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Abstract. A near-optimal reconstruction of the radiance of a High Dy-
namic Range scene from an exposure stack can be obtained by modeling
the camera noise distribution. The latent radiance is then estimated us-
ing Maximum Likelihood Estimation. But this requires a well-calibrated
noise model of the camera, which is difficult to obtain in practice. We
show that an unbiased estimation of comparable variance can be ob-
tained with a simpler Poisson noise estimator, which does not require
the knowledge of camera-specific noise parameters. We demonstrate this
empirically for four different cameras, ranging from a smartphone camera
to a full-frame mirrorless camera. Our experimental results are consistent
for simulated as well as real images, and across different camera settings.

Keywords: high dynamic range reconstruction, exposure stacks, cam-
era noise, computational photography

1 Introduction

The dynamic range of a scene may far exceed the range of light intensities that
a standard digital sensor can capture. The conventional way of capturing all the
information for such a High Dynamic Range (HDR) scene is with a stack of
images taken with different exposure times. These are later combined in post-
processing as part of the digital pipeline [19,24,10,12,2,9]. The probabilistic
photon registration and electronic processing in the camera will result in some
variation in the values recorded in each pixel, which manifests as noise in images.
Any method attempting to accurately estimate the scene radiance from multi-
ple images strives to increase the dynamic range while simultaneously reducing
such noise. In this paper, we provide a comprehensive analysis of how noise in
images affects the performance of several scene radiance estimators [8,10,12].
This work is restricted to static and well-aligned images and we do not consider
the problems of pixel alignment and deghosting [14, 25].

It has been shown that, under the assumption of a normal distribution, Max-
imum Likelihood Estimation (MLE) provides near-optimal estimates of the true
radiance values [2]. However, it does not offer a closed-form solution and running
non-linear solvers on large images is impractical. For this reason, MLE is typi-
cally approximated with an iterative Expectation Maximization (EM) algorithm
[10]. We show that such a solver does not always converge to the correct MLE
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solution and thus, may introduce an error in estimation. Another limitation of
MLE is that it is highly sensitive to the correct calibration of noise parame-
ters [2]. Motivated by these observations, we derive a much simpler, analytical
estimator based on the Poisson nature of photon noise that is independent of
camera-specific noise parameters and can, therefore, be used with any camera
without requiring prior knowledge of its noise characteristic.

Starting with a multi-source noise model [12,1], we describe a calibration
procedure to determine camera-specific noise model parameters. For experimen-
tation, we generated synthetic HDR stacks using physically accurate simulations
with the noise parameters of real cameras. We rely on such simulations to com-
pare the empirical biases and standard deviations of different estimators for the
scene radiance.

The main contributions of this paper are:

— A simple yet practical camera noise model, fitted for several cameras with
both large (full-frame) and small (smartphone) sensors.

— A recommendation to use an estimator based on the Poisson nature of photon
noise, which performs as well as near-optimal MLE estimators for the usable
dynamic range.

— An empirical validation showing that estimating the sensor noise character-
istic is unnecessary when merging HDR images in a noise-aware manner.

— An extended analysis showing that the recommended estimator is robust to
high camera noise and is a suitable choice for low-light HDR photography.

2 Related Work

Early HDR reconstruction methods [19,21,22,3,8] focused on inverting the
Camera Response Function (CRF). This is because camera manufacturers did
not historically provide access to unprocessed and uncompressed RAW images.
Most estimators proposed were weighted averages of the linearized pixel values,
where the weights were functions of the inverse and the derivative of the CRF.
Debevec and Malik proposed a hat-shaped function that assigns higher weights
to linearized pixels near the middle of the intensity range [8]. All these methods
do not account for camera noise and therefore provide sub-optimal estimations
of HDR pixel values. We refer the reader to chapter three of the book HDR
Video for a detailed discussion on Stack-Based Algorithms for HDR Capture
and Reconstruction [9].

The first HDR estimation method that used a noise model was proposed
by Tsin et al. [24]. They proposed to combine images with weights equal to
the ratios of the respective exposure times and standard deviations, measured
directly from the images. In a later work, Granados et al. [10] showed that Tsin
et al.’s method was sub-optimal under a compound-normal noise assumption as
pixels near the saturation point were given smaller than ideal weights despite
having the highest signal-to-noise ratio (SNR). Debevec and Malik’s hat-shaped
weighting function [8] also suffers from this limitation of under-weighting pixels
close to the saturation point. Kirk and Anderson [15] proposed an MLE based
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weighting scheme using a simple noise model. This was later extended to a more
complete model that incorporated noise from several sources by Hasinoff et al.
[12]. Granados et al. [10] noted that the true MLE-based estimator does not have
an analytical solution and used the EM algorithm for a more accurate estimation
than other similar works.

Aguerrebere et al. [2] compared the previously mentioned HDR reconstruc-
tion methods and analyzed how far each of their variances were from the the-
oretical Cramér-Rao Lower Bound (CRLB). They concluded that the variance
of MLE-based estimators, such as that of Granados et al. [10], were close to the
CRLB but the estimation could be easily affected by errors in noise parame-
ter calibration. In this paper, we show that a comparable performance can be
achieved by a simpler estimator without the need for camera calibration.

3 Image Formation Pipeline

We begin this section by explaining the capturing process, highlighting the prob-
abilistic nature of camera noise. A more comprehensive description can be found
elsewhere [7,1,16], but we include this overview for completeness. After intro-
ducing the sensor noise model, we describe the calibration procedure to estimate
camera-specific noise model parameters.

3.1 Sensor model

Photons from a scene are captured
by the camera lens and pass through
a Color Filter Array (CFA), before
being focused on an imaging sensor
such as a Charged Coupled Device
(CCD) or Complementary Metal Ox-
ide Semiconductor (CMOS) sensor as
depicted in Fig. 1. When exposed for a
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Fig. 1: The illustration of an image for-
mation pipeline that converts photons
from a scene into images. Variance in
pixel values arises from the noise added
at different stages (marked in red).

speed and ISO settings. Finally an Analog-to-Digital Converter (ADC) digitizes
the signal into discrete pixel intensities. Modern digital cameras provide ac-
cess to this uncompressed, minimally processed data directly from the electronic
imaging sensor in the form of RAW images.
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3.2 Noise model

RAW values are inaccurate measurements of the unknown scene radiance due
to the potential saturation of the sensor and the addition of noise at various
stages of the pipeline (Fig. 1). To correctly reconstruct a scene in a noise-optimal
manner, we model the probabilistic nature of noise in RAW images.

The process of photon registration by the sensor inherently follows a Poisson
distribution [13]. This leads to photon noise and is the first source of noise in
our model. The other contributions to noise are signal-independent. Because the
signal is amplified by some gain before reaching the ADC, the signal-independent
noise is typically split into pre-amplifier and post-amplifier components [12].
Readout noise captures the voltage fluctuations while accumulating electrons and
is amplified along with the signal. The last component, analog-to-digital noise,
is added after amplification and is attributed to the quantization error. Digital
sensors also exhibit fixed-pattern noise due to photo-response and dark-current
non-uniformity [1]. These sources of noise, however, are easy to compensate for
as they are fixed for every sensor and are often removed by camera firmware
from RAW images. We do not model fixed-pattern noise as it was not present
in the images captured by our cameras. Other random sources of noise, such
as temperature-dependent dark-current shot noise [7], are accommodated in the
signal-independent components. Moreover, previous works [12, 10] indicate that
a simple, statistical noise model is sufficient for the problem of HDR radiance
estimation.

Let the image be taken with an exposure time ¢t and gain g, and let Y (p) be a
random variable representing the final recorded value of the unknown scene radi-
ance ¢(p) at pixel p. The different sources of noise depicted in Fig. 1 motivate the
decomposition of this random variable into a sum of three independent random
variables. The first random variable is sampled from a Poisson distribution with
a parameter equal to the number of incoming photons; the other two are sampled
from zero-mean normal distributions. The first normally distributed component
accounts for readout noise and has a standard deviation equal to o eaq and the
second component, parameterized by 0.q4c, captures amplifier and quantization
noise. Assuming that the pixel is not saturated,

Y(p) ~ POIS(¢(]9) t) gkc +N(07 Jread) g kc + N(O; Uadc) kc . (1)

Each color channel has a different quantum efficiency for photon-to-electron
conversion due to differences in the sensitivity of the sensor across the light
spectrum. This is accounted for by the color coefficient k. where ¢ € {r,g,b}.
Gain affects the Poisson random variable and the first normal random variable,
while the k. is a multiplier on all three terms. The expected value and variance
of Y(p) can be written as:

E[Y(p)] =¢(p)tgk.
Var(Y(p)) = d)(p) tg2 kg + O-lgead 92 k‘lg + Uzdc kz
= E[Y(p)] gkc + Ufcad 92 kg + o—gdc kg .

photon noise static noise
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Fig. 2: The calibration target (top-left) and capture setup (bottom-left) used to
measure the variance of sensor noise, and the corresponding fitted noise models
for the green channel of different cameras (right). Relative standard deviation
is plotted against the average pixel value recorded on a logarithmic scale. We
control gain by changing ISO (different lines in each plot) since our noise equa-
tion (Eq. 2) models how the variance of a pixel changes with gain. The crosses
represent measurements and the lines are the model predictions. The RAW pixel
values of all the cameras sensors have been scaled to 14-bit values to enable the
comparison of different sensors.

Notice that the variance can be conveniently represented as a function of the
expected value. We refer to the signal-independent component of the variance as
static noise. Static noise is the same for all pixels of an image. When the radi-
ance of the scene is close to zero, static noise can result in the underestimation of
the true radiance, effectively making some pixel values negative. Camera man-
ufacturers typically add an offset, called black-level, to ensure that RAW pixel
values are positive. In all our experiments we subtract black level to operate on
the actual measurements.

3.3 Noise parameter estimation

Let us consider Eq. 2, the noise model, and how to estimate its camera specific
parameters. Rather than measuring the noise added from various sources indi-
vidually, we use a calibration target shown in the top-left image of Fig. 2. This
is constructed by overlaying a uniform light source (a light box) with Neutral
Density (ND) filters of different transmittance values so that each square region
emits a different radiance. The variance of pixels within each captured square
provides an empirical measure of noise for a specific value of radiance.

We extracted several data points (RAW pixel mean and standard deviation
pairs) and plotted them using crosses in Fig. 2. The mean of a large number
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Table 1: Noise parameters fitted for the tested cameras

Camera  Sensor Size Pitch Color Coefficients Crend Cade
(mm)  (pm) R kg i

Sony a7rl 359 x 24 4.86 0.327 0.33 0.32 0.7 0.04

Sony a7r3 35.6 x 23.8 4.5 0.422 0.384 0.389 0.705 3.028

Canon T11 22.3 x 14.9 4.69 1.363 1.183 1.153 0.928 5.005

Sony IMX345 8.27 x 5.51 1.4 0.303 0.313 0.321 1.063 2.373

of pixels contained within each square is used as a substitute for the expected
value to fit Eq. 2. To minimize the error in the expected value of the RAW pixel
intensity of each square, we computed the average of all pixels within each square
from a set of five images captured using the same settings. We captured several
such sets starting with a base ISO of 100 and an appropriate shutter speed such
that none of the pixels were saturated. We assume that ISO 100 corresponds to
the gain of 1. To capture subsequent sets of images, we doubled the ISO and
halved the shutter speed every time to maintain the same mean intensity and
to use the complete dynamic range of the camera sensor. The number of image
sets varied from camera to camera and was typically between five and seven.

We then used a nonlinear solver [17] to estimate the 5 parameters of the noise
model from Eq. 2. Very noisy samples with SNR less than one were excluded to
ensure convergence. The fit for different cameras, shown in Fig. 2, demonstrates
that the model can well explain the noise found in the tested cameras. Each plot
shows the measured relative noise against recorded digital intensity, as well as
fitted noise model for the green channel. Please refer to the supplementary ma-
terial to view similar plots for the red and blue channels and also the individual
contribution of each component of noise. For a better comparison, the digital
values from each camera were rescaled such that the maximum pixel value of
every image was set to 2'4 — 1. This is the largest bit-rate registered among
all our cameras. Estimated parameters for our calibrated cameras are given in
Table 1. Images with synthetic noise, generated using Eq. 1 can be found in the
supplementary material.

A few interesting observations can be made about the measured cameras. If
we define the dynamic range as the ratio between the largest registered value
and the smallest value whose SNR is 1 (corresponding to 0/Y =1 in the plots
in Fig. 2), we notice that the dynamic range differs substantially between the
sensors. But it should be noted that these sensors differ in their pixel pitches and
resolutions (see Table 1). Hence, the effective amount of noise in images from
the different sensors can vary even more when rescaled to the same resolution.
The dynamic range of every sensor is also reduced with increased gain (ISO).

3.4 Digital pipeline

The RAW image from the sensor passes through the digital Image Signal Process-
ing (ISP) pipeline starting with black-level subtraction, followed by demosaicing,
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denoising, tone-mapping and compression [6]. Most of these stages perform non-
linear operations and alter the original readings significantly. Any attempt to
recover the scene radiance should thus omit these digital operations. Working
with RAW values is preferable as they are linearly related to the scene radiance.
The only step needed is black-level subtraction to ensure this linear relationship
between radiance and pixel values.

4 HDR Radiance Estimation

In this section, we formulate the problem of estimating radiance values from a
number of noisy sensor measurements. We use upper case letters to represent
random variables and lower case letters to represent their observed values. Given
a stack of RAW images i = 1, 2, ..., N, let y;(p) represent the RAW value of
pixel p and image ¢ captured using a corresponding exposure time ¢; and gain
g;. To compensate for the differences in exposure time and gain, and to bring all
exposures in the stack to the same scale, we represent their relative radiance as:

Yi(p
Xip) = 8

3)

such that each x;(p) is an observation of the true value ¢(p). The expected value
of X;(p) is thus ¢(p) and its variance is obtained by scaling Eq. 2:

2 VaI‘(Y;' (p) ) ¢i (p) UrQead USdc
t2 g2 k2 t; t2 2 g?
All the estimators considered in this section assume that the images in the
stack are perfectly aligned. This can be achieved by a global homography-based
alignment [23] or a local alignment based on optical flow [18,26,4].

Uniform estimator The simplest estimator is the arithmetic mean of all the
available samples and is referred to as the Uniform estimator. This is obviously
a poor estimator as pixel values from different images in the stack are sampled
from different distributions and have different SNRs.

Hat-shaped estimator The widely-used weighting scheme proposed by De-
bevec and Malik [8] assigns higher weights to image pixel values in the middle of
the intensity range. The weights are functions of tone-mapped pixel values that
pass through the whole pipeline. Let the smallest and largest intensities that can
be recorded by a particular sensor be ymin and ymax respectively. Approximating
the CRF by the gamma function, the weights are equal to

1/~ 1/
Ymin + Ymax
b)) =yl e ya(p)/ < Ymin T
wl(p) = 1/~ +y1/'y (5)

1 ymin
Yk — 4 (D)7 + e, yi(p)7 > 5 :
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where € = 10710 is a small constant added to ensure that the weights are strictly
positive and prevent division by zero. 7y is generally set to 2.2. Pixels with val-
ues close to the noise floor or the saturation point are assigned lower weights.
The weights are applied to the linearized pixel values to obtain the Hat-shaped

estimator: N
>oisi wilp) z:(p)

¢hat (p) = Zf\/‘:1 w; (p)

(6)

4.1 Maximum Likelihood Estimation

Given the probabilistic image formation model described by Eq. 1, the best
estimators are based on MLE, which has been shown to be near-optimal for this
problem [2]. The problem is that the Probability Density Function (PDF) of
each X;(p) is a convolution of the three independent density or mass functions,
and does not have a close-form expression.

Variance-weighted estimator The noise-based estimator introduced in [15]
and extended in [12] assumes that the Poisson component of each X;(p) can be
approximated by a normal distribution. Eq. 1 then simplifies to the sum of three
normally distributed random variables, which is also normally distributed. The
log-likelihood function to be maximized simplifies to:

N N . B )
InLac(6(p)) = 3 In m+z ( z;p;?<pa)s<p>> . -

where oZ(p) is the variance of X;(p) from Eq. 4. When o?(p) and ¢(p) are
independent, the MLE has a simple form:

N zi(p)
oY, 5
N 1 :
2iz1 o (p)
2

The problem is that o?(p) and ¢(p) are not independent as o2(p) is a function
of ¢(p) due to photon noise (refer to Eq. 4). This requires another simplifying as-
sumption, that o?(p) can be estimated using a single observation y;(p). However,
when E[Y;(p)] is approximated by y;(p), the variance computed using Eq. 4, can
be zero or negative. This may happen because y;(p) can be negative and larger
in magnitude than the static noise. In our implementation, the weights U%(p) are

Qg’var (p) = (8)

replaced in such instances with a small value of e = 10710,

Iterative Expectation Maximization (EM) A simple method that produces
a computationally efficient MLE solution for Eq. 7 is the EM algorithm. In this
iterative approach, proposed by Granados et al. [10], ¢(p) is initialized as the
mean of y;(p). Then variances for every exposure are calculated according to
Eq. 4 and a better estimate of ¢(p) is found using the new variances according
to Eq. 8. The alternating procedure is repeated until converge.
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Full MLE The MLE for Eq. 7 can be estimated without making any additional
assumptions using a non-linear optimization method. Although this is the most
accurate estimator, running such a solver for each pixel is too computationally
expensive to be used in practice. We include this estimator to show how close
other estimator are to the true MLE solution.

Normal Photon Noise Estimator (NPNE) Eq. 7 has an analytical solution
if we assume that the variance is only due to photon noise and there is no static
noise. Such a simplification is justified because the overall noise is dominated by
the photon noise component for the usable range of ¢(p). Setting static noise to
zero and maximizing Eq. 7 yields the estimator:

) SN w2 p)ti - SNt + N2 = N
d)npnc(p) = \/ ! N ! . (9)
Zi:l L

Poisson Photon Noise Estimator (PPNE) Setting static noise to zero also
enables us to simplify the PDF of each X;(p) and derive an estimator that
maximizes the likelihood without the normal approximation to the Poisson dis-
tribution. This means that the random variables are sampled from:
_ Pois(é(p) ;)

t; '

And the new log-likelihood function to be maximized is:

Xi(p) (10)

N N N
In Lpois(@(p)) = Y _witi mot; — Y ¢ty — > In(it)!. (11)
=1 1=1 =1

The last sum does not depend on ¢(p) and can safely be ignored. The resulting
Poisson Estimator takes on the simple form:

S wi(p) ti (12)

vazl ti

Such an estimator is a classical choice in the imaging industry [2]. Here,
we demonstrated how it can be derived from the assumption of Poisson noise.
Additionally, in the supplementary material, we employ the Lehmann-Scheffe
theorem to show that PPNFE is the unique Minimum Variance Unbiased Esti-
mator (MVUE) under the assumption of zero static noise. This is an important
result, since estimators produced by MLE are generally not guaranteed to be
unbiased or to have the minimum variance.

dsppne (p) =

Estimators and noise parameters An advantage of NPNE and PPNE es-
timators that ignore static noise is that they do not require knowledge of the
noise parameters to provide accurate estimates. Eqs. 9 and 12 are functions of
x;(p), which depends only on the parameter k.. And, since k. is the same for all
exposures, it is effectively a constant multiplier, which does not affect relative
radiance values.
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Fig. 3: Monte Carlo simulation results: relative errors of the different estimators
(color lines) for logarithmically spaced values of the ground truth scene radiance,
¢ (z-axis). The errors arise due to non-zero biases (left column of plots) and non-
zero standard deviations (right column of plots). The simulation was performed
for three exposures, spaced five stops apart.

5 Comparison of Estimators — Simulation

We empirically compare the calibration-independent estimators, NPNE and
PPNE, to the classical Uniform and Hat-shaped estimators [8] and state-of-the-
art MLE-based estimators, Variance-weighted [12] and Iterative EM [10,2]. We
rely on Monte Carlo (MC) methods and simulate 10,000 HDR exposure stacks.
Each stack consists of three exposures separated by five stops in exposure time
and a constant gain of 8. Starting with 100 logarithmically-spaced ground truth
values of radiance, spanning a dynamic range of 24 stops, we simulated the prob-
abilistic camera capture process described in Section 3.2. Our noisy samples were
generated using the parameters of calibrated cameras from Table 1.

Fig. 3 shows relative errors of the compared estimators for three calibrated
cameras. We show relative quantities because they better correspond with per-
ceived magnitudes (Weber’s law). Notice that when the radiance ¢ is large, all
the estimators are unbiased, and the error is solely due to the relative standard
deviation. As expected, both the bias and standard deviation are highest for the
smartphone sensor (Sony IMX345), and smallest for the full-frame mirrorless
camera (Sony a7r3). The sawtooth patterns visible in the standard deviation
plots are due to the three exposures: the highest five stops are captured only in
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Fig.4: Relative errors of estimators for two additional scenarios for the Sony
«7r3: using a stack of images with different gain and same exposure time (left)
and the effect of increasing the static noise by 8x (right). The increased error
of the Hat-shaped estimator is due to a small negative bias (see left column of
Fig. 3).

images with the shortest exposure time and, therefore, the error drops at ¢ ~ 2'°
and ¢ ~ 2'* when data from the second and third images become available.
The results in Fig. 3 confirm that the estimators that do not account for noise
(Uniform and Hat-shaped) result in the highest bias and the highest amount of
noise. The bias of the Uniform estimator appears unstable at low radiance val-
ues because the estimate is dominated by noise. The popular Variance-weighted
estimator performs reasonably well for the high quality sensor (Sony «a7r3) but
results in a noisy estimate with a negative bias for the two other sensors. The
negative bias is due to clamping of weights since variances can not be negative.
As expected, the Full MLE achieves the best performance. It is, however, much
more computationally expensive. Notice that, the Iterative EM estimator does
not converge to the same solution as the Full MLE for lower radiance values.
The most interesting results are seen for the two estimators that account
only for photon noise. The estimator that assumes photon noise is normally dis-
tributed (NPNE) introduces a positive bias and results in a higher standard
deviation than the estimator that assumes Poisson photon noise distribution
(PPNE). Overall, the error of the PPNE is comparable with that of the Iter-
ative EM estimator, which is the best estimator used in practical applications.
The relative standard deviation of noise is only marginally higher than that of
the Iterative EM but only for very low pixel values. However, it has a major
advantage over the Iterative EM as it does not require knowledge of the noise
parameters. Therefore, it can be used with any camera without prior calibration,
as long as the camera noise characteristic can be well explained by our model

(Eq. 1).

5.1 Gain modulation

An alternate acquisition strategy for capturing HDR scenes is modulating gain
while maintaining the same exposure time and consistent motion blur across
images [11]. A detailed analysis of the increase in dynamic range and SNR with
the number of images captured for different strategies is presented in the supple-
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Fig.5: Results for real images: observed relative biases and standard deviations
for the green channel of two cameras. The sudden increase in standard deviation
at ¢ ~ 2!! for the Iterative EM estimator in the top-right plot is due to the
non-convergence of the EM algorithm for low inputs.

mentary material. Here, we compare the estimators on a stack of gain modulated
captures. The plots on the left of Fig. 4 indicate that the performance of most
estimators is very similar, except for the better performance of Full MLE for low
radiance and failure of the Hat-shaped estimator for medium radiance values.

5.2 Robustness to noise

We validated the performance of the estimators for exposure stacks captured
with increased camera noise. The noise in input image stacks was artificially
increased by amplifying the contribution of static noise 2x,4x and 8x the mea-
sured value for the Sony a/7r3 sensor. See the right side of Fig. 4 for the simulation
with 8% static noise and the supplementary for other multipliers. These addi-
tional MC simulations, confirm that the relative performance of PPNE does not
noticeably degrade with noise. Its relative error is very similar to the calibration-
sensitive Iterative EM estimator even when the input is very noisy. Since the
proportion of static noise is much greater in low-luminance conditions, these
results indicate that PPNE is suitable for low-light HDR photography.

6 Comparison of Estimators — Real Images

To make sure that our simulation results are not the outcome of wrong assump-
tions about camera noise, we measured the errors of different estimators on real
data using a stack of images of our calibration target (see Fig. 2-left). The stack
is composed of images captured with different exposure times and gains as de-
scribed in Section 3.3. The reference radiance ¢ was calculated as the average
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Fig.6: HDR reconstructions of outdoor scenes, “Trees” and “House”, using dif-
ferent estimators given exposure stacks of three images captured by the Sony
a7r3 at ISO 6400 and gamma-encoded for visualization (y = 2.2). The posi-
tive bias of the Hat-shaped estimator and NPNE as well as the negative bias
of the Variance-weighted estimator are visible in the dark regions. The images
produced by the iterative EM estimator and PPNFE are almost identical. Refer
to the supplementary for the “Cottage” and “Street” scenes. In all the scenes,
the shortest exposure times were deliberately set to a small value to produce
noisy images and test the robustness of the estimators.

of all pixels in each square of the target. Fig. 5 shows the error, due to bias and
standard deviation, of the HDR estimations for our calibrated cameras. Here we
see a similar pattern as in Fig. 3, where the standard deviation of the Variance-
weighted estimator is much higher than other MLE-based estimators and it has
a large negative bias at low radiance. The performance of the analytical PPNE
is very similar to that of the Iterative EM and the Full MLE.

6.1 Qualitative and quantitative comparison on complex images

Next, we show visual differences in HDR images due to the choice of the esti-
mator in challenging conditions. We captured several scenes with three exposure
times, spaced two stops apart. The images are processed with different estimators
and show substantial differences, as depicted in Fig. 6. The Hat-shaped weights
resulted in a noisy image with a positive bias (Fig. 6a) in dark regions. NPNE
substantially reduced the amount of noise but still produced the bias (Fig. 6b).
The Variance-weighted estimator produced a noisier image than NPNFE (Fig. 6¢)
and also introduced a negative bias. This made some pixel values darker than
they should be, resulting in an accidental increase in contrast. Merged images



14 P. Hanji et al.

PU-PSNR PU-SSIM HDR-VDP-3
House Trees Cottage Street |House Trees Cottage Street | House Trees Cottage Street
Hat-shaped | 20.266 13.241 18.516 9.019 | 0.636 0.489 0.51 0.302 | 5.719 5.39 5.013 4.638

Var-weighted| 16.412 [ISHOM 22.476 13.267 | 0.624 0.497 [0578] 0.512 |[61049] 5.94¢ [5I846] [BBET

NPNE  [[BH836] 17.451 13.588 [HBISEE| 0.681 [0.543 0.374 0.289 | 6.027 6l 5.391 5.304
PPNE | 24.428 18.876 [22:336] 13.361 | 0.72 0.538 0.607 [0/432] 6.255 6.253 5.904 5.802
EM 24.922 18339 23.059 13.962 | 0.72 [0:52] 0.614 0.524 | 6.273 6.37 5.983 5.928

Table 2: The reconstruction error for images in Fig. 6 and Fig. 4 in the supple-
mentary. The error is computed using HDR image quality metrics: PU-PSNR,
PU-SSIM [5] and HDR-VDP-3 [20] (v3.0.6, Q-values). For all the metrics, a
higher value denotes higher quality. In each column, the highest value has a gold
background, the second-best has a silver background and the third has a bronze
background. Overall, PPNF is the second-best estimator and it is narrowly out-
performed by the calibration-sensitive EM estimator.

Estimator

of PPNE (Fig. 6d) and the EM estimator (Fig. 6e) show the least amount of
noise and smallest bias. For additional indoor and outdoor scenes, please refer to
the supplementary material. Apart from the independence to noise-parameters,
another advantage over the Iterative EM estimator is the reduced computation
time of PPNE due to its analytical form. This does not make much of a dif-
ference for the simple logarithmic gradient, but is important for high-resolution
images captured by a DSLR.

Finally, we report quality scores for three HDR image quality metrics in
Table 2. The test images were obtained from three exposures, captured at high
ISO setting and merged with each estimator while the reference images were
obtained by merging five exposures with the EM estimator (the most accurate).
The results confirm the findings of other experiments; PPNE produces results
that are only marginally worse than those of EM, even though EM was used to
generate the reference images.

7 Conclusions

Although the state-of-the-art HDR reconstruction methods advocate using MLE
solvers that require accurate camera parameters, we demonstrate that they pro-
vide little advantage over the simple Poisson noise estimator, which does not
require camera noise calibration. We show that the Poisson noise estimator is
unbiased and its standard deviation is only marginally higher that of the near-
optimal MLE solution for very low pixel values. Such a difference is unlikely to be
noticed in complex images. For a simplified noise model, the Poisson estimator
is provably MVUE. Furthermore, we show how each estimator can be derived
making different simplifying assumptions about the camera noise model, and we
illustrate the relative errors of the estimators using gain modulation and under
increased static noise. In all our experiments, the Poisson noise estimator was
consistently among the best performing estimators.
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