
ICCVG 2002 Zakopane, 25-29 Sept. 2002

1/7 02-07-13

Rafal Mantiuk(1,2), Sumanta Pattanaik(1), Karol Myszkowski(3)
(1) University of Central Florida, USA, (2) Technical University of Szczecin, Poland, (3) Max-
Planck-Institut für Informatik, Germany
rafal.mantiuk@wi.ps.pl, sumant@cs.ucf.edu, karol@mpi-sb.mpg.de

CUBE-MAP DATA STRUCTURE FOR INTERACTIVE GLOBAL
ILLUMINATION COMPUTATION IN DYNAMIC DIFFUSE

ENVIRONMENTS

Abstract

In this paper we present Cube-map data structure for global illumination computation at interactive
rates. Our algorithm computes global illumination by iterative computation of irradiance from
multiple bounces. Emission from light source is simulated using the direct lighting capability of
the GPU. Light bouncing out of surfaces of the scene are captured in cube-maps distributed over
the volume of the scene. Subsequent bounces are simulated by querying the cube-map data
structure and ambient lighting capability of the GPU based rendere. We are able to compute
plausible approximation of indirect light for static and dynamic scenes involving both moving
objects and changing light sources. The accuracy of our solution can progressively improve as
computation time is increased.

keywords : Global Illumination, radiosity, hardware-assisted rendering.

1 INTRODUCTION

Accurate lighting computation is one of the key ingredients to realism in rendered
images. In the past two decades, great progress has been made towards the accurate lighting
computation with the development of physically based global illumination algorithms. These
algorithms simulate the propagation of light in a three-dimensional environment and compute
the distribution of light to desired accuracy. However these algorithms may need minutes to
hours to render a single image. Because of the view independent nature of illumination in
static diffuse scenes, it is possible to pre-compute the light distribution and use it for
interactive rendering. However, such approaches are not of much use in case of interactive
rendering of dynamic scenes. Due to this high computation time, many of the today’s
rendering systems (e.g. game systems) use ad hoc approaches to provide plausible realistic
appearance. For example, they pre-compute light map textures [1] using radiosity method to

2/7

emulate global illumination on the surface of static objects (walls, ceiling). Even though static
objects give impression of being lit properly, the same can not be said about dynamic objects.
Also storing the extensive amount of light maps in texture memory is very often problematic.
Pre-computed light maps may give plausible results in game systems but they are useless in
design applications, where design decisions are based on the accuracy of the rendering.
In this paper we present a cube-map data structure for dynamic capture of inter-reflection of
light from the scene along with a GPU based solution for global illumination computation and
realistic rendering of scenes. The OpenGL implementation of our algorithm takes about 3
seconds1 to compute light distribution from scratch for our example scene without any pre-
computations.

2 PREVIOUS WORK

The rapidly improving speed and functionality of graphics hardware makes it
possible to render images displaying advanced lighting effects (refer to [2] for a complete
survey of such techniques). However, the explicit global illumination computation is usually
not performed, and although the resulting images look believable, they poorly predict the
appearance of the real world. A successful combination of hardware and software rendering
was used by Udeshi and Hansen [3] to obtain reflection and refraction effects (ray tracing),
soft shadows (shadow volumes), and approximate one-bounce indirect lighting at interactive
rates (a small set of virtual point light sources is used). However, a massively parallel
machine (64 processors and 8 graphics pipelines) was needed to achieve this goal.

Graphics hardware has been used to improve the efficiency of global illumination
computation. For example, interactive rendering of surfaces with arbitrary BRDFs under
distant illumination has been performed using environment mapping [4,5,6,7]. However, we
have not come across any interactive implementation of global illumination algorithm. In this
paper we present such an algorithm.

We combine the algorithm proposed by Ramamoorthi and Hanrahan [7] for efficient
prefiltering of environment maps, with the concept of irradiance volumes introduced by
Greger et al. [8] to compute the spatially varying illumination in static and dynamic
environments.

3 ALGORITHM

Our algorithm simulates inter-reflection by repeated gathering of light distribution
from each bounce of light rays. The salient steps of this algorithm are:
1. Compute irradiance due to first bounce of light from direct light sources (OpenGL point

lights and spotlights).
2. Compute irradiance due to nth bounce using irradiance computed from (n-1)th bounce.
3. Sum up the irradiance values from all bounces of light to compute the final image

1 For details on time measurements refer to the section Results.

3/7 02-07-13

For each bounce of light we capture the incoming radiance at a point in the scene by
rendering a cube map at that point. Cube map is a projection of an environment on a cube. It
can be rendered for any environment by placing a camera in the center of a cube and
rendering six rasters, one for each face of the cube. Using Ramamoorthi and Hanrahan’s
algorithm [7] we filter the cube map pixel values to compute the spherical harmonic
representation for the irradiance function at the sample point. We compute such irradiance
functions at a grid of sample points, as done by Greger et al [8]. Next, for each vertex of the
scene geometry we find 8 neighboring grid points and we interpolate irradiance value
between them. The steps required to compute each bounce of light are summarized in Figure
1.

Step 1

Divide 3D space into uniform grid of
volumes.

Step 2

Render a cube map at the center of each
volume. The cube map gathers information
about incoming radiance.

Step 3

Compute spherical harmonic coefficients
for every cube map. These coefficients
represent the vector irradiance at the center
point of the volume. Irradiance for a
Lambertian surface point can be computed
from coefficients and the normal to the
surface at that point.

Step 4

Compute irradiance at each surface vertex
by linearly interpolating irradiance of 8
neighboring volumes. Irradiance is assumed
to vary smoothly both with direction and
position. Use the irradiance value to set the
ambient color for the vertex.

Figure 1: Computation of a single bounce of light reflection
Because we use hardware to gather information on incoming radiance, we can

compute light distribution much faster than any existing global illumination method. Unlike
Monte Carlo ray tracing, our solution does not show stochastic noise due to under sampling.
If fewer samples are chosen, the resulting accuracy will be lower, however lack of accuracy
won’t be noticeable as high frequency noise. Our solution exploits smooth nature of
irradiance and interpolates its values both between points in space and incoming directions.

4/7

4 RESULTS

In this section we will focus on three aspects of our implementation: time required to
compute global illumination, quality of the resulting images and comparison of our method
with global illumination implementation using photon tracing.

Computing a single bounce of light for “Room” scene took only 1.5 seconds, as
shown on Figure 2. Usually two bounces of light give plausible results and further
computation is not necessary. Therefore good approximation of global illumination could be
computed in just about 3 seconds. Even though this is still not a real-time performance, those
times will be reduced at least several times in the near future. Over 75% of the time was spent
on transferring cube map rasters from GPU to CPU memory and updating color values for
vertices (items 2 and 4 in the Figure 2). We expect that both of those activities will be feasible
in the future graphics hardware thus those times will be practically reduced to 0. Moreover,
each face of the cube was rendered with full level of detail of the scene, whereas simplified
geometry would be sufficient for the purpose of irradiance measure. Updating light
distribution is necessary only in rare situations: when light sources changes or the scene is
significantly reorganized. Computed irradiance can be reused in successive frames for
interactive walkthroughs and in situations where small objects are moved. Furthermore, our
solutions can show to the user successively refined images, as it computes nth bounce of light.

 1

bounce
2
bounces

3
bounces

4
bounces

5
bounces

6
bounces

%
total

1. Geometry rendering 393 768 1068 1366 1754 2131 21%
2. Transferring cube maps to
CPU memory

811 1655 2574 3495 4295 5106 51%

3. Computing spherical
harmonics

31 47 63 94 140 171 2%

4. Applying color values 218 702 1155 1608 2077 2545 26%
5. Total 1468 3187 4890 6593 8296 9999

Figure 2: Time to compute successive bounces of light (in milliseconds). Times are accumulated
for all previous bounces. The time was measured for “Room” scene (12.400 mesh elements) with cube
map size: 32x32 and volume grid 3x2x7 = 42 volume elements, on Pentium IV 1.7GHz with ATI
Radeon 8500.

5/7 02-07-13

a) b)

c) d)
Figure 3: Object “Bunny”2 was placed in several places of the “Room” to show differences in

illumination. “Bunny” was a bit reddish on a carpet and red table a) b). It became gray when it was
moved to the darker part of the “Room” c).

Figure 3 shows four frames from an interactive demo of moving object “Bunny” in
our “Room” scene, where indirect lighting for the moving object is computed on the fly from
the grid of irradiance volumes. As we can see from the images, the indirect light on the
“Bunny” is appropriate for the local illumination conditions.

a) b)
Figure 4: Image on the left a) was rendered using single volume, whereas right image b) was

rendered with a grid of volumes.
A single environment map failed to capture light distribution in our example scene.

The left image on Figure 4 shows a scene rendered with single environment map. Large and
flat objects, like walls and a ceiling, are uniformly illuminated while they should be brighter
near the light sources. This happens because cube map captures radiance for varying direction
but only for a single position whereas radiance in real world varies significantly with both
direction and position. Grid of volumes proved to be effective solution for this problem, as it
can be seen on right image on Figure 4.

Resulting images from our method were compared with photon tracing. Figure 5
shows a result of such comparison. Both methods show different artifacts thus there are small
differences. In our approach ceiling is slightly reddish because volume is located just beneath
brown-red carpet. Photon tracing shows shaded areas in the corners, where fewer photons
could reach. But in general both images are perceivably similar and give impression of the
same light conditions.

2 Object “Bunny” comes from The Stanford 3D Scanning Repository (http://graphics.stanford.edu/data/3Dscanrep/)

6/7

a) b)
Figure 5: Room scene rendered using a) our method (42 volumes) b) photon tracing (1 300

000 rays). Both images show 5 bounces of indirect light. Our method took approximately 6.5 seconds,
whereas photon tracing took 27 seconds.

5 CONCLUSIONS

We have provided an algorithm for plausible approximation of global illumination
can be computed in near real-time using cube-map data structure and the current graphics
hardware. We believe that the computation time will be significantly shorter with the future
generations of graphics hardware. Realistic rendering using our algorithm will be much faster,
and images generated will be accurate representation of the actual scene that the rendering
process is trying to simulate. Thus realistic rendering will find wider acceptance as a tool in
diverse fields such as Architecture and Design; Lighting Engineering; Entertainment Industry;
Digital Imaging and Retail World.

REFERENCES

[1] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran and P. Haeberli. “Fast Shadows and
Lighting Effects Using Texture Mapping”, In SIGGRAPH 92 Conference Proceedings,
pp. 249-252.

[2] W. Heidrich. Interactive Display of Global Illumination Solutions for Non-Diffuse
Environments. State of the Art Reports, Eurographics 2000.

[3] T. Udeshi and C.D. Hansen. Towards Interactive Photorealistic Rendering of Indoor
Scenes: A Hybrid Approach. In 9th Eurographics Rendering Workshop 1999, pp. 63-76.

[4] N. Greene. Environment Mapping and Other Applications of World Projections. In
IEEE Computer Graphics and Applications 1986, 6(11), pp. 21-29.

[5] W. Heidrich and H.-P. Seidel. Realistic, hardware-accelerated shading and lighting. In
SIGGRAPH 1999 Conference Proceedings, pp. 171-178.

[6] J. Kautz, P.-P. Vazquez, W. Heidrich, and H.-P. Seidel. A Unified Approach to
Prefiltered Environment Maps. In 11th Eurographics Rendering Workshop 2000, pp.
185-196.

[7] R. Ramamoorthi and P. Hanrahan. An Efficient Representation for Irradiance
Environment Maps. In SIGGRAPH 2001 Conference Proceedings, pp. 497-500.

7/7 02-07-13

[8] G. Greger, P. Shirley, P. Hubbard and D. Greenberg. The Irradiance Volume. IEEE
Computer Graphics & Applications 1998, 18(2), pp. 32-43.

