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Abstract—For backward compatible high dynamic range HDR frame N H.264/AVC
(HDR) video compression, the HDR sequence is reconstructed by N Encoding
inverse tone-mapping a compressed low dynamic range (LDR) Reconstructed
version of the original HDR content. In this paper, we show that HDR frame
the appropriate choice of a tone-mapping operator (TMO) can Tone Inverse Tone et
significantly improve the reconstructed HDR quality. We develop Maopi ; esidual stream

e . 1 . . pping Mapping
a statistical model that approximates the distortion resulting fran
the combined processes of tone-mapping and compression. Using
this model, we formulate a numerical optimization problem to Tone-mapped
find the tone-curve that minimizes the expected mean square '
error (MSE) in the reconstructed HDR sequence. We also develop H.264/AVC Dorted
a simplified model that reduces the computational complexity of Encoding
the optimization problem to a closed-form solution. Performance H.264/AVC
evaluations show that the proposed methods provide superior becoding
performance in terms of HDR MSE and SSIM compared to
existing tone-mapping schemes. It is also shown that the LDR

image quality resulting from the proposed methods matches that LDR stream

produced by perceptually-based TMOs. Fig. 1. General structure of the scalable approach used dokvkard-

Index Terms—high dynamic range imaging, bit-depth scalable, compatible HDR video encoding. The base layer encodes ah LR rep-
tone-mapping, HDR video compression. resentation of the HDR input. The enhancement layer encdeeditference

(residual) between the inverse tone-mapped base layer anafitfinal HDR
source.

I. INTRODUCTION

Natural scenes contain far more visible information than
can be captured by the majority of digital imagery anfBuman eye [3], and is not restricted by the color gamut of
video devices. This is because traditional display devizes the display technology used. The main motivation is to ereat
only support a limited dynamic range (contrast) and col@ video format that would be future-proof, independent of a
gamut. New display and projection technologies, howevélisplay technology, and limited only by the performance of
employ narrow-wavelength LED light sources that expand th@e human visual system (HVS).
boundaries of the displayable color gamut. This expansionHDR images preserve colorimetric or photometric pixel
will be again vastly enlarged with the next generation digpl values (such as CIE XYZ) within the visible color gamut
technologies that will employ dual modulation [1] or bagkii and allows for intra-frame contrast exceeding 5-6 orders of
dimming that enhance intra- and inter-frame contrast. magnitude 10° : 1), without introducing contouring, banding

For video compression, these advances in display technade- posterization artifacts caused by excessive quartizati
gies have motivated the use of extended gamut color spacE photometric or colorimetric values, such as luminance
These include xvYCC (x.v.Color) for home theater [2] anfcd - m~2) or spectral radiance (Wr!-m~—3), span much
the Digital Cinema Initiative color space for digital theat larger range of values than luma and chroma values (gamma
applications. Yet, even these extended color spaces are towrected) used in typical video encoding (JPEG, MPEG).etc.
limited for the amount of contrast that can be perceived Byhe obvious representation for the colorimetric values are
the human eye. High dynamic range (HDR) video encodirftpating point numbers, which, however, are impractical for
goes beyond the typical color space restrictions and atempnage and video coding applications. For that reason skevera
to encode all colors that are visible and distinguishablthéo HDR color encodings and file formats have been proposed,

including the Radiance RGBE (.hdr) [4], OpenEXR (.exr) [5]
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Therefore, high dynamic range video formats are unlikely wompression, backward compatibility can be achieved by
be broadly accepted without the backward-compatibilitthwi encoding a tone-mapped copy of the HDR image together
these devices. Such backward-compatibility can be actliewsith a residual [17] or a ratio image [18] that allows the
if the HDR video stream contains 1) a backward-compatibleconstruction of the original HDR image. In [19] and [20}th
8-bit video layer which could be directly displayed on exigt approach was extended for video sequences. A tone-mapping
devices, and 2) additional information which along withsthicurve was encoded together with the tone-mapped and résidua
8-bit layer can yield a good quality reconstructed versibn @ideo sequences. In [19] the residual video sequence was
the original HDR content. Such a stream can also contaadditionally filtered to remove the information that is not
a residual layer to further improve the quality of the HDRisible to the human eye.
reconstruction. Fig. 1 illustrates the general codingcstne Recently, several proposals for bit-depth scalability ehav
used to provide a backward compatible HDR video bitstreameen introduced to provide backward-compatible HDR video
Several proposals have been suggested to allow the abdviéstreams. These proposals incorporate backward-cafgat
mentioned HDR backward-compatibility function within theencoding of high fidelity video as an extension to the
scalable extension of the H.264/AVC video coding standakil264/AVC video encoding standard [8]-[10], [21]. The ex-
[7]-[15]. The contrast of the original HDR content is firstension includes tone-mapping SEI messages, which encode
guantized into the 8-bit range using a tone mapping opehe shape of the tone-mapping curve [8]. The scalable video
ator (TMO) to produce an LDR representation. The LDRoding (SVC) extension [22] is used to encode an additional
sequence is then compressed using a standard video encoeldual stream needed to reconstruct the informationdiost
(H.264/AVC). A larger dynamic range video can then b& tone-mapping, or to provide bit-depth scalability [910],
reconstructed by decoding the LDR layer and applying th20], [23]. The proposed tone mapping is meant to be used in
inverse of the tone-mapping operator to reconstruct the H@@mbination with the scalable video coding. In that case the
representation. The shape of the TMO can be encoded usiragkward compatible (tone-mapped) sequence is genenated b
supplemental enhancement information (SEl) messages [@)y operator, instead of being provided by a user, whichltgsu
[16]. Finally, a HDR residual signal can also be extracted arn better compression efficiency.
encoded in the bitstream as an enhancement layer. The primary goal of tone-mapping is to produce the best
In this paper, we address the problem of finding an optimglality low-dynamic range rendering of an HDR scene that
tone-curve for such a backward-compatible encoding schen®evisually close to the visual high contrast signal [24]5][2
To compute the tone-curve, we propose a method that mid-review of such operators can be found in [26, Ch. 6-8].
mizes the difference in the video quality between the ogbinLi et al. [27] first considered tone-mapping explicitly sotas
and the reconstructed HDR video . This difference results aptimize image compression. They used forward and inverse
quality loss and is due to tone-mapping, encoding, decodingwvelet-based tone-mapping (compressing and companding)
and inverse tone-mapping the original video. Minimizingsth in an iterative optimization loop to minimize HDR quality
difference would reduce the size of the HDR residual signlass due to quantizing the 8-bit tone-mapped image. As this
in the enhancement layer. We also achieve the primary goalméthod requires encoding the tone-mapped image using high
tone-mapping which is to produce an LDR image with a visudit-rates, it is thus not suitable for video. Lee et al. [28]
response as similar as possible to the original HDR imagextended the gradient domain tone-mapping method [29] to
Although the initial assumptions used in our approach posevideo applications using the temporal information obtdine
difficult optimization problem, we demonstrate that foriggd from the video decoding process. In [30] the performance of
compression distortions there exists a closed-form swiutiat several tone-mapping operators in terms of quality loss due
approaches the optimum. to forward and inverse tone-mapping was compared. Local
The remainder of this paper is organized as follows: dnne-mapping operators (spatially variant) were found ¢o b
overview of related work is presented in Section Il. In Satti more prone to quality loss than global operators (spatially
I, the proposed tone-mapping approach that considers-toinvariant). In this paper we compare the results of our study
mapping together with compression is discussed in detailith the two tone-mapping operators that performed the best
Section IV demonstrates and analyzes the performance of thethis study: the photographic TMO [31] and the adaptive
proposed methods. Finally, we draw our conclusions in 8ectilogarithmic TMO [32].
VI.

IIl. PROBLEM STATEMENT AND PROPOSEDSOLUTION

Il RELATED WORK In this section, we present the challenges of obtaining a

Backward compatible HDR video encoding has receivegbod quality reconstructed HDR representation in a baotwar
significant interest recently. Mantiuk et al. [3] derived@ar compatible HDR video encoding system and describe in
space of encoding HDR content based on the luminandetail the approach we propose towards overcoming these
threshold sensitivity of the human visual system. They conhallenges.
cluded that 10-12 bit luma encoding is sufficient to encode The performance of a backward-compatible HDR video and
the full range of visible and physically plausible luminancimage encoding system depends on the coding efficiency of the
levels. Their encoding, however, is not backward-compatibLDR base layer and the HDR enhancement layer. Performance
with the existing video decoding hardware. For still imaggains can be achieved by finding a TMO that preserves the
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necessary information in the LDR base layer so that after o

it passes through the inverse TMO process, the resultant . c .
HDR reconstructed signal is of high quality. The coding x Evaliation
efficiency of the base layer does not depend much on the 1

TMO used as most TMOs attain a similar level of contrast in
the LDR representation. Therefore, the performance gam li
in the effectiveness of the inverse TMO in producing a high
quality inverse tone-mapped HDR representation. Thisiin tu
determines the resulting HDR quality (when no enhancement
layer exists).

I
I

| Image/Video Image/Video
I Encoding Decoding
|

I

It can be deduced from above that the performance of the
whole system strongly depends on the TMO used to produce
the LDR representation which, in turn undergoes compres-
sion. Our proposed approach attempts to find the best global
(spatially invariant) tone-mapping curve that minimizée t Distortion
mean square error (MSEpetween the original HDR content
and the reconstructed version obtained after tone-mapping
compression, decompression, and inverse tone-mapping . Th
process is illustrated in Fig. 2.

(b)

Let [ denote the input HDR image/frame, andhe tone-
mapped LDR version as shown in Fig. 2a. bete the decoded _ _ _
LDR frame, and the reconstructed HDR frame produced aftéjlg' 2. System overview of the proposed tone-mapping methayl. (
. . emonstrates the ideal scenario where the actual H.264/Avsdding is
inverse-tone-mapping. Also Iétbe the set of parameters thakmployed. (b) shows the practical scenario which is adddebgehis paper.
control the tone-mapping operator, then our goal is to find
the tone-mapping parameters that minimize MSE, which we

~ bin
denote ag|l — I||3 using the norm notation. e

(I, vN)
>
The above optimization problem can be solved by ex$
haustive search, repeatedly tone-mapping, encodingdiero ‘g
and then inverse tone-mapping, until the best set of TMC
parameter$* is found. Even though this approach guarantees
an optimal solution, this framework requires an unaccdgtab
computational cost. To overcome this problem, we estimate |(i;,v1)
the distortion due to tone-mapping, encoding, decoding, an® @ i L Segment 7
inverse tone-mapping with a statistical distortion mod, men nee
illustrated in Fig. 2b. Then, we show that under certain
assumptions that are valid for natural images, an immediadg. 3.  Parameterization of a tone-mapping curve and the inntaThe

closed-form solution for this problem can be found. bar-plot in the background represents an image histogram teseompute
p()-

(lk1, vk41)

HDR values [ (log, of relative luminance)

In the following sections we consider only luminance/luma
channels. To tone-map color images, we use the same toage-Tone-Mapping Curve

curve for the red, green and blue color channels. Such aPpa global tone-mapping curve is a function that maps HDR
proach was shown to well preserve color appearance for m?u -

erate contrast compression [34]. Encoding of the enhanteme minance values to either the display's luminance rang, [2

layer (for the residual data) is not considered in this paples or directly to LDR pixel valueg. In this baper, we con§|der
. : .the latter case. The tone-mapping curve is usually contisuo

rationale comes from our effort to achieve the best possible .

. . . ahd non-decreasing. The two most common shapes for the
HDR reconstruction and thus the smallest possible residual : : N N .

. o ) ne curves are the sigmoidal (“S-shaped”) or a compressive

As a result, the cost of encoding any additional refinemen . . .

S power function with an exponent 1 (gamma correction).
layer would be minimized.

According to the Weber-Fechner law [35], the sensitivity

In the following subsections we describe how we pa-!we choose the mean square error as the HDR quality metric for its
rameterize the tone-mapping function, approximate em@dismphcny, despite its shortcomings in reflecting the petuap quality of
di . ith istical del and then find | images. Moreover, the results shown in Section IV demonsthatealthough
istortions with a statistical model and then find a closeriAf we minimize the MSE we also achieve image quality gains in terms of

solution for an optimal tone-curve. SSIM [33].
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of the human visual system to light is proportional to the Since a tone curve is uniquely defined by a sequence of
logarithm of luminance. Thus, our tone-mapping method wiils slopessy, ..., sy, the expected error value in (4) can be
operate on the logarithmic values of the luminance, which vexpressed as a functiais ). For a specific tone curve defined
refer to as HDR values & log,,(L) whereL is the luminance by the sequence of slopes, the pixel valuis calculated as in
of the HDR image). (2). In practice the pixel valuesand are integer valued, such
To keep the problem analytically tractable, we paramegerithat v, 0 € {0, 1, ..., Vymaz }, Whereas] and! are continuous
the tone-mapping curve as a piece-wise linear function withal variables. The rounding operation makes the encoding
the nodegi, v), as shown in Fig. 3. Each segménibetween error estimate in (4) a non-convex function. Therefore, we
two nodes(ly,vx) and ({x+1,vr+1) has a constant width in impose a convex relaxation on the encoding error function
HDR values equal té (0.1 in our implementation). The tone-by removing the rounding operator from the calculatiorvof
mapping curve can then be uniquely specified by a set Moreover, assuming that the compression error probalidity

slopes: independent of the LDR pixel value, we can simplify the
s = Uk41 — Uk’ 1) expression above by re_moving the depeno_len(_:y)(pfon v.
o Consequently, the continuously relaxed objective fumci®
which forms a vector of tone-mapping parametérdUsing Written as:
this parameterization, the forward tone-mapping funcii®n lmaz Vmas
defined as: Z Z (B;8%) — D)2 -pe(v—2)-pr(l) (5)
o(l) = (1 — L)-sx + o, @ Sl 90

The only unknown variable is the probability distributioh o
the compression errgic (v — ©), which can be estimated for
any lossy compression scheme. In Appendix A we model such
distribution for the H.264/AVC |-frame coding. However,

wherewv is the LDR pixel valuef is the segment correspond-
ing to HDR valuel, that isi;<I<lx11. The inverse mapping
function is then:

YT L for sy >0 we will show in Section 1lI-D that the distribution of the
[(v; 1) = 3) compression scheme error is not necessary to calculateca goo
’ Z Ipp(l) for s,=0, approximation of the encoding error.
LeSy

wheresy, € {s1..55°}. C. Optimization Problem

When the slope is zeros{ = 0), (v;s;) is assigned an  The optimum tone curve can be found by minimizing the
expected HDR pixel value for the entire rangg in which functione(s;) with respect to the segment slopes
the slope is equal zerg,, (1) is the probability of HDR pixel

i 6
valuel. aﬁ%?;“(s’“) ©)
subject to:
B. Satistical Distortion Model Smin<Sk<Sman  fOr k=1.N
As mentioned earlier in section lIl, accurately computing N @)
the distorted HDR value$ would be too computationally > $k0 = Vmas-

demanding. Instead, we estimate the eftbr- [||2 assuming

that the compression distortions follow a known probapilitThe first constraint restricts slopes to the allowable range
distributionpc.. Under this assumption, the expected value fhjle the second ensures that the tone curve spans exactly
the err0r||l—l\|2 is: the range of pixel values from 0 to,,,,. The minimum
B — 1121 = slope s.,in €nsures that the tone-mapping function is strictly
[ —113] = , - et .
increasing and thus invertible ari¢p; s;) can be computed.
The lack of this assumption introduces discontinuity ar@hlo

lmaz Vmaz ~ ) minima, impeding the use of efficient solvers. Singg;, is
S (Uw;sk) = 1) - pelu(l) = Blo(1) - pr(l), set to a very low value (below.5/6), this assumption has
I=lmin ©=0 no significant effect on the resulting tone-curves, whick ar

wherepc (v — ©|v) is the probability that the encoding errorounded to the nearest pixel values. Wih,., we ensure
equalsv — ©. Note that Egs. (2) and (3) show that batland/ that we do not try to preserve more information than what
are uniquely determined by the valuesl@ind, respectively. iS visible to the human eye. Assuming that the luminance
Therefore, the conditional probabilities for these twoiakles detection threshold equals 1% (/L = 0.01), we can write:
and their cqrrespondmg summations have been removed from Z(v T 1) — [(v; s1) > logyo(1.01), 8)
the calculation of the expected value of the error above.
The probability of the HDR pixel valug;, (1) is in practice SO that: )

found from a histogram of HDR values and the summation Smaz = (logyo(1.01)) 7. 9)
over! is performed for each bin of that histogram. The number,,

The derivation is also valid for other compression methodsh sas

of bins is greater than or equal to the number of tone'curV@ZM/AVC P-frame, B-frame and JPEG coding, which we show ia th
segments. supplementary materials.
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D. Closed-form Solution This problem can be solved analytically by calculating the

The distortion model in (5) gives a good estimate dirst order Karush-Kuhn-Tucker (KKT) optimality conditien
compression errors, but poses two problems for practic@ithe corresponding Lagrangian, which results in the follo
implementation in an HDR compression scheme: 1) it requirt¥ System of equations:

the knowledge of the encoding distortion distributign, and =2\ =
2) the optimization problem can only be solved numerically ﬁ LA=0
using slow iterative solvers. In order to reduce the cormiplex 53
of the optimization problem given in (7), we propose the fol- : (13)
lowing assumptions that allow us to cast a simpler optinorat =28 4\ =) ’
problem to which we can find a closed-form solution with N
almost no noticeable impact on the compression performance > sk — tmes =0
If we assume local linearity of the tone-curve, so that the k=1

slope at the non-distorted pixel valueand that at the distorted where \ is the Lagrange multiplier. The solution to the above
pixel valuev is the same, we can then substititg; s;;) and! system of equations results in the slopgsgiven by:
in the distortion model (5) using the inverse mapping functi

" pL/3
in (3 i i . _ YUmaz " Py,
(3), this gives Sp= (14)
lmaz Umax o — 5\ 2 0. > pi/d
e(si)m > Y pelv—1)-prl)- ( . ) . (10) F=1
=lmin =0 i Note that the expression derived in (14) does not consider
After reorganizing we get: the upper bound constraint imposed gnin (7). LetZ be the
Lnas [y Umes set of the index of a segment with a slope that exceeds the
e(s) ~ Z pLg ) . Z pe(v—17) - (v— @)2 upper bound. We overcome the upper bound violation using
=l Sk 520 the following adjustment:
o 0 (11)
p -
- Z L82 ' Var(v B U). Smax for Sk € I,
I=lpmin K
Since the variance dfy—#) does not depend on the slopgs sy = (Umm_ > Smamé> P/ (15)
it does not affect the location of the global minimumedg;,) e — for s ¢ T
and thus can be omitted when searching for the minimum. 5> pi/?

Our local linearity assumption holds in most cases for two
reasons. Firstly, the distortion distributipp: has high kurtosis IV. EXPERIMENTAL RESULTS AND DISCUSSION
(see appendix) so that most of the distorted pixels areylitcel ) ) i ) .
lie in the same segment as the non-distorted pix&econdly, 'In thls septlon we f|r§t yalldate the proposed. methoids: opti-
even if a distorted pixeb moves to another segment, the slopgiZation using the statistical model proposed in Sectio|I
of two neighboring segments are usually very close to ea@Ad the closed-form solution based on a simplified model
other. This assumption has been also confirmed by our resu‘ﬂ‘%r'ved in Section I11-D. Then, our models are futher Qad/
in which the tone-curves found using the accurate model frof@S€d on the generated tone curve and the distortion of the
(5) and a simplified model from (11) were almost the S‘,jm{gconstructed HDR content..Tht.a pgrformar)ce of our models
(see Section IV). Is also evaluated by comparing it W|th_eX|st|ng tone-magpin

The most important consequence of using the simplifigethods. We use H.264/AVC encoding as an example to
model from (11) is that the optimal tone-curve does not dépeA€monstrate the results. In the experiments below, all-tone
on the image compression error, as long as the compreséi%pped images are compressed/decompressed using the intra
distortions are not severe enough to invalidate the logal limode of the H.264/AVC reference software [36] except for
earity assumption. This means that the optimal tone-cuave dV-E vyhere inter-frame mode is also' used. To rgconstruct an
be found independently of the compression algorithm and fiPR image from a decoded LDR image, an inverse tone-
quality settings. mapping function is stored as a lookup table with each erttode

The constrained optimization problem defined in (6) caff'@9¢
now be re-written as follows:

N A. Model validation
arg min p—g
S1.SN 3 Sp

In this section, we validate that the statistical model of
(12) Section [lI-B results in a tone-curve that truly reflects the
ground-truth results. Ground-truth results are achievadgu
the ideal scheme illustrated in Fig. 2a, where the actual
H.264/AVC encoder and decoder are employed to find the
truly optimal piecewise linear tone curve. This ideal sckem
= is extremely computationally expensive, and its compjexit
the upper bounds of a segment, respectively. increases exponentially with the number of segments. Teemak

N
v
subject to Zsk = %,
k=1

lit1
wherep, = > pr(l), andl; andl,; define the lower and
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B. Dependence of the tone curves on QP

Next, we verify that the proposed statistical model can be
well approximated by the closed-form solution which proeiic
a tone curve that is independent of QP. The probability
distribution of the H.264/AVC compression errors, which is
%Image histogram [ a function of QP, is included in the statistical model pragabs

250

150

d h . . .
oronosed (staisical in Section 1lI-B. This suggests that the generated toneecurv

=B~ Proposed (closed-form)} should vary with the value of QP. However, we observed
from experiments on a large pool of HDR images encoded
at different QPs that the variation in QP has no significant
effect on the choice of an optimal tone curve. Fig. 5 illustsa
g Hﬂﬂﬂﬂﬂww . ‘ this observation with an example of two images and their
0 L om Lig minae 4 5 corre_spondlng tone curves derived from the statistical ehod
for different QP values (the larger the value of QP, the large
(@) the compression error). The figures show that the tone curves
HDR MSE vs. Bit Rate, Image: Memorial are not significantly affected by the variation of QP.
rgj S:r?:ggezrg?atislical)

-—B- - Proposed (closed-form) C. Further analysis of the closed-form solution

100

LDR pixel value

50

-15

The tone curve resulting from the closed-form solution
given by (14) can be generalized as follows:

v . 1/t
mazx * Py, (16)

N )
1
d- Z pk/t
k=1

In our closed-form solutiory, is set to be equal to 3. Note that
whent = 1, (16) is identical to the histogram equalization
= o L s 5 o PR el operation. Therefore, we will investigate the performante
Bit Rate (bits/pixel) the tone curves obtained from changing the expohen{(16).

(b) In the experiment, we set = 1, 2, 3, 4, 5, 10 and 20,

and compressed the tone-mapped image using H.264/AVC at

Fig. 4. Validation of the proposed models by comparison with ghound- different QPS, and evaluated the distortion of the recontgd
truth solution. The top figure, (a), shows the tone curves etetpusing the HDR image. In addition to HDR MSE, we also used the

statistical model, the closed-form solution and the grotroth optimization popular quality metric known as the Structural Similarityléx
for the image "Memorial”. The x axis denotes the HDR luminancehia

log-10 scale, and y axis is the LDR pixel value. (b) demorstrahe result (SSIM) [33] in order to find Wh_iCht V?l'Ue gives highest qua"t)/
of HDR MSE (in log10 scale) vs. bit rate (bits/pixel). The lemthe MSE for a particular quality metric. Fig. 6 shows the resulting

value, the better the image quality. average performance over 40 HDR images. The left row in
the figure indicates that our closed-form solutian={ 3) is
largely better than the histogram equalization method ()

the experiment computationally feasible, we divided theeto and outperforms all other cases for HDR M_S_E'_ This can
curve into four segments of equal width. That is, the dynamité €xPected, since our approach explicitly minimizes MSE.
range of each of the segments is identical. Then the ideapWVever, the same behavior cannot be expected from SSIM:

scheme is used to find our ground-truth four-segment torf3€ difference among all cases is minimal for light and meiu
curve. compression, while the case of€ 2) performs slightly better

_ for strong compression.
Fig. 4a demonstrates the tone curves generated by theom 5 practical point of view, HDR content is usually

statistical (Section IlI-B), the closed-form (Section-D) apd _prepared for high-quality visual experience where onlyntiig
the ground-truth approaches for the H.264/AVC quantizatiQy medium compression quantization is allowed. In this sens

parameter QP = 22. |t can be seen that the tone CUNRS reqyits demonstrated in Fig. 6 indicate that our cldeem-
produced by the proposed models are very close to the groungpi;tion ¢ = 3) guarantees good performance.
truth curve. Fig. 4b shows the rate-distortion result inmer

of bit rate vs HDR MSE. The results show that for different . ) o

encoding bit rates, the reconstructed HDR images resultifg Comparison with existing TMOs

from the two proposed models have very similar MSE rela- In this subsection, we compare the performance of the
tive to the ground-truth case. This further validates tlnat t proposed models to existing tone-mapping methods. The
performance of the ideal scenario can be closely estimateddhosen TMOs are the photographic TMO [31], the adaptive
our statistical model and that the local linearity assuorpti logarithmic TMO [32] and the display adaptive TMO [25].
we used to derive the closed-form solution is justified. In [30], a study was conducted to find how different TMOs

Sk —

HDR MSE (Log10)
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Tone Curves for the Analytical Model, Image: Desk

Tone Curves for the Analytical Model, Image: AtriumNight

250 |
250 T T — X [—T1image histrogram
—/1 Impagelglstrogram x < —e—QP=10
_E—gP:p ¥-o - 8-QP=22
= -. 200} ~A- QP= I y g
200 A~ QP=30 g 1 Q=% x
% QP=38 ¥ % QP38
o
o =
=] o] 1
S 150 1 >
3 2
é o
24
& 100 1 & |
&) 3

50

2 3 4 o4 3 2 A 0 1 2 3 4
HDR Log luminance HDR Log luminance

(@) (b)

Fig. 5. Tone curves generated using the statistical modél different QP values for the images "AtriumNight” and "DesRhe notation of the axis is the
same as Fig. 4a. The smaller the value of QP, the better the cesipmequality. 87 and 88 segments are used for "AtriumNight! @Desk” respectively.
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Fig. 6. Distortion measures for the reconstructed HDR imagesyuthe generalized solution (see (16)) with differentieal oft, averaged over 40 images.
The tone-mapped images are compressed with different qu@iRy= 10, 22 and 38), decoded and used to reconstruct HDR im&lgedeft row, (a), shows

the measurement of HDR MSE, where the smaller the value, thertibt# image quality. (b) compares the SSIM quality. Highel\E8hlues mean better
quality. For each of the 40 images, the segment width is set @.he
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Fig. 7. Comparison with other tone-mapping methods in terms oE MB8d SSIM (for the reconstructed HDR image) vs. bit rate,ayeal over 40 images.
The correlation between image quality and the distortion nmeass(MSE and SSIM) can be referred to the caption of FiguM$E and SSIM for all methods
represent the reconstruction error without the correatibthe residual/enhancement layer. In the experiment, themeegwidth of each image histogram is
set to be 0.1.

perform when the LDR is inverse tone-mapped. Of the TMQsgarithmic TMO were found to outperform other popular
that were compared, the photographic TMO and the adaptieme-mapping methods in backward-compatible HDR image
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Fig. 8. Rate-distortion curves, tone curves and tone-mappades for the image "AtriumNight”. The first row demonstrates tasulting tone-curves with
different TMOs, followed by the results for MSE and SSIM v&.riates; the second row shows tone-mapped LDR images usinydipesed statistical model
and the closed-form solution. The third row shows the toneped images using the existing tone-mapping methods. All the-toapped images shown are
compressed. The compression quantization parameters usatrfiomNight” is 10. The number of segments used for the hisaogiis 87.

compression. However, Display adaptive TMO is a recenbmpression. For HDR MSE = -3 (in logl0 scale), which
tone-mapping algorithm at the time of writing and it employsorresponds to QP = 25, we save about 50% of the bit-rate
a similar optimization loop as our technique. compared to the best performing competitive TMO for the
same quality. Fig. 7 also shows that the proposed stafistica
Fig. 7 compares the distortion of the reconstructed HDRodel results in a better MSE performance compared to the
image versus the compressed LDR bit rate for differesfosed-form solution.
TMOs, averaged over 40 images. This test demonstrates hovAlthough our models are designed for minimizing MSE, the
successful each TMO is at delivering a good quality HDIResults also indicate that the proposed TMOs show superior
by inverse tone mapping the corresponding LDR represquerformance for the advanced quality metric, SSIM. In terms
tation. The results show that our proposed methods cleadff SSIM, Fig. 7b shows that our proposed TMOs result in
outperform the other methods in terms of MSE. The differenee better performance and the improvement is sustained for
is not very large for low bit rates (heavy compression), biiigher bit rates.
the performance of our model dramatically improves when Fig. 8, 9 and 10 display the tone curve, rate-distortion
the compression reaches the point of the medium and lightrves and tone-mapped LDR images for three images. Ad-
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Fig. 9. Rate-distortion curves, tone curves and tone-mappeades for the image "Coby”. The notation is the same as Fig. 8.cbmpression quantization
parameters used for "Coby” is 22. The number of segments usetiddnistogram is 36.

ditional results for more images are included in the suppleempression is applied at the LDR layer. Therefore, we do
mentary material. The LDR images shown in these figur@st include performance evaluations relative to HDR VDP in
demonstrate that the images tone-mapped using our mettioid paper.

also provide good quality. To further demonstrate the gpali The computational complexity of most global tone mapping
of the LDR images generated by the proposed models, Fig. dderators, such as the photographic and the logarithmic ope
shows the distortion maps of the LDR images compared wisttors compared in our study, is linear to the number of pixels
their original HDR counterparts. The distortion maps wer®(N). The same holds for our closed form solution, in which
generated using the dynamic range independent imageyjuatlite most expensive part is computing an image histogram. The
metric [37], which is the only available computational netr solution based on the statistical model is more computaliypn
capable of comparing HDR and tone-mapped images. T@epensive because it requires several iteration for thieniyat-
metric visualizes the areas where the visible contrastss |dion procedure to converge. For comparison, the closed-for
(green color), or distorted (red color). The distortionspsia solution requires about 0.9 seconds and the statisticabapp
indicate that the proposed method causes less contrast B@sseconds to complete using non-optimized MATLAB code
than the other tested tone-mapping operators. on a 3GHz CPU computer.

The computer graphics community often uses a o ) _
perceptually-based image difference predictor, HDFE- Optimized tone-curves for JVT bit-depth scalable encoding
VDP [38], to compare a distorted HDR image to a referenceIn this section, we demonstrate the efficiency gains that
HDR image. We compared the different TMOs in terms afan be expected when the proposed tone-mapping technique
HDR-VDP and found that there is no consistent improvemeist used in combination with the JVT bit-depth scalable ex-
or degradation in performance of the different TMOs whetensions [22]. For that purpose, we tone-map the JVT stan-
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Fig. 10. Rate-distortion curves, tone curves and tone-nthjppages for the image "BristolBridge”. The notation is the saameFig. 8. The compression
quantization parameters used for "BristolBridge” is 38. Thenber of segments used for the histogram is 39.

dard sequences [39] using our closed-form method, and tHemmance for our method (closed-form solution) with and
compare the compression performance between the sequemdd®ut the temporal filtering, and the generic tone-magpin
generated by our method and the generic tone-mapping ussed for the JVT test sequences. The temporal filtering did
in the test sequences. not change significantly compression performance for these

The JVT test sequences [39] are provided as 10-Bfst sequences (compare black and red curves in Fig. 12).
extended dynamic range frames and the Corresponding T@.is is because the frames did not contain any abrupt scene
bit tone-mapped frames. The 10-bit frames contain gamri@anges that could cause flickering. For two sequences-(Free
corrected footage from a high-end camera that can captif@y and Waves) our method gave significant improvement
an extended dynamic range. We assume that the gam@yg' & generic tone-mapping that was not optimized for
correction has a similar effect as the logarithmic functioat Video compression (compare red and dashed-blue curves). Th
we apply to linear luminance values to account for the Web#pprovement is especially large for higher bit-rates. Hue t
law. Therefore, we use the 10-bit frames directly as input tBird sequence (Plane), the compression performance wgs ve
our algorithm. One important issue to consider is flickeringimilar for both methods. Slightly worse result for our math
which our method can cause when used on video sequend@smedium bit-rates can be explained by the approximations
This is because the computed tone-curves solely dependusgd in the closed-form solution. The tone-mapped sequence
scene content, which can abrupﬂy Change from frame mOVidEd by the JVT was coincidentally well conditioned for
frame. To prevent such flickering, we apply a low-pass filtafideo compression. However large improvements for the two
to the generated tone-curves, identical to that in [25]. F&¢mMaining sequences illustrate gains that can be expercted f

comparison, we also generate tone-mapped sequences with@ Proposed method when used in combination with the JVT
the temporal filter. bit-depth scalable coding.

Fig. 12 shows the comparison of the compression per-
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(a) Image: AtriumNight; distortion maps of tone-mapped images (no compression)
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(b) Image: Coby; distortion maps of tone-mapped images (no compression)
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Fig. 11. Distortion maps of the LDR images relative to the o@ddiHDR images. The LDR images evaluated have not been comgrdaseach of the
distortion maps, three colors denote three different tydedistortions: green for loss of visible contrast; blue fonglification of invisible contrast; red for
reversal of visible contrast. The higher intensity of a calorrelates with higher distortion of that type. In gengethé less colored regions and lighter color
intensity denote better LDR image quality.
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Fig. 12. Compression performance for the proposed method ugibdttve the JVT bit-depth scalable encoding. The comparisomade between the
closed-form solution of our method (red curve), the same mebubdvith the temporal filter that prevents flickering (blac&jhd the generic tone-mapping
used in the JVT test sequences (dashed-blue). The x-axigedetine bit rate in Mbit/s at 30Hz of frame rate, and the y-axtbe PSNR between the original
10-bit video and its inversely-tone-mapped version. 100n&eds are used in the histogram for each of three sequences.

V. DISCUSSION Thus, our method can lower the total bit rate for the bit-tept

Our proposed tone-mapping methods can directly improygalaple coding.
the compression efficiency of bit-depth scalable videomgdi  Although the primary goal of tone-mapping algorithms is
The proposed methods are designed to produce a betteoptimize the visual quality of the displayed LDR image,
reconstructed HDR representation. A direct consequencewd instead designed a tone-mapping operator that optimizes
this design objective is a reduction in the size of the highéme compression performance in the backward-compatible en
bit-depth enhancement layer which contains the differenceding scheme. Numerous algorithms in the literature have
between the reconstructed HDR image and the original omensidered the primary objective that explicitly focuses o
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producing good quality tone-mapped images. This group tfe probability that decoded pixel luma level has shiftedaby
algorithms include the photographic [31], logarithmic]32d factorv — ¢ from its original luma level.

display adaptive [25] TMOs considered in this paper. The For a specific imagep(v — ©) can be estimated by sub-
tone-curve that meets both objectives can be approximatealcting each pixel value of the de-compressed image from
by the linear combination of the tone-curves produced by otivat of the original image and then fitting a distribution for
method and these algorithms. Moreover, our study shows thia¢se differences by sampling such distribution on a laege s
the overall quality of images tone-mapped with our methoaf compression-distorted images. Letbe equal tow —v. We

is comparable to other tone-mapping algorithms and nofeund that the probability can be well approximated with the
of the tone-mapped images we generated was consideredsaseral Gaussian Distribution (GGD):

unacceptable. This means that for the applications that do

not require a finely adjusted backward-compatible layer, ou Ma,0) - a

. _ —[Xa,0) |lw—p|]®
method can be used directly. po(w: p,0,0) = 2T/ € Mewo)fw=pll™ = (17)

Our considerations are limited to global tone-curves used f . -
the entire frame while many modern tone-mapping methods/Nere/ denotes the meaw; is the standarql deviation and
use local (spatially varying) processing to retain moreaitet denotes the shape parameter. The functidrand I' are
and produce better looking images. However, the study ih B@(pressed as follows:
showed that local tone-mapping operators result in worge co 1
pression performance than global operators. This sugtests = . [
there is a trade-off between choosing a tone-mapping aperat g
that is optimal for preserving HDR information in comprasse oo
images and an operator that produces the best looking images L(m) = / "t eTtdt, 2 > 0, (19)
The study of such a trade-off and the application of local 0

tone mapping for compression is an interesting topic faurkit and (1_9)_ is called the gamma function. In order o find 2
work. GGD fitting, the values ofi, o and « need to be assigned.

Finally, tone-mapping each frame of a video sequen(],—@e distribution mean is set equal to 0 since all compression

independently can produce flickering since the tone-cuare Cschemes make every effort to keep decoded pixel values

change rapidly from frame to frame. This, however, can k}gﬁchanged. To find the standard deviatiorand the shape

avoided when a low-pass filter is applied on the sequencep(ﬁ‘rametero‘ that bes_t fit the image histograms, we use the
computed tone-curves, as done in [25]. least square regression. Note thatind « vary for different

images and different values of quantization parameters)QP
Fig. 13 shows example error distributions and the resulting
VI. ConcLUsIoN fitting curves.

In this paper, we showed that the appropriate choice ofwe collected the estimated and o for a large number of
a tone-mapping operator (TMO) can significantly improvignages and for different QPs using H.264/AVC intra-frame
the reconstructed HDR quality. We developed a statistioflode. Fig. 14 demonstrates the resultscofind o vs. the
model that approximates the distortion resulting from thgalue of QP for different images. We found thatand o can
combined processes of tone-mapping and compression. Usegwell described by the functions of QP:
this model, we formulated a constrained optimization peobl
that finds the tone-curve which minimizes the expected HDR o=a-QF —b-QP+c, (20)
MSE. The resulting optimization problem, however, suffers =1+ dPta) (21)
from high computational complexity. Therefore, we presdnt
a few simplifying assumptions that allowed us to reducwherea, b, ¢, d andg are constants equal to 0.00625, 0.12457,
the optimization problem to an analytically tractable fornd-2859, -0.1 and 1.32, respectively.
with a closed-form solution. The closed-form solution is We also modelled the error distributions for H.264/AVC
computationally efficient and has a performance compatigiedicted frames (P frames), bi-directional predictedntza
to our developed statistical model. Moreover, the closedi (B frames) and JPEG compression. We found that their com-
solution does not require the knowledge of QP, which maked’f€SSion errors can be well estimated by G_GD too. Please refe
suitable for cases where the compression strength is unkno the supplementary documents for details [40].
Although our models are designed to minimize HDR MSE,
the extensive performance evaluations show that the peopos REFERENCES
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