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Figure 1: Image reproduced adaptively for low ambient liglatrk roomscenario — left) and high ambient lighgunlightscenario — right).
The display adaptive tone mapping can account for screesctieihs when generating images that optimize visible eshtr

Abstract

We propose a tone-mapping operator that can minimize eisih-
trast distortions for a range of output devices, rangingifespaper
to HDR displays. The operator weights contrast distortaord-
ing to their visibility predicted by the model of the humarswal
system. The distortions are minimized given a display matiokt
enforces constraints on the solution. We show that the pnolgian
be solved very efficiently by employing higher order imagstist
tics and quadratic programming. Our tone mapping technigue
adjust image or video content for optimum contrast vidipitak-
ing into account ambient illumination and display chargstes.
We discuss the differences between our method and previpus a
proaches to the tone-mapping problem.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; 1.4.2 [Image Processimgl a
Computer Vision]: Enhancement—Greyscale manipulatibars
ening and deblurring

Keywords:  high dynamic range, tone mapping, image repro-

duction, visual perception, optimization, display-adantviewing
conditions

1 Introduction

Reproducing natural and artificial scenes on display devafea
limited dynamic range (contrast) is a challenging problerplio-

tography, cinematography, printing and visualization. f&o the
best results are achieved when each image is manually edjast
the target display. This, however, is a tedious task thanofe-
quires expert skills. The question arises whether the maujast-
ments can be replaced with a computational algorithm. Weesdd
this question by demonstrating that the image reprodudtsks
can be formulated as an optimization problem, in which th&t be
tradeoff between preserving contrast in all ranges of a-tmade
is found. Such optimization is driven by a perceptual metnit
weights contrast distortions according to their visilgibind impor-
tance.

Tone-mapping should not only ensure that the resulting pedees
are in the range 0-255, but also that the actual tones shoampar
ticular display of certain capabilities will convey deslienage con-
tent. This is especially important with the recent develepts in
the display technologies (LCD, LCoS, PDP, DLP, OLED, e-pape
backlight modulation [Seetzen et al. 2004], rear-progegtiand the
variety of applications in which they are employed (homedatn-
ment, mobile displays, electronic books, cockpit displays.). All
these display devices can differ dramatically in their pbeafght-
ness, contrast (dynamic range) and black level, and cangehan
their characteristic with the viewing conditions (sunligis. of-
fice light). Therefore, it cannot be expected that the samagén
shown on different devices will produce the desirable apreze.
Tone-mapping with no knowledge of the target display is rfotls
defined problem, similarly as gamut mapping with no knowéedfy
the target gamut.

We propose a tone-mapping operator that produces the lsast d
torted image, in terms of visible contrast distortions,egivthe
characteristic of a particular display device. The disbot are
weighted using the human visual system (HVS) model, which ac
counts for all major effects, including luminance maskispatial
contrast sensitivity and contrast masking (Section 3.4xhSone-
mapping operator is naturally formulated as an optimizagimb-
lem (Section 3), where the error function is weighted by théSH
model and constraints are dictated by the display limiteti(Sec-
tion 3.3). We demonstrate that the problem can be solvedeféiry
ciently if the error function is based on higher order imaigeistics



(Section 4.1) and the non-linear optimization problem wuced
to the medium-size quadratic programing task (Section. 4/8)
straightforward extension of our method ensures tempaiaéic
ence and makes it suitable for video sequences (Section I%.
performance of our technique is validated in several lesdied
scenarios of tone reproduction when the viewing conditiand
display capabilities vary (Sections 6.1 and 6.2). Our expental
study shows that images that are adaptively tone-mappeltuito i
mination conditions are preferred in terms of contrastadpction
(Section 6.3). Finally, the method is compared with othereto
mapping operators (Section 6.4).

_‘

2 Previous Work

The problem of tone-reproduction was already recognizeenly
painters, who struggled with the limited contrast rangevailable
pigments. Since the pigments did not offer much contrastifok
colors, Leonardo da Vinci tended to use midrange colorslfaba
jects, so that he could achieve the desired contrast amstiepth-
from-shading effect even if the actual brightness levelsewnds-
torted [Livingstone 2002, p. 115]. Livingstone in her bo@002,
pp. 109-125] gives a good overview of other techniques thegra
used to overcome the limited dynamic range. Much later when t
film-basedpbhotography was invented, the first practitioners of this
new technique found that capturing enormous dynamic rarfige o
luminance in the real world on a chemically limited negativas
difficult. Film manufactures tried to reduce this problemdsgign-
ing the film stocks and the print development systems that gav
desired S-shaped tone curve with slightly enhanced cdrfabsut
15%) in the middle range and gradually compressed higldight
shadows [Hunt 2004, Ch. 6]. To overcome the limitations @f th
print, photographers also locally modified image expostitk the
dodging and burning technique [Adams 1981].

The introduction of digital photography and image proaegsgjave
much more possibilities for image reproduction. One of thesim
notable early algorithms employed for image rendering vhes t
retinex [Land and McCann 1971], inspired by the theories of light-
ness perception. The problem of limited color gamut has lesen
tensively studied in the context of color printing, reuitin a range

of gamut-mapping algorithms [Morovic and Luo 2001]. Since col-
ors change their appearance with viewing conditions, cipring

an image involves reproducing it®lor appearance. Although
color appearance is a complex phenomenon, it can be prddigte
computational models, such as CIECAMO02 [Moroney et al. 2002
or iCAM [Kuang et al. 2007]. When automatic algorithms are
not sufficient and high quality results are required, magpones
and colors must be performed manually by a skilled artisis T
the case of cinematographic movie post-processing procelsd
color-grading.

Computer graphics techniques, capable of rendering toglrast
scenes, shifted focus from color to luminance as the maiititign
factor of display devices. A recent book [Reinhard et al 3@dves

a good review of a number @bne mapping operators (TMOs),
intended to map high dynamic range (HDR) images to standafd d
plays. More recent work on tone mapping shows a trend towards
user-assisted image reproduction [Lischinski et al. 2086}ized
rendering [Bae et al. 2006] and finding other means than lante

to extend image contrast [Smith et al. 2006]. A large numbfer o
the proposed operators and no proven method to validate ithem
spired work on theiwsubjective comparison [Ledda et al. 2005].
Recently, the problem of image reproduction has gradudifyesl
towards displays, as they are equipped with more advancagem
processing and display algorithms, which not only enhaheelv

‘ Viewing conditions for original ‘

{

Image Human

Original
|:.|gag: Enhancement Visual System ——
(optional) Model Ror
I
Tone argmin( ||Rorig-Rdisp| ) c
Mappin tone-mapping L rror
Opgrpatc?r parameters Metric
| —
Display Display Human disp

Adapted
Image

Visual System
Model

i

‘ Viewing conditions for reproduction ‘

Model

Figure 2: The proposed formulation of the tone-mapping lemb

signal, but also adapt rendering to viewing conditions (@mtdight
sensor), save power (backlight dimminglp-scale color gamut
[Muijs et al. 2006] andlynamic range [Meylan et al. 2006; Rem-
pel et al. 2007].

3 Tone mapping as the minimum visible
distortion problem

The original goal of the tone mapping problem, as formuldted
Tumblin and Rushmeier [1991], is to reproduce a scene on-a dis
play, so that the brightness sensation of a displayed inzaggual
or closely matches the real-world brightness sensatioa.pEnfect
match between the original and its rendering on a display @ i
hard-copy format is almost never possible, as an output unedi
is hardly ever bright enough, offers sufficient dynamic efcpn-
trast) and color gamut. Therefore, the rendering on an ddgxice
is a tradeoff between preserving certain image featurdseatdst
of the others. For example, high contrast and brightness aha
age can often be preserved only at the cost of clipping (sthtay)
certain amount of pixels in bright or in dark regions. Theich®f
which features are more important should be driven by aqarti
lar application, for which an appropriate metric could bsigeed,
possibly involving some aspects of the visual perceptiofese
considerations lead us to a general tone mapping framewoisk,
trated in Figure 2, which is formulated as an optimizatioobpem.

Having an original image as input, which can be in HDR or any
scene-referred high quality format, we want to generatesplaly-
adapted image that would be the best possible renderingafgn
inal scene. We assume that this goal is achieved if the respai
the HVS for an image shown on the displ&isp, is as close as
possible to the response evoked by the original scBgg;. Both
responses can almost never be the same as a display can only sh
limited dynamic range and color gamut. Also the viewing dend
tions, such as ambient light or luminance adaptation, difééween
the original scene and its rendering, making the match evanre m
difficult. The solution of the optimization problem is a sétane
mapping parameters that minimizes the difference betviRgp
andRyjsp. Figure 2 contains also a processing block for image en-
hancement, as many applications require reproducing isntig
are sharper and more colorful than the originals. The diapladel
introduces physical constraints on devices’ color and hamce re-
production.

The framework shares some similarities with the TMO oritiina
proposed by Tumblin and Rushmeier over 15 years ago [1991,
Fig. 2b], and in the latter work of Pattanaik et al. [2000]. eTh
difference is that these approaches assiqig = Rorig and then



invert the HVS and display models to compute a tone mapped im-
age. If we follow this approach and compute the desired alysioi-
minance that would evoke the same sensation as a real wehe sc
(Ryisp= Rorig), we can end up with an image that is too bright or has
too much contrast for a given display. In such situation, éf ap-

ply the limitations of a display and clamp luminance valwes get
Raisp significantly different fromRorig, which is unlikely the global
minimum of our optimization problem. Furthermore, our feam
work can be used with arbitrary HVS and display models, while
previous approaches required the models to be invertiblereM
differences are discussed in Section 6.4.

The problem formulation above has been used before in the con
text of digital halftoning for printing [Pappas et al. 2008t it

The recent studies [Yoshida et al. 2006] show that contrast e
hancement as high as 100% can be desired if a display offers a
sufficient dynamic range, however actual strength of theeoé-
ment strongly depends on a subjective preference. To aweid o
enhancement, we follow a common practice in producing rifec
prints for the consumer market and enhance the contrasteséa r
ence image by 15% [Hunt 2004, p. 5%+ 1.15, as discussed in
Section 4.2).

3.3 Display Model

The display model primarily accounts for the limited capitibs

has not been employed to derive a tone mapping operator. The©f @ display device, such as maximum brightness, dynamigeran

major difficulty lies in the fact that even simplified modelf @
display, the HVS and a tone mapping operator lead to a complex
non-linear optimization problem, which may exhibit locahima,

or be too complex to solve in reasonable time. In the follgsnb-
sections we will present a combination of such models, whigh
sufficiently complete to realize the goals outlined abovel at the
same time lead to a standard optimization problem, whichbean
solved efficiently.

3.1 Tone Mapping

To make the problem solvable by reducing degrees of freedom o
the optimized system, a tone mapping operator with a set -of ad
justable parameters must be introduced. To retain maximexa fl
ibility, we employ a piece-wise linear tone-curve. Althduthe
high contrast scenes seem to require local, detail-enhgrgera-
tors, we demonstrate that a well designed tone-curve catupeo
good results even for such scenes. Akyuz et al. [2007] alafirm
the importance of a global tone-curve by showing that theltes
of sophisticated TMO are no better than the best single expos
In this study we do not consider the color appearance isas,
we did not find the color appearance models robust enoughufor o
purpose. Such models cope well with uniform color fields, how
ever they usually do not consider the influence of spatialhamce
modulation on color appearance, which we can observe wimen to
mapping high contrast images. To retain color informatimmf
the reference image, we employ the desaturated colomtahnce
ratios [Schlick 1994]:
S
(3

wherelL is the luminanceR the trichromatic valuel’ is the tone-
mapped luma an® is the tone-mapped color channel. For our
resultss= 0.6.

R

- ®

3.2 Image Enhancement

Image enhancement modifies the original image to improvapits
pearance. Such enhancement is a common practice in many imag
ing products, such as cameras and advanced TV displaysoplepe
tend to prefer images that are sharper, have higher coatrdshore
saturated colors than the original scenes. Image enhantés -
ten used for stylization, for example higher contrast iglusegive
desired harsh look, soft focus for making actors appear geuor
color shift to create a surrealistic mood. Colors can beredt¢o
be closer to so-callethemory colorswhich are the colors that we
remember seeing rather than the colors that can be measuitesl i
actual scene [Bodrogi and Tarczali 2002], which are usualtye
colorful than the colors of the original scene.

(contrast ratio). These are affected by the technical aspEca
display, as well as viewing conditions, such as ambientt light
is reflected from a screen. Such reflected light elevatesnianaie
of the darkest pixels shown on a display, thus reducing avil
dynamic range.

Most of the displays, both CRT and LCD, can be modelled wiéh th
formula:

La(L") = (L)Y (Lmax— Lblack) + Lblack+ Lrefi 2

wherelg is displayed luminance or radiance (as measured coming
from the display surface),’ is the pixel value (0-1)y is a display
gamma (usually close to 2.2)max is the peak display luminance
(about 10G:d/n for office displays, and about 5@@,/m? for LCD

TV). Lpiackis the display black level, which is the luminance of the
black pixel displayed in a perfectly dark room (usually frOrt to

0.8 cd/n? for LCD displays).Le | is ambient light reflected from

a display surface and it can be approximated in case of nussyg|
screens with:

@)

whereEgmpis ambient illuminance given itux andk is the reflec-
tivity for a display panel (about 1% for LCD displays, larder

CRT displays). Although the model from Equation 2 is usuatty-
ployed separately for each trichromatic primary (red, grdsue),
we use this model for luminance values only since the cokras
are not in the scope of this work yet.

k
Lrefl = EEamb

3.4 Human Visual System Model

The model of the human visual system (HVS) processes input lu
minance and chrominance data to produce the estimatednsspo
Such estimate should scale image features relative to sl

ity or importance. There are many choices of such modelgimgn
from the mean square difference, to complex appearancelsiode
We decided to employ a model that estimates perceived @ntra
distortions, as contrast is one of the most important fadfoat af-
fect overall image quality [Cadik et al. 2006]. In fact mofttee vi-
sual models, employed to estimate perceived image differfiru-

bin and Pica 1991; Daly 1993] or to drive a tone mapping operat
[Pattanaik et al. 1998], operate on image contrast.

To estimate the response of the HVS to a contrast stimulusisee
a classical transducer function introduced by Wilson [19&@ich

is a function of contradtV = AL/L and sensitivityS R=T(W,S).
The resulting valu® is a hypothetical HVS response given in IND
(Just Noticeable Difference) units. The original formidahe sup-
plementary materials. Figure 3 shows two desirable prigsedf
the transducer function: a) the contrast is attenuatedibile de-
tection threshold, which prevents invisible noise fromnigecon-
sidered as important and thus preserved by a tone mappeh)and
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Figure 3: A contrast transducer function from [Wilson 198The Figure 4. The conditional probability density functioyy, for the
vertical lines show the detection thresholds and constduse in- Memorial churchimage, the first two contrast pyramid levels.
dicate at which conditions they can be expected-(spatial fre-

quency,L, — adapting luminances - sensitivity). The inset shows

a compressive character of the transducer function for atget 4.1 Conditional contrast probability

contrast range.

Computing a response of the visual system on the entire image
which can easily exceed several mega-pixels, is a provetytiex-

the contrast above the detection threshold.is flrStly el"d?[:hm}d pensive Step’ especia”y that a numerical solver for Ou'“'njpa_
then compressed, since the visual system is the most serfiti tion problem (refer to Figure 2) needs to execute it sevenak h
the contrast changes near the threshold and less sensitiveef  dred times. However, our particular problem allows us to then
contrast differences at high contrast levels (facilitamd contrast visual model on a custom-designed higher order image itatis
masking). which summarizes a common behavior of multiple pixels. @Qu i

age statistic can be understood as a conditional histogfazome

trast values@)) that depends on logarithmic luminance of the local

backgroundl(, 1) and a pyramid level. Such a statistic let us pre-

S=CSFp,La,Vq), 4) dict ho_vv many pixels will be affected by a particular tone piag
operation.

The sensitivityS is the inverse of the detection threshold and is
modelled with the Contrast Sensitivity Function (CSF):

wherep is the frequency given in cycles per degregis the adapt- We divide the dynamic range of an input imagéto N bins of
ing I_uminance, gi_ven_irttd/m2 andvy is the vi_ewing distance. The equal size and denote centers of these bing.as n. TheN is
luminance masking is modelled by assuming local adaptaion  selected so that the difference between bins is about @o(imits,
thatL, is equal to local background _Iumlnan_ce. We use in our sys- there are on average about 30 bins). Then, for éabHevel of the
tem the CSF from [Daly 1993], which we include in the supple- | apjacian pyramid and for eadtth bin, we compute the histogram
mentary materials. of all contrast values5|, whose corresponding local background

The models above let us find the response of the visual system g '1+1 Pelongs to the-th bin. The collection of such histograms gives
a contrast valudV. To find a set of contrast values in a complex US @ conditional probability density function:

image, we employ the Laplacian pyramid. First, we computga | 5 5 5 5
arithm of image luminance values,= logip(L). Then, we use CGm =P (mé— <G <mi+= | Xi—=<ly1<%-+ —) ,
an efficient algorithm to compute the Gaussian pyramid [Bod w 2 2 2 2
Adelson 1983]; for the imagel. The contrast in the logarithmic _ _ _ (6)
ratio units for thd-th frequency band is then equal®@ =1, — | 1, whered = X1 —x is the distance between bin centers, ame-
wherel; is the original image and largévalues indicate coarser ~ —M,-»—1,1,..,M. The use of contrast bins that have the same size
levels of the Gaussian pyramid. The pyramid is contractetoup &S thex; bins simplifies ourfurther computations. The valudvbis

the band that has its medium frequency lower than 3 cycles per Chosen such tha# 5 < 0.7, which gives a good trade-off between
visual degree [cpd]. The sensitivity for the luminance gats of the number of bins and _t_he maximum contrast that is _captured i
frequency lower than 3 cpd drops rapidly and therefore tremeh the structure. The con(_jltlonal pr_oba_blllty density funatifor the _
little influence on our contrast metric. The formulas for qorting Memorial churchimage is shown in Figure 4. The marked density
the medium frequency of a band are included in the suppleanent valuecs 1 1 represents the relative count of the contrast values of
materials. Since the Laplacian pyramid represents cdrasathe spatial frequency~ 15 cycles per degree, of the background log-
logarithmic ratiosG and the transducer function was modelled for Uminancex xs and the contrast magnitude —9.

Weber contrastV, we need to convert between these units using the

formula:
W =10¢_1 (5) 4.2 Objective function

Our tone curve is a piece-wise linear function with the nodes
the points ¥;,y;), as shown in Figure 5, where the valugsare
the same as for the conditional probability density functicom
Equation 6. The constraints on feasible tone curves can lse mo
In this section we explain how the optimization problem c&n b  conveniently specified, if instead of actual values, we afgeon
efficiently solved for the display and the HVS models intreeldiin differencesd; =i 1 —V; fori = 1..N — 1. Then our goal is to find
the previous section. a visual error due to a tone curve givenXxyd;, minimumLg(0)

4 Efficient solution
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and the sums di, in a tone-mapped image.

and maximumlLgy(1) logarithmic luminance of a display (refer to
Equation 2).

The minimum contrast distortion can be expected if the tamee
has the slope close to 1, and thus the contrast responsés fanid-
inal and displayed images are the closest to each other. tiowe
sider for each tone leve] contrast magnitudes that are multiples of
d, our goal is to minimize all squared differences betweerctre
trast response given by the tone curve, and the contrasinespf
the original image:

afgmlfs—z 21 - M[ (k;pdk,%);r(ekgfﬁ) “Cim|
(7
such that d>0 for i=1..N-1
Nt <Lg(1) —Lg(0) for i=1.N-1
®)
wherep=i+m,..,i—1form<0andp=i,..,i+ m—1form>0is

the range of differencedy that form a contrast magnitude between
tone levelx; andxm. The constang is the constant enhancement
factor, which multiples the reference image contrast asudised
in Section 3.2. The first constraint ensures that the toneedoas

4.3 Fast quadratic solver

Equation 7 represents a non-linear optimization problemiclv
cannot be efficiently solved using standard methods. Welzam,
ever, reduce it to a standard problem, if we approximate tire n
linear transducer functioh with a linear scaling constant. The left
transducer term from Equation 7 can be written in a matriation

as.:
T(Ad,S)~KAd )

whered is a column vector ofly,..,dy_1, A is 0/1 matrix with

N — 1 columns, where each royrepresents one term of the three
sums (oved, i andm) from Equation 7 and\j = 1 fork € ¢. K

is a diagonal matrix that contains the scaling factors apprating
the non-linear transducer:

T(Ad, %)

i = [Adl

(10)

To avoid singularitiesk;; = 0 for [A d]; = 0 (response for no con-
trast). Since the right transducer term in Equation 7 doedeyend

on the vectod, it can be precomputed and stored as a column vec-
tor B. Then, the objective function from Equation 7 can be written
in the matrix notation as:

[KAd—B]TC[KAd—B| =

(€]

dT ATKTCKAd-2B"CKAd +B"CB

whereC is a diagonal matrix with the density function values,) .
Equation 11 represents a quadratic programming problertheof
dimensionalityN — 1, which, given thalN~30, can be solved very
efficiently using the standard method [Gill et al. 1981]. lISthe
solution is valid only for the scaling factoks and not for the trans-
ducer functionT. To find the result for the transducer functidn
we solve the quadratic problem iteratively, each time caingu
new scaling factoK and using the result from the previous it-
eration. For our transducer function, the optimizationalisucon-
verges {d; < 0.1 9) in 3-7 iterations.

The problem can be ill defined if some luminance lewelare not
linked with other luminance levels by any contrast in an imag
(ci... = 0). To make such a problem solvable, the corresponding

non negative slope and the second that we do not exceed the discolumns should be eliminated from the matfand rows from the

play dynamic range.T is the transducer function, introduced in
Section 3.4.

Due to the difference in viewing conditions, the sensiivi@an
be in fact different for a displayed image and a referencegama

(S#£S). For example, we often want to see images, as if our eye

were adapted to high luminance levels and thus very seashile
can achieve this if we assume that the luminance of adaptajie-
1000 cd/n? (or any large value) and thu& = CSF(p,100Qd).
However, when an image is displayed, the HVS is much less-sens
tive for darker pixels shown on a display, and the sensjteguals

to § = CSHp,10%,d), where 18 is the display luminance for

the toned. This step adds dependence of the display model on the

result of the optimization problem by enforcing larger cast on
darker displays to compensate for the loss of sensitivity.

Multiplication by a probability density function; i, let us relate
the error to the amount of contrast values of particular geaknd
luminance i), contrast magnitudenf) and spatial frequency)(in

an image. This gives a major performance improvement, ag-mul
ple contrast instances in an image are summarized in one Tdren
use of the probability density function makes also the ojatition
problem independent of the image size, thus making it sieitalso
for high resolution images.

vectord. Since the matribA” KT C K A (after removing columns)
is positive definite, the quadratic program has a global mizer,
which is unique.

4.4 Final tone curve and inverse display model

In the last two steps, we recover the final position of the tounee
nodes:

i—1

Vi = Ymin+ Z dk+ o (Ymax— Ymin — (12)
k=1

N-1
> d
K=1
where Ymin = l0gi0(Lg(0)) is the minimum and Ypin =
logio(Lg(1)) maximum luminance emitted from a display. The
last term shifts overall image brightness according to #etofr

a €< 0;1>, in case the displayed image dynamic range is lower
then the dynamic range of a display (e.g. when displayingdgw
namic range images on an HDR display). Weaet 1 to display
possibly bright images, but the coefficiemtcan be also related to
the scene brightness to distinguish between low-key ario-kay
scenes. Finally, display luminance values¥(1@re transformed to
pixel values using the inverse of Equation 2 (inverse displadel).
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4.5 Timings

The non-optimized matlab implementation requires on aeeta7

seconds on 2.6GHz CPU to tone-map a 1M-pixel image. More

than half of that time is spent on computing the probabilipsity
function (Equation 6), which is difficult to program efficignin
matlab. The quadratic programming solver accounts for 8#yof
that time.

5 Extension to video

Our method should not be applied to a video sequence directly

since a tone-curve can change rapidly between consecraives§,
which can result in annoying flickering. It might be temptiteg
add an additional cost term to the objective function (EiquaT)

to penalize temporal changes in the tone curve, but suctoapipr
would not guarantee that the changes are not happeningathst
the nodes of the tone-curve can be filtered in the time donTdie.
peak sensitivity of the HVS for temporal changes dependsen t
spatial frequency and varies fro0.5 to~4 Hz, as shown in Fig-
ure 6 top-left. To ensure that the frame-to-frame changestoie-
curve are not salient, we do not allow for temporal variatiabove
0.5 Hz. We apply a windowed linear-phase FIR digital filter te th
node coordinatey;, assuming thak; coordinates are the same for
all frames. The filter is low-pass and has a cutoff frequerfd.®
Hz. Figure 6 bottom shows the result of the filtering for Tumnel
sequence, which is included in the supplementary video.

6 Results

In this section we demonstrate the display-adaptive cépabiof

our tone-mapping method and validate them in a subjectiveyst
Then we compare our technique with other popular methods. Al
low-dynamic range images shown in the results has been tedve
to the linear trichromatic values assuming the sRGB colacep

Dark room

Bright office

Outdoors

Figure 8: TheMemorial churchimages tone-mapped for three dif-
ferent ambient illumination conditions. As ambient lightieases,
the images gets brighter to avoid dark tones, which are tret afo
fected by the screen reflections. For the outdoors illunondarger
part of the bright pixels is clipped (saturated) and imag&rest is
increased. Note that these images are input to the displhgan
not depict actually displayed images.

6.1 Mobile display in the sunlight

A cell phone display is very hard to read in full sunlight, esially

if the display is transmissive (modulated transparenathar than
transreflective (modulated by both transparency and refiiggt
This common situation, in which the same mobile display &da
three different illumination conditions, ranging from aklaoom to
outdoors on a sunny day, is simulated and shown in Figure & Th
top row shows how the effective dynamic range of a displag get
compressed due to screen reflections, making lower tonewvalu
most indistinguishable. Our tone mapping attempts to cosgie
for this by increasing the contrast of lower mid-tones (tbedr
part of the dashed-blue curves gets steeper with brightéieann
light). As the dynamic range of the display gets lower, angena
is reproduced at lower contrast (compare solid-green tanees).
The tone-curve is also determined by image content andiitardic
range. A high dynamic range image, such asTiezin the fourth
row, is reproduced at lower contrast than the low dynamigean
Mantisimage in the third row (compare the tangents with the green
dash-dot lines). Note that images shown in the figure givg anl
general impression how the images may look on a display,fayd t
do not represent tone-mapped images. An example of thel aetua
sult of tone mapping, and how it differs for different amhiéght
conditions, is shown in Figure 8.

6.2 Display technologies

The diversity of the display technologies makes it very cliffi to
predict how the image will look to the user when it is displdye
on a random device. The display adaptive tone-mapping cam co
pensate for the differences in display characteristic atuitian-
ally make the best possible use of the available displayrashand
brightness. Figure 9 shows images displayed using thredytot
different display technologies: a hypothetical color @gradisplay,
based on the actual specifications of e-paper; a typical LGP d
play in a dim room; and a high-brightness HDR display, alsa in
dim room. The e-paper display offers the worse contrastchvén-
forces the use of very particular tone curves. The contreatpart
of mid-high tones is almost completely flattened for tNejja val-
leyimage and the e-paper display (1st column and 3rd row), since
the contrast values in this range convey the least usefodrirdtion
(large contrast between the sky and the valley). Note thsffltit-
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Figure 7: Images tone-mapped for a mobile display undeewifft illumination conditions. The top row describes thsptiiy model

parameters and its luminance response in each scenarior(aem, bright office, outdoors). Each plot in the rows belawtains two tone
curves that map image log luminance factor to either pixkleg(blue) or display log luminance levels (green). Théhedsted green line
represents slope=1 (no contrast change). The light-blue df@w image histogram. The images depict simulated impgeasance on a
display, which however does not convey actual contrastighbiress due to print limitations. Please refer to the smpphtary materials for
the full resolution images and more examples.

tening does not overlap with the gap in the image histogranit a  The average score (the number of times the image was seléxted
would be the case for the histogram equalization technigineg computed for both scenarios and summarized in the tablevbelo
our method operates on contrast rather than pixel valuesHOR Dark room (20 lux) | Sunlight (1600 Iux)

display, on the other hand, can employ more regular toneesurv — —

with profound contrast boost in lower mid-tones to compear DAT-20  DAT-1600  original | DAT-1600  DAT-20  original
lower sensitivity for dark pixel values. 1.56 0.99 0.46 1.96 0.90 0.14

where DAT-20 and DAT-1600 denotes display adaptive tone-
mapping for 20 lux and 1600 lux conditions. TR& test on the

6.3 Experimental validation Kendall coefficient of agreement[Kendall and Babington-Smith
1940] indicated good consistency between participantsatbr
In the following experiment we validate our claim that theplay image pairs, except one pair for the 20 lux scenario. Theipielt
adaptive tone-mapping can improve overall image contradeu comparison test indicated a statistically significantedi#hce in
varying ambient illumination. The experiment involved arpaise overall scores [f = 0.05), although for some image pairs the
comparison between an original standard dynamic rangesintiag difference between the second and the third ranked methed wa
result of our method at ambient illumination of 20 lux (dadkom), not significant. The results show that the images generatieg) u
and at 1600 lux (simulated sunlight). The images were djggla our method were preferred to the original images, most rigba
on the self-calibrating Barco Coronis 3MP display, whichsvsat because of better tone-scale allocation, which gave shegpelts.

to the maximum luminancemax = 440 cd/mz andy = 2.2. For The ranking of the DAT-20 and DAT-1600 images matched the
the 20 lux scenario the lights in a room were dimmed. For ti@916  ambient light level for which they were generated, whichgasis

lux scenario we directed two photographic lights (K5600eieBug that the display adaptive tone-mapping can improve therasnt
800W) on the display, so that the light reflected from theestreas images shown on displays in bright environments.

possibly uniform (the setup is shown in two small insets ig-Fi
ure 1). We measured the display response for both scenaribs a
used it as a display model to generate images using our method
Nine participants, who were naive about the purpose of tpermx
ment, took part. Each participant was asked the quest@iobdse

an image which has better overall contrast, looks sharpet ex The purpose of this comparison is not ranking operatorses#ach
veals more details before comparing 6 scenes3 method combi- operator has its own goals and merits, but rather showirfgrdif
nationsx 3 repetitions = 54 pairs. ences in the underlying approaches. We choose for the cémpar

6.4 Comparison with other methods
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Figure 9: Images tone-mapped for different display tecbgiels. The notation is the same as in Figure 7

son three popular global methods: thieotographic TM O (only
global algorithm) [Reinhard et al. 2002] using the impleiagion
from the DVD attached to the book [Reinhard et al. 2005],hise
togram adjustment TM O [Ward Larson et al. 1997] using the im-
plementation from the Radiance package [Larson and She#&esp

1998], and thevisual adaptation TMO [Pattanaik et al. 2000] us-
ing the implementation from thefstmopackage [pfstmo ]. Three

contrast scenes, but rather for simulating contrast Vitilin dif-
ferent states of luminance adaptation.

The example of the visual adaptation operator indicatesrhjer
difference between our approach and most of the methodsitiat
ploy a HVS model. These methods usually aim at producing @pag
that are fully or partly processed by a HVS model, and acctamt

images that we discuss below are shown in Figure 10 and the re-Such visual effects as loss of acuity at low light, visuatejsatura-
maining images are included in the supplementary materials

tion of the photoreceptors, or local adaptation [Pattaat#t. 1998;
Thomspon et al. 2002]. As discussed in Section 3, these mgtho

Both the histogram adjustment and our method can finely adjus compute visual response, which is then converted back ttuthe
tone-curve to image content, for example by compressinglyoo
represented mid-tones, as in the imdéstol bridge (1st row).
Such non-trivial tone-curve results in better contrasbw &nd high

tones than a pre-determined sigmoidal tone curve. The siho

minance units using inverse models. In our approach we pmdu
the results that are as close to the original (or enhanceayenas
possible. Therefore, the HVS model is employed to penaisted
tions, rather than to simulate perceptual effects. Theedltfferent

tone-curve used in the photographic TMO on the other hand re- @PProaches are not contradictory, and in fact a simulafigmecper-
sults in better global contrast and is more consistent vahtypi-

cal tone scale used in the photography. The next two low-tyma

range images (2nd and 3rd row) demonstrate how a low freguenc
background can affect the histogram adjustment TMO. Sihee t

off-focus background plane occupies the larger portiomes$é im-
ages, the histogram adjustment TMO allocates for the bligbk-

ground tones a larger portion of the dynamic range, but cesgais

ceptual effects could be a part of teehancementlock from the
conceptual diagram in Figure 2.

7 Conclusions

darker tones, making the groom figure and goose’s head (60 dar The paper introduces the technique for reproducing soefeered

The display adaptive TMO s less affected by the low-freqyen

background, which does not contain much contrast infoonati

The visual adaptation TMO (last column) is an example ofiiypta

different approach to the tone-mapping problem. The goahisf
method is a possibly accurate simulation of the HVS adaptati
processes and its limitations, including limited range e pho-
toreceptor response. The method faithfully preservesnaigcene

contrast but in a very small window of the scene dynamic ramge

clips all tones that fall outside this window. Thereforeg thethod
is not intended for producing visually attractive imagesnirhigh

images on displays of limited contrast by minimizing visilis-
tortions. The method can find a compromise between confiictin
goals, such as preserving contrast and clipping the dagkesthe
brightest tones. The distortions are penalized using th& lddh-
trast perception model. The display model predicts dispiayi-
nance response and imposes luminance limitations on the-rep
duced image. The algorithm leads to a unique, well defined- sol
tion, with no subjective parameters.

Many recent studies on tone-mapping undertake the difftagk
of producing images that will be subjectively preferred. &veid
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this challenging problem from the area of computationattess

ics by hiding it in theimage enhancemerstep. Although many
attempts to model subjective preference or quality of insdugeve
been made [Keelan 2002], there exist no reliable modelstbald
measure subjective image preference. For this reason wetdo n
claim an operator that produces the best looking imagesoadth

in our opinion in many cases it does), but rather the opethtar
objectively solves the problem of reproducing large dyrarange

on a displays of low contrast with the least visible contdistor-
tions.

In this paper we also propose the concept of a tone-mappasel¢
coupled with a display device, which renders images optuohinr
a particular display and under the existing viewing cowditi (am-
bient light). For example, a mobile phone should changeeits r
dering algorithm when the backlight of its transreflectigpthy is
switched off to save power. Similarly, a TV display shouldust
the display algorithm when light in the room is lit (simplerdhing
due to ambient illumination is already performed in some T8 d

plays).

In the future work we would like to address color issues amdllo
tone-mapping operations (e.g. sharpening). Our initiaisis show
promising results, although some fundamental problemgsee
be solved before these extensions are possible. For exaihge
still not clear when a strong sharpening is perceived asritakr-
tifact and when in can be considered as a desirable contoast b
(Cornsweet illusion), although some research on this pratthas
been done [Krawczyk et al. 2007].

Another extension of the algorithm can take advantage akien
of interest (ROI) information. The ROl information is alteavail-
able in modern cameras in the form of face detection algosth
Weighing ROI by the distance from the frame center or empligyi
attention models [Le Meur et al. 2006] can be another ch@ceh
ROI weighting could be used to increase importance of pvasgr
contrast in certain parts of a scene, which can be includetien
conditional probability density function (Equation 4).
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