and the HDR-VDP [Mantiuk et al. 2005]. The
values represent the root-mean-square-error and theχ2

red statistic
in parenthesis (where information is available).

We compare HDR-VDP-2 predictions with two other met-
rics: the Visual Difference Predictor (VDP), which we reim-
plemented based on the book chapter [Daly 1993] and after
some correspondence with the author; and with the visual dif-
ference predictor for high dynamic range images (HDR-VDP
1.7), for which we use the publicly available C++ code from
http://hdrvdp.sourceforge.net/. The same data sets

http://hdrvdp.sourceforge.net/


are used for comparison as for the calibration and validation de-
scribed in the previous section. The peak sensitivity parameter
of each metric was adjusted individually for each data set. Addi-
tionally, we optimized the masking slope of both the VDP and the
HDR-VDP for thecomplex imagesdata set and found a value of 0.9
optimal for the VDP and the original masking slope 1.0 to be the
best for the HDR-VDP.

The results of the comparisons are summarized in Table1 (see sup-
plementary for more details). The new CSF function, described
in Section4, improved theModelFestpredictions as compared to
the VDP and the HDR-VDP. But the most noticeable improvement
is for theCSF for wide luminance rangeandBlackwell’s t.v.idata
sets, which revealed problems with low luminance predictions in
both the VDP and the HDR-VDP. The prediction errors are espe-
cially large for the VDP and a luminance lower than 0.1cd/m2, as
this metric was not intended to work in that luminance range.

Both the HDR-VDP and the HDR-VDP-2 handle predictions for
glare at scotopic luminancelevels relatively well, though the new
model predictions are better due to separate cone and rod pathways.
The poor prediction for low luminance and the lack of glare model
make the VDP unsuitable for this data set.

The improvement in masking predictions is most noticeable forFo-
ley’s maskingdata set, as both VDP and HDR-VDP do not predict
inter-channel masking. Although the non-linearities inVDP com-
pensate to some extent changes in the shape of CSF due to masking
signal, the lack ofCSF flatteningis an issue in HDR-VDP. The new
model also improves the predictions for thecomplex imagesdata set
containing a wide range of image distortions, though the improve-
ment is not well quantified due to limited number of test images.

6 Predicting image quality

Sometimes it is more important to know how a visual difference af-
fects overall image quality, than to know that such a difference ex-
ists. The subjective severity of visual difference is usually measured
by quality metrics, which quantify the visual distortion with a sin-
gle value of quality score. Such a quality score can be measured in
subjective experiments in which a large number of observers rate or
rank images [ITU-R-BT.500-11 2002]. The automatic (objective)
metrics attempt to replace tedious experiments with computational
algorithms.

The HDR-VDP-2 has been designed and calibrated to predict visi-
bility rather than quality. However, in this section we demonstrate
that the metric can be extended to match the performance of state-
of-the-art quality metrics.

6.1 Pooling strategy

The goal of the majority of quality metrics is to perceptually lin-
earize the differences between a pair of images, so that the mag-
nitude of distortion corresponds to visibility rather than mathemat-
ical difference between pixel values. The HDR-VDP-2 achieves
this goal when computing the threshold-normalized difference for
each bandD[ f ,o] (Equation11). However, this gives the differ-
ence value for each pixel in each spatially- and orientation-selective
bands. The question is how to pool the information from all pixels
and all bands to arrive at a single value predicting image quality.

To find the best pooling strategy, we tested over 20 different com-
binations of aggregating functions and compared the predictions
against two image quality databases: LIVE [Sheikh et al. 2006] and
TID2008 [Ponomarenko et al. 2009]. The aggregate functions in-
cluded maximum value, percentiles (50, 75, 95) and a range of
power means (normalized Minkowski summation) with the expo-
nent ranging from 0.5 to 16. Each aggregating function was com-

puted on the linear and logarithmic values. As the measure of pre-
diction accuracy we selected Spearman’s rank order correlation co-
efficient as it is not affected by non-linear mapping between subjec-
tive and objective scores. The pooling function that produced the
strongest correlation with the quality databases was:

Q =
1

F ·O

F

∑
f=1

O

∑
o=1

wf log

(

1
I

I

∑
i=1

D2[ f ,o](i)+ ε

)

, (24)

where i is the pixel index,ε is a small constant (10−5) added to
avoid singularities whenD is close to 0, andI is the total number of
pixels. Slightly higher correlation was found for exponents greater
than 2, but the difference was not significant enough to justify the
use of a non-standard mean. The per-band weightingwf was set
to 1 to compare different aggregating functions, but then was opti-
mized using the simulated annealing method to produce the highest
correlation with the LIVE database. The weights that maximize
correlation are listed in the supplementary materials.

The objective quality predictions do not map directly to the subjec-
tive mean opinion scores (MOS) and there is a non-linear mapping
function between subjective and objective predictions. Following
ITU-R-BY.500.11 recommendations [2002], we fit a logistic func-
tion to account for such a mapping:

QMOS=
100

1+exp(q1 (Q+q2))
. (25)

The LIVE database was used to fit the logistic function and to find
the per-band weightswf , while the TID2008 database was used
only for testing. The TID2008 database contains a larger number
of distortions and is a more reliable reference for testing quality
metrics, but the distortions are mostly concentrated in the central
part of the MOS scale with a lower number of images of perfect or
very poor quality. This biases fitting results toward better predic-
tions only in the central part of the MOS scale.

Since the HDR-VDP-2 operates on physical units rather than
pixel values, in all experiments we converted LIVE and TID2008
database images to trichromatic XYZ values assuming a standard
LCD display with CCFL backlight, sRGB color primaries, 2.2
gamma, 180cd/m2 peak luminance and 1cd/m2 black level.

6.2 Comparison with quality metrics

We compared the quality predictions of the HDR-VDP-2 with
several state-of-the-art quality metrics, including Structural Sim-
ilarity Index (SSIM) [Wang et al. 2004], its multi-scale exten-
sion (MS-SSIM) [Wang et al. 2003], mDCT-PSNR [Richter 2009]
and still the most commonly used, the PSNR metric. The re-
cent comprehensive comparison of quality metrics against the
TID2008 database found the MS-SSIM to be the most accurate
[Ponomarenko et al. 2009]; thus we compare our predictions with
the best available method. Figure13 shows the correlation be-
tween each metric and the subjective DMOS scores from the LIVE
and TID2008 quality databases. The continuous lines correspond
to the logistic mapping function from Equation25. The HDR-
VDP-2 has the highest Spearman’s correlation coefficient for both
databases, which means that it gives the most accurate ranking of
images. The HDR-VDP-2 also ranks first in terms of RMSE for the
LIVE database, but second for the TID2008 database, for which
MS-SSIM produces smaller error. The correlation coefficients are
also the highest for individual distortions (see supplementary), sug-
gesting that our metric is good at ranking each distortion type indi-
vidually, but is less successful at differentiating the quality between
the distortions. The differences in the correlation coefficient and
RMSE for the HDR-VDP-2 and MS-SSIM are statistically signifi-
cant atα = 0.05.
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Figure 13: Predictions of quality metrics for the LIVE (top) and TID2008 (bottom) databases. The prediction accuracy is reported as
Spearman’sρ , Kendall’s τ, root-mean-square-error (RMSE), and the reducedχ2 statistics. The solid line is the best fit of the logistic
function. Only the LIVE database was used for fitting. See supplementary forenlarged and more detailed plots.

Unlike MS-SSIM, the HDR-VDP-2 can account for viewing con-
ditions, such as display brightness or viewing distance. It can also
measure quality for the scenes outside the luminance range of typ-
ical LCD or CRT displays (though such the predictions have not
been validated for quality). Given that, the HDR-VDP-2 is a good
alternative to MS-SSIM for all applications that require finer con-
trol of the viewing parameters.

7 Conclusions and future work

In this work we demonstrated that the new HDR-VDP-2 metric
based on a well calibrated visual model can reliably predict vis-
ibility and quality differences between image pairs. The predic-
tions for the tested data sets are improved or at least comparable to
the state-of-the-art visibility (discrimination) and quality metrics.
The underlying visual model is specialized to predict differences
outside the luminance range of a typical display (1–100cd/m2),
which is important for the new high dynamic range display tech-
nologies and the range of applications dealing with real-world light-
ing. This work also stresses the importance of validating visual
models against experimental data.

The underlying visual model of the HDR-VDP-2 can be used in
combination with higher level visual metrics, such as dynamic
range independent metrics [Aydin et al. 2008; Aydin et al. 2010].
The detection component of these metrics, which relies on the
HDR-VDP, can be easily replaced with the HDR-VDP-2 detection
model.

The HDR-VDP-2 is a step towards a better visibility and quality
predictor, but there is still room for improvement. The two ma-
jor omissions are the modelling of color vision and temporal pro-
cessing. Including the spatio-velocity and spatio-temporal com-
ponents, as done in [Myszkowski et al. 1999; Aydin et al. 2010],
could provide an extension to the temporal domain. The existing
achromatic model would benefit from a better model of spatial inte-
gration, improved sensitivity characteristics for each photoreceptor
type, and a refined masking model, which is calibrated to a more
extensive data set. The metric could also consider a less conser-
vative assumption when the distortion signal is not known exactly
[Smith Jr and Swift 1985].
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LOVELL , P., ṔARRAGA, C., TROSCIANKO, T., RIPAMONTI , C., AND
TOLHURST, D. 2006. Evaluation of a multiscale color model for visual
difference prediction.ACM Transactions on Applied Perception (TAP)
3, 3, 155–178.

LUBIN , J. 1995.A visual discrimination model for imaging system design
and evaluation. World Scientific Publishing Company, 245.

LUKIN , A. 2009. Improved Visible Differences Predictor Using a Complex
Cortex Transform.International Conference on Computer Graphics and
Vision (GraphiCon).

MACLEOD, D., WILLIAMS , D., AND MAKOUS, W. 1992. A visual non-
linearity fed by single cones.Vision Res 32, 2, 347–63.

MANTIUK , R., DALY, S., MYSZKOWSKI, K., AND SEIDEL, H. 2005.
Predicting visible differences in high dynamic range images:model and
its calibration. InProc. SPIE, vol. 5666, 204–214.

MANTIUK , R., DALY, S., AND KEROFSKY, L. 2008. Display adaptive
tone mapping.ACM Transactions on Graphics (Proc. of SIGGRAPH)
27, 3, 68.

MANTIUK , R., REMPEL, A. G., AND HEIDRICH, W. 2009. Display con-
siderations for night and low-illumination viewing. InProc. of APGV
’09, 53–58.

MARIMONT, D., AND WANDELL , B. 1994. Matching color images: The
effects of axial chromatic aberration.Journal of the Optical Society of
America A 11, 12, 3113–3122.

MEESE, T., AND SUMMERS, R. 2007. Area summation in human vision
at and above detection threshold.Proceedings of the Royal Society B:
Biological Sciences 274, 2891–2900.

MYSZKOWSKI, K., ROKITA , P., AND TAWARA , T. 1999. Perceptually-
informed accelerated rendering of high quality walkthroughsequences.
Rendering Techniques 99, 5–18.

PATTANAIK , S. N., FERWERDA, J. A., FAIRCHILD , M. D., AND GREEN-
BERG, D. P. 1998. A multiscale model of adaptation and spatial vision
for realistic image display. InProc. of SIGGRAPH’98, 287–298.

PATTANAIK , S., TUMBLIN , J., YEE, H., AND GREENBERG, D. 2000.
Time-dependent visual adaptation for realistic image display. In Proc. of
SIGGRAPH’00, 47–54.

PONOMARENKO, N., BATTISTI , F., EGIAZARIAN , K., ASTOLA, J., AND
LUKIN , V. 2009. Metrics performance comparison for color image
database. In4th int. workshop on video processing and quality metrics
for consumer electronics (QoMEX).

RAMANARAYANAN , G., FERWERDA, J., WALTER, B., AND BALA , K.
2007. Visual equivalence: towards a new standard for image fidelity.
ACM Trans. on Graphics (SIGGRAPH’07), 76.

RAMASUBRAMANIAN , M., PATTANAIK , S. N.,AND GREENBERG, D. P.
1999. A perceptually based physical error metric for realistic image syn-
thesis. InProc. of SIGGRAPH ’99, 73–82.

RICHTER, T. 2009. On the mDCT-PSNR image quality index. InQuality
of Multimedia Experience, 2009. QoMEx, 53–58.

RITSCHEL, T., IHRKE, M., FRISVAD, J. R., COPPENS, J., MYSZKOWSKI,
K., AND SEIDEL, H.-P. 2009. Temporal Glare: Real-Time Dynamic
Simulation of the Scattering in the Human Eye.Computer Graphics
Forum 28, 2, 183–192.

ROHALY, A., AHUMADA JR, A., AND WATSON, A. 1997. Object de-
tection in natural backgrounds predicted by discriminationperformance
and models.Vision Research 37, 23, 3225–3235.

ROVAMO , J., KUKKONEN, H., AND MUSTONEN, J. 1998. Foveal optical
modulation transfer function of the human eye at various pupilsizes.
Journal of the Optical Society of America A 15, 9, 2504–2513.

SHEIKH , H., SABIR , M., AND BOVIK , A. 2006. A Statistical Evaluation
of Recent Full Reference Image Quality Assessment Algorithms.IEEE
Transactions on Image Processing 15, 11, 3440–3451.

SIMONCELLI , E., AND FREEMAN, W. 2002. The steerable pyramid: a
flexible architecture for multi-scale derivative computation. In Proceed-
ings., International Conference on Image Processing, IEEE Comput.
Soc. Press, vol. 3, 444–447.

SMITH JR, R., AND SWIFT, D. 1985. Spatial-frequency masking and
Birdsalls theorem.Journal of the Optical Society of America A 2, 9,
1593–1599.

STOCKMAN , A., AND SHARPE, L. 2000. The spectral sensitivities of
the middle-and long-wavelength-sensitive cones derived from measure-
ments in observers of known genotype.Vision Res 40, 13, 1711–1737.

STROMEYER, C. F., AND JULESZ, B. 1972. Spatial-Frequency Masking
in Vision: Critical Bands and Spread of Masking.Journal of the Optical
Society of America 62, 10 (Oct.), 1221.

VAN DEN BERG, T., IJSPEERT, J.,AND DE WAARD , P. 1991. Dependence
of intraocular straylight on pigmentation and light transmission through
the ocular wall.Vision Res 31, 7-8, 1361–7.

VOS, J., AND VAN DEN BERG, T. 1999. Report on disability glare.CIE
Research Note 135, 1.

WANG, Z., AND BOVIK , A. C. 2006.Modern Image Quality Assessment.
Morgan & Claypool.

WANG, Z., SIMONCELLI , E., AND BOVIK , A. 2003. Multiscale struc-
tural similarity for image quality assessment. InAsilomar Conference
on Signals, Systems & Computers, 2003, 1398–1402.

WANG, Z., BOVIK , A., SHEIKH , H., AND SIMONCELLI , E. 2004. Image
Quality Assessment: From Error Visibility to Structural Similarity. IEEE
Transactions on Image Processing 13, 4, 600–612.

WATSON, A., AND AHUMADA JR, A. 2005. A standard model for foveal
detection of spatial contrast.Journal of Vision 5, 9, 717–740.

WATSON, A., AND PELLI , D. 1983. QUEST: A Bayesian adaptive psy-
chometric method.Perception & Psychophysics 33, 2, 113–120.

WATSON, A., AND SOLOMON, J. 1997. Model of visual contrast gain
control and pattern masking.Journal of the Optical Society of America
A 14, 9, 2379–2391.

WATSON, A. 1987. The cortex transform: Rapid computation of simulated
neural images.Computer Vision, Graphics, and Image Processing 39, 3,
311–327.

WHITAKER , D., STEEN, R., AND ELLIOTT, D. 1993. Light scatter in
the normal young, elderly, and cataractous eye demonstrates little wave-
length dependency.Optometry and Vision Science 70, 11, 963–968.


