Dynamic Range Independent Image Quality Assessment

Tung¢ Ozan Aydirt Rafat Mantiuk*

Karol Myszkowski*

Hans-Peter Seidél

MPI Informatik

Figure 1: Quality assessment of an LDR image (left), generated bynmaggping the reference HDR (center) using Pattanaik’s torapping
operator. Our metric detects loss of visible contrast (g)e@nd contrast reversal (red), visualized as an in-contistortion map (right).

Abstract

The diversity of display technologies and introduction wfthdy-
namic range imagery introduces the necessity of compamiagés

of radically different dynamic ranges. Current qualityessnent
metrics are not suitable for this task, as they assume thlatrbfer-
ence and test images have the same dynamic range. Imaggy/fideli
measures employed by a majority of current metrics, basetieon
difference of pixel intensity or contrast values betweest éad ref-
erence images, result in meaningless predictions if tisgraption
does not hold. We present a novel image quality metric capabl
of operating on an image pair where both images have anpitrar
dynamic ranges. Our metric utilizes a model of the humanalisu
system, and its central idea is a new definition of visibleadis
tion based on the detection and classification of visiblengka in
the image structure. Our metric is carefully calibrated aagher-
formance is validated through perceptual experiments. &¥eoth-
strate possible applications of our metric to the evaluatibdirect
and inverse tone mapping operators as well as the analysige of
image appearance on displays with various characteristics

CR Categories:  1.3.3 [Computer Graphics]: Picture/lmage
generation—display algorithms,viewing algorithms

Keywords: image quality metrics, high dynamic range images,
visual perception, tone reproduction

1 Introduction

In recent years we have witnessed a significant increase ivetti-
ation of display technology, ranging from sophisticateghhdy-
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namic range (HDR) displays [Seetzen et al. 2004] and digital
ema projectors to small displays on mobile devices. In pera
the developments in display technologies, the quality e¢tebnic
content quickly improves. For example luminance and cehtral-
ues, which are encoded in the so-called HDR images [Reinhard
et al. 2005] correspond well with real world scenes. HDR im-
ages are already being utilized in numerous applicatiocsuse

of their extra precision, but reproduction of these imagesrily
possible by adjusting their dynamic range to the capadslif
the display device using tone mapping operators (TMO) [Razid

et al. 2002; Durand and Dorsey 2002; Fattal et al. 2002; Raita
et al. 2000]. The proliferation of new generation displayides
featuring higher dynamic range introduces the problem baan-
ing legacy 8-hit images, which requires the use of so-caltegrse
tone mapping operators (iTMO) [Rempel et al. 2007; Meylaal et
2007]. An essential, but yet unaddressed problehois to mea-
sure the effect of a dynamic range modification on the pezceiv
image quality

Typical image quality metrics commonly assume that the oyoa
range of compared images is similar [Daly 1993; Lubin 199&8n&/
and Bovik 2002]. They predict visible distortion using mees
based on the magnitude of pixel intensity or normalized reht
differences between the two input images, which become mean
ingless when input images have significantly different casttor
luminance ranges. However, when we look at images on a com-
puter screen or even on traditional photographs we oftee hav
impression of plausible real world depiction, although inamce
and contrast ranges are far lower than in reality. t8e,key issue

in image reproduction is not obtaining an optical match, ather
plausible reproduction of all important image features gmeserv-

ing overall image structureSuch features improve the discrimina-
tion and identification of objects depicted in the image,chhare
important factors in image quality judgment [Janssen 2001e
processed image structure can be affected by introducsilgleiar-
tifacts such as blur, ringing, ghosting, halo, noise, coritgy and
blocking, which distort structure of the original image andy de-
grade the overall impression of image quality.

In this paper we present a novel image quality metric thatcoan-
pare a pair of images with significantly different dynamiogas.
Our metric includes a model of the human visual system (HVS),
and its main contribution is a new visible distortion coriceased
on the visibility of image features and the integrity of ineagfruc-
ture (Section 3). The metric generates a distortion mapsthaivs



the loss of visible features, the amplification of invisiliéatures,
and reversal of contrast polarity (Section 4). All thesdadifons
are considered at various scales and orientations thasgmnd to
the visual channels in the HVS. Novel features of our metrec a
tested (Section 5), and the overall metric performance coefi
in a psychophysical study (Section 6). We demonstrate egijin
examples of our metric to predict distortions in featurahiiiy
introduced by the state-of-the-art TMOs (Section 7.1) awerise-
TMOs (Section 7.2). Also, we analyze the influence of displgy
namic range on the visibility of such distortions for thretfedent
displays (Section 7.3).

2 Previous Work

Image quality evaluation is important in many applicaticugh
as image acquisition, synthesis, compression, restoraithance-
ment and reproduction. The topic is relatively well covened
number of textbooks [Winkler 2005; Wang and Bovik 2006; Wu
and Rao 2005]. Three important metric categories can badist
guished: metrics measuring contrast distortions, detgahanges
in the image structure, and judging visual equivalence betwm-
ages. In this section we discuss all these metric categbmes
the standpoint of their ability to handle image pairs of gigantly
different dynamic ranges.

The most prominent contrast distortion metrics such asvibie
ble difference predicto(VDP) [Daly 1993] and the&sarnoff visual
discrimination mode(VDM) [Lubin 1995] are based on advanced
models of the HVS and are capable of capturing just visib&a(n
threshold) differences or even measuring the magnitudeatf gif-
ferences and scale them in JND (just noticeable differenné}.
While these metrics are designed for LDR images, MantiuK.et a
[2005] proposed an HDR extension of VDP, that can handle the
full luminance range visible to the human eye. iCAM06 [Kuang
et al. 2007] has similar capabilities, but it also modelsantgnt as-
pects of color appearance. While, the iCAMO06 framework lesenb
mostly applied in tone mapping applications, it has a clesemp-
tial to compute HDR image difference statistics and to defiem
them image quality metrics. Recently, Smith et al. [2006jpmsed
an objective tone mapping evaluation tool, which focusesnea-
suring suprathreshold contrast distortions between theeedHDR
image and its tone mapped LDR version. The main limitation of
this metric is that it is based on the contrast measure fghheiring
pixels only, which effectively means that its sensitivigfimited to
high frequency details. Also, the metric calibration piwe has
not been reported, while it may be expected that the metriclma
excessively sensitive for small near-threshold distogibecause
the peak sensitivity is assumed for each luminance adaptkvel
instead of using contrast sensitivity function.

An important trend in quality metrics has been establishét w
the development o$tructural similarity index metridSSIM) by
Wang and Bovik [2002]. Since the HVS is strongly specialized
in learning about the scenes through extracting structofatma-
tion, it can be expected that the perceived image qualitypeamell
approximated by measuring structural similarity betwemages.
SSIM proved to be extremely successful in many image precess
ing applications, it is easy to implement, and very fast tmpote.

As the authors admit [Wang et al. 2003], a challenging proble
is to calibrate its parameters, which are quite “abstrant! thus
difficult to derive from simple-stimulus subjective expeants as

it is typically performed for contrast-based metrics. Hustrea-
son it is difficult to tell apart visible and non-visible (juselow
threshold) structure changes, even for multi-scale SSldarima-
tions [Wang et al. 2003]. SSIM is sensitive for local averagsi-
nance and contrast values, which makes it inadequate fopaem
ing LDR and HDR images. Recently, Wang and Simoncelli [2005]

proposed the CW-SSIM metric, which in its formulation useme

plex wavelet coefficients instead of pixel intensities emgptl in

the SSIM. Since in CW-SSIM bandpass wavelet filters are egpli
the mean of the wavelet coefficients is equal to zero in eanl,ba
which significantly simplifies the metric formulation witbspect to

the SSIM and makes it less sensitive to uniform contrast am|
nance changes. However, this reduced sensitivity conaathsr
small changes of the order 10-20%, which are not adequate for
comparing HDR and LDR images.

An interesting concept ahe visual equivalence predict¢VEP)
has been recently presented by Ramanarayanan et al. [20BP].

is intended to judge whether two images convey the same gnpre
sion of scene appearance, which is possible even if cle&igle
differences in contrast and structure are apparent in atsiegde
comparison of the images. The authors stress the role okhigh
order aspects in visual coding, but developing general coap
tional model for the VEP is a very difficult task. The authanew
successful cases of the VEP models for different illumoratnap
distortions, which also requires some knowledge about teaes
geometry and materials. While the goals of VEP and our metric
are different, both approaches tend to ignore certain tybes-
sual differences, which seem to be unimportant both for teas
appearance and image structure similarity judgements.

Our metric can be considered as a hybrid of contrast deteatid
structural similarity metrics. Careful HVS modeling ereblpre-
cise detection of only visible contrast changes, but instéaeport-
ing such changes immediately as VDP, HDR-VDP, and VDM met-
rics, we use the visibility information to analyze only Wik struc-
ture changes. We distinguish three classes of structunegeisa
which provides with additional insight into the nature ofust
tural changes compared to SSIM. Finally, what makes ourceagbr
clearly different from existing solutions is the ability tmmpare
images of drastically different dynamic ranges, which beves the
range of possible applications.

3 Image Distortion Assessment
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Figure 2: Several cases of contrast modification, that our metric
classifies as a structural change (left) or a lack of struatwhange
(right). Blue continuous line — reference signal; magenésited
line — test signal. For the explanation of visibility and isibility

threshold (50% probability) refer to the text and Figure 5.

Instead of detecting contrast changes, our metric is $emgitthree
types of structural changes:



Loss of visible contrasthappens when a contrast that was visible
in the reference image becomes invisible in the test imadds T
typically happens when a TMO compresses details to the teael
they become invisible.

Amplification of invisible contrast happens when a contrast that
was invisible in the reference image becomes visible ing¢beim-
age. For instance, this can happen when contouring agifdatts
to appear due to contrast stretching in the inverse TMO agfidin.

Reversal of visible contrasthappens when a contrast is visible in
both reference and test images, but has different poldriis can
be observed at image locations with strong distortionsh siscclip-
ping or salient compression artifacts.

An intuitive illustration of the three types of distortioissshown in
Figure 2*. Note that this formulation makes our metric invariant to
differences in dynamic range or to small changes in the tamee.
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Figure 3: The data flow diagram of our metric.

Before we can detect any of the three types of distortionseesl
to predict whether a contrast is visible or not. This is aohie
with the metric outlined in Figure 3. The input to our metrie a

Stimuli 0.25Ct  0.5Crt Ct 2CT 4CTt

Figure 4: The output of the detection predictor for the selected
ModelFest stimuli at 0.25, 0.5, 1, 2 and 4 times the deted¢limesh-
old, Cr. The first column shows the original stimuli at high con-
trast. The predictor is well calibrated if the visible coast starts

to be signalled in th&'s column.
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to 2m. The model fitting error fo.25% peak sensitivity was be-
low 2dB contrast units. The errors were the largest for thaust
“GaborPatch14” and “Dipole32”, for which our predictor wa®
sensitive.

In the second step, we split the perceptually normalizedarese
into several bands of different orientation and spatialdvédth.
We employ the cortex transform [Watson 1987] with the modifi-
cations from [Daly 1993], given in the Appendix. Then, togioe
three types of distortions separately for each band, we oteqon-
ditional probabilities of

loss of visible contrast: prl = pkl . pkl

loss r/v t/i?

. . L . kil k,l k,l

amplification of invisible contrast: P, , = P,7, - P, ,
and reversal of visible contrast: P}, = P!\ - P}, - R

(1)
wherek and! are the spatial band and orientation indices, the sub-
scriptr/- denotes reference ang- test image, the subscriptv

two luminance maps, one for a reference image (usually an HDR visible and: /i invisible contrast.R equals 1 if the polarity of con-
image), and one for a test image (usually an image shown on thetrast in the reference and test images differ:

display). 8-bitimages must be transformed using the djsloiiai-
nance response function to give actual luminance valuesrsbo a
screen. In the first step we predict detection thresholdgpeudlice
a perceptually normalized response map, in which the ancag
equal to 1 correspond to the detection threshol®at = 75%
(1JND). Although several such predictors have been prapose
the literature, we found the HDR-VDP detection model [Makti
et al. 2005], designed especially for HDR images, the most ap
propriate. The predictor takes into account light scattgin the
eye’s optics, non-linear response of the photoreceptatspatial-
sensitivity changes due to local adaptation. For compéstgnwe
summarize the HDR-VDP contrast detection predictor in tipe A
pendix.

To ensure accurate predictions, we calibrated the HDR-V&Ed
tion model with the ModelFest [Watson 2000] measuremente T
ModelFest data set was collected in a number of differerdrizto-
ries to enhance both the generality and accuracy, and wasialp
designed to calibrate and validate vision models. Figureotvs a
few examples of the detection probability maps for stimelio,
at and above the detection threshold. All results were geaehby
setting the pixels per visual degree 120, and observer distance

1Refer to supplemental material for metric responses tolairdistor-
tions

)

For simplicity we omit the pixel indiceéz, y). The above formu-
lation assumes that that contrast detection process isrpeztl in
the visual system separately for each visual channel.

RM = [c,’f*l NoAPS 0]

The probabilities”. ,, and P. /; are found from the detection proba-
bilities, as shown in Figure 5. The visual models commonsuase
that a contrast is visible when it is detectably { >75%), as in the
two alternative forced choice (2AFC) experiments. We fotlrid
assumption to be too conservative, since complex imagesearr
as scrutinously observed as stimuli in such experimentsrefare,
we require a contrast to be detected with a higher probghititbe
regarded as visible. From our empirical study on a seriesnof s
plified stimuli, we found that a reliable predictor of vishtontrast
is given by shifting the psychophysical function, so thabatcast
magnitude isvisible with 50% probability, if it can beletectecby
our predictor with 95% probability (about 2 JND), as showifrig-
ure 5. The probability of invisible contrast is given by thegation
of the probability of detection.

The rules from Equation 1 contain the non-linear operathiee-

fore the resulting probability map”>' can contain features of spa-
tial frequency that do not belong to a particular subbands Eads
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Figure 5: Probability functions for a normalized contrast magni-
tude being visible (green) and invisible (red).
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Figure 6: The probability rules may produce response that do not

belong to a particular frequency band. Top pane: althougloa-c
trast magnitudes are well above visibility threshold, thira small
part in which contrast is visible in the reference imagg.) but
not visible in a test image({;). Center pane: this triggers higher

values of theP,,ss in these regions. Bottom pane: the spurious

responses can be eliminated with a band-pass filter.

to spurious distortions, as shown in Figure 6. To avoid thidbem,
each probability map is filtered once more using the cornedipg
cortex filter B*':

prlo— ! {9{13’” ) Bk’l} 3)

loss loss

where.Z and.Z# ! are the 2D Fourier transforms. Formulas for

B*! can be found in the Appendix.

Assuming that detection of each distortion in each band isder
pendent process, the probability that a distortion will beedted in
any band is given by:

N M

Pows = 1= TTT] (1 - BEL) (4)

k=11=1

The probability maps,..,; and P,., are computed in a similar
way.

Unlike typical HVS-based contrast difference predictans; met-
ric does not model contrast masking (decrease in sengitiiith
increase of contrast amplitude). Since our metric is iar@rto
suprathreshold contrast modifications, contrast maskoes dhot
affect its result. For example, if we compare two visible tcast
stimuli, like the ones shown in top-right pane of Figure 2 ton-
trast masking can predict by how many JNDs their amplitudies d
fer. But the contrast difference is not relevant for our neethere-
fore there is no need to estimate the magnitude of suprduiblces
contrast in JND units.

Figure 7: Three distortion maps shown partially (left). We arbi-
trarily chose green for loss of visible contrast, blue forifica-
tion of invisible contrast, and red for reversal of visiblentrast.
The saturation of each color indicates the magnitude of aliete
probability, as shown in the respective scales.

4  Visualization of Distortions

The multitude of distortion types detected by our metric ezak-
sualization of the outcome on a single image a challengisig /e
employ an in-context distortion map [Daly 1993] approaciptto-
vide an overview of distortions, but also introduce a custoewer
application for more detailed inspections.

To generate the in-context map, luminance of the distoreabe
is copied to all three RGB channels, and each channel iscsbgle
the detection probabilities of corresponding distortigmet We ob-
served that using multiple colors for each type of distortitakes it
hard to memorize the association of each color to the codistxir-
tion type. We also found that in regions where multiple distos
overlap, the simple approach of blending the colors make§irthal
map less intuitive by increasing the number of colors. Wedtoee
show only the distortion with the highest detection probgbat
each pixel location. We arbitrarily choggeen for loss of visible
contrast,blue for amplification of invisible contrast, anekd for
reversal of visible contrast (Figure 7).

In cases where the testimage is heavily distorted the inegbmap
representation may become too cluttered, and there maygbiéisi
cant overlaps between different distortion types. On therdand,
one may simply be interested in a closer examination of eazh d
tortion type present in the image. Using the viewer applicedne
can dynamically set the opacity values of distortion typed the
background image to a legible configuration, that allowsntes-
tigate distortions separately (Figure 8). In the rest of faper,
all metric responses are presented as in-context maps. iglverv
application can be used for any further investigation ofrésilt$.

5 Evaluation and Results

In the following sections, we present results and demoteste-
vantages of our metric to previous wotk

5.1 Dynamic Range Independence

We claim that our metric generates meaningful results efvérei
input images have different dynamic ranges, in additiomédase
where both have the same dynamic range. In Figure 9, we steow th
distortion maps resulting from the comparison of all vaoias of
an HDR and LDR image. The LDR image is generated by applying

2Refer to the supplemental material for the viewer applicati
SRefer to the supplemental material for a simple stimuli expent
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Figure 8: Our distortion viewer. Users can adjust opacities of
distortion maps and background image. The respective s¢te
right) are adjusted accordingly by the tool. In this exampés-
ting, the user emphasizes contrast reversal, while keepimgther
distortions barely visible.

a compressive power function to the HDR reference (moreisoph
ticated tone-mapping operators are discussed in Sectign We
always distort the test image by locally adding random pixese,
whose magnitude is modulated with a Gaussian that has iksgtea
the center of the distorted region.

Randomly distributed pixels in the distorted region bottnaduce
previously non-existent contrast and invert the polarityhe con-
trast proportional to the magnitude of the distortion. Ganeently,
for both HDR-HDR and LDR-LDR cases (first two rows) our met-
ric reports visible contrast reversal and amplification rofisible
contrast confined in the distorted region. Similar respsiase also
observed in LDR-HDR and HDR-LDR cases. Additionally, a com-
parison of the distorted LDR image with an HDR referencedgeb

an overall loss of visible contrast spread across the @ntige, in-
dicating the effect of contrast compression applied toelseimage
(third row). When we compare the HDR test image with the LDR
reference, visible contrast of the reference lost duringm@ssion
manifests itself this time as amplification of invisible t@st in the
distortion map (last row).

5.2 Comparison with Other Metrics

Our metric has two major advantages to the previous worlssiia
cation of distortion types, and dynamic range independeimahis
section, we compare responses of our metric with a pair oé-sta
of-the-art metrics, namely SSIM [Wang and Bovik 2002] theg-p
dicts changes in the image structure, and HDR-VDP [Manttt.e
2005] that is explicitly designed for HDR images. Figure hows

a side-by-side comparison of the three metrics where addand

Reference

Distortion Map

TstHDR RefLDR TstLDR RefHDR TstLDR RefLDR TstHDR RefHDR

Figure 9: Comparing images with different dynamic ranges. While
distortions caused by the local distortion are visible ihralsults,

in the LDR-HDR and HDR-LDR cases, additional visible costra
loss and invisible contrast amplification can be observeel tduthe
contrast lost through dynamic range compression. HDR irmage
tone-mapped using Reinhard’s photographic tone repradndbr
printing purposes.
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a sharpened version of the reference was used as test image. T Figure 10: The reference, blurred and sharpened test images (top

reference is an 8-bit image, which is linearized and cordett |u-

row), and metric responses to blurring (middle row) and siear-

minance for HDR-VDP and our metric. The outcome of SSIM is a iNd (bottom row). Color coding for SSIM and HDR-VDP are given

simple matrix of probability values with the same size asitipeit
images, to which we applied HDR-VDP’s visualization algjom
to make it legible. The spatial distribution of the respasem all

in the scale. Our metric is visualized as discussed in Seétio



three metrics to blurring and sharpening is similar, with tverall
tendency of HDR-VDP’s response being stronger (due to teypr
all visible differences) and SSIM'’s response being wea#ae (to
the difficulty of calibration) than that of our metric.

The important difference between the proposed metric aherst
is the classification of distortion types. That is, in casélofring
our metric classifies all distortions as loss of visible casit, con-
firming the fact that high frequency details are lost. On ttieo
hand, in the sharpening case we observe contrast revecsalnan
plification of invisible contrast, both of which are expateffects
of unsharp masking. Such a classification gives insight athau
nature of the image processing algorithm and enables tister
type-specific further processing.

The second major advantage of our metric is that it enablesaam
ingful comparison of images with different dynamic rang8ec-
tion 5.1). We ran all three metrics on a test set, that is geadr
using a similar procedure as used for Figure 9, with the oifly d
ference being the use of Gaussian blur as the distortion tpé&R
images in the test set were calibrated to absolute lumingake
ues of the scene, and were directly passed to both our meilic a
HDR-VDP. For SSIM, we took the 10-base logarithm of the HDR
images to compensate for the Weber law, and mapped themeto pix
values within 0-255 to prevent an ambiguity in the dynamitgex
parameter of the metric.

Figure 11 shows a comparison of images with same dynamierang
results in all three metrics reporting distortions in therk#d region
with slightly different magnitudes (first two rows). One iorpant
difference between our metric’s and HDR-VDP’s responséisas
the distorted area reported by HDR-VDP is larger than thatuof
metric’s. HDR-VDP simply reports all visible difference$ the
blurred testimages with respect to their references, vahitenetric
ignores the differences in the periphery of the Gaussiaerathe
magnitude of the blur is weaker and details in the distonteage
are still visible. This example shows a case where our mptode
vides complementary information to well established ngstriln

the different dynamic range case, the distortion maps oMS8Id
HDR-VDP are entirely dominated by contrast change due to the
dynamic range compression (last two rows). Similar to tlselis

for different dynamic range case in Figure 9, our metric repan
overall loss of visible contrast in the LDR-HDR case, and e&ro

all amplification of invisible contrast in the HDR-LDR cadmth
due to the dynamic range compression. These responsesydrowe
do not mask the response at the blurred region, as they ddheth
other metrics.

6 Validation

Validation of the metric is performed by comparing the ntets-
sponses to subjective distortion assessments. We getherdést
set containing permutations of 3 images of natural scengge®
of distortions and 3 levels of distortions. Each subjectuatad the
entire test set twice to ensure reliability, leading to 5ages per
subject. Gaussian blur that produces visible contrast brss un-
sharp masking that mostly produces invisible contrast ditgtion
were chosen as distortions. Another type of distortion veassicl-
ered to specifically produce contrast reversal, where weutze
a bandpass image pyramid, invert the signs of a number ofdaye
proportional to desired distortion level, and recombireegiliramid
to get the distorted image. All distorted images were geadrto
dominantly produce a metric response of the desired type.

We asked 14 subjects within the ag8s-48, with all nearly perfect
or corrected vision, tadentify the type of distortiothey see on a
number of test images. Possible answers vue, sharpening
contrast reversabr no distortion We assumed no prior knowledge

HDR-VDP Our Metric

SSIM

TstHDR RefHDR

TstLDR RefLDR

TstLDR RefHDR

TstHDR RefLDR

25% 50% 75% 95% 100%

Figure 11: A comparison of SSIM, HDR-VDP and our metric on
all dynamic range combinations. Results for the same dymami
range case are comparable (first two rows), whereas in tHereifit
dynamic range case SSIM and HDR-VDP responses are dominated
by the dynamic range difference (last two rows). The scabevsh

the color coding for SSIM and HDR-VDP. Our metric is visuadiz

as discussed in Section 4

Figure 12: A sample image from the validation set, showing three
levels of sharpening (top row), and the corresponding ratt
sponses (bottom row) increasing from left to right.



of the subjects about the distortion types. Therefore, & staining
section preceded the actual experiment, where subjecessikienn
a series of images that contain strong distortions of eattedhree
types, together with the correct distortion labels.

In order to account for the variation of subject responsetdifter-
ent distortion magnitudes, we applied all distortions aé¢hdif-
ferent levels, from which the first is selected to generatenetric

Drago’s operator reproduces contrast relatively well irkdanage
regions and tends to wash out image details in bright regioes
to logarithmic shape of the tone mapping curve. Pattanajésa-
tor, which is based on the sigmoid photoreceptor responsst{yn
adapted to the luminance levels at the illuminated tabl@nesy,
tends to strongly suppress image details in dark regionsalso
in very bright highlights. The detail amplification typicar Fat-
tal’'s operator can be seen in non-illuminated scene regishich

response at all. The second level was chosen to generateka Weaijy, real-world observation conditions are not visible duenuffi-

metric response of the desired type, where the detectidvapitity

at most of the distorted pixels is less than one. Similaflg, third
level was chosen to generate a strong metric response inc@not
ably large region. In our statistical analysis, we consdehe first
level as invisible, and the other two as visible. Since outrimés
not intended to produce a single number, we restrained loesse
from using an average of the detection probabilities withdis-
torted region.

First, we examined subject reliability by testing the ststit inde-
pendence of the consecutive iterations for each subjedhglike

x* test we obtained &*(9) value of739.105, where the value in
parenthesis denotes the number of degrees of freedom. Tiee co
spondingp — value was found to bex 0.05, indicating that the
null-hypothesis can safely be rejected. The Cramer’s V ij@&ma
1999], that measures the association between two catafjvaid-
ables, is found to b8.807 which is considered a large effect size.
Next, we investigated the main effect of factors using theaAN
ysis Of VAriance (ANOVA) method (See [D’Agostino 1972] for
the use of ANOVA on nominal data). We found that distortion
type and level to have a significant effect on the subjectaesp
(F(2) = 179.96 and F'(2) = 456.20 respectively, ang<0.01 for
both). We also found that the test image factBf%) = 4.97 and

p = 0.02) to have an effect on the final outcome, which is hard to
avoid when experimenting with complex stimuli. Finally, aB-
alyzed the statistical dependency between the subject @tidcm
responses. For the null-hypothesis that these responseada-
pendent, we found*(9) = 1511.306 andp < 0.05, showing
that it is unlikely that the initial assumption holds. Therespond-
ing Cramer’s V 0f0.816 signals a strong dependency between the
metric and subject responses.

7 Applications
In this section, we present several application areas ohwiric,

where a comparison of images with different dynamic ranges-i
quired.

7.1 Tone Mapping Operator Comparison

cient HVS sensitivity. Our metric takes into account thinstv-
ity by modeling the dependence of contrast sensitivity fiamcon
luminance values in the HDR image. Durand’s operator urifgr
compresses lower spatial frequencies across the entigeiménich
means that resulting contrast loss will be more likely \&sih dark
display regions in which the HVS sensitivity is lower. Therco
pression of low frequency features leads also to the relvefsiés-
ible contrast. The default parameters used for Reinhagksator
tend to excessively saturate bright image regions for thisiqu-
lar scene. Also, in the full size image it can be seen thatrasht
of certain pixels representing the table and paper pageres<xhas
been magnified due to local dodging and burning mechanism. Ou
results are consistent with the expected outcomes of the SN
dicating the potential use of our metric as a diagnosticfimouch
algorithms.

7.2 Inverse Tone Mapping Evaluation

Recently, [Meylan et al. 2007] and [Rempel et al. 2007] &itac
the problem of recovering the contrast in LDR images thatieas
clipped and/or compressed due to the limited dynamic rafigese
algorithms should be validated by costly subjective usadiss to
assess the plausibility of the results and the amount dbleisirti-

facts [Akyuiz et al. 2007]. The latter task can be fulfilledehunore
efficiently by our metric.

The response of our metric to simple contrast stretching alip-
ping is shown in Figure 14. To exaggerate the contourindgats,

we use a 4-bit quantized version of the 8-bit reference asemtr
image. We observe that the more we increase image contnast, t
more visible contrast in the bright sky region is lost, anddible
contrast in the darker horizon line is amplified, both dudifgping

on both sides of the expanded image histogram. Our metric als
reports contrast reversal on the boundaries within théleisand
clipped contrast regions. In Figure 15, we show the comparis
of an HDR image reconstructed by Ldr2Hdr [Rempel et al. 2007]
algorithm, with the reference LDR image image. The incréase
contrast due to stretching reveals some previously inegibtails
around the trees in the foreground, which is correctly reggbby
our metric. Contrast content amplified in bright regionsyéeer,

Tone mapping operators (TMO) are commonly used for contrast \yas already visible, and therefore is not interpreted asugtstral

compression of HDR images to reproduce them properly on con-
ventional media. This is a lossy process by definition. From a

functional point of view, information reproduction caplitlyi of a
TMO is a suitable measure of its performance. Figure 13 shiogvs
comparison result of an HDR image with the corresponding ton

change.

7.3 Simulation of Displays

mapped images. The luminance ranges of 0.24-89,300 an8.1— The highly diverse characteristics of today’'s display desimake
cd/m? have been assumed for the original scene and displayed tonean objective analysis of their reproduction capability meiesting
mapped image, respectively. Five TMOs (2 global and 3 lopat-o problem. Our metric can be used as a measure of how well the
ators) have been considered: Drago'’s adaptive logarithmjgping structural information of the image is preserved when itiesved
[2003], Pattanaik’s visual adaptation model [2000], Ratigradi- on different displays, to ensure that important featureb®image

ent domain compression [2002], Durand’s bilateral filtgfi2002], are preserved regardless of the display type.

and Reinhard’s photographic tone reproduction [2002].
P grap P [ ] In Figure 16 we show the distortion maps for an HDR refer-

ence image that is viewed on an BrightSide DR37-P HDR display
(2,005¢d/m?), Barco Coronis 3MP LCD display4Q0cd/m?),

and a Samsung SGH-D500 cell phone dispiied/m?). To sim-
ulate the HDR and LCD displays, we apply the respective displ

For all studied TMOs certain detail loss can be observed én th
bright lamp region due to strong contrast compression. | Rixe
tensity clipping also causes visible contrast reversaiénlamp re-
gion, which is reported for some pixels as the strongesodien.



Drago Pattanaik

Tone-Mapped

Distortion Map

Fattal Durand Reinhard

Figure 13: Comparison of Tone-Mapping Operators

Figure 14: Response of the metric to simple contrast stretching

with clipping. Contrast is increased from left to right, whiresults
in more clipping and generates stronger visible contrasssland
reversal responses.

HDR image - Distortion map

Figure 15: HDR image generated by Ldr2Hdr algorithm (left),
and the distortion map obtained by comparing the HDR imadk wi
the LDR reference (right). Both images are taken from thgipail
author’s website.

Cell phone Display

HDR Display LCD Display

Figure 16: Display Comparison. The brightness of the LCD (first
row center) and Cell phone (first row right) display images ar-
tificially enhanced for maximum detail visibility.

response functions to image luminance values using a Mih@t
100 luminance meter.

The results show that the HDR display faithfully reprodun®esst
of the visible and invisible contrast. The small amount stalition
is expected, as even the dynamic range of the HDR display does
not span the entire visible luminance range. The distortiap for
the LCD display shows visible contrast loss in the outsidgare
directly illuminated by sunlight. This luminance level exds the
capabilities of the display device and therefore detaiscipped.
On the other hand, we observe invisible contrast amplificaitn
parts of the darker interior region. This is because thegiems in
the reference image are so dark that the fine details at tles etmeal
floor are not visible. But since the LCD display is not capatifie
displaying such low luminance, those details are amplifizove
the visibility threshold. Finally, the cell phone displagil§ to re-
produce most of the visible contrast, and hence we obsemegst
visible contrast loss in both the interior and exterior oegi, as well
as contrast reversal around the borders of the clippedniegio

8 Conclusion

We presented a quality assessment metric capable of hgridiin
age pairs with arbitrarily different dynamic ranges. Outticelas-
sifies structural image distortions into three intuitivéecgories, re-
vealing additional information about the nature of the tesige
compared to previous approaches. To visualize all distotiipes



legibly, we provide a visualization tool in addition to thenemonly
used in-context map. We carefully calibrated the humanabisu

system model employed in the metric, and performed a sefies o CSF(p,0, La 2.d ¢) = P-min |:Sl < P

psychophysical experiments for statistical validatiore pesented
successful applications of our metric to TMO and iTMO operat
evaluation, and comparison of various types of displays.

As future work, we intend to test our metric in medical apgtions

which require faithful reproduction of details capturedHiyR sen-

sors in the displayed images. It would be also interestingyto
our metric in watermarking applications, which requirercefuc-

ing images on various media.
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Appendix

We summarize a complete contrast detection predictor greglm
the HDR-VDP [Mantiuk et al. 2005], including the models from
the VDP [Daly 1993]. The structure follows the three proaess
blocks shown in the bottom-left of Figure 3. For simplicitye
omit pixel and frequency component indices.

To account for light scattering in the eye’s optics, theiahitumi-
nance mayl is filtered with the Optical Transfer Function (OTF):

Lorr = Z ' {F{L}-OTF} (5)

using the Deeley et al. model:

p 1.3—0.07d
OTE = exp [— (20.9 —2 1d) } ©)

whered is a pupil diameter in mm ang is spatial frequency in
cycles per degree. The pupil diameter is calculated for aajlo
adaptation luminancé, using the formula of Moon and Spencer
[1944]:

d =4.9 — 3 tanh[0.4(log,, (T Lga) — 0.5)] @)

The global adaptation luminande,, is a geometric mean of the
luminance mag..

Then, to account for lower sensitivity of the photoreceptat low
luminance, the mag.orr is transformed using a transducer func-
tion constructed from the peak detection thresholds. Tiseesta
way to find such a transducer function is to use the recursive f
mula:

fori =2..N

8
where T;n.[1] is the minimum luminance we want to consider
(107 ed/m? in our case). The actual photoreceptor respalise
is found by linear interpolation between the pairiafalues corre-
sponding to particular luminandeor .

Tinv [Z] = Tinv ['L - 1] + C'Ui(Tinv ['L - 1]) Tinw [Z - 1]

The contrast versus intensity functiom; used in the recursive for-
mula above estimates the lowest detection threshold attizydar
adaptation level:

cvi(Li,) = (m}e(ax [C’SF(Lla,x)]) 9)

where C'SF is the contrast sensitivity function and are all its
parameters except adapting luminance. If perfect locabtatian
is assumed, theh;, = Lorr.

The CSF [Daly 1993] is given by:

)50

Ta: Tc-To

(10)
where
Ta = 0.856 - d***
re = o
ro = 0.11 cos(46) + 0.89
Sip) = [(323(0%%) )" +1] o (11)
Avepe—P10) /T 0.06eBi0
Ar= 0801 (1+0.7 L4
Bi=  03(1+100L;)""

The parameters argi — spatial frequency in cycles per visual de-
gree,d — orientation,L, — the light adaptation level ind/m?, i*

— the stimulus size ideg? (i = 1), d — distance in meters; —
eccentricity ¢ = 0), ¢ — constant{ = 0.9), and P is the abso-
lute peak sensitivity £ = 250). Note that the formulas fad; and
B; contain the corrections found after the correspondende tivét
author of the original publication.

In the last step, the photoreceptor response is modulatétehyor-
malized neural contrast sensitivity functions, which exs the
effect of the eye’s optics and luminance masking:

_ CSF(p,0, La, i?,d,c) - cvi(Lg)
a OTF(p)

nCSF(p,0, Lia,i?,d,c)

12)
Since the filter function depends on the local luminance apéat
tion, the same kernel cannot be used for the entire imagepdeds
up computations, the response niajs filtered six times assuming
L, = {0.001, 0.01, 0.1, 1, 10, 10p cd/m? and the final value
for each pixels is found by the linear interpolation betweeo fil-
tered maps closest to tlig, for a given pixel. The resulting filtered
map has the property that the unit amplitude estimates tieetien
threshold atPy.; = 75%.

Another element of the VDP that we use in our metric is the modi
fied cortex transform, which is the collection of the bandgand
orientation selective filters. The band-pass filters areprdad as:

fork=1.K -2

mesag_1 — Mmesa
dom =

(13)

mesar_1 — base fork=K -1

whereK is the total number of spatial bands and the low-pass filters
mesay, andbaseband have the form:

tw
1 forp <r— %
forp>r—|—t%
e tw
%(l—b-cos (M)) otherwise

mesay = 0

tw

P
base — e 27 forp<rig 1+ %
0 otherwise
(14)
where
_ o—k o 1 tw _ 2
r=2"% o= 3 rr—1+ 5 and tw = 3" (15)



The orientation-selective filters are defined as:

1 |0—0.(1
P (1 + cos (%)) for [0 — 0c(1)| < Oruw
0 otherwise
(16)
wheref. (1) is the orientation of the cente, (1) = (I—1)-6:.,—90,
andb.., is the transitional width);., = 180/L. The cortex filter is
formed by the product of théom and fan filters:

domy, - fan; fork=1.K —1landl=1..L

BRl —
base fork=K

7

To compute the detection probability, we use a psychométric-
tion in the form:

P(C) =1.0 —exp(—|a C|)*) (18)
wheres is the slope of the functions(= 3), anda = (—log(1 —
0.75))'/* ensures thaP (1) = 0.75.
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