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CUBE-MAP DATA STRUCTURE FOR INTERACTIVE GLOBAL 
ILLUMINATION COMPUTATION IN DYNAMIC DIFFUSE 

ENVIRONMENTS 

Abstract 

In this paper we present Cube-map data structure for global illumination computation at interactive 
rates. Our algorithm computes global illumination by iterative computation of irradiance from 
multiple bounces. Emission from light source is simulated using the direct lighting capability of 
the GPU. Light bouncing out of surfaces of the scene are captured in cube-maps distributed over 
the volume of the scene. Subsequent bounces are simulated by querying the cube-map data 
structure and ambient lighting capability of the GPU based rendere. We are able to compute 
plausible approximation of indirect light for static and dynamic scenes involving both moving 
objects and changing light sources. The accuracy of our solution can progressively improve as 
computation time is increased. 

keywords : Global Illumination, radiosity, hardware-assisted rendering. 

1 INTRODUCTION 

Accurate lighting computation is one of the key ingredients to realism in rendered 
images. In the past two decades, great progress has been made towards the accurate lighting 
computation with the development of physically based global illumination algorithms. These 
algorithms simulate the propagation of light in a three-dimensional environment and compute 
the distribution of light to desired accuracy. However these algorithms may need minutes to 
hours to render a single image. Because of the view independent nature of illumination in 
static diffuse scenes, it is possible to pre-compute the light distribution and use it for 
interactive rendering. However, such approaches are not of much use in case of interactive 
rendering of dynamic scenes.  Due to this high computation time, many of the today’s 
rendering systems (e.g. game systems) use ad hoc approaches to provide plausible realistic 
appearance. For example, they pre-compute light map textures [1] using radiosity method to 
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emulate global illumination on the surface of static objects (walls, ceiling). Even though static 
objects give impression of being lit properly, the same can not be said about dynamic objects. 
Also storing the extensive amount of light maps in texture memory is very often problematic. 
Pre-computed light maps may give plausible results in game systems but they are useless in 
design applications, where design decisions are based on the accuracy of the rendering. 
In this paper we present a cube-map data structure for dynamic capture of inter-reflection of 
light from the scene along with a GPU based solution for global illumination computation and 
realistic rendering of scenes. The OpenGL implementation of our algorithm takes about 3 
seconds1 to compute light distribution from scratch for our example scene without any pre-
computations.  

2 PREVIOUS WORK 

The rapidly improving speed and functionality of graphics hardware makes it 
possible to render images displaying advanced lighting effects (refer to [2] for a complete 
survey of such techniques). However, the explicit global illumination computation is usually 
not performed, and although the resulting images look believable, they poorly predict the 
appearance of the real world. A successful combination of hardware and software rendering 
was used by Udeshi and Hansen [3] to obtain reflection and refraction effects (ray tracing), 
soft shadows (shadow volumes), and approximate one-bounce indirect lighting at interactive 
rates (a small set of virtual point light sources is used). However, a massively parallel 
machine (64 processors and 8 graphics pipelines) was needed to achieve this goal.  

Graphics hardware has been used to improve the efficiency of global illumination 
computation. For example, interactive rendering of surfaces with arbitrary BRDFs under 
distant illumination has been performed using environment mapping [4,5,6,7]. However, we 
have not come across any interactive implementation of global illumination algorithm. In this 
paper we present such an algorithm. 

We combine the algorithm proposed by Ramamoorthi and Hanrahan [7] for efficient 
prefiltering of environment maps, with the concept of irradiance volumes introduced by 
Greger et al. [8] to compute the spatially varying illumination in static and dynamic 
environments. 

3 ALGORITHM  

Our algorithm simulates inter-reflection by repeated gathering of light distribution 
from each bounce of light rays. The salient steps of this algorithm are: 
1. Compute irradiance due to first bounce of light from direct light sources (OpenGL point 

lights and spotlights).  
2. Compute irradiance due to nth bounce using irradiance computed from (n-1)th bounce.  
3. Sum up the irradiance values from all bounces of light to compute the final image 

                                                  
1 For details on time measurements refer to the section Results. 
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For each bounce of light we capture the incoming radiance at a point in the scene by 
rendering a cube map at that point. Cube map is a projection of an environment on a cube. It 
can be rendered for any environment by placing a camera in the center of a cube and 
rendering six rasters, one for each face of the cube. Using Ramamoorthi and Hanrahan’s 
algorithm [7] we filter the cube map pixel values to compute the spherical harmonic 
representation for the irradiance function at the sample point. We compute such irradiance 
functions at a grid of sample points, as done by Greger et al [8]. Next, for each vertex of the 
scene geometry we find 8 neighboring grid points and we interpolate irradiance value 
between them. The steps required to compute each bounce of light are summarized in Figure 
1. 

Step 1 

 

Divide 3D space into uniform grid of 
volumes. 

Step 2 

 

Render a cube map at the center of each 
volume. The cube map gathers information 
about incoming radiance. 

Step 3 

 

Compute spherical harmonic coefficients 
for every cube map. These coefficients 
represent the vector irradiance at the center 
point of the volume.  Irradiance for a 
Lambertian surface point can be computed 
from coefficients and the normal to the 
surface at that point. 

Step 4 

 

Compute irradiance at each surface vertex 
by linearly interpolating irradiance of 8 
neighboring volumes. Irradiance is assumed 
to vary smoothly both with direction and 
position. Use the irradiance value to set the 
ambient color for the vertex. 

Figure 1: Computation of a single bounce of light reflection 
Because we use hardware to gather information on incoming radiance, we can 

compute light distribution much faster than any existing global illumination method. Unlike 
Monte Carlo ray tracing, our solution does not show stochastic noise due to under sampling. 
If fewer samples are chosen, the resulting accuracy will be lower, however lack of accuracy 
won’t be noticeable as high frequency noise. Our solution exploits smooth nature of 
irradiance and interpolates its values both between points in space and incoming directions. 
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4 RESULTS 

In this section we will focus on three aspects of our implementation: time required to 
compute global illumination, quality of the resulting images and comparison of our method 
with global illumination implementation using photon tracing. 

Computing a single bounce of light for “Room” scene took only 1.5 seconds, as 
shown on Figure 2. Usually two bounces of light give plausible results and further 
computation is not necessary. Therefore good approximation of global illumination could be 
computed in just about 3 seconds. Even though this is still not a real-time performance, those 
times will be reduced at least several times in the near future. Over 75% of the time was spent 
on transferring cube map rasters from GPU to CPU memory and updating color values for 
vertices (items 2 and 4 in the Figure 2). We expect that both of those activities will be feasible 
in the future graphics hardware thus those times will be practically reduced to 0. Moreover, 
each face of the cube was rendered with full level of detail of the scene, whereas simplified 
geometry would be sufficient for the purpose of irradiance measure. Updating light 
distribution is necessary only in rare situations: when light sources changes or the scene is 
significantly reorganized. Computed irradiance can be reused in successive frames for 
interactive walkthroughs and in situations where small objects are moved. Furthermore, our 
solutions can show to the user successively refined images, as it computes nth bounce of light. 

 
 1 

bounce 
2 
bounces 

3 
bounces 

4 
bounces 

5 
bounces 

6 
bounces 

% 
total 

1. Geometry rendering 393 768 1068 1366 1754 2131 21% 
2. Transferring cube maps to 
CPU memory 

811 1655 2574 3495 4295 5106 51% 

3. Computing spherical 
harmonics 

31 47 63 94 140 171 2% 

4. Applying color values 218 702 1155 1608 2077 2545 26% 
5. Total 1468 3187 4890 6593 8296 9999  

Figure 2: Time to compute successive bounces of light (in milliseconds). Times are accumulated 
for all previous bounces. The time was measured for “Room” scene (12.400 mesh elements) with cube 
map size: 32x32 and volume grid 3x2x7 = 42 volume elements, on Pentium IV 1.7GHz with ATI 
Radeon 8500. 
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a)  b)  

c)  d)  
Figure 3: Object “Bunny”2 was placed in several places of the “Room” to show differences in 

illumination. “Bunny” was a bit reddish on a carpet and red table a) b). It became gray when it was 
moved to the darker part of the “Room” c). 

Figure 3 shows four frames from an interactive demo of moving object “Bunny” in 
our “Room” scene, where indirect lighting for the moving object is computed on the fly from 
the grid of irradiance volumes. As we can see from the images, the indirect light on the 
“Bunny” is appropriate for the local illumination conditions. 

 

a)  b)  
Figure 4: Image on the left a) was rendered using single volume, whereas right image b) was 

rendered with a grid of volumes.  
A single environment map failed to capture light distribution in our example scene. 

The left image on Figure 4 shows a scene rendered with single environment map. Large and 
flat objects, like walls and a ceiling, are uniformly illuminated while they should be brighter 
near the light sources. This happens because cube map captures radiance for varying direction 
but only for a single position whereas radiance in real world varies significantly with both 
direction and position. Grid of volumes proved to be effective solution for this problem, as it 
can be seen on right image on Figure 4. 

Resulting images from our method were compared with photon tracing. Figure 5 
shows a result of such comparison. Both methods show different artifacts thus there are small 
differences. In our approach ceiling is slightly reddish because volume is located just beneath 
brown-red carpet. Photon tracing shows shaded areas in the corners, where fewer photons 
could reach. But in general both images are perceivably similar and give impression of the 
same light conditions. 

                                                  
2 Object “Bunny” comes from The Stanford 3D Scanning Repository (http://graphics.stanford.edu/data/3Dscanrep/) 
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a)  b)  
Figure 5: Room scene rendered using a) our method (42 volumes) b) photon tracing (1 300 

000 rays). Both images show 5 bounces of indirect light. Our method took approximately 6.5 seconds, 
whereas photon tracing took 27 seconds.  

5 CONCLUSIONS 

We have provided an algorithm for plausible approximation of global illumination 
can be computed in near real-time using cube-map data structure and the current graphics 
hardware. We believe that the computation time will be significantly shorter with the future 
generations of graphics hardware. Realistic rendering using our algorithm will be much faster, 
and images generated will be accurate representation of the actual scene that the rendering 
process is trying to simulate. Thus realistic rendering will find wider acceptance as a tool in 
diverse fields such as Architecture and Design; Lighting Engineering; Entertainment Industry; 
Digital Imaging and Retail World. 

REFERENCES 

[1] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran and P. Haeberli. “Fast Shadows and 
Lighting Effects Using Texture Mapping”, In SIGGRAPH 92 Conference Proceedings, 
pp. 249-252. 

[2] W. Heidrich. Interactive Display of Global Illumination Solutions for Non-Diffuse 
Environments. State of the Art Reports, Eurographics 2000.  

[3] T. Udeshi and C.D. Hansen. Towards Interactive Photorealistic Rendering of Indoor 
Scenes: A Hybrid Approach. In 9th  Eurographics Rendering Workshop 1999, pp. 63-76. 

[4] N. Greene. Environment Mapping and Other Applications of World Projections. In 
IEEE Computer Graphics and Applications 1986, 6(11), pp. 21-29. 

[5] W. Heidrich and H.-P. Seidel. Realistic, hardware-accelerated shading and lighting. In 
SIGGRAPH 1999 Conference Proceedings, pp. 171-178. 

[6] J. Kautz, P.-P. Vazquez, W. Heidrich, and H.-P. Seidel. A Unified Approach to 
Prefiltered Environment Maps. In 11th Eurographics Rendering Workshop 2000, pp. 
185-196. 

[7] R. Ramamoorthi and P. Hanrahan. An Efficient Representation for Irradiance 
Environment Maps. In SIGGRAPH 2001 Conference Proceedings, pp. 497-500. 



 
   

7/7  02-07-13 

[8] G. Greger, P. Shirley, P. Hubbard and D. Greenberg. The Irradiance Volume. IEEE 
Computer Graphics & Applications 1998, 18(2), pp. 32-43. 

 


