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Abstract—For backward compatible high dynamic range
(HDR) video compression, the HDR sequence is reconstructed by
inverse tone-mapping a compressed low dynamic range (LDR)
version of the original HDR content. In this paper, we show that
the appropriate choice of a tone-mapping operator (TMO) can
significantly improve the reconstructed HDR quality. We develop
a statistical model that approximates the distortion resulting from
the combined processes of tone-mapping and compression. Using
this model, we formulate a numerical optimization problem to
find the tone-curve that minimizes the expected mean square
error (MSE) in the reconstructed HDR sequence. We also develop
a simplified model that reduces the computational complexity of
the optimization problem to a closed-form solution. Performance
evaluations show that the proposed methods provide superior
performance in terms of HDR MSE and SSIM compared to
existing tone-mapping schemes. It is also shown that the LDR
image quality resulting from the proposed methods matches that
produced by perceptually-based TMOs.

Index Terms—high dynamic range imaging, bit-depth scalable,
tone-mapping, HDR video compression.

I. I NTRODUCTION

Natural scenes contain far more visible information than
can be captured by the majority of digital imagery and
video devices. This is because traditional display devicescan
only support a limited dynamic range (contrast) and color
gamut. New display and projection technologies, however,
employ narrow-wavelength LED light sources that expand the
boundaries of the displayable color gamut. This expansion
will be again vastly enlarged with the next generation display
technologies that will employ dual modulation [1] or backlight
dimming that enhance intra- and inter-frame contrast.

For video compression, these advances in display technolo-
gies have motivated the use of extended gamut color spaces.
These include xvYCC (x.v.Color) for home theater [2] and
the Digital Cinema Initiative color space for digital theater
applications. Yet, even these extended color spaces are too
limited for the amount of contrast that can be perceived by
the human eye. High dynamic range (HDR) video encoding
goes beyond the typical color space restrictions and attempts
to encode all colors that are visible and distinguishable tothe
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Fig. 1. General structure of the scalable approach used for backward-
compatible HDR video encoding. The base layer encodes an 8-bit LDR rep-
resentation of the HDR input. The enhancement layer encodes the difference
(residual) between the inverse tone-mapped base layer and the original HDR
source.

human eye [3], and is not restricted by the color gamut of
the display technology used. The main motivation is to create
a video format that would be future-proof, independent of a
display technology, and limited only by the performance of
the human visual system (HVS).

HDR images preserve colorimetric or photometric pixel
values (such as CIE XYZ) within the visible color gamut
and allows for intra-frame contrast exceeding 5-6 orders of
magnitude (106 : 1), without introducing contouring, banding
or posterization artifacts caused by excessive quantization.
The photometric or colorimetric values, such as luminance
(cd · m−2) or spectral radiance (W·sr−1·m−3), span much
larger range of values than luma and chroma values (gamma
corrected) used in typical video encoding (JPEG, MPEG, etc.).
The obvious representation for the colorimetric values are
floating point numbers, which, however, are impractical for
image and video coding applications. For that reason several
HDR color encodings and file formats have been proposed,
including the Radiance RGBE (.hdr) [4], OpenEXR (.exr) [5]
and LogLuv TIFF (.tiff) [6] file formats. They employ either
more efficient floating point coding (OpenEXR and RGBE)
or perceptually motivated compressive functions (LogLuv and
[3]), which extends a typical ’gamma correction’ to the entire
range of luminance values.

Although HDR image and video encoding offers truly
device-independent representation, the majority of existing
digital display devices can only support 8-bit video content.
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Therefore, high dynamic range video formats are unlikely to
be broadly accepted without the backward-compatibility with
these devices. Such backward-compatibility can be achieved
if the HDR video stream contains 1) a backward-compatible
8-bit video layer which could be directly displayed on existing
devices, and 2) additional information which along with this
8-bit layer can yield a good quality reconstructed version of
the original HDR content. Such a stream can also contain
a residual layer to further improve the quality of the HDR
reconstruction. Fig. 1 illustrates the general coding structure
used to provide a backward compatible HDR video bitstream.

Several proposals have been suggested to allow the above-
mentioned HDR backward-compatibility function within the
scalable extension of the H.264/AVC video coding standard
[7]–[15]. The contrast of the original HDR content is first
quantized into the 8-bit range using a tone mapping oper-
ator (TMO) to produce an LDR representation. The LDR
sequence is then compressed using a standard video encoder
(H.264/AVC). A larger dynamic range video can then be
reconstructed by decoding the LDR layer and applying the
inverse of the tone-mapping operator to reconstruct the HDR
representation. The shape of the TMO can be encoded using
supplemental enhancement information (SEI) messages [8],
[16]. Finally, a HDR residual signal can also be extracted and
encoded in the bitstream as an enhancement layer.

In this paper, we address the problem of finding an optimal
tone-curve for such a backward-compatible encoding scheme.
To compute the tone-curve, we propose a method that mini-
mizes the difference in the video quality between the original
and the reconstructed HDR video . This difference results in
quality loss and is due to tone-mapping, encoding, decoding
and inverse tone-mapping the original video. Minimizing this
difference would reduce the size of the HDR residual signal
in the enhancement layer. We also achieve the primary goal of
tone-mapping which is to produce an LDR image with a visual
response as similar as possible to the original HDR image.
Although the initial assumptions used in our approach pose a
difficult optimization problem, we demonstrate that for typical
compression distortions there exists a closed-form solution that
approaches the optimum.

The remainder of this paper is organized as follows: an
overview of related work is presented in Section II. In Section
III, the proposed tone-mapping approach that considers tone-
mapping together with compression is discussed in detail.
Section IV demonstrates and analyzes the performance of the
proposed methods. Finally, we draw our conclusions in Section
VI.

II. RELATED WORK

Backward compatible HDR video encoding has received
significant interest recently. Mantiuk et al. [3] derived a color
space of encoding HDR content based on the luminance
threshold sensitivity of the human visual system. They con-
cluded that 10-12 bit luma encoding is sufficient to encode
the full range of visible and physically plausible luminance
levels. Their encoding, however, is not backward-compatible
with the existing video decoding hardware. For still image

compression, backward compatibility can be achieved by
encoding a tone-mapped copy of the HDR image together
with a residual [17] or a ratio image [18] that allows the
reconstruction of the original HDR image. In [19] and [20] this
approach was extended for video sequences. A tone-mapping
curve was encoded together with the tone-mapped and residual
video sequences. In [19] the residual video sequence was
additionally filtered to remove the information that is not
visible to the human eye.

Recently, several proposals for bit-depth scalability have
been introduced to provide backward-compatible HDR video
bitstreams. These proposals incorporate backward-compatible
encoding of high fidelity video as an extension to the
H.264/AVC video encoding standard [8]–[10], [21]. The ex-
tension includes tone-mapping SEI messages, which encode
the shape of the tone-mapping curve [8]. The scalable video
coding (SVC) extension [22] is used to encode an additional
residual stream needed to reconstruct the information lostdue
to tone-mapping, or to provide bit-depth scalability [9], [10],
[20], [23]. The proposed tone mapping is meant to be used in
combination with the scalable video coding. In that case the
backward compatible (tone-mapped) sequence is generated by
our operator, instead of being provided by a user, which results
in better compression efficiency.

The primary goal of tone-mapping is to produce the best
quality low-dynamic range rendering of an HDR scene that
is visually close to the visual high contrast signal [24], [25].
A review of such operators can be found in [26, Ch. 6–8].
Li et al. [27] first considered tone-mapping explicitly so asto
optimize image compression. They used forward and inverse
wavelet-based tone-mapping (compressing and companding)
in an iterative optimization loop to minimize HDR quality
loss due to quantizing the 8-bit tone-mapped image. As this
method requires encoding the tone-mapped image using high
bit-rates, it is thus not suitable for video. Lee et al. [28]
extended the gradient domain tone-mapping method [29] to
video applications using the temporal information obtained
from the video decoding process. In [30] the performance of
several tone-mapping operators in terms of quality loss due
to forward and inverse tone-mapping was compared. Local
tone-mapping operators (spatially variant) were found to be
more prone to quality loss than global operators (spatially
invariant). In this paper we compare the results of our study
with the two tone-mapping operators that performed the best
in this study: the photographic TMO [31] and the adaptive
logarithmic TMO [32].

III. PROBLEM STATEMENT AND PROPOSEDSOLUTION

In this section, we present the challenges of obtaining a
good quality reconstructed HDR representation in a backward-
compatible HDR video encoding system and describe in
detail the approach we propose towards overcoming these
challenges.

The performance of a backward-compatible HDR video and
image encoding system depends on the coding efficiency of the
LDR base layer and the HDR enhancement layer. Performance
gains can be achieved by finding a TMO that preserves the



TRANSACTIONS ON IMAGE PROCESSING 3

necessary information in the LDR base layer so that after
it passes through the inverse TMO process, the resultant
HDR reconstructed signal is of high quality. The coding
efficiency of the base layer does not depend much on the
TMO used as most TMOs attain a similar level of contrast in
the LDR representation. Therefore, the performance gain lies
in the effectiveness of the inverse TMO in producing a high
quality inverse tone-mapped HDR representation. This in turn
determines the resulting HDR quality (when no enhancement
layer exists).

It can be deduced from above that the performance of the
whole system strongly depends on the TMO used to produce
the LDR representation which, in turn undergoes compres-
sion. Our proposed approach attempts to find the best global
(spatially invariant) tone-mapping curve that minimizes the
mean square error (MSE)1 between the original HDR content
and the reconstructed version obtained after tone-mapping,
compression, decompression, and inverse tone-mapping . This
process is illustrated in Fig. 2.

Let l denote the input HDR image/frame, andv the tone-
mapped LDR version as shown in Fig. 2a. Letṽ be the decoded
LDR frame, and̃l the reconstructed HDR frame produced after
inverse-tone-mapping. Also letθ be the set of parameters that
control the tone-mapping operator, then our goal is to find
the tone-mapping parameters that minimize MSE, which we
denote as||l − l̃||22 using the norm notation.

The above optimization problem can be solved by ex-
haustive search, repeatedly tone-mapping, encoding, decoding
and then inverse tone-mapping, until the best set of TMO
parametersθ∗ is found. Even though this approach guarantees
an optimal solution, this framework requires an unacceptable
computational cost. To overcome this problem, we estimate
the distortion due to tone-mapping, encoding, decoding, and
inverse tone-mapping with a statistical distortion model,as
illustrated in Fig. 2b. Then, we show that under certain
assumptions that are valid for natural images, an immediate
closed-form solution for this problem can be found.

In the following sections we consider only luminance/luma
channels. To tone-map color images, we use the same tone-
curve for the red, green and blue color channels. Such ap-
proach was shown to well preserve color appearance for mod-
erate contrast compression [34]. Encoding of the enhancement
layer (for the residual data) is not considered in this paper. The
rationale comes from our effort to achieve the best possible
HDR reconstruction and thus the smallest possible residual.
As a result, the cost of encoding any additional refinement
layer would be minimized.

In the following subsections we describe how we pa-
rameterize the tone-mapping function, approximate encoding
distortions with a statistical model and then find a closed-form
solution for an optimal tone-curve.

(a)

(b)

Fig. 2. System overview of the proposed tone-mapping method. (a)
demonstrates the ideal scenario where the actual H.264/AVC encoding is
employed. (b) shows the practical scenario which is addressed by this paper.

Fig. 3. Parameterization of a tone-mapping curve and the notation. The
bar-plot in the background represents an image histogram used to compute
p(l).

A. Tone-Mapping Curve

The global tone-mapping curve is a function that maps HDR
luminance values to either the display’s luminance range [25],
or directly to LDR pixel values. In this paper, we consider
the latter case. The tone-mapping curve is usually continuous
and non-decreasing. The two most common shapes for the
tone curves are the sigmoidal (“S-shaped”) or a compressive
power function with an exponent< 1 (gamma correction).

According to the Weber-Fechner law [35], the sensitivity

1We choose the mean square error as the HDR quality metric for its
simplicity, despite its shortcomings in reflecting the perceptual quality of
images. Moreover, the results shown in Section IV demonstratethat although
we minimize the MSE we also achieve image quality gains in terms of
SSIM [33].
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of the human visual system to light is proportional to the
logarithm of luminance. Thus, our tone-mapping method will
operate on the logarithmic values of the luminance, which we
refer to as HDR values (l = log10(L) whereL is the luminance
of the HDR image).

To keep the problem analytically tractable, we parameterize
the tone-mapping curve as a piece-wise linear function with
the nodes(lk, vk), as shown in Fig. 3. Each segmentk between
two nodes(lk, vk) and (lk+1, vk+1) has a constant width in
HDR values equal toδ (0.1 in our implementation). The tone-
mapping curve can then be uniquely specified by a set of
slopes:

sk =
vk+1 − vk

δ
, (1)

which forms a vector of tone-mapping parametersθ. Using
this parameterization, the forward tone-mapping functionis
defined as:

v(l) = (l − lk)·sk + vk, (2)

wherev is the LDR pixel value,k is the segment correspond-
ing to HDR valuel, that is lk≤l<lk+1. The inverse mapping
function is then:

l̃(v; sk) =















v − vk
sk

+ lk for sk > 0
∑

l∈S0

l·pL(l) for sk = 0 ,
(3)

wheresk ∈ {s1..sN}.
When the slope is zero (sk = 0), l̃(v; sk) is assigned an

expected HDR pixel value for the entire rangeS0 in which
the slope is equal zero.pL(l) is the probability of HDR pixel
value l.

B. Statistical Distortion Model

As mentioned earlier in section III, accurately computing
the distorted HDR values̃l would be too computationally
demanding. Instead, we estimate the error||l̃ − l||22 assuming
that the compression distortions follow a known probability
distributionpC . Under this assumption, the expected value of
the error||l̃ − l||22 is:

E[||l̃ − l||22] =

lmax
∑

l=lmin

vmax
∑

ṽ=0

(l̃(ṽ; sk)− l)2 · pC(v(l)− ṽ|v(l)) · pL(l),

(4)

wherepC(v − ṽ|v) is the probability that the encoding error
equalsv− ṽ. Note that Eqs. (2) and (3) show that bothv and l̃
are uniquely determined by the values ofl andṽ, respectively.
Therefore, the conditional probabilities for these two variables
and their corresponding summations have been removed from
the calculation of the expected value of the error above.

The probability of the HDR pixel valuepL(l) is in practice
found from a histogram of HDR values and the summation
over l is performed for each bin of that histogram. The number
of bins is greater than or equal to the number of tone-curve
segments.

Since a tone curve is uniquely defined by a sequence of
its slopess1, ..., sN , the expected error value in (4) can be
expressed as a functionε(sk). For a specific tone curve defined
by the sequence of slopes, the pixel valuev is calculated as in
(2). In practice the pixel valuesv andṽ are integer valued, such
that v, ṽ ∈ {0, 1, ..., vmax}, whereas,l and l̃ are continuous
real variables. The rounding operation makes the encoding
error estimate in (4) a non-convex function. Therefore, we
impose a convex relaxation on the encoding error function
by removing the rounding operator from the calculation ofv.
Moreover, assuming that the compression error probabilityis
independent of the LDR pixel valuev, we can simplify the
expression above by removing the dependency ofpC on v.
Consequently, the continuously relaxed objective function is
written as:

ε(sk) =

lmax
∑

l=lmin

vmax
∑

ṽ=0

(l̃(ṽ; sk)− l)2 · pC(v − ṽ) · pL(l) (5)

The only unknown variable is the probability distribution of
the compression errorpC(v − ṽ), which can be estimated for
any lossy compression scheme. In Appendix A we model such
distribution for the H.264/AVC I-frame coding2. However,
we will show in Section III-D that the distribution of the
compression scheme error is not necessary to calculate a good
approximation of the encoding error.

C. Optimization Problem

The optimum tone curve can be found by minimizing the
function ε(sk) with respect to the segment slopessk:

argmin
s1..sN

ε(sk) (6)

subject to:

smin≤sk≤smax for k = 1..N
N
∑

k=1

sk·δ = vmax.
(7)

The first constraint restricts slopes to the allowable range,
while the second ensures that the tone curve spans exactly
the range of pixel values from 0 tovmax. The minimum
slopesmin ensures that the tone-mapping function is strictly
increasing and thus invertible and̃l(ṽ; sk) can be computed.
The lack of this assumption introduces discontinuity and local
minima, impeding the use of efficient solvers. Sincesmin is
set to a very low value (below0.5/δ), this assumption has
no significant effect on the resulting tone-curves, which are
rounded to the nearest pixel values. Withsmax we ensure
that we do not try to preserve more information than what
is visible to the human eye. Assuming that the luminance
detection threshold equals 1% (∆L/L = 0.01), we can write:

l̃(v + 1; sk)− l̃(v; sk) > log10(1.01), (8)

so that:
smax = (log10(1.01))

−1. (9)

2The derivation is also valid for other compression methods such as
H.264/AVC P-frame, B-frame and JPEG coding, which we show in the
supplementary materials.
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D. Closed-form Solution

The distortion model in (5) gives a good estimate of
compression errors, but poses two problems for practical
implementation in an HDR compression scheme: 1) it requires
the knowledge of the encoding distortion distributionpC , and
2) the optimization problem can only be solved numerically
using slow iterative solvers. In order to reduce the complexity
of the optimization problem given in (7), we propose the fol-
lowing assumptions that allow us to cast a simpler optimization
problem to which we can find a closed-form solution with
almost no noticeable impact on the compression performance.

If we assume local linearity of the tone-curve, so that the
slope at the non-distorted pixel valuev and that at the distorted
pixel valueṽ is the same, we can then substitutel̃(ṽ; sk) andl
in the distortion model (5) using the inverse mapping function
in (3), this gives:

ε(sk) ≈

lmax
∑

l=lmin

vmax
∑

ṽ=0

pC(v − ṽ) · pL(l) ·

(

v − ṽ

sk

)2

. (10)

After reorganizing we get:

ε(sk) ≈

lmax
∑

l=lmin

pL(l)

s2k
·

vmax
∑

ṽ=0

pC(v − ṽ) · (v − ṽ)
2

=

lmax
∑

l=lmin

pL(l)

s2k
· V ar(v − ṽ).

(11)

Since the variance of(v−ṽ) does not depend on the slopessk,
it does not affect the location of the global minimum ofε(sk)
and thus can be omitted when searching for the minimum.

Our local linearity assumption holds in most cases for two
reasons. Firstly, the distortion distributionpC has high kurtosis
(see appendix) so that most of the distorted pixels are likely to
lie in the same segment as the non-distorted pixelv. Secondly,
even if a distorted pixel̃v moves to another segment, the slopes
of two neighboring segments are usually very close to each
other. This assumption has been also confirmed by our results,
in which the tone-curves found using the accurate model from
(5) and a simplified model from (11) were almost the same
(see Section IV).

The most important consequence of using the simplified
model from (11) is that the optimal tone-curve does not depend
on the image compression error, as long as the compression
distortions are not severe enough to invalidate the local lin-
earity assumption. This means that the optimal tone-curve can
be found independently of the compression algorithm and its
quality settings.

The constrained optimization problem defined in (6) can
now be re-written as follows:

argmin
s1..sN

N
∑

k=1

pk
s2k

subject to

N
∑

k=1

sk =
vmax

δ
,

(12)

wherepk =
lk+1
∑

l=lk

pL(l), and lk and lk+1 define the lower and

the upper bounds of a segment, respectively.

This problem can be solved analytically by calculating the
first order Karush-Kuhn-Tucker (KKT) optimality conditions
of the corresponding Lagrangian, which results in the follow-
ing system of equations:







































−2p1

s3
1

+ λ = 0
−2p2

s3
2

+ λ = 0

...
−2pN

s3N
+ λ = 0

N
∑

k=1

sk − vmax

δ = 0

, (13)

whereλ is the Lagrange multiplier. The solution to the above
system of equations results in the slopessk given by:

sk =
vmax · p

1/3
k

δ ·
N
∑

k=1

p
1/3
k

. (14)

Note that the expression derived in (14) does not consider
the upper bound constraint imposed onsk in (7). LetI be the
set of the index of a segment with a slope that exceeds the
upper bound. We overcome the upper bound violation using
the following adjustment:

sk =



























smax for sk ∈ I,

(

vmax−
∑

i∈I

smaxδ

)

·p
1/3
k

δ·
N
∑

j /∈I

p
1/3
j

for sk /∈ I.

(15)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section we first validate the proposed methods: opti-
mization using the statistical model proposed in Section III-B
and the closed-form solution based on a simplified model
derived in Section III-D. Then, our models are further analyzed
based on the generated tone curve and the distortion of the
reconstructed HDR content. The performance of our models
is also evaluated by comparing it with existing tone-mapping
methods. We use H.264/AVC encoding as an example to
demonstrate the results. In the experiments below, all tone-
mapped images are compressed/decompressed using the intra
mode of the H.264/AVC reference software [36] except for
IV-E where inter-frame mode is also used. To reconstruct an
HDR image from a decoded LDR image, an inverse tone-
mapping function is stored as a lookup table with each encoded
image.

A. Model validation

In this section, we validate that the statistical model of
Section III-B results in a tone-curve that truly reflects the
ground-truth results. Ground-truth results are achieved using
the ideal scheme illustrated in Fig. 2a, where the actual
H.264/AVC encoder and decoder are employed to find the
truly optimal piecewise linear tone curve. This ideal scheme
is extremely computationally expensive, and its complexity
increases exponentially with the number of segments. To make
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Fig. 4. Validation of the proposed models by comparison with the ground-
truth solution. The top figure, (a), shows the tone curves computed using the
statistical model, the closed-form solution and the ground-truth optimization
for the image ”Memorial”. The x axis denotes the HDR luminance inthe
log-10 scale, and y axis is the LDR pixel value. (b) demonstrates the result
of HDR MSE (in log10 scale) vs. bit rate (bits/pixel). The lower the MSE
value, the better the image quality.

the experiment computationally feasible, we divided the tone
curve into four segments of equal width. That is, the dynamic
range of each of the segments is identical. Then the ideal
scheme is used to find our ground-truth four-segment tone-
curve.

Fig. 4a demonstrates the tone curves generated by the
statistical (Section III-B), the closed-form (Section III-D) and
the ground-truth approaches for the H.264/AVC quantization
parameter QP = 22. It can be seen that the tone curves
produced by the proposed models are very close to the ground-
truth curve. Fig. 4b shows the rate-distortion result in terms
of bit rate vs HDR MSE. The results show that for different
encoding bit rates, the reconstructed HDR images resulting
from the two proposed models have very similar MSE rela-
tive to the ground-truth case. This further validates that the
performance of the ideal scenario can be closely estimated by
our statistical model and that the local linearity assumption
we used to derive the closed-form solution is justified.

B. Dependence of the tone curves on QP

Next, we verify that the proposed statistical model can be
well approximated by the closed-form solution which produces
a tone curve that is independent of QP. The probability
distribution of the H.264/AVC compression errors, which is
a function of QP, is included in the statistical model proposed
in Section III-B. This suggests that the generated tone curve
should vary with the value of QP. However, we observed
from experiments on a large pool of HDR images encoded
at different QPs that the variation in QP has no significant
effect on the choice of an optimal tone curve. Fig. 5 illustrates
this observation with an example of two images and their
corresponding tone curves derived from the statistical model
for different QP values (the larger the value of QP, the larger
the compression error). The figures show that the tone curves
are not significantly affected by the variation of QP.

C. Further analysis of the closed-form solution

The tone curve resulting from the closed-form solution
given by (14) can be generalized as follows:

sk =
vmax · p

1/t
k

δ ·
N
∑

k=1

p
1/t
k

, (16)

In our closed-form solution,t is set to be equal to 3. Note that
when t = 1, (16) is identical to the histogram equalization
operation. Therefore, we will investigate the performanceof
the tone curves obtained from changing the exponentt of (16).

In the experiment, we sett = 1, 2, 3, 4, 5, 10 and 20,
and compressed the tone-mapped image using H.264/AVC at
different QPs, and evaluated the distortion of the reconstructed
HDR image. In addition to HDR MSE, we also used the
popular quality metric known as the Structural Similarity Index
(SSIM) [33] in order to find whicht value gives highest quality
for a particular quality metric. Fig. 6 shows the resulting
average performance over 40 HDR images. The left row in
the figure indicates that our closed-form solution (t = 3) is
largely better than the histogram equalization method (t = 1)
and outperforms all other cases for HDR MSE. This can
be expected, since our approach explicitly minimizes MSE.
However, the same behavior cannot be expected from SSIM:
the difference among all cases is minimal for light and medium
compression, while the case of (t = 2) performs slightly better
for strong compression.

From a practical point of view, HDR content is usually
prepared for high-quality visual experience where only light
or medium compression quantization is allowed. In this sense,
the results demonstrated in Fig. 6 indicate that our closed-form
solution (t = 3) guarantees good performance.

D. Comparison with existing TMOs

In this subsection, we compare the performance of the
proposed models to existing tone-mapping methods. The
chosen TMOs are the photographic TMO [31], the adaptive
logarithmic TMO [32] and the display adaptive TMO [25].
In [30], a study was conducted to find how different TMOs
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Fig. 5. Tone curves generated using the statistical model with different QP values for the images ”AtriumNight” and ”Desk”.The notation of the axis is the
same as Fig. 4a. The smaller the value of QP, the better the compression quality. 87 and 88 segments are used for ”AtriumNight” and ”Desk” respectively.
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Fig. 6. Distortion measures for the reconstructed HDR images using the generalized solution (see (16)) with different values oft, averaged over 40 images.
The tone-mapped images are compressed with different quality (QP = 10, 22 and 38), decoded and used to reconstruct HDR images.The left row, (a), shows
the measurement of HDR MSE, where the smaller the value, the better the image quality. (b) compares the SSIM quality. Higher SSIM values mean better
quality. For each of the 40 images, the segment width is set to be0.1.
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Fig. 7. Comparison with other tone-mapping methods in terms of MSE and SSIM (for the reconstructed HDR image) vs. bit rate, averaged over 40 images.
The correlation between image quality and the distortion measures (MSE and SSIM) can be referred to the caption of Figure 6.MSE and SSIM for all methods
represent the reconstruction error without the correctionof the residual/enhancement layer. In the experiment, the segment width of each image histogram is
set to be 0.1.

perform when the LDR is inverse tone-mapped. Of the TMOs
that were compared, the photographic TMO and the adaptive

logarithmic TMO were found to outperform other popular
tone-mapping methods in backward-compatible HDR image
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(a) Image: AtriumNight; LDR images shown are compressed with QP = 10

Fig. 8. Rate-distortion curves, tone curves and tone-mappedimages for the image ”AtriumNight”. The first row demonstrates the resulting tone-curves with
different TMOs, followed by the results for MSE and SSIM vs. bit rates; the second row shows tone-mapped LDR images using theproposed statistical model
and the closed-form solution. The third row shows the tone-mapped images using the existing tone-mapping methods. All the tone-mapped images shown are
compressed. The compression quantization parameters used for”AtriumNight” is 10. The number of segments used for the histogram is 87.

compression. However, Display adaptive TMO is a recent
tone-mapping algorithm at the time of writing and it employs
a similar optimization loop as our technique.

Fig. 7 compares the distortion of the reconstructed HDR
image versus the compressed LDR bit rate for different
TMOs, averaged over 40 images. This test demonstrates how
successful each TMO is at delivering a good quality HDR
by inverse tone mapping the corresponding LDR represen-
tation. The results show that our proposed methods clearly
outperform the other methods in terms of MSE. The difference
is not very large for low bit rates (heavy compression), but
the performance of our model dramatically improves when
the compression reaches the point of the medium and light

compression. For HDR MSE = -3 (in log10 scale), which
corresponds to QP = 25, we save about 50% of the bit-rate
compared to the best performing competitive TMO for the
same quality. Fig. 7 also shows that the proposed statistical
model results in a better MSE performance compared to the
closed-form solution.

Although our models are designed for minimizing MSE, the
results also indicate that the proposed TMOs show superior
performance for the advanced quality metric, SSIM. In terms
of SSIM, Fig. 7b shows that our proposed TMOs result in
a better performance and the improvement is sustained for
higher bit rates.

Fig. 8, 9 and 10 display the tone curve, rate-distortion
curves and tone-mapped LDR images for three images. Ad-
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(a) Image: Coby; LDR images shown are compressed with QP = 10

Fig. 9. Rate-distortion curves, tone curves and tone-mappedimages for the image ”Coby”. The notation is the same as Fig. 8. The compression quantization
parameters used for ”Coby” is 22. The number of segments used forthe histogram is 36.

ditional results for more images are included in the supple-
mentary material. The LDR images shown in these figures
demonstrate that the images tone-mapped using our method
also provide good quality. To further demonstrate the quality
of the LDR images generated by the proposed models, Fig. 11
shows the distortion maps of the LDR images compared with
their original HDR counterparts. The distortion maps were
generated using the dynamic range independent image quality
metric [37], which is the only available computational metric
capable of comparing HDR and tone-mapped images. The
metric visualizes the areas where the visible contrast is lost
(green color), or distorted (red color). The distortions maps
indicate that the proposed method causes less contrast loss
than the other tested tone-mapping operators.

The computer graphics community often uses a
perceptually-based image difference predictor, HDR-
VDP [38], to compare a distorted HDR image to a reference
HDR image. We compared the different TMOs in terms of
HDR-VDP and found that there is no consistent improvement
or degradation in performance of the different TMOs when

compression is applied at the LDR layer. Therefore, we do
not include performance evaluations relative to HDR VDP in
this paper.

The computational complexity of most global tone mapping
operators, such as the photographic and the logarithmic oper-
ators compared in our study, is linear to the number of pixels
O(N). The same holds for our closed form solution, in which
the most expensive part is computing an image histogram. The
solution based on the statistical model is more computationally
expensive because it requires several iteration for the optimiza-
tion procedure to converge. For comparison, the closed-form
solution requires about 0.9 seconds and the statistical approach
20 seconds to complete using non-optimized MATLAB code
on a 3 GHz CPU computer.

E. Optimized tone-curves for JVT bit-depth scalable encoding

In this section, we demonstrate the efficiency gains that
can be expected when the proposed tone-mapping technique
is used in combination with the JVT bit-depth scalable ex-
tensions [22]. For that purpose, we tone-map the JVT stan-
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(a) Image: BristolBridge; LDR images shown are compressed with QP = 10

Fig. 10. Rate-distortion curves, tone curves and tone-mapped images for the image ”BristolBridge”. The notation is the sameas Fig. 8. The compression
quantization parameters used for ”BristolBridge” is 38. Thenumber of segments used for the histogram is 39.

dard sequences [39] using our closed-form method, and then
compare the compression performance between the sequences
generated by our method and the generic tone-mapping used
in the test sequences.

The JVT test sequences [39] are provided as 10-bit
extended dynamic range frames and the corresponding 8-
bit tone-mapped frames. The 10-bit frames contain gamma
corrected footage from a high-end camera that can capture
an extended dynamic range. We assume that the gamma
correction has a similar effect as the logarithmic functionthat
we apply to linear luminance values to account for the Weber
law. Therefore, we use the 10-bit frames directly as input to
our algorithm. One important issue to consider is flickering,
which our method can cause when used on video sequences.
This is because the computed tone-curves solely depend on
scene content, which can abruptly change from frame to
frame. To prevent such flickering, we apply a low-pass filter
to the generated tone-curves, identical to that in [25]. For
comparison, we also generate tone-mapped sequences without
the temporal filter.

Fig. 12 shows the comparison of the compression per-

formance for our method (closed-form solution) with and
without the temporal filtering, and the generic tone-mapping
used for the JVT test sequences. The temporal filtering did
not change significantly compression performance for these
test sequences (compare black and red curves in Fig. 12).
This is because the frames did not contain any abrupt scene
changes that could cause flickering. For two sequences (Free-
way and Waves) our method gave significant improvement
over a generic tone-mapping that was not optimized for
video compression (compare red and dashed-blue curves). The
improvement is especially large for higher bit-rates. For the
third sequence (Plane), the compression performance was very
similar for both methods. Slightly worse result for our method
for medium bit-rates can be explained by the approximations
used in the closed-form solution. The tone-mapped sequence
provided by the JVT was coincidentally well conditioned for
video compression. However large improvements for the two
remaining sequences illustrate gains that can be expected from
the proposed method when used in combination with the JVT
bit-depth scalable coding.
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(a) Image: AtriumNight; distortion maps of tone-mapped images (no compression)
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(b) Image: Coby; distortion maps of tone-mapped images (no compression)
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(c) Image: BristolBridge; distortion maps of tone-mapped images (no compression)

Fig. 11. Distortion maps of the LDR images relative to the original HDR images. The LDR images evaluated have not been compressed. In each of the
distortion maps, three colors denote three different types of distortions: green for loss of visible contrast; blue for amplification of invisible contrast; red for
reversal of visible contrast. The higher intensity of a color correlates with higher distortion of that type. In general, the less colored regions and lighter color
intensity denote better LDR image quality.
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Fig. 12. Compression performance for the proposed method used with the the JVT bit-depth scalable encoding. The comparison is made between the
closed-form solution of our method (red curve), the same methodbut with the temporal filter that prevents flickering (black),and the generic tone-mapping
used in the JVT test sequences (dashed-blue). The x-axis denotes the bit rate in Mbit/s at 30Hz of frame rate, and the y-axisis the PSNR between the original
10-bit video and its inversely-tone-mapped version. 100 segments are used in the histogram for each of three sequences.

V. D ISCUSSION

Our proposed tone-mapping methods can directly improve
the compression efficiency of bit-depth scalable video coding.
The proposed methods are designed to produce a better
reconstructed HDR representation. A direct consequence of
this design objective is a reduction in the size of the higher
bit-depth enhancement layer which contains the difference
between the reconstructed HDR image and the original one.

Thus, our method can lower the total bit rate for the bit-depth
scalable coding.

Although the primary goal of tone-mapping algorithms is
to optimize the visual quality of the displayed LDR image,
we instead designed a tone-mapping operator that optimizes
the compression performance in the backward-compatible en-
coding scheme. Numerous algorithms in the literature have
considered the primary objective that explicitly focuses on
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producing good quality tone-mapped images. This group of
algorithms include the photographic [31], logarithmic [32] and
display adaptive [25] TMOs considered in this paper. The
tone-curve that meets both objectives can be approximated
by the linear combination of the tone-curves produced by our
method and these algorithms. Moreover, our study shows that
the overall quality of images tone-mapped with our method
is comparable to other tone-mapping algorithms and none
of the tone-mapped images we generated was considered as
unacceptable. This means that for the applications that do
not require a finely adjusted backward-compatible layer, our
method can be used directly.

Our considerations are limited to global tone-curves used for
the entire frame while many modern tone-mapping methods
use local (spatially varying) processing to retain more details
and produce better looking images. However, the study in [30]
showed that local tone-mapping operators result in worse com-
pression performance than global operators. This suggeststhat
there is a trade-off between choosing a tone-mapping operator
that is optimal for preserving HDR information in compressed
images and an operator that produces the best looking images.
The study of such a trade-off and the application of local
tone mapping for compression is an interesting topic for future
work.

Finally, tone-mapping each frame of a video sequence
independently can produce flickering since the tone-curve can
change rapidly from frame to frame. This, however, can be
avoided when a low-pass filter is applied on the sequence of
computed tone-curves, as done in [25].

VI. CONCLUSION

In this paper, we showed that the appropriate choice of
a tone-mapping operator (TMO) can significantly improve
the reconstructed HDR quality. We developed a statistical
model that approximates the distortion resulting from the
combined processes of tone-mapping and compression. Using
this model, we formulated a constrained optimization problem
that finds the tone-curve which minimizes the expected HDR
MSE. The resulting optimization problem, however, suffers
from high computational complexity. Therefore, we presented
a few simplifying assumptions that allowed us to reduce
the optimization problem to an analytically tractable form
with a closed-form solution. The closed-form solution is
computationally efficient and has a performance compatible
to our developed statistical model. Moreover, the closed-form
solution does not require the knowledge of QP, which makes it
suitable for cases where the compression strength is unknown.
Although our models are designed to minimize HDR MSE,
the extensive performance evaluations show that the proposed
methods provide excellent performance in terms of SSIM
and the LDR image quality, in addition to an outstanding
performance in MSE.

APPENDIX A
H.264/AVC INTRA CODING ERROR MODEL(pC )

Let v, ṽ ∈ {0, 1, · · · , vmax}, be the original and decoded
values of a LDR pixel, respectively. We denote bypC(v − ṽ)

the probability that decoded pixel luma level has shifted bya
factor v − ṽ from its original luma level.

For a specific image,p(v − ṽ) can be estimated by sub-
tracting each pixel value of the de-compressed image from
that of the original image and then fitting a distribution for
these differences by sampling such distribution on a large set
of compression-distorted images. Letw be equal tov− ṽ. We
found that the probability can be well approximated with the
General Gaussian Distribution (GGD):

pC(w : µ, σ, α) =
λ(α, σ) · α

2 · Γ(1/α)
· e−[λ(α,σ)·|w−µ|]α , (17)

whereµ denotes the mean,σ is the standard deviation and
α denotes the shape parameter. The functionsλ and Γ are
expressed as follows:

λ =
1

σ
·

[

Γ(3/α)

Γ(1/α)

]1/2

, (18)

Γ(m) =

∫ ∞

0

tm−1 · e−tdt, z > 0, (19)

and (19) is called the gamma function. In order to find a
GGD fitting, the values ofµ, σ andα need to be assigned.
The distribution mean is set equal to 0 since all compression
schemes make every effort to keep decoded pixel values
unchanged. To find the standard deviationσ and the shape
parameterα that best fit the image histograms, we use the
least square regression. Note thatσ andα vary for different
images and different values of quantization parameters (QPs).
Fig. 13 shows example error distributions and the resulting
fitting curves.

We collected the estimatedα andσ for a large number of
images and for different QPs using H.264/AVC intra-frame
mode. Fig. 14 demonstrates the results ofα and σ vs. the
value of QP for different images. We found thatσ andα can
be well described by the functions of QP:

σ = a · QP2 − b · QP+ c, (20)

α = 1 + e(d·QP+g), (21)

wherea, b, c, d andg are constants equal to 0.00625, 0.12457,
1.2859, -0.1 and 1.32, respectively.

We also modelled the error distributions for H.264/AVC
predicted frames (P frames), bi-directional predicted frames
(B frames) and JPEG compression. We found that their com-
pression errors can be well estimated by GGD too. Please refer
to the supplementary documents for details [40].
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