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Abstract

In this work, we present an analysis of feature descriptors for objective image quality assessment. We explore a

large space of possible features including components of existing image quality metrics as well as many traditional

computer vision and statistical features. Additionally, we propose new features motivated by human perception

and we analyze visual saliency maps acquired using an eye tracker in our user experiments. The discriminative

power of the features is assessed by means of a machine learning framework revealing the importance of each

feature for image quality assessment task. Furthermore, we propose a new data-driven full-reference image quality

metric which outperforms current state-of-the-art metrics. The metric was trained on subjective ground truth

data combining two publicly available datasets. For the sake of completeness we create a new testing synthetic

dataset including experimentally measured subjective distortion maps. Finally, using the same machine-learning

framework we optimize the parameters of popular existing metrics.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Image Quality Assessment

1. Introduction

Image quality evaluation [WB06, PH11] is one of the fun-
damental tasks in imaging pipelines, in which the role of
synthesized images continuously increases. Modern render-
ing tools differ significantly in terms of the employed algo-
rithms, e.g., global illumination techniques, which are prone
to a great variability of visual artifacts [MKRH11]. Typically
such artifacts are of local nature, and their visual appearance
differs from more uniformly distributed image blockiness,
noise, or blur that arise in compression and broadcasting ap-
plications. Existing objective image quality metrics (IQM)
are specialized in predicting the level of annoyance caused
by such globally present artifacts, and conform well with
a single quality value, which is derived in mean opinion
score (MOS) experiments with human observers [SSB06].
While some of the objective IQMs such as structural simi-
larity index (SSIM) [WB06, Ch. 3], Sarnoff visual discrim-
ination model (VDM) [Lub95], or the high-dynamic range
visual difference predictor (HDR-VDP) [MKRH11] can lo-
cally predict perceived differences, they are not always reli-
able in rendering [ČHM∗12]. Clearly, a need arises for novel

∗ e-mail: mcadik@mpi-inf.mpg.de, project webpage:
http://www.mpii.de/resources/hdr/metric/

metrics that can locally predict the visibility of numerous
rendering artifacts, which are simultaneously present in a
single image.

Many traditional IQMs can be modeled with a generic
two-stage processing: (1) extraction of carefully designed
features from the image, and (2) pooling of those features
to correlate the aggregated value with subjective experi-
ment data. At the feature extraction stage typically multi-
resolution filtering with optional perceptual scaling is per-
formed (VDM, HDR-VDP), or alternatively local pixel
statistics are computed (SSIM). At the pooling stage the
Minkowski summation of feature differences with respect to
the reference solution (VDM, HDR-VDP), or the product of
feature differences with optionally controlled non-linearity
of each component (SSIM) are considered. However, such a
limited feature set might not be sufficient to correctly predict
the multitude of rendering-specific distortion types, espe-
cially given the variety of image content and nonuniformly
distributed, mixed distortion types in a single image. An-
other limiting factor is the rigid form of the pooling models,
which prevents the adaptation to local scene configurations
and artifact constellations.

In this work, we propose a novel data-driven full-

reference metric, which outperforms existing metrics in the
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prediction of visible rendering artifacts. First, we system-
atically analyze the features used in IQMs, and then intro-
duce a great variety of other features originating from the
fields of computer vision [TM08] and natural scene statis-
tics (NSS) [SBC05]. Additionally, we propose a few custom
features including saliency data captured with an eye tracker
(Section 3). We select the best suited features based on their
discriminative power with respect to the rendering artifacts
(Section 4). Our feature selection ensures that any distor-
tion type we investigate is covered by a sufficiently large
subset of supporting features. Instead of the feature pool-
ing used in IQMs, we refer to machine learning solutions
(Section 5), which learn an optimal mapping from the se-
lected feature descriptors to a local quality map with respect
to the perceptually measured ground-truth data [HČA∗12]
and [ČHM∗12] (jointly referred in this paper as the LOCCG
dataset for LOCalized Computer Graphics artefacts). This
way our metric implicitly encapsulates highly non-linear be-
havior of the human visual system (HVS) that was learned
from the perceptual data. To evaluate its generalization per-
formance we also test our metric on an independent synthetic
dataset, which we designed as a comprehensible tool that is
suitable for evaluating other local quality metrics as well. At
last, we use the same methodology to improve the perfor-
mance of SSIM and HDR-VDP in rendering applications,
by carefully tuning the weights associated with the features
at the pooling stage (Section 6).

2. Previous Work

In this section we focus on quality metrics, which employ
machine learning tools. While the metric proposed in this
paper belongs to the category of full-reference (FR) met-
rics as it requires a non-distorted copy of the test image,
in our discussion we refer also to non-reference (NR) and
reduced-reference (RR) metrics, where data-driven approach
is more common. For a more general discussion and applica-
tions of quality metrics we refer the reader to [WB06,PH11],
more graphics oriented insights concerning FR metrics can
be found in [MKRH11, ČHM∗12].

The utility of machine learning methods in image qual-
ity evaluation has mostly been investigated for NR metrics.
Typically it is assumed that the distortion type is known in
advance, and then based on the correlation of its amount
with human perception the image quality prediction is re-
ported. The blind image quality index (BIQI) [MB10] intro-
duces a distortion-type classifier to estimate the probability
of distortions that are supported by the metric, and then a
distortion-specific IQM is deployed to measure its amount.
NSS features are employed, whose correlation with subjec-
tive quality measure for each distortion is known, and an
SVM classifier is used for the quality prediction. NSS fea-
tures expressed as statistics of local DCT coefficients are
used in BLIINDS [SBC10], which can handle multiple dis-
tortions as well. Overall, the performance similar to the FR

PSNR metric (peak signal-to-noise ratio) is reported for the
LIVE dataset [SWCB06], but both BIQI and BLIINDS have
trouble for JPEG and Fast Fading (FF) noise distortions. Bet-
ter results have been reported in [LBW11] when instead of
NSS-based features, the more perceptually relevant features:
phase congruency, local information (entropy), and gradi-
ents are used. Better performance than BIQI and BLIINDS
is also reported for the learning-based blind image quality
measure (LBIQ) [TJK11] where complementary properties
of features stem from NSS, texture and blur/noise statistics.

In RR IQM that are used in digital broadcasting a chal-
lenge is to select a representative set of features, which are
extracted from an undistorted signal and transmitted along
with the possibly distorted image. Redi et al. [RGHZ10]
identify the color correlograms as suitable feature descrip-
tors for this purpose, which enable the analysis of alterations
in the color distribution as a result of distortions.

Machine learning in FR IQM remains mostly an uninves-
tigated area. Narwaria and Lin [NL10] propose an FR metric
based on support vector regression (SVR), which uses sin-
gular vectors computed by a singular value decomposition
(SVD) as features that are sensitive for structural changes
in the image. Remarkably, the proposed metric shows good
robustness to untrained distortions and overall outperforms
SSIM.

All discussed IQMs have successfully been tested with the
LIVE database [SWCB06] (and two other similar databases
[NL10]), where a single value with the quality score (MOS)
is available for each image. Such testing strategy precludes
any conclusions concerning the accuracy of artifact localiza-
tion and its visibility in the distortion map, which is the goal
of this work. While the number of images available in LIVE
approaches one thousand, the diversity of distortions is lim-
ited to five major classes with the emphasis on compression
distortions, noise, and blur, which structurally differ signif-
icantly from rendering artifacts. For each stimulus only one
distortion is present, which makes the metric performance
evaluation for distortion superposition less reliable.

Machine learning solutions have been used in the context
of rendered image quality assessment. Ramanarayanan et
al. [RFWB07] employed an SVM classifier to predict visual
equivalence between a pair of images with blurred or warped
environment maps that are used to illuminate the scene, but
problematic regions in the image cannot be identified. Her-
zog et al. [HČA∗12] proposed a NR metric (NoRM), which
is trained independently for three different rendering distor-
tion types. The metric can produce a distortion map, and
the lack of reference image is partially compensated by ex-
ploiting internal rendering data such as per pixel texture and
depth. In this work we focus on solutions that are based
merely on images, and can simultaneously handle more than
one artifact. We utilize perceptual data derived in [HČA∗12]
(a part of the LOCCG dataset) to train our FR metric and we
compare its performance with respect to NoRM.
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3. Features for Image Quality Assessment

Many FR (i.e. the undistorted reference image needs to be
available) IQMs have been developed that claim to predict
localized image distortions as observed by a human [WB06].
It was shown that there exists no clear winner and each met-
ric has its pros and cons for image distortions measured on
synthetic ground-truth datasets [ČHM∗12]. For better under-
standing of which parts of the varying metrics are important
for predicting image distortions, we decompose those met-
rics into their individual features and analyze their strength
by means of a data-driven learning framework. Moreover,
we introduce new complementary features commonly used
in information theory and computer vision [TM08]. Finally,
we acquire saliency maps using an eye tracker and include
these as a feature into our framework for the analysis of
the importance of visual attention. We implemented 32 fea-
tures of various kinds and origins spanning 233 dimensions
which, in our opinion, is an exhaustive set (see Table 1).

3.1. Features of Traditional Image Quality Metrics

In our analysis we include features inspired by popular
IQMs, including absolute difference (ad), SSIM [WB06,
Ch. 3], HDR-VDP-2 [MKRH11], and sCIE-Lab [ZW97].
For those metric features that are only computed at a single
scale (e.g., SSIM, ad), we additionally include their multi-
scale variants. This is achieved by decomposing the feature
maps into Gaussian or Laplacian pyramids (without subsam-
pling). Despite its simplicity, ad (or PSNR andMSE) are still
frequently used quality predictors. In contrast, SSIM mea-
sures differences using texture statistics (mean and variance)
rather than pixel values. It is computed as a product of three
terms:

SSIM(x,y) = [lum(x,y)]α · [con(x,y)]β · [struc(x,y)]γ, (1)

which are a luminance term lum, a contrast term con, and
a structure term struc (see Fig. 8) computed for a block of
pixels denoted by x and y. We include each SSIM term as a
separate feature: ssim lum, ssim con and ssim struct. Simi-
larly, we include all frequency bands of HDR-VDP-2 differ-
ences and their logarithms (more details in Section 6.2), and
denote them as hdrvdp band and hdrvdp band log.

We also introduce a few variations of the SSIM contrast
components, which we found to be well correlated with sub-
jective data. The standard contrast component is expressed
as: con(x,y) = 2σx σy+C2

σ2
x+σ2

y+C2
, where σx and σy are the per-block

variances in the test and reference images, and C2 is a pos-
itive constant preventing division by zero. The product in
the nominator introduces a strong non-linear behavior; the
increase of contrast (variance) and decrease have different
effect on the value of the component. Marginally better re-
sults can be achieved if the contrast difference is expressed

as: conbal(x,y) =
(σx−σy)

2
√

σ2
x+σ2

y+ε
, where ε is a small constant

Feature Name Dim. Multi Import. Import. Import. Import.

scale multi-dim. multi-dim. scalar scalar
(greedy) (stacking) (dec. trees) (AUC)

1 ad [Sec.3.1] 11 3

2 bow [Sec.3.2] 32 1.0 1.0
3 dense-sift diff [BZM07] 1 0.72047 0.86216
4 diff [Sec.3.3] 11 3 0.48596 0.66906
5 diff mask [Sec.3.3] 1 0.19609 0.85772
6 global stats [Sec.3.3] 5
7 grad dist [Sec.3.3] 1
8 grad dist 2 [Sec.3.3] 1 0.32785 0.66382 0.85919
9 Harris corners [HS88] 12 3 0.76699
10 hdrvdp band [MKRH11] 6 3 0.68933 0.85035
11 hdrvdp band log 6 3

12 hog9 [DT05] 62 0.46443
13 hog9 diff [Sec.3.2] 1 0.32178 0.67821
14 hog4 diff [Sec.3.2] 1
15 location prior [Sec.3.4] 2
16 lum ref [Sec.3.3] 11 3 0.58963
17 lum test [Sec.3.3] 11 3 0.21429
18 mask entropy I [Sec.3.3] 1 0.40419 0.52820 0.99389 0.86358
19 mask entropy II [Sec.3.3] 5 3 1.0 0.67035 0.86676
20 patch frequency [Sec.3.4] 1 0.41590
21 phase congruency [Kov99] 10 3 0.19712
22 phow diff [BZM07] 1
23 plausibility [Sec.3.4] 1 0.32051
24 sCorrel [Sec.3.3] 1 0.18956 0.8496
25 spyr dist [Sec.3.3] 1 0.85793
26 ssim con [WBSS04] 11 3 0.8496
27 ssim con inhibit [Sec.3.1] 1 0.44840 0.84517
28 ssim con bal [Sec.3.1] 1
29 ssim con bal max [Sec.3.1] 1
30 ssim lum [WBSS04] 11 3 0.58791
31 ssim struc [WBSS04] 11 3 0.18681 0.53080 0.65608 0.86484
32 vis attention [Sec.3.5] 1

Metric performance (AUC) 0.880 0.897 0.916 0.892

Table 1: Left to right: implemented features, their dimen-

sionality, scale selection, estimated normalized importance

for best joint features, and one-dimensional sub-features

(only the best sub-feature importance is reported for scalar

selection methods), see Section 4. The importance of the se-

lected features is color-coded (from blue to green to red).

For each set we show the performance (area under the ROC

curve for the LOCCG dataset) of a data-driven metric uti-

lizing only the selected features (Section 5). Notice that only

ten best features in each column are reported for clarity.

(0.0001). We denote this feature as ssim con bal. The de-
nominators in these expressions are effectively responsible
for contrast masking, which reduces sensitivity to contrast
changes with increasing magnitude of the contrast. Such
masking can be determined by the image of higher contrast

(test or reference): conbalmax(x,y) =
(σx−σy)

max(σx,σy)+ε
. We de-

note this feature as ssim con bal max. Finally, we observed
that individual distortions are more noticeable when isolated,
rather than uniformly distributed over an image. This ef-
fect can be captured by the inhibited contrast feature (ssim

con inhibit): coninhibit(x,y) =
con(x,y)
con(x,y)

,where con(x,y) is the
mean value of the structural component in the image.

3.2. Computer Vision Features

Much research on features comes from the field of computer
vision. Therefore, we analyze popular features from com-
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puter vision in the mutual spirit “what’s good for computer

vision may also help human vision” and vice versa. In par-
ticular, we consider the following features for image quality
assessment: bag-of-visual-words (bow) [FFP05], histogram-
of-oriented-gradients with 9 orientation bins (hog9) [DT05],
the Euclidean distance between hog9 (coarse version hog4),
dense-SIFT [BZM07], pyramid-histogram-of-visual-words
[BZM07] computed for test and reference images denoted as
hog9 diff (hog4 diff ), dense-sift diff, phow diff, respectively,
Harris corners [HS88], and phase congruency [Kov99].

Bag-of-visual-words (bow) is perhaps the most com-
monly used feature in computer vision with a whole field
of research devoted to it. Briefly, the typical bow feature ex-
traction pipeline consists of two steps: first, the computation
of a dictionary of visual words and second, encoding an im-
age with a histogram by pooling the individual dictionary re-
sponses on the image. The strength (and weakness) of bow is
that it ignores the location of sub-image parts making it in-
variant to global image constellation and thus requiring less
training data in supervised learning.

We compute the bow feature on the error-residual image,
i.e., difference between test and reference image. To gener-
ate the dictionary we use a set of artifact-reference image-
pairs and randomly extract normalized pixel patches of size
np× np pixels (np = 8) from all residual images. Then, we
run k-means clustering on the patches using the L2-distance
metric to generate k = 200 clusters from which we then ex-
tract a smaller dictionary (kd = 32) by iteratively removing
the cluster with the highest linear correlation. The remain-
ing clusters form the visual words of the dictionary. To en-
code a new image-pair using our dictionary, we first compute
the correlation of the error-residual image with each visual
word and for each pixel we store the index of the visual word
with the maximum response, which is pooled to build a his-
togram of kd bins. In contrast to the traditional bow we do
not compute one histogram for the entire image but a his-
togram for each pixel by pooling the responses in a local
window (4×np pixels) weighted by a Gaussian with σ = np.

3.3. Statistical Features

As shown in [ČHM∗12] and [WBSS04] simple statistics
may be powerful features for visual perception. We include
both local and global statistics for an image. As local statis-
tics we compute non-parametric Spearman correlation per
6× 6 pixel block (sCorrel), parametric correlation is cap-
tured by the SSIM structure term (ssim struc), the gradient
magnitude distance (grad dist) between test and reference
image, the sum of squared distances between test and refer-
ence image decomposed in a steerable pyramid (spyr dist),
and visual masking computed by a measure of entropy (mask
entropy I), which is computed per 3× 3 pixel block as the
ratio of the entropy in the residual-image block x−y to the

entropy in the reference-image block y:

Hmask(x,y) =
∑i, j p(xi j− yi j) log2 p(xi j− yi j)

∑i, j p(yi j) log2 p(yi j)
, (2)

where p(xi j − yi j), p(yi j) is the probability of the value
of pixel (i, j) in the normalized residual-, reference-image
block, respectively. We also include a multi-scale version of
this feature with larger window size (5×5) denoted as mask
entropy II. For completeness we also add the luminance of
the pixel in the test image (lum test) and reference image
(lum ref ), as well as the signed difference (diff ) at varying
image scales as individual scalar features.

In order to see whether global image distortions influence
the perception of local artifacts, we add global distortion
statistics to our analysis that is computed over the entire im-
age. Specifically, we compute the mean, variance, kurtosis,
skewness, and entropy of the distortions in the entire image,
which are grouped into one feature class denoted as global
stats in Table 1.

0.2 0.4 0.6 0.8 10

Figure 1: Plausibility (middle) and the patch frequency fea-

ture (right) for the apartment image in LOCCG dataset. Note

how repeating structures in the image (e.g., edges and tex-

ture on the floor) receive high values.

3.4. High-level Visual Features

The features described so far are “memory-less” and only
of local nature meaning that the information content is re-
stricted to a small image region around the sample point.
However, the perception of image distortions is largely de-
pendent on the higher-level human vision following Gestalt
laws and learned scene understanding. While a simulation of
higher-level human vision is computationally intractable, we
added a few features that mimic the global impact of local
distortions on the perception of artifacts that is beyond local
pixel statistics.

In the LOCCG dataset we observed that some artifacts are
subjectively less severe than others depending on the likeli-
hood that such an artifact pattern could also occur in ref-
erence images (e.g., darkening in corners). We denote such
a phenomenon as artifact plausibility. In order to approxi-
mately model artifact plausibility we make use of a larger
independent dataset of reference photos (the LIVE and La-
belme datasets [SWCB06,RTMF07]) from which we sample
random sub-images referred to as patches of size 16× 16
pixels in a pre-process. Since we are mainly interested in
the structural similarity of patches, we make patches con-
trast and brightness invariant by subtracting the mean lu-
minance and dividing by the standard deviation. Moreover,
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to make later searching efficient, we map these contrast-
normalized patches to a truncated DCT basis (12 out of 255
AC-coefficients). For this pool of random patches we build
an index data structure for efficiently searching the nearest
neighbors. Then, for each sample point in a distorted image
we extract a patch following the same steps as in the pre-
process and query the k-nearest neighbor patches (k= 16) in
this database using the L1-distance. Given the distance to the
k-th nearest neighbor, we compute an estimate of the proba-
bility density for the query patch in the world of all images,
which becomes a new feature denoted as plausibility.

Inspired by non-local means filtering, we additionally es-
timate the occurrence frequency of a local image patch by
searching for the most similar patches contained in the same
image rather than in an independent database as for the plau-
sibility feature. This way, patches with common structure
(e.g., edges, repeating texture) receive higher values than
patches with rare patterns in the same image, see Fig. 1. This
feature is denoted as patch frequency.

We are also interested in analyzing whether the distribu-
tion of the locations of artifacts within an image has an effect
on the visibility of local artifacts. Therefore, we compute the
first central moments of the artifact distribution in the image,
i.e., we compute the mean, variance, kurtosis, and skewness
of the artifact distance to the center of the image, which is
summarized as location prior in Table 1.

3.5. Visual Saliency (Eye Tracking)

Another potentially important cue for the perception of lo-
cal artifacts may be saliency. To estimate its importance for
image quality assessment, we explicitly modeled saliency
by employing an eye tracker in a user experiment. Low-
resolution saliency maps were generated from the recorded
gaze points per image that represent the mean visual explo-
ration, which is stored as a feature denoted by vis atten-

tion. In the experiment, we were showing images from the

0.2 0.4 0.6 0.8 10

Figure 2: The new visual attention dataset (examples for

scene dragons). For each image from the original LOCCG

dataset (left), we measure the average saliency map (right).

LOCCG dataset to observers. The observers were asked to
remember the details of the image without any top-level task.
The eye tracker collected the gaze data for each image pre-
sented for 12 seconds. The answers to these questions were
not analyzed and did not affect the results. We calibrated the

eye tracker before each set of 5 images to increase the ac-
curacy of the gaze estimation. The observers were asked to
use the chin rest to stabilize the head position relative to the
display. The experiment was conducted for 13 observers of
age 20 to 43 years (12 males and 1 female).

The gaze data represents the positions of the gaze points in
screen coordinates. For an individual observer we computed
the fixation points based on the I-DT technique [Wid84]
(with dispersion and duration equal to 100 pixels and 250 ms
respectively). The fixation maps were blurred using a low-
pass Gaussian filter (σ=20 pixels) to create the saliency maps
called heat maps. These maps were averaged and normalized
for all observers to prepare one heat map per stimulus image,
see Fig. 2.

Our experimental setup consisted of a P-CR RED250 eye
tracker controlled by the proprietary SMI iViewX software
(version 2.5) running on a dedicated PC. The RED250 eye
tracker was mounted under a 22" Dell E2210 LCD display
with screen dimensions 47.5× 30 cm and a native resolu-
tion of 1680×1050 pixels (60Hz). The results shown in Ta-
ble 1 indicate that the measured visual saliency maps do not
improve the prediction results for the LOCCG dataset. The
dataset of the visual attention maps for computer graphics
images, however, is interesting for future research and we
make it publicly available at the project webpage.

4. Feature Selection

As the number of features we implemented is high (see Ta-
ble 1), the natural questions we should answer are: first, how
significant are particular features to the task of visual distor-
tions prediction, and second, what features should be com-
bined in a joint feature descriptor to give best generalization
performance of the new IQM. Optimal feature-subset selec-
tion by exhaustive searching is computationally intractable
and we experimented with different methods for feature se-
lection where each method provides new information about
the strength of individual features.

ROC Analysis One of the easiest ways to rank features
is according to area-under-the-curve (AUC) values of their
ROC curves [ČHM∗12]. Such AUC values are shown in
the last column of Table 1. The values show that the dense-
sift, masking entropy, and the structural component of SSIM
(ssim struct) provide the largest predictive power when used
alone, though the differences between the best features are
moderate. Although ROC analysis identifies strong features,
it neither accounts for the correlation of features nor can it
detect complementary features that when combined yield the
best performance. For that purpose, we attempt three differ-
ent feature selection strategies.

Greedy Feature Selection This procedure follows in
principle the approach proposed in [LSAR10]: among the
set of all possible features, we iteratively select the one that
gives the smallest cross-validation error when adding it to

c© 2013 The Author(s)
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the pool of selected features and training a classifier on it.
The process is continued until adding new features to the
pool does not improve the cross-validation error. Here, for
classification we use a non-linear support vector machine
[CL11] with radial basis function (RBF) kernel with hyper-
parameters optimized by a grid-search.

Decision Forests Another common approach for feature
selection is to analyze decision trees [Bre01], which we
also use for our metric described in Section 5. Ensembles
of decision trees are natural candidates for feature selec-
tion [Bre01, TBRT09] since they intrinsically perform fea-
ture selection at each node of the tree. The expected fre-
quency that a single feature is chosen for a split in a random
tree and the trees impurity reduction due to the node split
indicates the relative importance of that feature to the tree
model [TBRT09]. This type of feature selection differs from
the others in the sense that it only provides an importance
weight of the scalar components of individual features.

Stacked Classifiers To this end, we also analyzed the im-
portance of individual features by an embedded SVM clas-
sifier with L1-regularization [BM98]. To analyze the non-
linear discriminative power of individual features, we build
a 2-level stack of classifiers [Bre96b] where the first level
consists of k non-linear classifiers (SVM) [CL11], one for
each feature, that compute the artifact probability based on
a single feature. These probability values are fed forward
as k independent input features to the second level, which
is a single linear classifier w2 ∈ R

k. The classifier w2 is
then trained on a disjoint training set using a SVM with
L1-regularization, which results in a sparse vector w2 that
can be interpreted as a joint feature importance – the higher
the absolute weight wi = |w2(i)|, i ∈ {1, ..,k} the more dis-
criminative the ith feature. Using this procedure the average
weights computed on LOCCG dataset with leave-one-out
cross-validation are shown in Table 1.

4.1. Feature Selection Results

All feature selection strategies produce a reasonable feature
sub-set that generalizes well when tested with leave-one-out
cross-validation on trained decision tree ensembles as shown
in the last row of Table 1. Although, the ROC analysis does
not exploit correlation of features and selects only the best
1-dimensional features the resulting combined feature sub-
set is still performing well. However, when comparing the
feature scores (last 4 columns in Table 1) one can observe
some discrepancies in the selected feature sets, which re-
sult from slightly different objectives of the methods and
correlation among the features. For example decision trees
can be considered as ensembles of many weak classifiers
based on scalar features, whereas the greedy and the stack-
ing approach operate on multi-dimensional features, and the
ROC analysis ignores feature combinations altogether. Fur-
ther, correlation among individual features can produce dif-
ferent sets that, when carefully observed, may actually be
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Figure 3: Optimal parameters of the decision forest. Left:

classification error versus number of decision trees t. Right:

optimal splitting threshold qe based on cross-validation.

similar. An example are the features hog9 diff and dense-sift
diff, which are highly correlated and chosen mutually exclu-
sively by either method. Also, the signed difference (diff )
is highly correlated with ad and is also a linear combina-
tion of lum test and lum ref and therefore not selected in
the greedy approach but for the stacking and decision forest.
Nevertheless, in agreement with the majority of the meth-
ods, the SSIM structure component (ssim struc), the bag-of-
words (bow), the masking entropy (mask. entropy I/II), and
the signed difference at multiple image scales (diff ) can be
considered as important features for our task of classifying
distortions. Further, we can also rule out certain features that
either do not improve performance or are simply redundant.
These include absolute difference (ad), global image statis-
tics (global stats), location of artifacts (location prior), and
visual attention (vis attention). In particular, all high-level
and global visual features (Section 3.4) perform rather weak
in our analysis. However, this does not necessarily conclude
their ineffectiveness but rather our too simplistic modeling
of the complex high-level human vision.

5. Data-Driven Metric

We experimented with different classification methods in-
cluding Naive Bayes classifiers, linear and non-linear sup-
port vector machines [CL11], and decision trees [Bre01].
For our data-driven metric we obtained the best results (in
terms of ROC area-under-curve) with ensembles of bagged
decision trees [Bre01], which we refer to as decision for-

est. Decision forest is a powerful classification and regres-
sion tool that is scalable and known for its robustness to
noise. Having constructed several random trees by boot-
strapping [Bre96a], an observation is classified by traversing
each tree from root node to a leaf, which contains the pre-
dicted label (artifact/no-artifact) that is averaged across all
trees. The path through the tree is determined by comparing
single sub-features against learned thresholds in each node.
The pruned tree depth and the number of trees controls the
accuracy of the classification. Using a cross-validation pro-
tocol we empirically set the number of trees to t = 20 and the
average tree depth to 10 (implicitly controlled by a quadratic
error tolerance threshold qe = 0.25 for the node-splitting),
which yields good generalization performance (see Fig. 3).
We train our metric using the 10 best features as derived in
Section 4 (shown in the last but one column of Table 1).

c© 2013 The Author(s)
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Figure 4: Quantitative results for quality metrics on

LOCCG dataset shown as ROC (top left) and Matthews cor-

relation (top right). The bigger the area under the curve

(AUC), the better. AUCnewMetric=0.916, AUCSSIM=0.858,

AUCHDRVDP2=0.802, AUCMSSSIM=0.786, AUCAD=0.832,

AUCsCIELab= 0.783, AUCsCorrel=0.880, AUCNoRM=0.644.

Bottom: ranking according to AUC (the percentages indi-

cate how often the metric on the right results in higher AUC

when the image set is randomized using a bootstrapping pro-

cedure similar to [ČHM∗12]).

5.1. Results

We train our new data-driven metric described above on
the LOCCG dataset, which consists of 35 annotated image-
pairs that exhibit a variety of computer graphics distortions
that are difficult to predict by existing FR IQMs [ČHM∗12].
Since the size of the LOCCG dataset is rather small and the
images are very diverse showing (combination of) different
artifacts and scenes, we do not split it into a train and test set.
We instead evaluate our method in a leave-one-out cross val-
idation fashion; i.e., we train it on n− 1 images and test on
the n-th image repeating this process n times. In addition, we
validate our metric on a new uncorrelated dataset that is de-
scribed in Section 5.1.1. We compare the trained metric to 7
state-of-the-art and baseline methods as shown in the quan-
titative analysis in Fig. 4. Our new metric outperforms all
existing FR IQMs on the LOCCG dataset in terms of AUC
in Fig. 4 (the higher the AUC the better). Also, the visual re-
sults agree with the ground-truth annotation as shown in the
color-coded distortion maps for three images of the LOCCG
dataset in Fig. 5. Please refer to the supplementary material
for all results and a more detailed analysis.

For completeness, we include results of the NR metric
NoRM. However, this method was not originally intended to
be used for detecting general, mixed image distortions and is
tuned for only specific artifacts assuming the depth maps and
other cues of the scenes to be available for feature computa-
tion. Unfortunately, depth and texture maps are not available
in many cases in the LOCCG dataset, and we run NoRM
only with color features rendering its performance poor.

We implemented our new metric and feature computation

in MATLAB for which the code is available at the project
webpage. Reporting the overall computation time of the un-
optimized MATLAB code, the data preprocessing and fea-
ture computation time per image (800×600) is in the order
of a few minutes, the time for training the decision forest on
our selected feature set based on 100.000 samples takes less
than 1 minute, whereas the distortion prediction using our
trained decision forest requires only ≈ 0.5 sec.

5.1.1. Results for New Synthetic Dataset

Even though we report the result for cross validation to avoid
over-training, we may expect that some distortions appear-
ing in different images are correlated and the metric just
learns the distortions that are specific for that data set. To
test against this possibility, we measured another dataset.

The new Contrast-Luminance-Frequency-Masking
(CLFM) dataset was measured using a similar procedure
as in [ČHM∗12]. 13 observers provided localized markings
for the visible differences in 14 image pairs. The dataset
was designed to cover a wide range of problematic cases
for image quality assessment in possibly few images. Such
problematic cases included increments of different size
and contrast, edges shown at different luminance levels,
random noise patterns of different frequency and contrast,
several cases of contrast masking, image pairs with pixel
misalignment and noise patterns generated with a different
seed for the test and reference image (see example stimuli
in Fig. 6). The CLFM dataset is available at the project
webpage.

Fig. 7 shows the result of the tested metrics for the new
dataset. Note that our new metric was trained on the LOCCG
dataset and none of the new dataset images was used for
training. From the shape of the ROC curves, it is clear that
the CLFM dataset is extremely challenging and the metrics
mispredict in many cases. But it is interesting to notice that,
on average, the proposed metric has the highest AUC value.

Figure 6: CLFM: our synthetic validation dataset for test-

ing of IQMs perceptual-masking prediction. Top row: test

images containing (from left to right) increments of different

size, edges at different luminance levels, and band-limited

noise patterns organized in a CSF-like chart. Bottom: sub-

jective data for the corresponding images. (Best viewed in

electronic version.)
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Figure 5: Comparison of distortion maps predicted by the proposed method with the state-of-the-art metrics for the red kitchen,
and sponza tree shadows scenes. From left: subjective ground-truth, prediction of the new metric, SSIM, HDR-VDP-2, and

sCorrel. Please see the complete set of results in the supplementary material.

The performance expressed as Matthew’s correlation coef-
ficient is very steady throughout the range of true positive
rates, while many other metrics exhibit significant “dips”.
This means that the new metric is less prone to loss of per-
formance in the worst-case scenario.

It is encouraging to observe that learning the “real-world”
distortions (e.g. based on the LOCCG dataset) may enable
decent prediction performance even for the synthetic dataset
like CLFM. This is different from the “traditional” approach
to modeling quality metrics, where the synthetic cases are
used to train the metric and the assumption is made that
these will generalize for complex “real-world” cases. Inter-
estingly, this correlates with our experience – when we used
synthethic CLFM data for training, it did not lead to better
predictions of LOCCG than traditional metrics.

6. Optimizing Existing Metrics

The stack of classifiers described in the last paragraph of
Section 4 can be used to optimize the parameters of tradi-
tional metrics for the testing datasets. We show the results
for two metrics (SSIM and HDR-VDP-2) on the LOCCG
dataset as an illustration of this approach.
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Figure 7: Quantitative results for the new syn-

thetic dataset (CLFM) for our metric trained on the

LOCCG dataset. AUCnewMetric=0.805, AUCSSIM=0.695,

AUCHDRVDP2=0.772, AUCMSSSIM=0.714, AUCAD=0.733,

AUCsCIELab=0.763, AUCsCorrel=0.624.

6.1. Training SSIM

The stucture similarity metric (SSIM) consists of 3 terms
that were introduced in Eq. (1). The sensitivity or importance
of the individual terms is controlled by the parameters α, β,
and γ, which are set to 1 by default.

We optimize those 3 parameters on the LOCCG dataset
with cross-validation to give the best possible prediction by
employing a linear support vector machine [CL11] that com-
putes the optimal 3D weight vector w= [α∗

,β∗
,γ∗]T for the

3 SSIM terms in the log domain log(SSIM∗)= α∗ · log(l)+
β∗ · log(c)+γ∗ · log(s) =wT ·dlcs by minimizing the convex
objective function:

argmin
w

∑
i

max(0,1− yi ·wT ·dlcsi )2+λ‖w‖22, (3)

where yi are the ground-truth labels in the dataset that are set
to−1 or 1 if the distortion for the i-th training sample is vis-
ible or not, respectively, and dlcsi ∈ R

3 is the corresponding
precomputed vector of the SSIM terms. The regularization
is controlled with λ = 1.

0.2 0.4 0.6 0.8 10

Figure 8: An illustration of the features of SSIM for the sala
scene where darker pixels represent more visible distortions.

From left: luminance, contrast, and structure term.

We run this optimization 35 times with randomized set
of input images to assess the stability and quality of the
coefficients obtained. Interestingly, the results (Fig. 9, left)
show a clear tendency towards higher weighting of the struc-
ture and contrast components than the luminance compo-
nent (α = 0.2, β = 2.8, γ = 3.5). This implies that the
structural and contrast components are more important than
the luminance for computer graphics artifacts, which agrees

c© 2013 The Author(s)
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with the results presented in Section 4. Please notice that
the performance improvement of the new weighted metric
(SSIMlearned) compared to the original SSIM in Fig. 10. An
illustration of improvement of the distortion maps is shown
in Fig. 11.

Figure 9: The results of the optimization of SSIM (left) and

HDR-VDP-2 (right) metric parameters. The red mark is the

median, the edges of the box are the 25th and 75th per-

centiles, the whiskers extend to extreme data points not con-

sidered outliers, and outliers are plotted individually. The

notches show 5% level intervals of the median significance.

6.2. Training HDR-VDP-2

Visible differences predictor for high-dynamic-range images
(HDR-VDP-2) [MKRH11] is a perceptual metric that mod-
els low-level human vision mechanisms, such as light adap-
tation, spatial contrast sensitivity and contrast masking. The
predicted probability of detecting differences between test
and reference images is modeled as psychophysical detec-
tion task separately for each spatial frequency band. The
cumulative probability is computed as probability summa-
tion, which corresponds to summing logarithms of probabil-
ity values from all bands. To introduce learning component
to the HDR-VDP-2, we weighted the logarithmic probabili-
ties before summation. After learning, which used the identi-
cal method as for the SSIM (Section 6.1), we found the opti-
mum band weights to be (in decreasing frequency): w1=6.2,
w2=12.1, w3=14.2, w4=9.6, w5=1.7, w6=10.2 (Fig. 9, right).
Please notice the significant performance gain of the new
weighted metric (HDR-VDP-2learned) compared to the orig-
inal HDR-VDP-2 in Fig. 10. The improved distortion maps
can be found in Fig. 11.

7. Conclusions and Future Work

In this work we proposed a novel data-driven full-reference
image quality metric, which outperforms existing IQMs in
detecting perceivable rendering artifacts and reporting their
location in a distortion map. The key element of our met-
ric is a carefully designed set of features, which general-
ize over distortion types, image content, and superposition
of multiple distortions in a single image. We also propose
easy to use customizations of existing metrics SSIM and
HDR-VDP-2 that improve their performance in predicting
rendering artifacts. Finally, as the outcome of this work
two new datasets have been created, which are potentially
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Figure 10: Comparison of the overall results of op-

timized and original SSIM and HDR-VDP-2 met-

rics. Left: ROC, right: Matthews correlations. The

bigger the area under the ROC curve (AUC),

the better. AUCSSIM=0.858, AUCSSIMlearned
=0.872,

AUCHDRVDP2=0.802, AUCHDRVDP2learned=0.883. The

result of newMetric (red) is shown here for comparison.

useful for the imaging and computer graphics communi-
ties. The Contrast-Luminance-Frequency-Masking (CLFM)
dataset contains a continuous range of basic distortions en-
capsulated in a few images, with the distortion visibility an-
notated in a perceptual experiment. The distortion saliency
maps captured in the eye tracking experiment could be used
for further studies on visual attention, for example as a func-
tion of rendering distortion type and its magnitude.

The main limitation of our work is the size of the training
dataset, and we expect that the performance of our metric
can be still improved when a larger dataset is available. Fur-
thermore, it would be interesting to explore other supervised
learning techniques, e.g. [GRHS04], both for feature selec-
tion and for FR metric prediction. The eye-tracking features
deserve further exploration too: for example the combination
of eye-tracking data with other features like absolute differ-
ence could indicate where people gaze due to severe artifact.
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