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Abstract

Image processing often involves an image transformation into a do-
main that is better correlated with visual perception, such as the
wavelet domain, image pyramids, multi-scale contrast representa-
tions, contrast in retinex algorithms, and chroma, lightness and col-
orfulness predictors in color appearance models. Many of these
transformations are not ideally suited for image processing that sig-
nificantly modifies an image. For example, the modification of a
single band in a multi-scale model leads to an unrealistic image
with severe halo artifacts. Inspired by gradient domain methods we
derive a framework that imposes constraints on the entire set of con-
trasts in an image for a full range of spatial frequencies. This way,
even severe image modifications do not reverse the polarity of con-
trast. The strengths of the framework are demonstrated by aggres-
sive contrast enhancement and a visually appealing tone mapping
which does not introduce artifacts. Additionally, we perceptually
linearize contrast magnitudes using a custom transducer function.
The transducer function has been derived especially for the purpose
of HDR images, based on the contrast discrimination measurements
for high contrast stimuli.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.4.2 [Image Processing and
Computer Vision]: Enhancement—Greyscale manipulation, sharp-
ening and deblurring

Keywords: visual perception, high dynamic range, contrast pro-
cessing, tone mapping, contrast masking, contrast discrimination,
transducer

1 Introduction and Previous Work

An image stored as a matrix of pixel values is the most common
representation for image processing, but unfortunately it does not
reflect the way we perceive images. This is why most image com-
pression algorithms apply a transformation, such as the Discrete
Cosine Transform or the Discrete Wavelet Transform before storing
images, so that the visually important information is separated from
visually unimportant noise. Besides image and video compression,
there are many fields that benefit from a representation of images
that is correlated with visual perception, such as tone mapping, vi-
sual difference prediction, color appearance modeling, or seamless
image editing. The goal of such “perceptual” representations is to
linearize values that encode images so that the magnitude of those

values correspond to the visibility of features in an image. For ex-
ample, large magnitudes of low and medium frequency coefficients
of the Fourier Transform correspond to the fact that the visual sys-
tem is the most sensitive for those frequencies. In this work we
derive a framework for image processing in a perceptual domain of
image contrast. We base our work on the gradient domain methods,
which we generalize and extend to account for perceptual issues,
such as the sensitivity for superthreshold contrast in HDR images.

The research on perceptual representation of images has involved
many areas of science. We briefly list some of these areas, point-
ing to the relevant works and describing major issues of these ap-
proaches.

Image Transformations. A need for better image representation,
which would partly reflect the processing of the Human Visual Sys-
tem (HVS), has been noticed in image processing for a long time.
However, practical issues such as whether a transformation is in-
vertible and computational costs, were often of more concern than
an accurate modeling of the HVS. This resulted in numerous im-
age transformations based in mathematics and signal processing,
such as the Fourier transform, pyramids (Gaussian, Laplacian) or
wavelets, which are now considered as standard tools of image pro-
cessing.

Color Appearance Models. Color appearance models, such
CIECAM [CIE 2002] or iCAM [Fairchild and Johnson 2004], con-
vert physical color values to a space of perceptual correlates, such
as lightness, chroma and colorfulness. Such correlates are useful for
the prediction of color appearance under different visual conditions,
for finding visible differences in images and for tone mapping. The
drawback of those models is that they do not account for aspects of
spatial vision such as contrast sensitivity or contrast masking.

Multi-scale Models of Human Vision. Spatial issues are better
modelled with multi-scale models, such as those described in [Wat-
son 1987; Simoncelli and Adelson 1989; Watson and Solomon
1997; Pattanaik et al. 1998; Winkler 2005], which separate an im-
age into several band-pass channels. Such channels correspond to
the visual pathways that are believed to exist in the HVS. Such
models have been successfully applied for the prediction of visi-
ble differences in images [Daly 1993] and the simulation of color
vision under different luminance adaptation conditions [Pattanaik
et al. 1998]. However, they also pose many problems when images
are modified in such multi-scale representations. If an image is
modified in one of such band-pass limited channels while the other
channels remain unchanged, the image resulting from the inverse
transformation often contains severe halo artifacts.

Retinex. A different set of problems has been addressed by the
Retinex theory of color vision, introduced by Land [1964]. The
original goal of Retinex was to model the ability of the HVS to
extract reliable information from the world we perceive despite
changes in illumination, which is referred as a color constancy. The
latter work on the Retinex algorithm formalized the theory math-
ematically and showed that the problem is equivalent to solving a
Poisson equation [Horn 1974; Hurlbert 1986]. Interestingly, most
of the gradient methods also involve a solution of a Poisson equa-
tion although their goal is different.
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Figure 1: Data flow in the proposed framework of the perceptual
contrast processing.

Gradient Methods. Operations on image gradients have recently
attracted much attention in the fields of tone mapping [Fattal et al.
2002], image editing [Perez et al. 2003; Agarwala et al. 2004], im-
age matting [Sun et al. 2004], image stitching [Levin et al. 2004],
and color-to-gray mapping [Gooch et al. 2005]. The gradient meth-
ods can produce excellent results in areas where other methods
usually result in severe artifacts. For instance, tone mapping and
contrast enhancement performed in the gradient domain gives al-
most no halo artifacts while such artifacts are usually inevitable in
the case of the multi-scale methods [Fattal et al. 2002]. The gra-
dients methods can also seamlessly blend stitched images while
other methods often result in visible discontinuities [Levin et al.
2004]. Even some advanced painting tools of Adobe Photoshop
are based on the gradient methods [Georgiev 2005]. However, all
these works focus mainly on image processing aspects without con-
sidering perceptual issues. In this work we generalize the gradient
domain methods and incorporate perceptual issues by deriving a
framework for processing images in perceptually linearized visual
response space. Unlike the gradient or multi-scale methods, we im-
pose constraints on the entire set of contrasts in an image for a full
range of spatial frequencies. This way, even a severe image modi-
fication does not lead to reversing a polarity of contrast. This paper
is an extended revision of a previous publication [Mantiuk et al.
2005].

The overview of our framework is shown in Figure 1. Pixel lumi-
nance values of an image are first transformed to physical contrast
values, which are then transduced to response values of the HVS.
The resulting image is then modified by altering the response val-
ues, which are closely related to a subjective impression of con-
trast. The modified response values can later be converted back to
luminance values using an inverse transformation. As an applica-
tion of our framework we demonstrate two tone mapping methods
which can effectively compress dynamic range without losing low-
contrast information. We show that a complex contrast compression
operation, which preserves textures of small contrast, is reduced to
a linear scaling in our visual response space.

In Section 2 we review less well known psychophysical data that
was measured for high-contrast stimuli. Based on this data we
derive a model of suprathreshold contrast discrimination for high
contrast images. In Section 3 we introduce the components of our
framework, in particular a multi-scale representation of low-pass
contrast and a transducer function designed for HDR data. As an
application of our framework, we propose two tone mapping meth-
ods in Sections 4 and 5, and a saliency preserving color to gray
mapping in Section 6. Details on how the framework can be imple-
mented efficiently are given in Section 7. We discuss strengths and
weaknesses of the proposed framework in Section 9. Finally, we
conclude and suggest future directions in Section 10.

W – contrast expressed as a Weber fraction (see Table 2)
G – contrast expressed as a logarithmic ratio (see Table 2)
∆W (W ), ∆G(G) – function of threshold contrast discrimination
for contrast W and G respectively
∆Gsimpl(G) – simplified function of threshold contrast discrim-
ination for contrast G
Gk

i, j – contrast between pixels i and j at the k’th level of a Gaus-
sian pyramid (see Equation 6)

Ĝk
i, j – modified contrast values, corresponding to Gk

i, j . Such
contrast values usually do not form a valid image and only con-
trol an optimization procedure

Lk
i – luminance of the pixel i at the k’th level of a Gaussian

pyramid

xk
i – log10 of luminance Lk

i
Φi – set of neighbors of the pixel i
T (G), T−1(G) – transducer and inverse transducer functions
R – response of the HVS scaled in JND units
R̂ – modified response R

Table 1: Used symbols and notation.

2 Background

In the following two sections we review some fundamentals of the
perception of contrast and summarize the results of a study on the
HVS performance in contrast discrimination for HDR images. We
use this contrast discrimination characteristic to derive our contrast
processing framework.

2.1 Contrast

The human eye shows outstanding performance when comparing
two light patches, yet it almost fails when assessing the absolute
level of light. This observation can be confirmed in a ganzfeld, an
experimental setup where the entire visual field is uniform. In fact,
it is possible to show that the visual system cannot discern mean
level variations unless they fluctuate in time or with spatial signals
via eye movements, thus having a higher temporal frequency com-
ponent. The Retinex theory postulated that low sensitivity to abso-
lute luminance can be easily explained by the adaptation of the HVS
to the real world conditions. Because the HVS is mostly sensitive to
relative luminance ratios (contrast) rather than absolute luminance,
the effect of huge light changes over the day is reduced and there-
fore we perceive the world in a similar way regardless of the light
conditions. This and other sources of evidence strongly suggest that
the perception of contrast (difference between two light stimuli) is
the fundamental ability of the HVS.

Many years of research on contrast have resulted in several defini-
tions of contrast, some of them listed in Table 2. The variety of con-
trast definitions comes from the different stimuli they measure. For
example, the Michelson contrast [Michelson 1927] is commonly
used to describe a sinusoidal stimulus, while the Weber fraction is
often used to measure a step increment or decrement stimulus. In
the next section we show that certain contrast definitions are more
suitable for describing the performance of the HVS than others.
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Table 2: Definitions of contrast and the stimuli they measure.
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Figure 2: The luminance profile of the stimuli used for contrast de-
tection and contrast discrimination measurements. The test (red)
and the standard (green) stimulus are displayed one after another.
The threshold is the smallest visible contrast (detection) or a differ-
ence of contrast (discrimination).

2.2 Contrast Discrimination

Contrast detection and contrast discrimination are two of the most
thoroughly studied perceptual characteristics of the eye [Barten
1999]. The contrast detection threshold is the smallest visible con-
trast of a stimulus presented on a uniform field, for example a Ga-
bor patch on a uniform adaptation field. The contrast discrimination
threshold is the smallest visible difference between two nearly iden-
tical signals, for example two sinusoidal patterns that differ only in
their amplitudes. Detection can be considered as a special case of
discrimination when the masking signal has zero amplitude. A dif-
ference between detection and discrimination tasks is illustrated in
Figure 2. A stimulus can be considered suprathreshold when its
contrast is significantly above the detection threshold. When the
contrast is lower or very close to the detection threshold, a stim-
ulus is considered subthreshold or threshold. Contrast discrimina-
tion is associated with the suprathreshold characteristics of the HVS
and in particular with contrast masking. Contrast detection, on the
other hand, describes the performance of the HVS for subthresh-
old and threshold stimulus, which can be modelled by the Contrast
Sensitivity Function (CSF), the threshold versus intensity function
(t.v.i.), or Weber’s law for luminance thresholds. The characteristic
of contrast detection for a range of luminance adaptation levels is
sometimes described as luminance masking. A good introduction to
the above mentioned terminology can be found in [Wandell 1995,
Chapter 7].

Since suprathreshold contrast plays a dominant role in the per-
ception of HDR images, we will consider contrast discrimination
data (suprathreshold) in detail and simplify the character of con-
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Figure 3: Contrast discrimination thresholds plotted using the
Michelson contrast, M. The Michelson contrast does not give a
good prediction of the discrimination performance, especially for
high contrast.

trast detection (threshold). Although discrimination thresholds of
the HVS have been thoroughly studied in psychophysics for years,
most of the measurements consider only small contrast levels up to
M = 50%. Such limited contrast makes the usefulness of the data
especially questionable in the case of HDR images, for which the
contrast can easily exceed 50%. The problem of insufficient scale
of contrast in psychophysical experiments was addressed by Whit-
tle [1986]. By measuring detection thresholds for the full range of
visible contrast, Whittle showed that the discrimination data plot-
ted with the Michelson contrast does not follow increasing slope, as
reported in other studies (refer to Figure 3). He also argued that the
Michelson contrast does not describe the data well. Figure 3 shows
that the data is very scattered and the character of the threshold
contrast is not clear, especially for large contrast values. However,
when the same data is plotted as Weber’s fraction W = ∆L/Lmin,
the discrimination thresholds for all but the smallest contrast values
follow the same line on a log-log plot, which resembles Weber’s
law, but for suprathreshold contrast: ∆W/W = c (see Figure 4).
The sensitivity1 to contrast improves for low contrast just above the
detection threshold and then deteriorates as the contrast reaches the
threshold (W ≈ 0.025). Whittle calls this effect “crispening” while
contrast discrimination studies usually describe it as a facilitation
or “dipper” effect.

Interestingly, typical models of contrast discrimination, such as
Barten’s model [Barten 1999, Chapter 7], closely follow Whittle’s
data for low contrast2, but wrongly predict discrimination thresh-
olds for high contrast (see the green solid line in Figure 4). The
wrong prediction is a result of missing measurements for high con-
trast. Obviously, such models are not adequate for high contrast
data, such as HDR images.

To construct a model for contrast discrimination, which would be
suitable for High Dynamic Range images, we fit a continuous func-
tion to Whittle’s original data [1986, Figure 2]:

∆W (W ) = 0.0928 ·W 1.08 +0.0046 ·W−0.183 (1)

The chi-square test proves that the function approximates the data

1Sensitivity is defined as an inverse of the detection or discrimination
threshold.

2The parameters for Barten’s model have been chosen to fit the mea-
surements by Foley and Legge [1981]. The detection threshold mt has been
chosen so that it compensates for differences between the stimuli used for
Whittle’s and Legge & Foley’s measurements.
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Figure 4: Contrast discrimination thresholds plotted as a function of
contrast W . Data points – Whittle’s measurements; red solid line –
a function fit to Whittle’s data; green solid line – Barten’s model fit
to the measurements by Foley and Legge [1981] (k = 3, mt = 0.02);
inset – the stimulus used to measure increments for Whittle’s data.

(Q = 0.56) assuming a relative error ∆W/W ± 8%. The shape of
the fitted function is shown as a red solid line in Figure 4. In Sec-
tion 3.2 we use the above function rather than Whittle’s original
model ∆W/W = c to properly predict discrimination thresholds for
low contrast values.

It is sometimes desirable to operate on contrast measure G rather
than Weber fraction W (for contrast definitions refer to Table 2).
In Section 3.1 we show that the proposed framework operates on
contrast G since such contrast can be represented as a difference
in logarithmic domain, which let us formulate a linear problem.
Knowing that the relation between W and G is:

G = log10(W +1) (2)

and the relation between ∆W and ∆G is:

∆G ≈ log10(W +∆W +1)− log10(W +1) = log10

(

∆W
W +1

+1
)

,

(3)
we plot Whittle’s measurement points for contrast G in Figure 5.
We can now fit the model from Equation 1 to the new data, to get a
function of contrast discrimination for contrast G:

∆G(G) = 0.0405 ·G0.6628 +0.00042435 ·G−0.38072 (4)

The chi-square test for the fitted function gave Q = 0.86 assum-
ing a relative error on ∆G/G± 7%. If we do not need to model
the facilitation effect or the loss of sensitivity for low contrast, we
can approximate the data with a simpler function, which is both
reversible and integrable, but does not consider data for G < 0.03:

∆Gsimpl(G) = 0.038737 ·G0.537756 (5)

The chi-square test for the fitted function gave Q = 0.88 assuming
a relative error ∆G/G ± 3%. Both fitted functions are shown in
Figure 5.

Before we utilize the above discrimination functions, we have to
consider whether it can be generalized for different stimuli and
spatial frequencies. In a later study Kingdom and Whittle [1996]
showed that the character of the suprathreshold discrimination is
similar for both a square-wave and sine-wave patterns of different
spatial frequencies. This is consistent with other studies that show
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Figure 5: Contrast discrimination thresholds plotted as a function of
the contrast G. The solid line – a full contrast discrimination model
(Equation 4); the dashed line – a simplified contrast discrimination
model (Equation 5).

little variations of suprathreshold contrast across spatial frequen-
cies [Georgeson and Sullivan 1975; Barten 1999]. Those varia-
tions can be eliminated if a contrast detection function is normal-
ized by the contrast detection threshold for a particular spatial fre-
quency [Legge 1979].

3 Framework for Perceptual

Contrast Processing

In the next two sections we introduce a framework for image pro-
cessing in a visual response space. Section 3.1 proposes a method
for transforming complex images from luminance to physical con-
trast domain (blocks Transform to Contrast and Transform to Lu-
minance in Figure 1). Section 3.2 explains how physical contrast
can be converted into a response of the HVS, which is a percep-
tually linearized measure of contrast (blocks Transducer Function
and Inverse Transducer Function in Figure 1).

3.1 Contrast in Complex Images

Before we introduce contrast in complex images, let us consider
the performance of the eye during discrimination of spatially dis-
tant patches. We can easily observe that contrast can be assessed
only locally for a particular spatial frequency. We can, for exam-
ple, easily see the difference between fine details if they are close to
each other, but we have difficulty distinguishing the brighter detail
from the darker if they are distant in our field of view. On the other
hand, we can easily compare distant light patches if they are large
enough. This observation can be explained by the structure of the
retina, in which the foveal region responsible for the vision of fine
details spans only about 1.7 visual degrees, while the parafoveal vi-
sion can span over 160 visual degrees, but has almost no ability to
process high frequency information [Wandell 1995]. When seeing
fine details in an image, we fixate on a particular part of that image
and employ the foveal vision. But at the same time the areas fur-
ther apart from the fixation point can only be seen by the parafoveal
vision, which can not discern high frequency patterns. The con-
trast discrimination for spatial patterns with increasing separation
follows Weber’s law when the eye is fixed to one of the patterns
and this is the result of the increasing eccentricity of the other pat-
tern [Wilson 1980]. Therefore, due to the structure of the retina, the
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contrast for diagonal orientations. Unlike wavelets, contrast values,
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distance at which we can correctly assess contrast is small for high
frequency signals, but grows for low frequency signals.

While several contrast definitions have been proposed in the litera-
ture (refer to Table 2), they are usually applicable only to a simple
stimulus and do not specify how to measure contrast in complex
scenes. This issue was addressed by Peli [1990] who noticed that
the processing of images is neither periodic nor local and therefore
the representation of contrast in images should be quasi-local as
well. Drawing analogy from the center-surround structures in the
retina, he proposed to measure contrast in complex images as a dif-
ference between selected levels of a Gaussian pyramid. However,
the resulting difference of Gaussians leads to a band-pass limited
measure of contrast, which tends to introduce halo artifacts at sharp
edges when it is modified. To avoid this problem, we introduce
a low-pass measure of contrast. We use a logarithmic ratio G as
the measure of contrast between two pixels, which is convenient in
computations since it can be replaced with the difference of loga-
rithms. Therefore, our low-pass contrast is defined as a difference
between a pixel and one of its neighbors at a particular level, k, of
a Gaussian pyramid, which can be written as:

Gk
i, j = log10(Lk

i /Lk
j) = xk

i − xk
j (6)

where Lk
i and Lk

j are luminance values for neighboring pixels i and
j. For a single pixel i there are two or more contrast measures Gk

i, j ,
depending on how many neighbouring pixels j are considered (see
Figure 6). Note that both L and x cover a larger and larger area of
an image when moving to the coarser levels of the pyramid. This
way our contrast definition takes into account the quasi-local per-
ception of contrast, in which fine details are seen only locally, while
variations in low frequencies can be assessed for the entire image.
The choice of how many neighboring pixels, x j , should be taken
into account for each pixel, xi, usually depends on the application
and type of images. For tone mapping operations on complex im-
ages, we found that two nearest neighbors are sufficient. For other
applications, such as a color-to-gray mapping, and for images that
contain flat areas (for example vector maps), we consider 20–30
neighboring pixels.

Equation 6 can be used to transform luminance to contrast. Now we
would like to perform the inverse operation that restores an image
from the modified contrast values Ĝ. The problem is that there is
probably no image that would match such contrast values. There-
fore, we look instead for an image whose contrast values are close

but not necessarily exactly equal to Ĝ. This can be achieved by the
minimization of the distance between a set of contrast values Ĝ that
specifies the desired contrast, and G, which is the contrast of the
actual image. This can be formally written as the minimization of
the objective function:

f (x1
1,x

1
2, . . . ,x

1
N) =

K

∑
k=1

N

∑
i=1

∑
j∈Φi

pk
i, j(G

k
i, j − Ĝk

i, j)
2 (7)

with regard to the pixel values x1
i on the finest level of the pyramid.

Φi is a set of the neighbors of the pixel i (e.g. set of green pixels
in Figure 6), N is the total number of pixels and K is the number of
levels in a Gaussian pyramid. We describe an efficient solution of
the above minimization problem in Section 7.

The coefficient pk
i, j in Equation 7 is a constant weighting factor,

which can be used to control a mismatch between the desired con-
trast and the contrast resulting from the solution of the optimization
problem. If the value of this coefficient is high, there is higher
penalty for a mismatch between Gk

i, j and Ĝk
i, j . Although the choice

of these coefficients may depend on the application, in most cases
we want to penalize contrast mismatch relative to the contrast sen-
sitivity of the HVS. A bigger mismatch should be allowed for the
contrast magnitudes to which the eye is less sensitive. This way, the
visibility of errors resulting from such a mismatch would be equal
for all contrast values. We can achieve this by assuming that:

pk
i, j =







∆G−1(Ĝk
i, j) if Ĝk

i, j ≥ 0.001

∆G−1(0.001) otherwise,
(8)

where ∆G−1 is an inverse of the contrast discrimination function
from Equation 4 and the second condition avoids division by 0 for
very low contrast.

When testing the framework with different image processing op-
erations, we noticed that the solution of the optimization problem
may lead to reversing polarity of contrast values in an output im-
age, which happens when Gk

i, j is of a different sign than Ĝk
i, j , and

which leads to halo artifacts. This problem concerns all methods
that involve a solution of the optimization problem similar to the
one given in Equation 7 and is especially evident for the gradients
domain method (based on Poisson solvers). The problem is illus-
trated in Figure 7. To simplify the notation, the upper index of a
Gaussian pyramid level is assumed to be 1 and is omitted. A set of
desired contrast values Ĝ quite often contains the values that cannot
lead to any valid pixel values (7a). The solution of the optimization
problem results in modified contrast values G that can be used to
construct an image with pixel values x1,x2,x3 (7b). The problem is
that this solution results in a reversed polarity of contrast (G3,1 in
7b), which leads to small magnitude, but noticeable, halo artifacts.
More desirable would be solution (7c), which gives the same value
of the objective function f and does not result in reverse contrast
values. To increase probability that the optimization procedure re-
sults in solution (7c) rather than (7b), the objective function should
be penalized for mismatches at low contrast. This can be combined
together with penalizing mismatches according to the sensitivity of
the HVS if we replace the contrast discrimination function ∆G in
Equation 8 with the simplified model ∆Gsimpl from Equation 5:

pk
i, j =

1
∆Gsimpl(Ĝk

i, j)
(9)

The simplified model overestimates sensitivity for low contrast,
which is desirable as it makes the value of pk

i, j large near zero con-
trast and thus prevents the reversal of contrast polarity.
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sent a valid image (a), the optimization procedure may find a solu-
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native solution without such reversed contrast values gives images
without halo artifacts (c).

3.2 Transducer Function

A transducer function predicts the hypothetical response of the
HVS for a given physical contrast. As can be seen in Figure 1,
our framework assumes that the image processing is done on the
response rather than on the physical contrast. This is because the
response closely corresponds to the subjective impression of con-
trast and therefore any processing operations can assume the same
visual importance of the response regardless of its actual value. In
this section we would like to derive a transducer function that would
predict the response of the HVS for the full range of contrast, which
is essential for HDR images.

Following [Wilson 1980] we derive the transducer function
T (G) := R based on the assumption that the value of the response
R should change by one unit for each Just Noticeable Difference
(JND) both for threshold and suprathreshold stimuli. However, to
simplify the case of threshold stimuli, we assume that:

T (0) = 0 and T (Gthreshold) = 1 (10)

or
T−1(0) = 0 and T−1(1) = Gthreshold (11)

for the inverse transducer function T−1(R) := G. The de-
tection threshold, Gthreshold , is approximated with 1% contrast
(Gthreshold = log10(0.01 + 1) ≈ 0.0043214), commonly used for
digital images [Wyszecki and Stiles 2000, Section 7.10.1]. This
simplification assumes that the detection threshold is the same for
all spatial frequencies and all luminance adaptation conditions. For
a suprathreshold stimulus we approximate the response function T
by its first derivative:

∆T ≈
dT (G)

dG
∆G(G) = 1 (12)

where ∆G(G) is the discrimination threshold given by Equation 4.
The above equation states that a unit increase of response R (right
hand side of the equation) should correspond to the increase of G
equal to the discrimination threshold ∆G for the contrast G (left
side of the equation). The construction of the function R = T (G) is
illustrated in the inset of Figure 8. Although the above equation can
be solved by integrating its differential part, it is more convenient
to solve numerically the equivalent differential equation:

dT−1(R)

dR
= ∆G(T−1(R)) (13)
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Figure 8: Transducer function derived from the contrast discrimi-
nation data [Whittle 1986]. The transducer function can predict the
response of the HVS for the full range of contrast. The inset de-
picts how the transducer function is constructed from the contrast
discrimination thresholds ∆G(G).

for the inverse response function T−1(R) = G and for the boundary
condition from Equation 11. G is a non-negative logarithmic ratio
(refer to Table 2) and R is the response of the HVS. Since the func-
tion T−1 is strictly monotonic, finding the function T is straight-
forward. We numerically solve Equation 13 to find the transducer
function T (G) = R shown in Figure 8.

For many applications an analytical model of a transducer function
is more useful than a lookup table given by the numerical solution
of Equation 13. Although the curve shown in Figure 8 closely re-
sembles a logarithmic or exponential function, neither of these two
families of functions give an exact fit to the data. However, if an ac-
curate model is not necessary, the transducer can be approximated
with the function:

T (G) = 54.09288 ·G0.41850 (14)

The average and maximum error of this approximation is respec-
tively R± 1.9 and R± 6. Equation 14 leads directly to an inverse
transducer function:

T−1(R) = 7.2232 ·10−5 ·R2.3895. (15)

The transducer function derived in this section has a similar deriva-
tion and purpose as the Standard Grayscale Function from the DI-
COM standard [DICOM PS 3-2004 2004] or the capacity function
in [Ashikhmin 2002]. The major difference is that the transducer
function operates in the contrast domain rather than in the lumi-
nance domain. It is also different from other transducer functions
proposed in the literature (e.g. [Wilson 1980; Watson and Solomon
1997]) since it is based on the discrimination data for high contrast
and operates on contrast measure G. This makes the proposed for-
mulation of the transducer function especially suitable to HDR data.
The derived function also simplifies the case of the threshold stimuli
and assumes a single detection threshold Gthreshold . Such a simplifi-
cation is acceptable, since our framework focuses on suprathreshold
rather than threshold stimuli.

4 Application: Contrast Mapping

In previous sections we introduce our framework for converting im-
ages to perceptually linearized contrast response and then restoring



Figure 9: The results of the contrast mapping algorithm. The images from left to right were processed with the compression factor l =
0.1,0.4,0.7,1.0. After the processing images were rescaled in the log10 domain to use the entire available dynamic range. Memorial Church
image courtesy of Paul Debevec.

images from the modified response. In this section we show that
one potential application of this framework is to compress the dy-
namic range of HDR images to fit into the contrast reproduction ca-
pabilities of display devices. We call this method contrast mapping
instead of tone mapping because it operates on contrast response
rather than luminance.

Tone mapping algorithms try to overcome either the problem of the
insufficient dynamic range of a display device (e.g. [Tumblin and
Turk 1999; Reinhard et al. 2002; Durand and Dorsey 2002; Fat-
tal et al. 2002]) or the proper reproduction of real-world luminance
on a display (e.g. [Pattanaik et al. 1998; Ashikhmin 2002]). Our
method does not address the second issue of trying to make im-
ages look realistic and natural. Instead we try to fit to the dynamic
range of the display so that no information is lost due to saturation
of luminance values and at the same time, small contrast details,
such as textures, are preserved. Within our framework such non-
trivial contrast compression operation is reduced to a linear scaling
in the visual response space. Since the response Rk

i, j is perceptually
linearized, contrast reduction can be achieved by multiplying the
response values by a constant l:

R̂k
i, j = Rk

i, j · l (16)

where l is between 0 and 1. This corresponds to lowering the maxi-
mum contrast that can be achieved by the destination display. Since
the contrast response R is perceptually linearized, scaling effec-
tively enhances low physical contrast W , for which we are the most
sensitive, and compresses large contrast magnitudes, for which the
sensitivity is much lower. The result of such contrast compression
for the Memorial Church image is shown in Figure 9.

In many aspects the contrast compression scheme resembles the
gradient domain method proposed by Fattal et al. [2002]. How-
ever, unlike the gradient method, which proposes somewhat ad-hoc
choice of the compression function, our method is entirely based on
the perceptual characteristic of the eye. Additionally, our method
can avoid low frequency artifacts as discussed in Section 9.

We tested our contrast mapping method on an extensive set of HDR
images. The only visible problem was the magnification of the cam-
era noise on several HDR photographs. Those pictures were most
likely taken in low light conditions and therefore their noise level

was higher than in the case of most HDR photographs. Our tone
mapping method is likely to magnify camera noise if its amplitude
exceeds the threshold contrast Wthreshold of the HVS. Therefore, to
obtain good results, the noise should be removed from images prior
to the contrast mapping.

In Figure 11 we compare the results of our method with other
tone mapping algorithms. Our contrast mapping method produces
very sharp images without introducing halo artifacts. Sharpening
is especially pronounced when the generated images are compared
to the result of linear scaling in the logarithmic domain (see Fig-
ure 12).

5 Application: Contrast Equalization

Histogram equalization is another common method to cope with
extended dynamic range. Even if high contrast occupies only a
small portion of an image, it is usually responsible for large dy-
namic range. The motivation for equalizing the histogram of con-
trast is to allocate dynamic range for each contrast level relative
to the space it occupies in an image. To equalize a histogram of
contrast responses, we first find the Cumulative Probability Distri-
bution Function (CPDF) [Gonzalez and Woods 2001, Section 3] for
all contrast response values in the image Rk

i, j:

CPDF [b] =
b

∑
j=1

H[ j] (17)

where H[ j] is the j-th bin of the normalized histogram of all gra-
dient magnitudes ‖Rk

i ‖. The values ‖Rk
i ‖ are given as a root-mean-

square of the contrast response between a pixel and all its neigh-
bors:

‖Rk
i ‖ =

√

∑
j∈Φi

Rk
i, j

2 (18)

Next, we construct a continuous function CPDF(r), which inter-
polates values of the cumulative histogram CPDF[] from the bins
nearest to the given contrast magnitude r. Then, we calculate the



Figure 10: Top left – the linear rescaling of luminance in the logarithmic domain; top right – contrast mapping; bottom left – contrast
equalization; bottom right – the result of [Reinhard et al. 2002]. Image courtesy of Grzegorz Krawczyk.

modified response values:

R̂k
i, j =











Rk
i

CPDF(‖Rk
i ‖)

‖Rk
i ‖

if Rk
i 6= 0

0 otherwise

(19)

The histogram equalization scheme produces very sharp and visu-
ally appealing images, which may however be less natural in ap-
pearance than the results of our previous method (see some exam-
ples in Figures 10, 11, and 12). Such a tone mapping method can be
especially useful in those applications, where the visibility of small
details is paramount. For example, it could be used to reveal barely
visible details in forensic photographs or to improve the visibility
of small objects in satellite images.

The results of the contrast equalization algorithm may appear like
the effect of a sharpening filter. Figure 13 shows that the result
of the contrast equalization (b) results in an image of much better
contrast than the original image (a) while preserving low frequency
global contrast. Sharpening filters tend to enhance local contrast at
the cost of global contrast, which results in images that have flat
appearance (c,d). Sharpening filters also introduce ringing and halo
artifacts, especially in the areas of high local contrast, such as the
border of the window in Figure 13 (c,d). The results of the contrast
equalization algorithm are free of these artifacts.

6 Application: Color to Gray

Color images can often lose important information when printed in
grayscale. Take for example Figure 15, where the sun disappears

from the sky when only luminance is computed from the color
image. The problem of proper mapping from color to grayscale
has been addressed in numerous works, recently in [Gooch et al.
2005; Rasche et al. 2005]. We implemented the approach of Gooch
et al. [2005] since their solution can be easily formulated within
our framework. Their algorithm separately computes luminance
and chrominance differences in a perceptually uniform CIE L∗a∗b∗
color space for low-dynamic range. Such differences correspond to
contrast values, G1

i, j , in our framework (the finest level of a Gaus-
sian pyramid). To avoid artifacts in flat areas (more on this in Sec-
tion 9), their algorithm computes differences between all pixels in
the image, which is equivalent to considering for each pixel, xi,
all remaining pixels in the image as neighbors, x j . Next, each lu-
minance difference that is smaller than the corresponding chromi-
nance difference is replaced with that chrominance difference. The
algorithm additionally introduces parameters that control polarity
of the chrominance difference, and the amount of chromatic vari-
ation applied to the luminance values. Finally, they formulate an
optimization problem that is equivalent to Equation 7 restricted to
the finest level of a pyramid (k = 1). The result of the optimization
gives a gray-scale image that preserves color saliency. The authors
show that their method produces results without artifacts for a broad
range of images.

The algorithm, while giving excellent results, is prohibitively com-
putationally expensive and feasible only for very small images.
This is because it computes differences (contrast values) between
all pixels in an image, what gives a minimum complexity of O(N2)
regardless of the optimization method used. The number of con-
sidered differences can be limited, however at the cost of possible
artifacts in isoluminant regions. Our framework involves a more
efficient approach, in which the close neighborhood of a pixel is



Figure 11: Comparison of the result produced by our contrast mapping (top left) and contrast equalization (top right) to those of Durand and
Dorsey [2002] (bottom left) and Fattal et al. [2002] (bottom right). Tahoma image courtesy of Greg Ward.

Figure 12: The linear rescaling of luminance in the logarithmic domain (left) compared with two proposed contrast compression methods:
contrast mapping (middle) and contrast equalization (right).



Figure 13: The contrast equalization algorithm compared with
sharpening filters. (a) the original image; (b) the result of contrast
equalization; (c) the result of a ’local adaptation’ sharpening; (d)
the result of a sharpening filter.

considered on fine levels of a Gaussian pyramid while far neigh-
borhood is covered on coarser levels. This let us work with much
bigger images and perform computations much faster.

Following [Gooch et al. 2005] we transform input images into a
CIE L∗a∗b∗ color space. Then, we transform each color channel
into a pyramid of contrast values using Equation 6 (but xk

i denotes
now the values in color channels). Next, we compute the color
difference:

‖∆Ck
i, j‖ =

√

(G(a∗)k
i, j)

2 +(G(b∗)k
i, j)

2 (20)

and selectively replace G(L∗)k
i, j with a signed ‖∆Ck

i, j‖, like
in [Gooch et al. 2005]. We consider difference values for each level
of a Gaussian pyramid and for 20–30 neighboring pixels. There is
no need to apply the transducer function to the data. The recon-
structed images can be seen in Figures 14 and 15. We achieve im-
ages of similar quality as [Gooch et al. 2005], but at a significantly
lower computational cost.

7 Image Reconstruction from Contrast

In this section we give an efficient solution to the optimization prob-
lem stated in Section 3.1. By solving the optimization problem, we
can reconstruct an output image from modified contrast values.

The major computational burden of our method lies in minimizing
the objective function given in Equation 7. The objective function
reaches its minimum when all its derivatives ∂ f

∂xi
equal 0:

∂ f
∂xi

=
K

∑
k=1

N

∑
i=1

∑
j∈Φi

2pk
i, j(x

k
i − xk

j − Ĝk
i, j) = 0 (21)

Figure 14: Examples of a saliency preserving color to gray map-
ping. Left – original image; center – luminance image; right –
the result of the color to gray algorithm. Images courtesy of Jay
Neitz(top) and Karl Rasche(bottom)

for i = 1, . . . ,N. The above set of equations can be rewritten using
a matrix notation:

A ·X = B (22)

where X is a column vector of x1, . . . ,xN , which holds pixel val-
ues of the resulting image, A is an N ×N square matrix and B is
an N-row vector. For a few mega-pixel images N can equal several
million and therefore Equation 22 involves the solution of a huge
set of linear equations. For a sparse matrix A a fast solution of such
a problem can be found using multi-grid methods. However, since
we consider contrast at all levels of a Gaussian pyramid, the matrix
A in our case is not sparse. From the visualization of the matrix
A (see Figure 16), we can conclude that the matrix has a regular
structure, but certainly cannot be considered sparse. Such multi-
resolution problem seems to be well suited for the Fourier meth-
ods [Press et al. 2002, Chapter 19.4]. However, the problem cannot
be solved using those methods either, since they require matrix co-
efficients to be of the same value while the constant factors pk

i, j in-
troduce variations between matrix coefficients. We have found that
the biconjugate gradient method [Press et al. 2002, Chapter 2.7] is
appropriate for our problem and gives results in acceptable time.
The biconjugate gradient method is considered to be slower than
more advanced multi-grid methods, however we found that it con-
verges equally fast for our problem. This is because the structure
of the A matrix enforces that iterative improvements are performed
for all spatial frequencies of an image, which is also the goal of
multi-grid methods. The biconjugate gradient method is also often
used as a part of a multi-grid algorithm.

The biconjugate gradient method involves an iterative procedure, in
which an image stored in the vector X is refined in each iteration.
The attractiveness of this method is that it requires only an efficient
computation of the product Ψ = A ·X . For clarity consider only
the nearest neighborhood of each pixel, although the algorithm can
be easily generalized to a larger pixel neighborhood at moderate
computational cost. The contrast is computed between a pixel and



Figure 15: An example of a saliency preserving color to gray mapping. Left – original image; center – luminance image; right – the result of
the color to gray algorithm. Image: Impressionist Sunrise by Claude Monet

Figure 16: Visualization of the matrix A, which is involved in the
solution of the optimization problem for a 1-mega-pixel image.
White color denotes zero coefficients, which increase in magnitude
with darker colors. Gray corresponds to positive and green to neg-
ative coefficients.

its four neighbors within the same level of a Gaussian pyramid. Let
Xk be a matrix holding pixel values of an image at the k-level of a
Gaussian pyramid. Then, we can compute the product Ψ using the
following recursive formula:

Ψk(Xk) = Xk ×L +upsample[Ψk+1(downsample[Xk])], (23)

where Xk is a solution at the k-th level of the pyramid, the opera-
tor × denotes convolution, L is the kernel

L =









0 1 0

1 −4 1

0 1 0









(24)

and upsample[] and downsample[] are image upsampling and
downsampling operators. The recursion stops when one of the im-
age dimensions is less than 3 pixels after several successive down-
samplings. The right-hand term B can be computed using another
recursive formula:

Bk(Ĝk) = Ĝk
:,x ×Dx+ Ĝk

:,y ×Dy+

+upsample[Bk+1(downsample[Ĝk])] (25)

where Ĝk is the modified contrast at the k-th level of the pyramid,
Ĝk

:,x and Ĝk
:,y are the subsets of contrast values Ĝk for horizontal and

vertical neighbors, and Dx, Dy are the convolution kernels:

Dx =
[

1 −1
]

Dy =





1

−1



 (26)

For simplicity, we did not include the coefficients pk
i, j in the above

equations. Note that if only the first level of the pyramid is consid-
ered, the problem is reduced to the solution of Poisson’s equation
as in [Fattal et al. 2002]. To account for the boundary conditions,
we can pad each edge of an image with a line or column that is a
replica of the image edge.

8 Reconstruction of Color

Many applications, including the majority of tone mapping algo-
rithms, focus on the processing of luminance while chrominance is
transferred from an original image. The goal is to preserve the same
perceived hue and color saturation while altering luminance. Hue
can be easily preserved if a color space that decorrelates chromi-
nance from luminance is used (such as LHS or Yxy). Preserving the
perceived color saturation is much more difficult since it is strongly
and non-linearly correlated with luminance. Additionally, the per-
ceived color saturation may change if luminance contrast is modi-
fied. A transfer of color saturation seems to be a difficult and still
unsolved problem. Therefore, for the proposed tone mapping algo-
rithms, we follow the method employed in most tone mapping algo-
rithms, which involves rescaling red, green and blue color channels
proportionally to the luminance and desaturating colors to compen-
sate for higher local contrast. For each pixel, we compute:

Cout =
X − lmin + s(Cin −Lin)

lmax − lmin
(27)

where Cin and Cout are the input and output pixel values for the
red, green or blue color channel, Lin is the input luminance, and
X is the result of the optimization (all values are in the logarith-
mic domain). The resulting values Cout are within the range from
0 to 1. The parameter s is responsible for the saturation of col-
ors and is usually set between 0.4 and 0.6. If Pk is k-th percentile
of X and d = max(P50 −P0.1,P99.9 −P50), then lmin = P50 − d and
lmax = P50 + d. This way, the average gray level is mapped to the
gray level of the display (r = g = b = 0.5) and overall contrast is
not lost due to a few very dark or bright pixels. Note that fine
tuning of lmax and lmin values is equivalent to so called gamma-
correction used as a last step of many tone mapping algorithms.
This is because a power function in the linear domain corresponds
to a multiplication in the logarithmic domain: log(xγ ) = γ· log(x).
Equation 27 is similar to formulas proposed by Tumblin and Turk



Figure 17: When an original signal (upper left) is restored from at-
tenuated gradients (upper right) by solving Poisson’s equation (or
integration in 1-D), the flat parts of the restored signal are shifted
relative to each other (lower left). However, if the minimization
constraints are set for multiple levels of the pyramid as in our pro-
posed method, the flat parts can be accurately restored although the
sharp peaks are slightly blurred (lower right).

[1999] but it is given in the logarithmic domain and includes a lin-
ear scaling. The resulting color values, Cout , can be linearly mapped
directly to the pixel values of a gamma corrected (perceptually lin-
earized) display.

9 Discussion

The proposed framework is most suitable for those problems where
the best solution is a compromise between conflicting goals. For
example, in the case of contrast mapping (Section 4), we try to
compress an overall contrast by suppressing low frequencies (low
frequency contrast has large values and thus is heavily compressed),
while preserving details. However, when enhancing details we also
lessen compression of overall contrast since details can span a broad
range of spatial frequencies (the lower levels of low-pass Gaussian
pyramid) including low-frequencies, which are primarily respon-
sible for an overall contrast. The strength of our method comes
from the fact that the objective function given in Equation 7 leads
to a compromise between the conflicting goals of compressing low-
frequency large contrast and preserving small contrast of the details.

The minimization problem introduced in Equation 7 seems similar
to solving Poisson’s equation in order to reconstruct an image from
gradients, as proposed by Fattal et al. [2002]. The difference is that
our objective function takes into account a broader neighborhood
of a pixel (summation over j) and puts additional optimization con-
straints on the contrast at coarser levels of the pyramid (summation
over l), which improves a restoration of low frequency information.
When an objective function is limited only to the finest level of the
Gaussian pyramid (as it is done in Poisson’s equation), the low fre-
quency content may be heavily distorted in the resulting image3.
This is illustrated on the examples of a 1-D signal in Figure 17
and a tone-mapped image in Figure 18. In general, Poisson solvers
may lead to the reduction (or even reversal) of global low-frequency
contrast measured between disconnected image fragments. Other
researchers have also noticed this problem. Gooch at al. [2005]
experimented with Poisson solvers and found that they do not work

3Loss of low-frequency contrast is also visible in Figure 3 in the paper by
Fattal et al. [2002], where low intensity levels of the left and middle peaks
in the original image (a) are strongly magnified in the output image (f), so
that they eventually become higher than the originally brightest image part
on the right side.

Figure 18: The algorithm by Fattal et al. [2002] (top) renders win-
dows panes of different brightness due to the local nature of the op-
timization procedure. The contrast compression on the multi-scale
contrast pyramid used in our method can maintain proper global
contrast proportions (bottom). Image courtesy of Greg Ward.

well for “large disconnected isoluminant regions because they com-
pute gradients over nearest neighbors, ignoring difference compar-
ison over distances greater than one pixel”. They overcome this
problem by including a larger number of neighbors for each pixel
in the objective function. The importance of global contrast and
the fact that considering only local contrast gives wrong results was
also discussed in [Rasche et al. 2005, Figure 2]. Our framework
can be considered as a generalization of the gradient domain meth-
ods based on Poisson solvers. We consider larger neighborhoods
for local contrast and also several levels of a Gaussian pyramid
for global contrast. Such an approach is both perceptually plau-
sible and computationally much more efficient than solving the op-
timization problem for contrast values between all pixels in the im-
age [Gooch et al. 2005].

The most computationally expensive part of the proposed frame-
work is the contrast-to-luminance transformation. The solution of
the minimization problem for 1–5 Mpixel images can take from
several seconds up to half a minute to compute on a modern PC.
This limits the application of the algorithm to off-line processing.
However, our solution is not much less efficient than multi-grid
methods (for example [Fattal et al. 2002]) as discussed in Section 7.



10 Conclusions and Future Work

In this paper we have presented a framework for image process-
ing operations that work in the visual response space. Our frame-
work is in many aspects similar to the gradient methods based on
solving Poisson’s equation, which prove to be very useful for im-
age and video processing. Our solution can be regarded as a gen-
eralization of these methods which consider contrast on multiple
spatial frequencies. We express a gradient-like representation of
images using physical and perceptual terms, such as contrast and
visual response. This gives perceptual basis for the gradient meth-
ods and offers several extensions from which these methods can
benefit. For instance, unlike the solution of Poisson’s equation, our
pyramidal contrast representation ensures proper reconstruction of
low frequencies and does not reverse global brightness levels. We
also introduce a transducer function that can give the response of
the HVS for the full range of contrast amplitudes, which is espe-
cially desired in case of HDR images. Some applications can also
make use of the contrast discrimination thresholds, which describe
suprathreshold performance of the eye from low to high contrast.
As a proof of concept, we implemented two tone mapping algo-
rithms and a saliency preserving color to gray mapping inside our
framework. The tone mapping was shown to produce sharper im-
ages than the other contrast reduction methods. We believe that
our framework can also find many applications in image and video
processing.

In the future, we would like to improve the performance of recon-
structing the image from the contrast representation, which would
make the framework suitable for real-time applications. We would
also like to include color information using a representation similar
to luminance contrast. The framework could be extended to han-
dle animation and temporal contrast. Furthermore, the accuracy of
our model can be improved for the threshold contrast if the Con-
trast Sensitivity Function were taken into account in the transducer
function. A simple extension is required to adapt our framework
to the task of predicting visible differences in HDR images: since
the response in our framework is in fact scaled in JND units, the
difference between response values of two images gives the map
of visible differences. One possible application of such HDR visi-
ble difference predictor could be the control of global illumination
computation by estimating visual masking [Ramasubramanian et al.
1999; Dumont et al. 2003]. Finally, we would like to experiment
with performing common image processing operations in the visual
response space.
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