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The Contrast Sensitivity Function (CSF) is a fundamental visual model explaining our ability to detect small contrast pat-

terns. CSFs found many applications in engineering where they can be used to optimize a design for perceptual limits. To

serve such a purpose, CSF must explain possibly a complete set of stimulus parameters, such as spatial and temporal fre-

quency, luminance, and others. Although numerous contrast sensitivity measurements can be found in the literature, none

fully explains the complete space of stimulus parameters. Therefore, in this work, we first collect and consolidate contrast

sensitivity measurements from 18 studies, which explain the sensitivity variation across the parameters of interest. Then, we

build an analytical contrast sensitivity model that explains the data from all those studies. The proposed castleCSF model

explains the sensitivity as the function of spatial and temporal frequencies, an arbitrary contrast modulation direction in the

color space, mean luminance and chromaticity of the background, eccentricity, and stimulus area. The proposed model

uses the same set of parameters to explain the data from 18 studies with an error of 3.59 dB. The consolidated contrast

sensitivity data and the code for the model are publicly available at https://github.com/gfxdisp/castleCSF/.
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Introduction

A contrast sensitivity function (CSF) is a visual model that

explains what is the smallest contrast of a simple stimulus (a si-

nusoidal grating, a Gabor patch, or a disk) that can be detected

on a uniform background (Robson, 1966; Kelly, 1979; Barten,

1999). These types of detection characteristics are fundamental

performance measures of the visual system and have been thor-

oughly measured over several decades using psychophysical meth-

ods. Despite the abundance of data, few models summarize these

measurements across more than three of the many parameters in-

fluencing the visibility of the stimuli. Creating such a model is the

goal of our work. Our model explains the available psychophys-

ical data across the most relevant stimulus parameters: the chro-

maticity of the background, the chromatic direction of modula-

tion, area, spatial and temporal frequency, luminance, and eccen-

tricity. The first letters of those dimensions form the acronym of

our model — castleCSF. To facilitate multiple applications and re-
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search on sensitivity, we made our model and the data available at

https://github.com/gfxdisp/castleCSF.

Although contrast sensitivity explains visual performance only

for a limited class of artificial stimuli, it is a building block of more

complex models of the visual system, which can generalize to more

comprehensive stimuli, including images or videos. For example,

while contrast masking has different characteristics depending on

the luminance, spatial frequency, and color modulation direction of

the patterns, masking characteristics can be unified when contrast

is normalized by the sensitivity predicted by the CSF (Daly, 1993;

Cass, Clifford, Alais, & Spehar, 2009). While the perceived mag-

nitude of suprathreshold contrast varies across luminance, the de-

viation from contrast constancy can once again be explained using

contrast sensitivity data (Kulikowski, 1976; Peli, 1995). The detec-

tion of more complex patterns can be estimated using energy mod-

els, which also rely on the CSF (Watson, 2000). Finally, visible

differences on complex backgrounds can be explained by multi-

channel visual difference predictors (Daly, 1993; Mantiuk, Kim,

Rempel, & Heidrich, 2011), which incorporate models of both vi-

sual masking and contrast sensitivity.

CSFs are also commonly used to control and optimize dis-

play applications, and in particular virtual and augmented reality

(VR/AR) headmounted systems. In this work, we focus on the

dimensions of the CSF that are the most relevant in the context of

color video applications, in particular for AR/VR. Notably, as these

displays typically cover a significantly larger field-of-view than tra-

ditional displays, much of the content lies outside the user’s fovea,

and despite presenting very high physical pixel density and resolu-

tion, the effective pixel per visual degree (ppd) resolution is often

lower than conventional displays. Perceptually-informed rendering

algorithms, like contrast-aware (Tursun et al., 2019) or attention-

aware (Krajancich, Kellnhofer, & Wetzstein, 2023) foveated ren-

dering, and foveated image reconstruction (Kaplanyan et al., 2019)

are proposed to achieve high perceptual content quality while con-

forming to the limited power and compute budget. Due to their

head-tracked nature, AR/VR often requires ultra-high refresh rates

and low persistence values, resulting in heavier computational and

bandwidth costs. Rendering modalities where a subset of frames

are simplified can be used to alleviate this issue (Denes, Maruszczyk,

Ash, & Mantiuk, 2019). Recent work by Duinkharjav et al., 2022

explicitly models foveated color discrimination to generate chro-

matic distortions that can minimize display power usage. A com-

prehensive model of chroma-aware contrast sensitivity is especially

important to guide these kinds of AR/VR algorithm development

and is provided by castleCSF.

Factors affecting contrast sensitivity

Contrast sensitivity functions describe the visibility of grat-

ings through Fourier analysis (Campbell & Robson, 1968) — ex-

plaining the detection characteristic as a function of spatial and

temporal frequency of the visual stimulus. This is motivated by the

existence of visual channels, which are tuned to bands of spatial

and temporal frequencies (Kulikowski & Robson, 1999). How-

ever other parameters of the stimulus have no lesser influence on

the sensitivity. The sensitivity is affected by luminance and chro-

maticity of the background (Blackwell, 1946; Xu, Ye, Mantiuk,

& Luo, 2022), the size of the stimulus (Rovamo, Luntinen, &

Näsänen, 1993), the angle from the fixation point (eccentricity)

(Virsu & Rovamo, 1979; Wright & Johnston, 1983) and the po-

sition in the peripheral visual field (nasal, temporal, superior or

inferior) (Anderson, Mullen, & Hess, 1991), the orientation of a

grating (Campbell, Kulikowski, & Levinson, 1966), and the direc-

tion along which the contrast is modulated in a three-dimensional

color space (Mullen, 1985; Wuerger et al., 2020). It is also recog-

nized that the sensitivity decreases with age, mostly due to optical

factors, such as the increase in the wavelength-dependent opacity

(Pokorny, Smith, & Lutze, 1987) or the inability of the pupil to

dilate at low light (senile miosis) (Watson & Yellott, 2012), but

also due to neural factors. The sensitivity is reduced at shorter

viewing distances due to the error in accommodation (Hernández,

Doménech, Seguı́, & Illueca, 1996). When a field of different lu-

minance surrounds a detected pattern, the sensitivity is reduced (Yi

et al., 2022) by glare and local luminance adaptation (Vangorp,

Myszkowski, Graf, & Mantiuk, 2015). Binocular sensitivity is

higher than monocular sensitivity and can be predicted from monoc-

ular sensitivity by quadratic summation (Sbinocular =
√

S2
L + S2

R)

(Legge, 1984).

Measurements of contrast sensitivity

Measurements are most often conducted via non-invasive psy-

chophysical methods (Campbell & Green, 1965; Pointer & Hess,

1989), where participants are shown stimuli of different contrast,

and their performance in a detection task is measured. Alternative

approaches use electrophysiological methods such as electroretinog-

https://github.com/gfxdisp/castleCSF
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raphy (ERG) (Hood & Birch, 1990) and visual evoked potential

(VEP) recordings (Norcia, Tyler, & Hamer, 1990), where the elec-

trical response to the stimulus that originates in the retina or the

visual cortex is measured directly. The characterization of optical

characteristics using techniques such as optical coherence tomog-

raphy (OCT) (Adam, Shrier, Ding, Glazman, & Bodis-Wollner,

2013) and retinal imaging (Ortiz, Jiménez, Pérez-Ocón, Castro, &

González-Anera, 2010) can also provide insights into contrast sen-

sitivity. Data from all these different kinds of studies is often im-

possible to compare directly due to the differences in methodology

and control conditions. Even among psychophysical studies, there

is no clear consensus regarding standard test conditions or the type

of stimuli used to measure the visual system’s responses.

Because of the very large space of possible stimulus parame-

ters, existing contrast sensitivity studies typically measure the vari-

ation along 2–3 selected parameters to maintain a feasible length

of a study. It follows that creating a CSF that models a larger

set of dimensions requires combining data from multiple studies.

This poses several challenges. First, each measurement often uses

slightly different stimuli (e.g. Gabors, stimuli with sharp edges,

annulus rings, different shapes of the aperture, etc.), as well as dif-

ferent protocols and viewing conditions (monocular vs. binocu-

lar, natural vs. artificial pupil). To account for these variations

we allow for small relative changes in the sensitivity between the

datasets. Moreover, many dimensions of the modeled CSF show

strong interactions. For example, the spatial and temporal fre-

quency dimensions of the CSF are not separable and cannot be

modeled as a combination of independent spatial and temporal

CSFs. To create a comprehensive model, it is necessary to fit a

model to multiple datasets at the same time. This approach is

different from what is found in previous work modeling multidi-

mensional CSFs (Barten, 1999; Watson & Ahumada, 2016), in

which datasets were fitted one at a time. For the sake of simplic-

ity, castleCSF also does not attempt to faithfully reproduce early

vision mechanisms, such as those modeled in the ISETBIO pack-

age (Brainard et al., 2015). We intend to create a practical model,

which can summarize and predict a large body of data from the

literature.

Modeling contrast sensitivity

Several relevant CSF models are listed in Table 1 and are

discussed in this section. Kelly was one of the first to introduce

a model of the interaction of spatiotemporal mechanisms (Kelly,

1979). Notably, Kelly pointed out that the spatiotemporal CSF

can alternatively be represented as the function of spatial frequency

and retinal velocity, which can be more relevant for some applica-

tions. His model was based on measurements with retinal images

stabilized via eye tracking, which is not representative of typical

image or video content consumption use cases. We found Kelly’s

data to be too distinct from comparable measurements with non-

stabilized stimuli to be used in our model. Daly, 1998 extended

Kelly’s model, which was later fitted to data for non-stabilized

stimuli (Laird, Rosen, Pelz, Montag, & Daly, 2006). All these

models factor only achromatic stimuli and do not consider other

stimulus properties such as luminance or stimulus area.

A comprehensive CSF model can be found in the Visual Dif-

ference Predictor (VDP) work of Daly, 1993, though details on

how the model was fitted to data are omitted. This method models

the effect of spatial frequency, luminance, area, and eccentricity on

the contrast sensitivity of static achromatic stimuli. Barten, 1999,

proposed a comprehensive CSF, explicitly modeling the optical

transfer function, photoreceptor and neural noise, and lateral inhi-

bition. The original model included the effect of spatial frequency,

area, and luminance (Barten, 1992). The full model also includes

extensions to the parafoveal and temporal domain (Barten, 1999).

Moreover, Bozorgian, Pedersen, & Thomas, 2022 have shown that

Barten’s model could be modified to improve predictions for pe-

ripheral contrast sensitivity and validated this with a dataset from

Thibos, Still, & Bradley, 1996. Barten’s model parameters were

fitted individually to multiple datasets from the literature, demon-

strating its ability to explain a wide range of measurements. De-

spite this, in our experiments with Barten’s CSF, we found it un-

able to explain more recent datasets measured at high luminance

levels (Wuerger et al., 2020), in particular, the loss of sensitivity at

high luminance for low frequency achromatic Gabor patterns. This

model also lacks the chromatic component necessary to represent

sensitivity to color modulations.

One of the few works that model chromatic stimuli was pro-

posed by Rovamo et al., 1999. The authors modeled the low-pass

behavior of spatial contrast sensitivity functions for isoluminant

stimuli, as these do not generate lateral inhibition. The detection

mechanism was modeled as the combination of optical and neural

modulation transfer functions, both affected by noise. The model

explained the physiological mechanisms that lead to differences
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Table 1: This table shows a selection of popular CSF models from the literature. Notes: (1) for stabilized retinal images. (2) only modeled for the three

selected color directions. (3) excluding the region in which spatial frequency is below about 10 cpd, and temporal frequency is below 10 Hz.

Model Spatial

freq.

Temp.

freq.

Luminance Background

chromaticity

Area Eccentricity Color

modulation

directions

Kelly’s spatiotemporal CSF (Kelly, 1979) ✓ ✓(1) ✗ ✗ ✗ ✗ ✗

Barten’s CSF (Barten, 1999) ✓ ✓ ✓ ✗ ✓ ✓ ✗

VDP CSF (Daly, 1993) ✓ ✗ ✓ ✗ ✓ ✓ ✗

Rovamo et al. CSF (Rovamo, Kankaanpää, &

Kukkonen, 1999)

✓ ✗ ✗ ✗ ✗ ✗ ✓(2)

Pyramid of visibility (a) (Watson & Ahumada, 2016;

Watson, 2018)

✓(3) ✓(3) ✓ ✗ ✓ ✓ ✗

Chromatic pyramid of visibility (b) (Watson, 2021) ✓(3) ✓(3) ✓ ✗ ✗ ✗ ✓

Wuerger et al. spatio-chromatic CSF (Wuerger et al.,

2020)

✓ ✗ ✓ ✗ ✓ ✗ ✓(2)

Mantiuk et al. spatio-chromatic CSF (Mantiuk et al.,

2020)

✓ ✗ ✓ ✓ ✓ ✗ ✓

stelaCSF (Mantiuk, Ashraf, & Chapiro, 2022) ✓ ✓ ✓ ✗ ✓ ✓ ✗

castleCSF (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

between the detection of achromatic and chromatic gratings and

produced good fits to Mullen’s contrast sensitivity data for isolumi-

nant stimuli (Mullen, 1985). However, the model cannot be easily

generalized to an arbitrary color modulation direction, and there-

fore, cannot be used to predict data from many of our datasets. In

addition to these chromatic CSF models, some recent studies sug-

gested that spatio-chromatic CSFs can be inferred from the features

of deep-neural networks trained on low- and middle-levels tasks,

such as image-denoising, autoencoding, edge detection and object

recognition (Akbarinia, Morgenstern, & Gegenfurtner, 2023; Li,

Gomez-Villa, Bertalmı́o, & Malo, 2022). To demonstrate that, the

authors train a classifier to discriminate contrast and use it as a

decision criterion in a two-alternative-choice contrast detection ex-

periment. The results, however, show only a correlation with hu-

man data and cannot be used to give accurate predictions of human

sensitivity.

The pyramid of visibility is a popular simplified model of con-

trast sensitivity. The original model (Watson & Ahumada, 2016)

accounts for spatial and temporal frequencies, and background lu-

minance, while the extended version (Watson, 2018) adds stimulus

area and retinal eccentricity parameters. The pyramid of visibil-

ity establishes linear and log-linear relationships between contrast

sensitivity and the studied parameters of the stimulus. This linear

behavior of the CSF is only observed at high spatial and temporal

frequencies (above around 10 cpd or 10 Hz). A chromatic exten-

sion of the pyramid of visibility, which models the effect of spa-

tial frequency, temporal frequency, and luminance for stimuli with

modulations in both achromatic and chromatic space, has also been

proposed (Watson, 2021). This model works by estimating the pro-

jections of the stimulus contrast modulation for hypothetical achro-

matic, red-green, and yellow-violet opponent mechanisms of the

visual system. The sensitivity of each of these three mechanisms

is summed together to predict the overall sensitivity for a given

stimulus.

castleCSF builds and expands upon our previous models of

contrast sensitivity. Wuerger et al., 2020 presented a new high-

dynamic-range CSF dataset, and a CSF modeled as a function of

spatial frequency, mean luminance, and stimulus size for the three

cardinal chromatic directions of the visual system. Mantiuk et

al., 2020 extended this work by proposing two spatio-chromatic

CSFs, which could additionally account for the chromaticity of the

background, and any modulation direction in a color space. The
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model was fitted to the combined data from five spatio-chromatic

datasets. In another work, we proposed stelaCSF (Mantiuk et al.,

2022), which was limited to achromatic contrast sensitivity but in-

troduced temporal frequency, and eccentricity. stelaCSF was fitted

to 11 datasets from the literature. This work combines the mod-

els and approaches used in stelaCSF (Mantiuk et al., 2022) and

the post-receptoral spatio-chromatic CSF (Mantiuk et al., 2020).

Although Mantiuk et al., 2020 showed slightly better predictions

for the cone-contrast variant of the model, we selected the post-

receptoral variant as it let us better isolate achromatic and chro-

matic mechanisms. We employ a data-driven, physiologically-

inspired approach to model contrast sensitivity as a function of 6

different stimulus properties, which is the superset of all parame-

ters of the previous models (refer to Table 1). We do not model

the effect of orientation and the effect of the peripheral visual field

(nasal, temporal, superior, or inferior) because of the lack of avail-

able datasets that are compatible with the datasets included in this

study.

Combined contrast sensitivity dataset

Our first goal is to create a comprehensive spatiotemporal

chromatic contrast sensitivity model that accounts for the parame-

ters of the stimuli (Gabors), which are the most relevant for AR/VR

applications: spatial and temporal frequency, background lumi-

nance and chromaticity, the direction of contrast modulation in a

color space, area, and eccentricity. As described in ”Measurements

of contrast sensitivity” above, gathering a single dataset that cov-

ers all these variables is impractical, so instead we opt to combine

datasets from multiple sources.

Contrast sensitivity has been extensively studied over many

decades, and almost every aspect of contrast detection has been

measured. The main problem is that all those measurements were

done independently, each measuring a different slice of a multi-

dimensional space that defines the detection stimuli. Our goal is to

select a set of measurements that covers all stimuli dimensions of

interest, standardize the representation (e.g. use the same contrast

definition and color space), and gather in a format that could be

used to fit a single model that explains all the data.

Contrast units and color space

As the measure of sensitivity, we use the inverse of cone con-

trast, where cone contrast is expressed as:

C =
1√
3

√(
∆L
L0

)2

+

(
∆M
M0

)2

+

(
∆S
S0

)2

, (1)

where ∆L, ∆M, and ∆S are the differential cone responses for

the stimuli and L0, M0, and S0 are the cone responses for the

corresponding background. L, M, and S cone responses are given

by

L = 0.689903

∫
λ

l2(λ)E(λ) dλ, (2)

M = 0.348322

∫
λ

m2(λ)E(λ) dλ, (3)

S = 0.0371597

∫
λ

s2(λ)E(λ) dλ, (4)

where l2, m2 and s2 are 2◦ CIE 2006 cone fundamentals (CIE,

2006)1 and E is the measured spectral radiance emitted from the

display.

Most achromatic contrast sensitivity studies report background

luminance (or retinal illuminance) but do not report the spectral

composition or chromaticity of the background. For those, we as-

sumed L, M, and S cone responses that corresponded to the D65

illuminant and the modulation along the first (L+M) dimension

in the DKL color space (Derrington, Krauskopf, & Lennie, 1984).

For chromatic datasets, we either received the spectral emission

characteristic from the authors or assumed typical emission spec-

tra of the display used in the study (e.g. emission spectrum of a

CRT monitor).

A common practice when measuring chromatic contrast sen-

sitivity is to isolate the chromatic mechanisms of each individ-

ual using a heterochromatic flicker paradigm (Wagner & Boynton,

1972). Since our goal is to create a model of an average observer,

which is suitable for general applications, we excluded the datasets

that measured different color modulation directions for each ob-

server.

Datasets

We selected 18 datasets to train and test our model. Table 2

lists 9 datasets with only achromatic stimuli and the achromatic

portions of 4 datasets that contained both achromatic and chro-

matic stimuli. Table 3 lists 5 chromatic datasets, along with the

chromatic portions of the 4 mixed datasets. Notably, Table 2 con-

tains all the datasets used in recent work by Mantiuk et al., 2022,
1Tabulated cone fundamentals can be found at http://cvrl.ucl.ac.uk/

http://cvrl.ucl.ac.uk/
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Table 2: The achromatic datasets used in our study. Asterisks (∗) mark cases where the data was obtained directly from the authors. In the remaining

cases, the data was scanned from plots in the relevant publication. All listed datasets measured contrast sensitivity using contrast detection tasks. For

datasets with more than one observer where individual data was provided, the expected inter-observer variability (standard deviation) within each

condition in dB is shown along with the number of observers.

Dataset Name

Spatial Temporal Luminance Eccentricity Area

Stimulus

Inter-observer
freq. freq. cd/m2 deg deg2 Variability
cpd Hz (visual field) dB

Robson, 1966 0.5 - 30 0.5 - 32 20 0 6.25 Grating with
rectangular aperture

✗

Virsu & Rovamo, 1979 0.5 - 16 ✗ 10 0, 5, 10, 15, 20,
25, 30 (nasal)

19.65 Grating with
circular aperture

✗

Virsu, Rovamo, & Laurinen, 1982 1 - 22.6 1, 18 10 0, 1.5, 4, 7.5, 14,
30 (nasal)

1.57 Grating with
semi-circular
aperture

✗

Wright & Johnston, 1983 0.25, 2, 6, 9 0, 0.25, 8, 16 100 0 - 12 (superior) 0.75, 2.35, 36 Grating with
rectangular aperture

0.4748
(N = 2)

Rovamo et al., 1993 0.125, 0.25, 0.5,
1, 2, 4, 8, 16, 32

✗ 50 0 0.003 - 980 Grating with
rectangular aperture

✗

Snowden, Hess, & Waugh, 1995 0.25, 1, 2, 4, 5,
10, 20

0.8 - 55.7 0.02 - 870 0 0.25, 1, 4.01 Gabor patch ✗

Modelfest (Watson, 2000) (∗) 1.12 - 30 ✗ 30 0 0.003 - 0.78 Gabor patch 3.7464
(N = 16)

Colorfest (Wuerger, Watson, &
Ahumada Jr, 2002) (∗)

1.2 - 30 ✗ 40 0 0.78 Gabor patch 2.6553
(N = 3)

Laird et al., 2006 4, 8, 16 9.2 - 31.4 60 0 4.75 Gabor patch ✗

Hansen, Pracejus, & Gegenfurtner, 2009 ✗ ✗ 100 10, 20, 30, 40, 50 50.27 Discs ✗

HDR-VDP CSF (Mantiuk et al., 2011;
K. J. Kim, Mantiuk, & Lee, 2013) (∗)

0.125 - 32 ✗ 0.002, 0.02, 0.2, 2,
20, 150

0 0.07, 0.78,
7.06

Fixed cycles Gabor
patch

2.7233
(N = 10)

HDR CSF (Wuerger et al., 2020) (∗) 0.5, 1, 2, 4, 6, 12,
24

✗ 0.02, 0.2, 2, 20, 200,
2000, 7000, 10000

0 0.005 - 12.5 Fixed cycles Gabor
patch

2.7873
(N = 23)

HDR disc CSF (Ashraf, Mantiuk, &
Chapiro, 2023)

✗ ✗ 0.02, 0.2, 2, 20, 200 0 0.02, 0.2,
3.14

Discs 2.4710
(N = 12)

along with the recently collected HDR disc CSF dataset by Ashraf

et al., 2023, but excluding the data from Anderson et al., 1991.

We excluded that dataset as it used a different detection criterion

than all other datasets (discrimination rather than detection) and its

measurements were not comparable. We also avoided the datasets

that were collected for an artificial pupil, as we are interested in

visual performance for natural viewing. If multiple datasets in the

literature covered a similar range of contrast sensitivity parame-

ters, we selected those that were collected for a larger and more

representative group of observers.

Aperture

The type of stimulus used for each dataset is listed in the

last column of each table (Tables 2 and 3). Most datasets mea-

sured contrast thresholds using Gabor patches. Conversely, some

datasets used sine gratings with rectangular or circular apertures

instead of smooth Gaussian windows. To standardize these modal-

ities, given a circular aperture with a diameter d, we assumed the

stimulus to be equivalent to a Gabor patch with σ = d/2. For rect-

angular apertures with the given area a, we assume the stimuli to

be equivalent to a disc aperture with the same area (πσ2 = a). Al-

though those relationships may not fully explain the differences

between Gaussian and other apertures, any inaccuracies are com-

pensated for when fitting and allowing for a sensitivity shift in each

dataset (see Eq. (32)).

Datasets that were directly obtained from the authors are marked

with asterisks. The remaining datasets were scanned from the

corresponding papers using the WebPlotDigitizer tool (Rohatgi,

2022). To ensure this scanning method had sufficiently high ac-

curacy and repeatability we performed an experiment where a plot

for which the ground truth data was available (achromatic CSF at

200 cd/m2 from Figure 5 in Wuerger et al. (2020)) was scanned 5
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Table 3: The chromatic datasets used in our study. Asterisks (∗) mark cases where the data was obtained directly from the authors. In the remaining

cases, the data was scanned from plots in the relevant publication. All listed datasets measured contrast sensitivity using contrast detection tasks. For

datasets with more than one observer where individual data was provided, the mean inter-observer variability in dB (standard deviation within each

condition) is shown along with the number of observers.

Dataset Name

Spatial Temporal Luminance Eccentricity Area

Stimulus

Inter-observer
Chromatic modulation freq. freq. cd/m2 deg deg2 variability

cpd Hz (visual field) dB

Van der Horst &
Bouman, 1969

Yellow-blue and Red-Bluish Green over grey
(equal-energy point) background, Red-green
over yellow background

0.7 -18 0, 0.5 -
9.5

0.009 - 70 0 14.84 Grating
with rect-
angular
aperture

✗

Colorfest (Wuerger et
al., 2002) (∗)

Green-Red, Yellow Green-Violet, Greenish-
Pink, Yellow-Blue, Dark Green-Light Pink,
Dark Yellow-Light Blue over D65 background

1.2 - 30 ✗ 40 0 0.78 Gabor
patch

4.1975
(N = 3)

Hansen et al., 2009 Pinkish Red and Violet over grey background ✗ ✗ 100 10, 20, 30,
40, 50

50.27 Discs ✗

K. J. Kim et al., 2013 Green-Red, Yellow Green-Violet, Dark Green-
Light Pink, Dark Yellow-Light Blue over D65
background

0.25, 0.5, 1, 2,
4

✗ 0.02, 0.2, 2,
20, 150

0 7, 28 Gabor
patch

3.1301
(N = 7)

Lucassen, Lambooij,
Sekulovski, & Vogels,
2018

4 color directions modulated in u’v’ color
space 45◦ apart from each other over 3
different backgrounds (grey, light yellow and
dark yellow)

0.15, 0.3, 0.15,
1.5, 3, 5

✗ 108 0 280 Gabor
patch

✗

Kong, Pérez, Vogels,
Sekulovski, &
Heynderickx, 2018 (∗)

0◦, 45◦, 90◦, 135◦ in u’v’ color space over 9
different backgrounds

✗ 2, 4, 8,
10, 15,
20, 25

35 0 78.5 Discs 6.6586
(N = 3)

HDR CSF (Wuerger et
al., 2020) (∗)

Red-Green and Yellow-Violet over D65
background

0.125, 0.25,
0.5, 1, 2, 4, 6,
12, 24

✗ 0.02, 0.2, 2,
20, 200,
2000, 7000,
10000

0 0.005 -
50

Fixed
cycles
Gabor
patch

3.0668
(N = 23)

HDR disc CSF (Ashraf
et al., 2023) (∗)

Pinkish Red and Violet over D65 background ✗ ✗ 0.02, 0.2, 2,
20, 200

0 0.02,
0.2,
3.14

Discs 4.2842
(N = 10)

Five Centers (Xu, Luo,
& Sekulovski, 2020)
(∗)

6 color directions over red, white, cyan, blue
and yellow backgrounds

0.06, 0.12,
0.24, 0.48,
0.96, 1.92, 3.84

✗ 8.8, 14.1,
24, 50, 72

0 272 Gabor
patches

✗

times. The mean standard deviation of the log sensitivity values

was found to be very low (0.00534 dB). The RMSE error between

the mean of the 5 scans and the ground truth data was also modest

at 0.0117 dB, or 0.135% of the original data. This leads us to con-

clude that the scanning tool offers a robust method for gathering

data.

Contrast Sensitivity Function

In this section, we explain how the proposed castleCSF model

can predict the detection threshold for any background color, spec-

ified in cone response units (L0, M0, S0), and for any color mod-

ulation direction, specified as increments of cone responses (∆L,

∆M, ∆S). A high-level diagram and description of the model’s

workflow is shown in Figure 1.

To isolate the three color mechanisms, one achromatic and

two chromatic, we transform the increments to the color-opponent

DKL space (Derrington et al., 1984) assuming a D65 grey back-

ground using the transformation matrix:
∆DAch

∆DRG

∆DYV

 =


1 1 0

1 −2.3112 0

−1 −1 50.9875

 ·


∆L

∆M

∆S

 . (5)

To compute contrast, we divide the color-opponent increments

by the background luminance:

∆CAch =
∆DAch

Y
, ∆CRG =

∆DRG

Y
, ∆CYV =

∆DYV

Y
, (6)

where Y = L0+M0. The contrast values of the three mechanisms



Journal of Vision (20??) ?, 1–? Ashraf, Mantiuk, Chapiro, & Wuerger 8

are weighted by the sensitivity functions SAch, SRG and SYV, and

pooled together into a contrast energy:

E =

√ ∑
c∈{Ach,RG,YV}

(Sc(ρ, ω, Y, a, e)∆Cc)2 . (7)

Sc(·) are the sensitivity functions of each mechanism, which we

describe in the next section.

We assume that the contrast is detected when the contrast en-

ergy E = 1. Such a threshold can be found analytically by intro-

ducing a constant t:

∆CAch = t∆ĈAch , ∆CRG = t∆ĈRG , ∆CYV = t∆ĈYV ,

(8)

where (∆ĈAch,∆ĈRG,∆ĈYV) is the contrast at the detection thresh-

old. If we introduce these expressions to Eq. (7), we get:

E = t

√ ∑
c∈{Ach,RG,YV}

(Sc(ρ, ω, Y, a, e)∆Ĉc)2 = t Ê , (9)

where Ê is the contrast energy at the threshold. Since we assumed

that the contrast energy should be 1 at the detection threshold, we

have Ê = 1 and hence t = E. This shows us that the detection
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Figure 1: Contrast encoding and the main processing stages of castleCSF.

The color of the background is represented as cone responses (L0, M0,

S0) and the direction in the color space as the increments of cone re-

sponses (∆L, ∆M, ∆S). The direction is transformed into the DKL color

space, and the contrast is computed by dividing by luminance, where lumi-

nance is the sum of L0 and M0. The contrast for the three cardinal color

directions is then modulated by the sensitivity of each mechanism (SAch,

SRG and SYV) and pooled to obtain the contrast energy. We use this energy

to find the detection threshold, and finally compute the sensitivity value.

threshold expressed as an increment in the color opponent space

can be computed from Eq. (8) as:

∆ĈAch =
∆CAch

E
, ∆ĈRG =

∆CRG

E
, ∆ĈYV =

∆CYV

E
. (10)

Assuming a local linearity of the transformation around the back-

ground color (L0, M0, S0), the same approximately holds for the

increment thresholds in the cone response space:

∆L̂ ≈ ∆L
E

, ∆M̂ ≈ ∆M
E

, ∆Ŝ ≈ ∆S
E

. (11)

Once we know the cone response increments at the threshold, we

can calculate the sensitivity as the inverse of the cone contrast from

Eq. (1):

S =

√√√√ 3(
∆L
L0 E

)2
+
(

∆M
M0 E

)2
+
(

∆S
S0 E

)2 , (12)

where E is the energy from Eq. (7).

In the following sections, we explain how the sensitivities of

the three mechanisms, SAch(·), SRG(·) and SYV(·), are modeled.

Mechanism sensitivity

We model the sensitivity of each mechanism, SAch(·), SRG(·)
and SYV(·), by considering the effects of spatial frequency, tem-

poral frequency, luminance, area, and eccentricity. The following

sections explain how each factor is modeled.

Temporal frequency

A series of early work by de Lange introduced the concept of

distinct temporal channels in the human visual system by reporting

varying integration time constants for achromatic and chromatic

stimuli at different flicker rates (de Lange, 1958a, 1958b). The

site of these mechanisms (retinal, LGN, cortical, etc.), their in-

puts (from parvo or magnocellular pathways), and the number of

these temporal channels is still the subject of an ongoing debate.

Results from psychophysical studies have suggested the presence

of multiple temporally-tuned channels (Hess & Snowden, 1992;

Kelly, 1983; Metha & Mullen, 1996; Robson, 1966). For near-

threshold achromatic stimuli, three temporal channels have been

proposed with two motion and one flicker detection channel (King-

Smith & Kulikowski, 1975; Mandler & Makous, 1984). We opted

for the two-channel (low-pass/sustained and band-pass/transient)

model supported by studies such as Tolhurst, 1973 and Anderson

& Burr, 1985 for the achromatic mechanism because of its relative
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simplicity, and because the potential third high temporal frequency

channel likely only detects low spatial frequencies (Hess & Snow-

den, 1992). Some temporal CSF data suggests that the peak of the

achromatic transient channel is dependent on luminance (de Lange,

1958a; Snowden et al., 1995), and shifts towards lower temporal

frequencies as the luminance level decreases. For chromatic mech-

anisms, there is evidence of one slow sustained chromatic chan-

nel and a faster transient channel (Gegenfurtner & Hawken, 1996;

Cropper & Wuerger, 2005; Cass et al., 2009; Metha & Mullen,

1996). We chose not to include the chromatic transient channels in

our model as their magnitudes are relatively smaller than the chro-

matic sustained channels (Cass et al., 2009), and thus contribute

little to the overall sensitivity response. It has also been suggested

that the higher (temporal) frequency chromatic stimuli might be

mediated by luminance mechanisms instead of a dedicated chro-

matic transient channel (Dobkins, Gunther, & Peterzell, 2000).

The impulse responses of the temporal filters associated with

the sustained (S) and transient (T ) channels can be well approx-

imated by the generalized exponential functions (Mantiuk et al.,

2022):

Rc
S(ω) = exp

(
−ωβc

S

σc
S

)
, ∀c ∈ {Ach,RG,YV} , (13)

and:

RAch
T (ω, Y ) = exp

−

∣∣∣ωβAch
T − (ω0(Y ))β

Ach
T

∣∣∣2
σAch
T

 , (14)

where ω is the temporal frequency in Hz, and βc
S , σc

S , βAch
T , and

σAch
T are the parameters of the model. ω0 is the peak temporal fre-

quency of the transient channel which was fixed at 5 Hz in stelaCSF

(Mantiuk et al., 2022). In castleCSF, we model this as a parame-

ter dependent on the mean luminance level based on data from de

Lange, 1958a and Snowden et al., 1995. We found that the fol-

lowing linear relationship between the transient channel peak fre-

quency and log luminance level explained the data well:

ω0(Y ) = mAch
ω log10 Y + cAch

ω [Hz] , (15)

where mAch
ω and cAch

ω are the fitted parameters. This assumption

that at higher luminance levels, the visual system is more attuned

to higher temporal frequencies is also consistent with the informa-

tion flow theory of early vision proposed by Van Hateren, 1993

where they showed that the signal-to-noise ratio (SNR) increases

as a function of log light intensity and that the peak of the neural fil-

ter (analogous to the transient channel in our model) shifts towards

higher frequencies with increasing SNR. Ferry-Porter’s law, which

states that the critical flicker fusion frequency (CFF, the temporal

frequency at which flicker can no longer be perceived) increases

linearly with the logarithm of the luminance level (Ferry, 1892;

Porter, 1902), also supports our model because increasing peak

temporal frequency would also result in a higher cut-off frequency

or CFF. The original works by Ferry and Porter do not suggest any

saturation point for luminance level beyond which the CFF would

no longer increase but the series of studies by Hecht et al. (Hecht

& Verrijp, 1933; Hecht & Shlaer, 1936; Hecht & Smith, 1936)

and more recently by Chapiro, Matsuda, Ashraf, & Mantiuk, 2023

have shown that CFF reaches a saturation point depending on the

size and eccentricity of the stimulus. This would imply a sigmoidal

instead of linear relationship in Eq. (15). However, given limited

data, we opted for a simpler model.

The responses of the temporal channels in our model are shown

in Figure 2. All the sustained channels are low-pass while the

achromatic transient channel is band-pass with the peak shifting

towards higher temporal frequencies as the luminance increases.

0.5 1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

Figure 2: Responses of the temporal channels. The three sustained (S)
channels are low-pass while the achromatic transient (T ) channel is

bandpass. The response of this bandpass channel depends on luminance

— shifts towards higher frequencies as the mean luminance increases.

Spatial frequency

The spatial frequency response of the achromatic mechanism

(SAch in Figure 1) is modeled to be band-pass. The assumption

that the spatial frequency response for achromatic static gratings is
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band-pass is well-supported in visual perception literature. Studies

such as those by Blakemore & Campbell, 1969 demonstrate that

human visual sensitivity is highest at intermediate spatial frequen-

cies and falls off at both low and high spatial frequencies. The

magnitude and the location of the peak sensitivity vary depend-

ing on the other properties (luminance, temporal frequency, size,

etc.) of the stimulus. At the low spatial frequency end, the sen-

sitivity fall-off is caused by lateral inhibition, but this inhibitory

response is not strong when the low spatial frequency stimulus is

temporally-modulated (Tolhurst, 1973; Donner & Hemilä, 1996)

and results in a low-pass response. We model the spatial frequency

responses of both the sustained and temporal achromatic channels

as log-parabolas (Ahumada & Peterson, 1992):

lc
′

t (ρ, Y ) = 10
−
(log10 ρ− log10 ρ

c
m,t(Y ))2

2k
c
b,t , (16)

where c ∈ {Ach,RG,YV} is the index of the mechanism, t ∈
{S, T } is the temporal channel (sustained or transient), ρcm,t con-

trols the position of the peak of the parabola as a function of lu-

minance (described in section Luminance), and kcb,t controls the

bandwidth of the log-parabola. For achromatic spatial contrast sen-

sitivity, the parabola is truncated on the low spatial frequency side

of the envelope:

lAch
t (ρ) =

1− kAch
a,t if ρ < ρAch

m,t and lAch′
t < 1− kca,t

lAch′
t (ρ) otherwise

(17)

where, t ∈ {S, T }, and kAch
a,t is a function parameter that controls

the drop in achromatic spatial contrast sensitivity at low frequen-

cies. Our model fits coincide with the findings from the litera-

ture that the sustained channel has a band-pass shape with the peak

shifting with different stimuli properties. The fitted value of the

peak spatial frequency parameter for the transient channel (kAch
ρ,T in

Table 5) has a very small value, which results in a low-pass shape.

The spatial frequency responses of the two chromatic mecha-

nisms are approximately low-pass, that is, the sensitivity decreases

with increasing spatial frequency. This is because of the much

weaker low-spatial frequency inhibition in the chromatic detection

pathways (Kelly, 1983; Metha & Mullen, 1996). The roll-off and

cut-off frequency of these responses depends on the other stimulus

properties. The low-pass response of the spatio-chromatic CSF can

also be modeled as a truncated log-parabola lc
′

t with the sensitiv-

ity for lower spatial frequencies leveling off (instead of decreasing

like the achromatic CSF) at the peak frequency. This function is

represented as:

lcS(ρ) =

1 if ρ < ρcm,S(Y )

lc
′

S (ρ) otherwise
(18)

where c ∈ {RG,YV}. The definition of the parameters is the same

as that for the achromatic channel.

Area

The stimuli become easier to detect (the sensitivity is increased)

as their size increases. The contrast sensitivity increases with stim-

ulus size for achromatic and chromatic CSFs up to a certain value,

known as the critical area ax. The value of this critical area and the

rate of increase of sensitivity up until the critical area depends on

the spatial frequency of the stimuli and is modeled in Rovamo et

al., 1993 as

acx,t =
ac0,t

1 + (ρ/ρc
0,t)

2 [deg2] , (19)

where c ∈ {Ach,RG,YV} and t ∈ {S, T }. acx,t is the maximum

value of the critical area and ρc0,t is the minimum value of spatial

frequency, beyond which the value of the critical area is no longer

constant and begins to decrease with increasing spatial frequency,

for each colour and temporal channel. Figure 3a shows the change

in the critical area for the four modeled channels. The plot shows

that the detection mechanism integrates over a smaller area at high

frequencies. The product of a function of this critical area acx,t and

spatial frequency is the critical number of cycles over which our

visual system can integrate. Figure 3b shows the change in the

critical number of cycles as a function of the spatial frequency.

The size-dependent sensitivity response follows the model of

Rovamo et al., 1993 and is expressed as:

Sc
area,t(ρ, a) = ρ

√
acx,t

1 +
ac
x,t

a

[cyc] . (20)

The effect of size is independent of other factors in our model.

The combined effect of spatial frequency and stimulus size on the

contrast sensitivity is shown in Figure 4. The log-parabola band-

pass shape of the achromatic sustained channel is more pronounced

for the stimuli of constant size (rather than the constant number of

cycles) where at low spatial frequencies fewer cycles are presented.
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Luminance

In dim light, contrast sensitivity increases in proportion to the

square root of retinal illuminance, according to the DeVries-Rose

law, but in bright light contrast sensitivity follows Weber’s law and

is independent of illuminance (Blackwell, 1946; Rovamo, Musto-

nen, & Näsänen, 1995). K. J. Kim et al., 2013 have shown similar

results for chromatic stimuli, with sensitivity saturating from ap-

proximately 50 cd/m2. The recent sensitivity data from (Wuerger

et al., 2020), measured up to 10 000 cd/m2, shows that the assump-

tion of sensitivity becoming constant at high luminances is not

entirely accurate for achromatic stimuli as the sensitivity at very

2
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Figure 3: (a) Change in the critical area with spatial frequency. The

critical area parameter for the achromatic sustained channel saturates

at about 0.5 cpd and for the achromatic transient channel saturates at

about 2 cpd. For the red-green and yellow-violet channels, this saturation

point lies at a much smaller spatial frequency (b) Critical number of cy-

cles changing with the spatial frequency. The value of the critical number

of cycles becomes constant with increasing spatial frequency. For the red-

green and yellow-violet channels, our model predicts the critical number

of cycles to be constant for approximately the whole range of spatial fre-

quencies detectable by the human visual system.
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Figure 4: Joint effect of spatial frequency and area on sensitivity (a) Con-

trast sensitivity of stimuli with 4 visible cycles at each spatial frequency

(b) Contrast sensitivity of stimuli with a constant radius of 2◦ at each spa-

tial frequency.

high luminance, above 1000 cd/m2, starts to drop, especially for

low frequencies. Following Mantiuk et al., 2022, we model the

change of the luminance-dependent sensitivity for achromatic sus-

tained mechanism as an initial increase followed by a plateau and

eventual decrease:

SAch
m,S(Y ) = kAch

s1,S

(
1 +

kAch
s2,S

Y

)−kAch
s3,S
(
1−

1 + kAch
s4,S

Y

)−kAch
s5,S

.

(21)

The luminance-dependence of chromatic sensitivity is mod-

eled as an increase and then saturation of sensitivity with increas-

ing luminance:

Sc
m,S(Y ) = kcs1,S

(
1 +

kcs2,S

Y

)kc
s3,S

, ∀c ∈ {RG,YV} . (22)

For the achromatic transient channel, we again followed the

approach from Mantiuk et al., 2022 and modeled the change in

sensitivity as a linear function of luminance:

SAch
m,T (Y ) = kAch

s2,T Y
kAch

s1,T . (23)

This relationship is supported by the studies from Swanson, Ueno,

Smith, & Pokorny, 1987 and Snowden et al., 1995, showing the

linear increase of sensitivity to flickering stimuli with luminance.

For the luminance ranges tested in the aforementioned studies, the

sensitivity did not saturate with luminance as was the case for static

achromatic and chromatic stimuli.

Luminance also causes the shift of the peak sensitivity —

as the luminance is reduced, the sensitivity drops but this reduc-

tion is stronger for high frequencies. These effects have different

characteristics for the sustained and transient achromatic, and two

chromatic mechanisms. The effect on the luminance-dependent

frequency shift in the spatial log-parabola response (Eq. (16)) is

modeled as:

ρAch
m,S(Y ) = kAch

ρ1,S

(
1 +

kAch
ρ2,S

Y

)−kAch
ρ3,S

[cpd] ,

ρAch
m,T (Y ) = kAch

ρ,T [cpd] ,

ρcm,S(Y ) = kcρ,S [cpd], ∀c ∈ {RG,YV} ,

(24)

where Y is luminance in cd/m2, kc... are the parameters of the

model, Sc
m,S/T is the luminance-dependent sensitivity, and ρcm,S/T

is responsible for the spatial frequency shift in Eqs. (17) – (18).



Journal of Vision (20??) ?, 1–? Ashraf, Mantiuk, Chapiro, & Wuerger 12

We model the effect of luminance rather than retinal illumi-

nance (in Trolands) because the former is more readily available

in engineering applications, in which the pupil size (required for

calculating retinal illuminance) is often unknown or difficult to

measure. Figure 5 show the values of the luminance-dependent

parameters in Eqs. (21) – (24). These parameters only show the

effect of luminance and do not include the shift in the peak sen-

sitivity and peak spatial frequency induced by the stimulus size.

The achromatic sustained response in Figure 5a shows the decline

in sensitivity for luminances above 1000 cd/m2. The sensitivity

of the achromatic transient channel increases with increasing lu-

minance while both the chromatic channels transition to Weber’s

region above 20 cd/m2. The log-parabola spatial frequency param-

eter for the achromatic sustained channel increases with luminance

up to about 500 cd/m2 as shown in Figure 5b and then remains

constant with further increase in luminance. An increase in this

parameter translates to the shifting of the spatial contrast sensitiv-

ity curve towards higher spatial frequencies. The peak spatial fre-

quency parameters for the achromatic transient channel and both

chromatic sustained channels are constants and thus independent

of luminance.
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Figure 5: (a) Luminance-dependent shift in sensitivity. The responses of

the three sustained channels increase with luminance and then saturate,

with the achromatic sustained channel response showing a decline at very

high luminances. The transient channel response shows a linear relation-

ship with luminance in log-log space. (b) Luminance-dependent spatial

frequency shift for the achromatic sustained channel. The value of the ρm

parameter for the remaining channels is independent of luminance.

Eccentricity

Contrast sensitivity decreases with retinal eccentricity for achro-

matic (Robson & Graham, 1981) and chromatic CSFs (Anderson

et al., 1991) along with other visual performance metrics such as

visual acuity (Anstis, 1974), vernier acuity (Levi, Klein, & Ait-

sebaomo, 1985), crowding (Coates, Chin, & Chung, 2013), etc.

The performance differences between the foveal and peripheral re-

gions of the visual field can be explained by the differences in the

neural configuration of photoreceptors in different regions of the

retina. The receptive field size increases with eccentricity (Hubel &

Wiesel, 1962) resulting in a functional increase in spatial summa-

tion with eccentricity (Wilson, 1970; Johnson, Keltner, & Balestr-

ery, 1978). The rate of this change depends on the color and

the spatial frequency of the stimuli. If all other properties of the

stimuli are kept constant, the visual system’s sensitivity to a low-

frequency stimulus will decrease at a lower rate as compared to

a high-frequency stimulus when the stimuli are moved from the

fovea to the periphery across the retina (Virsu & Rovamo, 1979;

Virsu et al., 1982). We have modeled the sensitivity drop with

respect to retinal eccentricity as a log-linear function of spatial fre-

quency and eccentricity, following (Watson, 2018):

Sc
ecc(e, ρ) = 10−(k̂c

e1 ρ e+k̂c
e2 e) , (25)

where c ∈ {Ach,RG,YV}.

Finding a suitable peripheral chromatic contrast sensitivity

dataset to validate our hypotheses proved to be challenging. The

dataset from Hansen et al., 2009 primarily drove the optimization

of the eccentricity-dependent parameters for the chromatic chan-

nel in our model. We did not include any datasets that used flicker

photometry to isolate the chromatic mechanism as we could not

parse their data in LMS cone contrasts (Noorlander, Koenderink,

Den Olden, & Edens, 1983; Anderson et al., 1991; Newton & Es-

kew, 2003; Mullen et al., 2002; Mullen, Sakurai, & Chu, 2005).

Moreover, Mullen et al., 2002 and Mullen et al., 2005 used very

thin sinusoidal grating strips to avoid detection from neighboring

peripheral receptive fields. The equivalent Gabor assumption (see

Section Aperture) did not result in good fits for these datasets.

The decrease in sensitivity is non-uniform across the visual

field, with a slower decrease in the nasal direction (Anderson et

al., 1991). To model this effect, the k̂ce1 and k̂ce2 eccentricity re-

sponse parameters from Eq. (25) are calculated as weighted means

of sensitivity drop in the nasal (kcei,nasal) and other directions (kcei).

k̂cei = αkcei + (1− α)kcei,nasal where i = 1, 2 and

α = min

{
1,

∣∣∣∣θ − 180

90

∣∣∣∣} .
(26)

θ is the orientation in the visual field in deg. θ = 0 corresponds

to the temporal and θ = 180 to the nasal directions; i.e. it is an
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angular coordinate for the right eye. Figure 6 shows the reduc-

tion in sensitivity as stimulus position on the retina moves from

the fovea to the periphery. This decrease in sensitivity is steeper

for higher spatial frequencies which implies that our visual sys-

tem is less sensitive to stimuli with finer details in the peripheral

region. The slopes of eccentricity-dependent change in sensitivity

also differ for the three different color channels. This is expected

as the cone density function for different classes of photoreceptors

(Curcio, Sloan, Kalina, & Hendrickson, 1990) as well as the sensi-

tivity of the post-receptoral pathways for different opponent color

channels (Mullen et al., 2002, 2005) change at different rates in the

periphery.

Another possible approach to model the effect of sensitivity

could be to include eccentricity as a parameter in the critical area

function in Eq. (19), as there is evidence of the critical area value

increasing as a function of retinal eccentricity (Wilson, 1970; John-

son et al., 1978). However, we opted to use the simpler model from

(Watson, 2018) based on the current availability of datasets. We

did not find any suitable datasets that comprehensively covered the

joint effects of eccentricity, area, and temporal frequency. Conse-

quently, our model employs a simpler structure and maintains sep-

arability of eccentricity-dependence to avoid overfitting data that

does not capture the joint effects of stimuli properties.

0 10 20 30 40 50
10-3

10-2

10-1

100
Ach

0 10 20 30 40 50

RG

0 10 20 30 40 50

YV

Figure 6: Eccentricity-dependent changes in sensitivity. The spatial fre-

quency and the retinal orientation (axes: nasal, temporal, superior, infe-

rior) jointly affect the rate at which the sensitivity decreases with retinal

eccentricity in each color channel.

Combined model

The final sensitivity of our model is given by Eq. (12), which

requires computing the contrast energy according to Eq. (9). The

contrast energy equation relies on per-mechanism sensitivity func-

tions, given as:

SAch(ρ, ω, Y, a, e) =SAch
ecc (e, ρ)R

Ach
S (ω)SAch

sal,S(ρ, a, Y )+

SAch
ecc (e, ρ)R

Ach
T (ω)SAch

sal,T (ρ, a, Y ) ,
(27)

SRG(ρ, ω, Y, a, e) =SRG
ecc (e, ρ)R

RG
S (ω)SRG

sal,S(ρ, a, Y ) , (28)

SYV(ρ, ω, Y, a, e) =SYV
ecc (e, ρ)R

YV
S (ω)SYV

sal,S(ρ, a, Y ) , (29)

where Sc
ecc(e, ρ) is given in Eq. (25), Rc

S(ω) are the temporal filters

from Eq. (13) and Eq. (14) and the combined effects of spatial

frequency, stimulus area, and luminance is modelled as the product

of individual sensitivities:

Sc
sal,t(ρ, a, Y ) = Sc

m,t(Y )Sc
area(ρ, a) l

c
t (ρ) , (30)

where c ∈ {Ach,RG,YV}, and t ∈ {S, T }. Sc
m,t is the luminance-

dependent change in the peak sensitivity (Eqs. (21) – (23)), Sc
area

is the function of critical area (Eq. (20)), and lct is the truncated

log-parabola representing the contrast sensitivity function envelope

across spatial frequencies (Eqs. (17) – (18)).

Figure 7 shows how all the individual components of our model

presented in Eqs. (16) – (29) combine to predict SAch, SRG and SYV

which feed into our contrast encoding model (Figure 1) to predict

our visual system’s sensitivity to stimuli modulated along any color

direction.

Extension for edge stimuli

Since some of the stimuli were discs instead of Gabor patches,

an extended version of our model was needed to predict them.

Edge contrast sensitivity has been shown to be an indicator of the

most sensitive contrast vision channel (Levi & Harwerth, 1982;

Verbaken & Johnston, 1986). In other words, the peak of the

contrast sensitivity envelope (across spatial frequencies) is pro-

portional to the edge sensitivity of the visual system. Since a

disc forms a circular edge, we can combine the peak-sensitivity

assumption with a multiple-detectors model from (Ashraf et al.,

2023) to predict the disc sensitivity as:

Sc
disc(ω, Y, a, e) = (2π

√
a)

1/β maxρ(Sc(ρ, ω, Y, adisc, e)) , (31)

where, c ∈ {Ach,RG,YV}, Sc is the contrast sensitivity of the

equivalent Gabor patches from Eqs. (27) – (29), β = 3.01142, and

adisc = 2.42437. The values of these fixed parameters are taken

from (Ashraf et al., 2023).
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Model training

18 datasets, listed in Tables 2–3 were used to train our CSF

model. For the datasets that contained measurements from mul-

tiple observers, the mean values over all observers were used for

training. All data points with sensitivity values less than 1 were

removed, as these values represent contrast thresholds greater than

1. This is only possible when asymmetric contrast modulation is

employed. A per-dataset adjustment factor, sd was applied to the

sensitivity measurements from each dataset. This was necessary, as

the absolute magnitude of the sensitivity depended on the measure-

ment conditions, psychophysical procedure, specific stimuli used,

etc. This is compensated via a vertical shift for the whole dataset

in the log sensitivity scale, allowing for the integration of diverse

datasets into a single robust and generalizable model. The loss

function of the optimization procedure minimized the difference

between the model predictions and the adjusted (via sd factor) data

points from all the datasets, as well as minimized the base 10 log-

Spatial summation

Luminance dependence
in sustained channel

×

×

×

+

Retinal position dependence

Spatial frequency
response of

sustained channel

Luminance dependence
in transient channel

Spatial frequency
response of

transient channel

Temporal frequency
response of

sustained channel

Temporal frequency
response of

transient channel

Figure 7: Spatiotemporal luminance, area, and eccentricity-dependent

contrast sensitivity for individual opponent color mechanisms (SAch, SRG

and SYV). The blocks represent the different components of the model de-

scribed in Eqs. (16) – (29). The blocks where the inputs and outputs are

dashed lines represent the transient channels and are only relevant for

SAch.

arithmic value of sd (so the multiplier is close to 1 and prevents

overfitting to any specific dataset characteristics).

L =
∑
d

∑
i

(
log10 Si,d − sd log10 S̃i,d

)2
+

λ

D

∑
d

(log10 sd)
2

(32)

where d = 1, . . ., D represents the datasets, Si,d and S̃i,d are the

reference and predicted sensitivity values for the stimulus i in dataset

d. We found a suitable value of the regularization parameter (λ =

0.01) by trial and error. In all our experiments, we fix sd = 1 for

the reference HDR CSF dataset. We fit all models using a quasi-

Newton method implemented in Matlab’s fminunc function. To

avoid local minima and implausible model parameters, the opti-

mization was initialized using the parameters from stelaCSF (Mantiuk

et al., 2022) and the post-receptoral spatio-chromatic CSF (Mantiuk

et al., 2020). The parameters resulting from fitting castleCSF to all

available datasets are reported in the Appendix Tables 5–7.

Comparison with other CSF models

We compare the predictions of castleCSF with several popular

models from the literature, listed in Table 1. We excluded from

this comparison the model of Rovamo et al., 1999 as it could not

be tested on our datasets (it only works only for select isoluminant

directions).

One challenge of evaluating CSF models is that contrast sen-

sitivity data cannot be easily split into datasets used for testing and

training. This is because each dataset typically contains uniformly

spaced samples across a few select slices of the multi-dimensional

space of stimulus parameters. If a model is trained on one dataset

and tested on another, each containing different slices of the pa-

rameter space, the error measure is not representative of the entire

space. Instead of doing this, we perform a 5-fold cross-validation

within each dataset (leave-one-out, 5 splits) and use all datasets for

both training and testing. The same split of test/train data was used

for each compared CSF model. The error is reported as root-mean-

square-error (RMSE), represented in dB units:

E = 20

√
1

N

∑
d

∑
i

(
log10 Si,d − sd log10 S̃i,d

)2
[dB] , (33)

where N is the total number of data points. The errors in Table 4

are reported as means and standard deviations across all five folds.

The number of trainable parameters of each model is also listed
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Table 4: Prediction errors of contrast sensitivity models, tested on the same subset of data points. The errors are reported in the dB units (see Eq. (33))

as the mean and standard deviation across five-folds (leave-one-our cross-validation). Each column shows the result for the subset of the dataset,

containing variation along selected parameters of the stimuli (selected to match the parameters supported by CSFs). The value of N is the number of

data points included in each subset (testing and training parts). The predictions are reported for 5-fold cross-validation (see text). The symbols denote:

ρ — spatial frequency; Y — luminance; a — area; ω — temporal frequency; e — eccentricity, c — modulation along chromatic color directions.,

cDKL — modulation along the cardinal color direction (achromatic, red-green, yellow-violet) only. Asterisks (∗) mark the cases where low spatial and

temporal frequencies are removed from the datasets.

No. of Achromatic only Achromatic and chromatic
Model model pa-

rameters
ρ, Y, a ρ, Y, a, ω ρ, Y, a,

ω, e

ρ, Y, a,
cDKL

ρ, Y, a, c ρ, Y, c ρ, Y, ω, c ρ∗, Y ,
ω∗, c

ρ, Y, a,
ω, e, c

N 231 579 779 485 1185 1055 1937 1368 2287

Barten’s CSF (Barten, 1999) 13 3.5±0.48 3.9±0.35 4.5±0.31 ✗ ✗ ✗ ✗ ✗ ✗

VDP CSF (Daly, 1993) 6 5.4±0.54 ✗ 11± 0.49 ✗ ✗ ✗ ✗ ✗ ✗

Wuerger et al. spatio-chromatic
CSF (Wuerger et al., 2020)

27 3.5±0.71 ✗ ✗ 4.5±0.54 ✗ ✗ ✗ ✗ ✗

Mantiuk et al. spatio-chromatic
CSF (Mantiuk et al., 2020)

31 2.7 ± 0.32 ✗ ✗ 3.1 ± 0.25 3.2 ± 0.21 3 ± 0.089 ✗ ✗ ✗

stelaCSF (Mantiuk et al., 2022) 21 2.8±0.47 4.4±0.37 4.4±0.41 ✗ ✗ ✗ ✗ ✗ ✗

Chromatic pyramid of visibility
(Watson, 2021)

15 ✗ ✗ ✗ ✗ ✗ 5.3±0.26 5.3 ±
0.093

4.8±0.36 ✗

castleCSF 53 2.8±0.27 3.5 ± 0.35 3.3 ± 0.23 3.2±0.22 3.3±0.22 3.2±0.14 3.5 ± 0.16 3.5 ± 0.17 3.6 ± 0.12

in the table. Note, the parameters of the final version shown in

Tables 5–7 are reported for the model fitted to all available data.

Because most existing CSFs model fewer stimulus parameters

than castleCSF, we tested other models on the subsets of our com-

plete dataset, shown in the columns of Table 4. For each subset, we

selected only the datasets that test the dimensions modeled by the

CSFs being tested and fitted each model on that subset. In partic-

ular, all the models can predict contrast sensitivity changes along

spatial frequency and luminance, and so these properties were in-

cluded in every comparison. The CSFs that did not model temporal

frequency were tested only on static stimuli (0 Hz). Similarly, the

CSFs that did not model the effect of eccentricity were tested on

foveal (0◦ retinal eccentricity) stimuli only. In the comparisons

where the effect of stimulus size was not tested, we kept only ei-

ther the fixed size or the fixed cycles subsets from each dataset.

The comparisons with chromatic datasets consisted of either stim-

ulus modulated only along the cardinal color directions (cDKL) or

modulations along any arbitrary color directions over any back-

ground color (c). The number of data points (N ) included in each

comparison is listed in the header of the table.

The Chromatic Pyramid of Visibility (Watson, 2021) required

special treatment as this model is not intended to predict sensitivity

for low spatial and temporal frequencies. For that reason, we report

the results of the test with and without (column with ρ∗, ω∗ Table 4)

low-frequency stimuli. We excluded the stimuli for which ρ <

4 cpd and ω < 4Hz unless it was isoluminant chromatic stimuli, in

which case we excluded stimuli for which ρ < 1 cpd and ω < 1Hz.

Instead of proposing a complex physiologically-inspired model,

we could fit a neural network to the data, which may provide an

even better fit. We experimented with that idea and fitted a Multi-

Layer Perceptron (MLP) using the same training/test data split as

other models. The MLP had 6 layers, 120 neurons each (the archi-

tecture with the lowest validation loss). When fitted to all datasets,

the error was larger than for castleCSF (5.8 dB), but more impor-

tantly, the MLP could not predict plausible trends or extrapolate

the data. The MLP predictions can be found at the project page2.

This failure of general function approximations can be explained

by the scarcity and non-uniform distribution of contrast sensitivity

data. Physiologically inspired models introduce regularization that

helps them converge to plausible solutions.

castleCSF produces the lowest prediction errors for the major-

ity of the comparisons in Table 4. The prediction error is within the

range expected from inter-observer variation (between 3 to 3.9 dB

or approximately half an octave) (Dakin & Turnbull, 2016). As

2Project page: https://www.cl.cam.ac.uk/research/rainbow/

projects/castleCSF

https://www.cl.cam.ac.uk/research/rainbow/projects/castleCSF
https://www.cl.cam.ac.uk/research/rainbow/projects/castleCSF
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Figure 8: Achromatic contrast sensitivity predictions by castleCSF along 5 dimensions of stimuli. The unit vector of the incremental cone response

(∆L, ∆M, ∆S) of the stimuli is: (0.6612, 0.3388, 0). The contrast sensitivity response predictions are shown in the 5 columns with spatial frequency,

temporal frequency, luminance, eccentricity, and size as independent variables respectively. In each column, the four plots show the sensitivity

predictions with each of the remaining 4 model dimensions as the second independent variable. The remaining parameters are fixed as spatial

frequency = 1 cpd, temporal frequency = 0 Hz, luminance = 30 cd/m2, eccentricity = 0◦, stimulus size (radius) = 1◦. The rows and columns are

notated as a-b and i-v respectively for ease of reference in the discussion.

a reference, the expected inter-observer variation for the selected

datasets is listed in the rightmost column of Table 2. Notably, most

CSF models result in significantly larger errors, even when tested

on a much more restricted portion of the dataset. A notable ex-

ception is Mantiuk et al., 2020’s post-receptoral spatio-chromatic

model, which is used as a component of castleCSF. However, this

model does not cover temporal frequency and eccentricity. Over-

all, no existing CSF can account for the same number of stimuli

parameters and provide the same accuracy of prediction produced

by castleCSF.
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Figure 9: Red-green contrast sensitivity predictions by castleCSF along 5 dimensions of stimuli. The unit vector of the incremental cone response (∆L,

∆M, ∆S) of the stimuli is: (0.3388,−0.3388, 0). The description of the plots is the same as in Figure 8.

Model predictions

Cross-sections of castleCSF’s predictions for all combinations

of modeled parameters, when trained on the full dataset, are shown

in Figures 8 (achromatic), 9 (red-green), and 10 (yellow-violet).

For each subplot, the vertical axis depicts sensitivity, and each col-

umn models changes along spatial frequency, temporal frequency,

luminance, eccentricity, and stimulus size respectively as the inde-

pendent variable. Within each column, rows show the joint effect

of the respective independent variable and each of the remaining

variables on contrast sensitivity.

Aggregate prediction errors for different 2D cross-sections of

the 5-dimensional parameter space are shown in Figure 11, along

with the sample density of our combined dataset. The upper two

rows in the figure represent predictions of achromatic data (N =

779), while the lower two show the remaining chromatic data points

(N = 1508). The color bar in the plots represents the prediction er-

ror in decibels (dB) calculated using the error function in Eq. (33).
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Figure 10: Yellow-violet contrast sensitivity predictions by castleCSF along 5 dimensions of stimuli. The unit vector of the incremental cone response

(∆L, ∆M, ∆S) of the stimuli is: (0.0115, 0, 0.0115). The description of the plots is the same as in Figure 8.

Discussion

In this section, we discuss castleCSF predictions of individual

datasets and how they relate to known psychophysical evidence.

The predictions reported in this section pertain to the model fitted

to the complete dataset, with the parameters listed in Tables 5–

7 in the Appendix, using a per-dataset adjustment (sd in Eq. (32)).

The colored numbers shown in the Figures. 12-27 denote the fitting

error for the corresponding subset of conditions, reported in dB

units.

Sensitivity attenuation at high spatial frequen-
cies

Our model predicts that contrast sensitivity decreases loga-

rithmically with spatial frequency for both achromatic and chro-

matic mechanisms in the high spatial frequency region, as depicted

in the plots in column (i) of Figures 8, 9, and 10. This attenuation

can be observed for achromatic datasets in Figures 12a, 12b (C1),
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Figure 11: castleCSF prediction errors along with data points density for different 2D projections of the 5-dimensional parameter space. Top two

rows: achromatic data. Lower two rows: chromatic data. The upper and lower boundaries of the bins are indicated by the corresponding tick labels

on the axes. For discs, static and foveal stimuli, the whole bin represents spatial frequency = 0 cpd, temporal frequency = 0 Hz or eccentricity = 0◦

respectively. The color bar in the plots represents the prediction error in decibels (dB) calculated using the error function in Eq. (33). The size of the

circles represents the number of data points for each combination of parameter values.

13a, 14a, 15, and 16(L+M). The higher frequency decrement can

also be observed in chromatic datasets in Figures 12b (C2-C6), 16

(L-M, and S-(L+M)), and 17-20.

For fixed-cycle stimuli and foveal vision, the high-spatial fre-

quency attenuation can be solely explained by the optics of the

eye (Banks, Geisler, & Bennett, 1987; Campbell & Green, 1965;

Rovamo et al., 1993). Moreover, it has been shown that the slope

of the MTF of the human eye changes with different pupil sizes

(Watson, 2013; Deeley, Drasdo, & Charman, 1991; Van Meeteren,

1974), which in turn contract with increasing luminance levels. It

follows that for fixed-cycle stimuli in natural viewing conditions,

the slope of the CSF at high spatial frequencies should change with
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the pupil diameter and, therefore, with luminance. Unfortunately,

we do not have a dataset that could demonstrate this effect (fixed-

size HDR-CSF was only measured up to 6 cpd). As a result, this

effect is not captured by our model, which predicts this slope to be

independent of luminance level.

It is well known that we are less sensitive to high spatial fre-

quencies in the chromatic (isoluminant) color directions, owing to

the lower resolving power of chromatic pathways (Mullen, 1985).

Given that, it may come as a surprise that the ColorFest data shown

in Figure 12b and HDR-CSF in Figure 16 show higher sensitiv-

ity for chromatic L-M and C2 data than for the achromatic L+M

and C1 data — in particular at high spatial frequencies. This can

be attributed to two issues: First, the cone contrast units, which

define the sensitivity values, use an arbitrary scale for each color

direction, and therefore the sensitivity values for the L+M direc-

tion cannot be directly compared to those for the L-M one, or any

other. We choose the scale where the sum of CIE, 2006 L and M

cone responses is equal to the Stockman and Sharpe luminous effi-

ciency function (Sharpe, Stockman, Jagla, & Jägle, 2005) and the
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Figure 12: Predictions for (a) the Modelfest (Watson, 2000) and (b) Col-

orfest Wuerger et al., 2002 dataset. (a) Modelfest: The stimuli were hor-

izontally oriented achromatic static Gabor patches with either constant

size (Gaussian envelope of σ = 0.5◦) or constant cycles (2 visible cycles

approximately) tested at 30 cd/m2. The viewing mode was binocular with

natural pupils. (b) Colorfest: The stimuli were static horizontal Gabor

patches of fixed size (σ = 0.5◦). The color modulations were C1: black-

white, C2: reddish-greenish, C3: yellowish green-violet, C4: greenish-

Pink, C5: yellow-blue, C6: dark green-light pink, C7: dark yellow-light

blue. C1, C2, and C3 were approximately the cardinal color directions of

the human visual system. The background was D65 grey at 40 cd/m2. The

viewing mode was binocular with natural pupils. The colored numbers

shown in the plot denote the prediction error, in dB, per subset of condi-

tions.

resulting DKL responses reflect the length in this contrast space

(Capilla, Malo, Luque, & Artigas, 1998). In such a scale of cone

fundamentals, the red-green mechanism has the strongest response

(Chaparro, Stromeyer, Huang, Kronauer, & Eskew, 1993; Cole,

Hine, & McIlhagga, 1993; Eskew, McLellan, & Giulianini, 1999;

Y. J. Kim, Reynaud, Hess, & Mullen, 2017), that is, a small change

in cone contrast space would produce a large response in the red-

green opponent color direction quantitatively compared to that of

the achromatic or yellow-violet early vision mechanism. As a re-

sult, the perceived magnitude of contrast differs across the three di-

mensions of the DKL space (Switkes & Crognale, 1999). Second,

neither of the two experiments attempted to isolate the chromatic

mechanism of each participant (e.g. via the use of heterochromatic

flicker). Therefore, the stimuli in both datasets likely contain con-

trast that could be detected by achromatic mechanism. For exam-
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Figure 13: Predictions for the HDR-VDP CSF (Mantiuk et al., 2011)

dataset. The stimuli in the sub-plot (a) were vertically oriented achro-

matic static Gabor patches with a Gaussian envelope of σ = 1.5◦ shown

at different luminance levels. The two sub-plots (b) show measurements

from similar stimuli of different sizes with spatial frequencies of 1 and 8

cpd. The viewing mode was binocular with natural pupils.
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Figure 14: Predictions for the Robson, 1966 dataset. The stimuli

were achromatic sinusoidal gratings with rectangular apertures viewed

at 20 cd/m2. The area of the gratings was fixed at 6.25 deg2.
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ple, in Figure 12b(C2), the spatial cut-off frequency is predicted to

be at least 32 cpd, while Mullen, 1985 estimates the cut-off for an

isolated red-green mechanism to be about 12 cpd.

Lateral inhibition of low spatial frequencies

Contrast sensitivity is reduced for static achromatic patterns

at low spatial frequency. This effect is attributed to lateral inhibi-

tion (Barten, 1999) — the mechanism that helps us adapt to and

perceive scenes spanning very large ranges of luminance. This re-

sults in a band-pass shape of the CSF for the achromatic modula-

tion direction. When temporal frequency is increased, the effect of
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Figure 15: Predictions for (a) the Virsu & Rovamo, 1979 and (b) Virsu

et al., 1982 dataset. (a) The stimuli were static vertical achromatic sinu-

soidal gratings with circular apertures viewed at 10 cd/m2. The size of the

aperture was fixed at a 2.5◦ radius. (b) The stimuli were horizontal achro-

matic sinusoidal gratings with semi-circular apertures viewed at 10 cd/m2.

The area of the gratings was fixed at 1.57 deg2. The stimuli at different

retinal eccentricities were moved along the horizontal retinal meridian in

the nasal visual field in both datasets and the viewing mode was monocu-

lar with natural pupils.
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Figure 16: Predictions for the HDR CSF Wuerger et al., 2020 dataset. The

stimuli were static vertical Gabor patches of fixed cycles (2 visible cycles

approximately). The three color modulations represent the cardinal color

directions of the human visual system. The viewing mode was binocular

with natural pupils.

lateral inhibition is reduced and the CSF gradually becomes low-

pass, as seen in Figure 14a and Figure 15b. Donner & Hemilä,

1996 modeled this band-pass to low-pass spatio-temporal response

as a Difference-of-Gaussian (DOG) receptive field model and con-

cluded that the spatial and temporal integration mechanisms are

not separable. castleCSF models this effect by gradually shifting

the response from a (band-pass) sustained to a (low-pass) transient

channel.

There is no evidence of lateral inhibition in the isolated chro-
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Figure 17: Predictions for Van der Horst & Bouman, 1969 dataset.

(a) Static stimuli at different luminance levels. (b) Top: Temporally-

modulated stimuli at high luminance level, Bottom: temporally-modulated

stimuli at low luminance level. The stimuli were Gabor patches of fixed

size (14.84 deg2). The three columns show results from the three color

modulations tested: yellow-to-blue and red-to-bluish-green over grey (E:

equal-energy point) background, and red-to-green over yellow (Y) back-

ground. The stimuli were viewed monocularly through an artificial pupil

of 2 mm diameter.
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Figure 18: Predictions for five centers (Xu et al., 2020) dataset. Larger ellipse sizes correspond to lower sensitivity and vice versa. The stimuli were

large static Gabor patches with Gaussian envelope of σ = 9.3◦ modulated over 6 color directions in u’v’ space on grey (72 cd/m2), green (24 cd/m2),

red (14.1 cd/m2), blue (8.8 cd/m2) and yellow (50 cd/m2) backgrounds. The viewing mode was binocular with natural pupils.

matic mechanism (Kelly, 1983; Mullen, 1985; Metha & Mullen,

1996). However, since most of our datasets were measured for the

cardinal color directions with an expected intrusion of achromatic

contrast, we can see a small amount of attenuation for lower fre-

quencies in Figure 16 (L-M, S-(L+M)) and in Figures. 19-20.

As the eccentricity of the stimulus increases, the peak of the

CSF’s band-pass shape shifts towards lower frequencies, as can be

seen in Figure 15. This shift appears to be much smaller for the

smaller flickering patterns used for the data in Figure 15b than for

larger static patterns used for the data in Figure 15a. castleCSF

does not currently model this difference.

Temporal response

The temporal response of the visual system is mostly deter-

mined by the photoreceptors (Hood & Birch, 1993), which restrict

the highest temporal frequency that can be detected. This fre-

quency is typically modelled as the critical flicker fusion frequency
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Figure 19: Predictions for the K. J. Kim et al., 2013 dataset. The stimuli

were horizontal static Gabor patches with a Gaussian envelope of σ = 3◦

for the 0.25 cpd stimuli and σ = 1.5◦ for all other spatial frequencies

shown at different luminance levels. The color modulations were C2:

reddish-greenish, C3: yellowish green-violet, C6: dark green-light pink,

and C7: dark yellow-light blue. C1, C2, and C3 were approximately the

cardinal color directions of the human visual system. The background was

D65 grey. The viewing mode was binocular with natural pupils.

(CFF), corresponding to the temporal frequency at which the sen-

sitivity curve crosses the S = 1 line. We did not include in our

datasets any CFF measurements — we found modelling this type

of data to be highly problematic as it is typically reported for flick-

ering disks rather than Gabors. While the generalization of Gabors

and disks shown in Eq. (31) works well for static disks, we found

it does not seem to extend well to flickering disks. However, our

two-channel model provides a good explanation of the available

sensitivity data for achromatic patterns, shown in Figure 14b, 21,

22, and for chromatic patterns, shown in Figure 23. It should be

noted that the band-pass shape and reduced sensitivity at low spa-
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Figure 20: Predictions for the Lucassen et al., 2018 dataset. The stimuli

were large static Gabor patches with Gaussian envelope of σ = 9.45◦

modulated along 4 color directions in u’v’ space on B1 ( 2600K, or-

ange appearance), B2 ( 3700K, yellow appearance), and B3 ( 5600,

cool/daylight white appearance) backgrounds. The stimuli were shown

at 108 cd/m2. The psychophysical task was orientation discrimination.
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Figure 21: Predictions for the Laird et al.,

2006 dataset. The stimuli were achromatic

vertical Gabor patches of fixed size (Gaus-

sian envelope of σ = 2.46◦) displayed at

60 cd/m2, which were viewed binocularly

with natural pupils.
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Figure 22: Predictions for the Snowden et al., 1995 dataset. The stimuli are achromatic Gabor patches modulated in both space and temporal domains.

The Gaussian envelope size of the lower spatial frequencies up to 5 cpd is σ = 1.6◦, while that of 10 cpd and 20 cpd is 0.8◦ and 0.4◦ respectively. The

lowest frequency (0.1 cpd) shown in this plot was actually a 0 cpd Gaussian blob but we found that our model could predict this by assuming it as a

Gabor patch with half a sinusoidal cycle visible. The viewing mode was binocular with natural pupils.

tial and temporal frequencies is due to lateral inhibition, present in

the sustained channel.

Effect of mean luminance

The luminance-dependent achromatic contrast sensitivity re-

sponse can be generally divided into three regions; 1) the low-

luminance region following the DeVries-Rose law, 2) the mid-to-

high luminance region following Weber’s law, and 3) the very high

luminance region in which sensitivity is reduced. It should be

noted that the categorization of the DeVries-Rose and Weber re-

gions are merely approximations, and the measured responses are

the combined result of several visual mechanisms and adaptations

at work. Garcı́a-Pérez & Peli, 1997 and Rovamo, Näsänen, & Mu-

stonen, 1997 have discussed some nuances of using the Weber law

behavior as a proxy for different physiological mechanisms.

The three different regions can be observed in plots (a-d)(iii)

in Figure 8. The chromatic contrast sensitivity functions present

only the DeVries-Rose and the Weber region as shown in plots (a-

d)(iii) in Figures. 9-10. The linear log sensitivity response with

respect to log luminance obeys the DeVries-Rose law, which states

that the incremental threshold contrast is proportional to the square

root of the background intensity (De Vries, 1943; Rose, 1948). In

the log-log scale, this square root relationship becomes linear, with

an approximate slope of 0.5. With a further increase in mean lumi-

nance, this slope starts becoming flatter in accordance with We-

ber’s law, implying that contrast becomes independent of mean

luminance (Weber, 1831). The point of transition between the

DeVries-Rose region and the Weber region depends on the spatial

and temporal frequencies of the stimuli. Looking at the predic-

tions in plot (a)(iii) in Figure 8, this transition happens at lower

luminances for lower spatial frequencies, and at higher luminances

for higher spatial frequencies. This spatial frequency-dependent

transition is also shown in the work of Rovamo et al., 1995 and

is predicted well by our model, as demonstrated in analysis over

datasets from HDR-VDP CSF (Mantiuk et al., 2011) (Figure 13a)
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Figure 23: Predictions from Kong et al., 2018 dataset. The stimuli were

static discs modulated along 4 color directions in u’v’ space on 9 different

backgrounds. The approximate colors of the nine backgrounds are jade

green, violet, rose red, rust orange, cornflower blue, magenta, light pink,

dull violet, and dull rose red respectively. The radius of the discs was 5◦

and the mean luminance was 35 cd/m2. The viewing model was binocular

with natural pupils.
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and HDR-CSF (Wuerger et al., 2020) (Figure 16).

For very high luminance levels (above 2 000 cd/m2), our model

predicts a decrease in contrast sensitivity which deviates from We-

ber’s law. This prediction is mainly based on the HDR-CSF dataset

(Figure 16), which shows that achromatic contrast sensitivity de-

creases for luminance levels above 2000 cd/m2. This reduction in

contrast sensitivity cannot be explained by photopigment bleaching

(Rovamo et al., 1997), as bleaching would proportionally reduce

the response to both the background and the stimulus and thus can-

not cause a reduction of retinal contrast, nor can it explain the lack

of sensitivity reduction in the chromatic L-M and S-(L+M) mod-

ulation directions as the effect of bleaching would only be depen-

dent on the luminance level and would reduce both achromatic and

chromatic contrast sensitivity for the same light level. This effect

cannot also be explained by increased diffraction due to the con-

traction of the pupil at high luminance levels, as the effect is most

salient at low frequencies which are least affected by diffraction.

We speculate this reduction of sensitivity may be caused by the

lateral inhibition mechanism, as it can be observed mostly at low

frequencies for the achromatic mechanism, where this type of inhi-

bition is expected to be strongest. We do not have any data to sup-

port this hypothesis, but Xin & Bloomfield, 1999 have shown that

the extent of lateral inhibition is dependent on the mean luminance

level, with the maximum coupling between horizontal cells (and

consequently the strength of contrast enhancement by lateral inhi-

bition) occurs at moderate ambient light levels and extreme dark or

light adaptation causes this effect to be weakened.

Foveal and peripheral contrast sensitivity

Contrast sensitivity decreases with eccentricity as shown in

plots (a-d)(iv) in Figures 8, 9, and 10. The slopes of these lin-

early decreasing functions are dependent on the spatial frequency.

The rate of sensitivity decrement with retinal eccentricity is slower

for lower spatial frequency stimuli compared to higher spatial fre-

quency ones, as predicted in plots (a)(iv) for the achromatic (Fig-

ure 8) and yellow-violet (Figure 10) channels. In the case of the

red-green channel (Figure 9), our model does not predict any spa-

tial frequency dependence on the slope of sensitivity reduction with

respect to retinal eccentricity. The predictions for achromatic stim-

uli are in line with the data from Virsu & Rovamo, 1979 (Fig-

ure 15a) and Virsu et al., 1982 (Figure 15b). At lower spatial

frequencies, the difference between their data measured at differ-

ent eccentricities is smaller, depicting a lower rate of sensitivity

decline. The dataset from Wright & Johnston, 1983 also shows

similar findings (Figure 24) for four different spatial and temporal

frequencies. The predictions for the two chromatic channels in our

model are entirely driven by the Hansen et al., 2009 dataset (Fig-

ure 25). Our model could well predict the achromatic and yellow-

violet stimuli from this dataset but was less accurate in predicting

the red-green stimuli at higher retinal eccentricities. This could

be explained by the different distribution of cells picking up red-

green versus yellow-violet signals across the periphery (Mullen et

al., 2002). The sensitivity of the red-green opponent mechanism

also declines at a much higher rate compared to the achromatic and

yellow-violet mechanisms (Mullen et al., 2002, 2005). More con-

trast sensitivity data for chromatic stimuli measured in the periph-
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Figure 24: Predictions for the Wright & Johnston, 1983 dataset. The stim-

uli were vertical achromatic sinusoidal gratings with rectangular aper-

tures tapered at the edges viewed at 100 cd/m2. The area of the gratings

was 36 deg2 for 0.25 cpd, 2.345 deg2 for 2 and 6 cpd stimuli, and 0.75

deg2 for 9 cpd stimuli. The stimuli at different retinal eccentricities were

shown along the vertical retinal meridian in the superior visual field. The

viewing mode was binocular with natural pupils.
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Figure 25: Predictions for the Hansen et

al., 2009 dataset. The stimuli were 4◦ diam-

eter discs modulated along the three cardi-

nal color directions in the DKL colorspace.
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ery is required to correctly model these differences. Another inter-

esting direction would be to add the effect of photoreceptors other

than cones to predict chromatic contrast sensitivity in the periph-

ery. Though Weale, 1953 ruled out the contribution of rods in chro-

matic sensitivity in the periphery, Horiguchi, Winawer, Dougherty,

& Wandell, 2013 have shown that peripheral contrast thresholds

are better explained by a four-receptor model for high-luminance

stimuli and speculated that this fourth receptor could be driven by

melanopsin signals. More data is needed to correctly test these

hypotheses in our model.

Spatial summation

Contrast sensitivity increases monotonically with stimulus size

until a critical area is reached, following Riccó’s law (Riccó, Anni-

bale, 1877). The sensitivity remains constant for stimuli larger than

this critical area as shown in plots (a-d)(v) in Figures 8, 9, and 10.

The value of the critical area decreases with the spatial frequency

of the stimulus for all three chromatic directions, as predicted in

plots (a)(v) in Figures 8, 9, and 10. This is in agreement with the

data from HDR-VDP CSF, shown in Figure 13b, and from Rovamo

et al., 1993, shown in Figure 26. The HDR disc CSF dataset, shown

in Figure 27 was measured for smaller sizes and thus the saturation

at the critical area is not observed for these measurements. Al-

though we lack a single dataset that would test the effect of size on

the detection of chromatic patterns, the union of all datasets pro-

vides a good sampling of chromatic patterns of different sizes, as

shown in Figure 11.

Note that we have a separate spatial summation model for the

disc stimuli, where we integrate over the circumference of the disk

(Eq. (31)). This model does not account for the likely saturation of
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Figure 26: Predictions for the Rovamo et al., 1993 dataset. The stimuli

were achromatic static vertical cosine gratings of different spatial frequen-

cies with square apertures of varying areas displayed at 50 cd/m2. The

viewing mode was binocular with natural pupils.

such a summation, as we do not have data to model this effect.

Our model assumes that the effect of stimulus size is indepen-

dent of temporal frequency, luminance, and eccentricity, as shown

in plots (b-d)(v) in Figures 8, 9, and 10. The independence of spa-

tial summation from luminance agrees with the data from HDR-

VDP CSF as shown in Figure 13b. For both spatial frequencies,

we can see that the shape of the curves formed by the data points

does not change between luminance levels.
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Figure 27: Predictions for HDR disc CSF (Ashraf et al., 2023) dataset.

The stimuli were static discs modulated from a grey background to either

white (L+M), pinkish red (L-M), or violet (S-(L+M)). The viewing mode

was binocular with natural pupils.

Applications of the CSF

This section highlights engineering applications of castleCSF

and shows an example in which it is used to assess the visibility of

distortions caused by chroma subsampling.

One of the main goals of creating castleCSF was to use it

as a core component of the Color Video Visual Difference Pre-

dictor (ColorVideoVDP3). This visual difference metric is used to

compare a distorted image or video to its reference and predict the

quality degradation due to display or coding distortions. Figure 28

shows an example in which the metric predicts the quality drop

due to chroma subsampling, a computational technique commonly

used in video and image compression. The effect of subsampling

of both chroma channels in the CIELAB color space, the predicted

visual difference maps, and the overall quality drop scaled in the

Just Objectionable Difference units (Perez-Ortiz et al., 2019) are

presented. We can observe that chroma subsampling results in dif-

ferent levels of visible distortions across the image, with isolumi-

nant areas, which lack luminance contrast, being the most affected.

3Code available at https://github.com/gfxdisp/ColorVideoVDP

https://github.com/gfxdisp/ColorVideoVDP
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(a) Reference image with isoluminant text
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Figure 28: castleCSF is a fundamental building block of the ColorVideoVDP metric that can predict visible differences in complex images and

videos. This figure shows a prediction of the visibility of chroma subsampling. (a) Reference image, (b) Plot of the metric’s prediction scaled in Just

Objectionable Differences (JODs) (higher values denote higher quality) against the chroma subsampling factors, showing that stronger subsampling

leads to higher perceived distortion, (d and f) Chroma-subsampled versions at decreasing spatial resolutions of the chroma channels (1/2, and 1/4

respectively), (e and g) Heatmaps of predicted small (blue to red) perceivable distortions, for each subsampled image, the scale of the distortions can

be seen in (c). Note that distortions in areas without luminance contrast (such as the text isoluminant to the sky, marked with a red box in the reference

image) are especially prone to distortion from chroma subsampling. For visual assessment, these images should be viewed from a distance of 40 cm,

with each image width adjusted to approximately 9 cm.
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Modeling the spatio-chromatic CSF, as done by castleCSF, is crit-

ical for this application.

CSF models have found many more applications in engineer-

ing. Contrast detection models were used to derive the DICOM

grayscale function used in medical monitors (3.14-2003, 2003),

and later again to define the encoding used for high-dynamic-range

video standards (Mantiuk, Krawczyk, Myszkowski, & Seidel, 2004;

Miller, Nezamabadi, & Daly, 2013; ITU, 2017). CSFs are used to

characterize the performance of electronic displays (SID, 2022),

including the visibility of flicker and display non-uniformity. Con-

trast sensitivity models are also employed to optimize image cod-

ing (Zeng, Daly, & Lei, 2002), match contrast visibility when re-

producing high dynamic range images (Ward-Larson, Rushmeier,

& Piatko, 1997; Mantiuk, Daly, & Kerofsky, 2008; Tariq et al.,

2023), assess image quality (Zhang & Wandell, 1997; Chandler,

2010; Aydin, Čadı́k, Myszkowski, & Seidel, 2010; Mantiuk et al.,

2011; Haun & Peli, 2013), or optimize rendering in real-time com-

puter graphics (Luebke & Hallen, 2001; Jindal, Wolski, Myszkowski,

& Mantiuk, 2021). Overall, given the range of applications, it is de-

sirable to build a general model that can explain contrast sensitivity

for the large range of conditions encountered in these and similar

applications.

The CSF is also useful for applications in optometry, for ex-

ample, the optical and neural limits of vision can be inferred by

contrast sensitivity measurements (Amesbury & Schallhorn, 2003).

Spatial contrast sensitivity also provides a direct measure of visual

performance (Owsley & Sloane, 1987), which is very useful for

clinical evaluations and for use as a diagnostic tool for the detection

of visual disorders (American Academy of Opthamology, 1990).

Conclusions

castleCSF is a practical model, intended to summarize and

predict the average observer detection data for a wide range of val-

ues explored in the literature. It is mainly intended for engineer-

ing applications, in which similar models (Barten, 1999) found an

ample range of use. The distinct features of castleCSF are that it

explains a larger number of stimulus parameters than other mod-

els and that a single model (with the same set of parameters) can

predict a broad range of measurements from the literature. While

our approach could potentially mask subtle differences between

datasets that occur under specific conditions and are unique to in-

dividual datasets, we believe that the benefits of incorporating a

large number of datasets outweigh the limitations considering our

model’s broad application.

Our work also helps identify the gaps in the existing contrast

sensitivity literature as shown in Figure 11, and can help direct

future research to address these limitations. The missing datasets

include edge CSF data outside the fovea, high luminance tempo-

ral CSF data for chromatic stimuli, low luminance parafoveal data,

low spatial frequency chromatic temporal flicker, and data for chro-

matic temporal flicker in the periphery. In the case of chromatic

parafoveal datasets, there is an additional challenge of represent-

ing the stimulus in cone contrast space, as the standard cone fun-

damentals are designed for foveal stimuli. Models of suitable mod-

ifications representing the changes in cone densities (Volbrecht,

Shrago, Schefrin, & Werner, 2000; Curcio et al., 1990; Moreland

& Cruz, 1959) and strength of the cone responses (Stabell & Sta-

bell, 1996; Sakurai & Mullen, 2006) in the periphery exist. We aim

to test different peripheral cone contrast metrics and the resulting

peripheral opponent-color contrast channels in future iterations of

this work.
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Appendix: fitted parameters

Tables 5–7 contain the fitted parameters of castleCSF.

Table 5: The fitted parameters for SAch.

Part Parameters

Size and

spatial freq.

kAch
a,S = 0.1002, kAch

b,S = 0.000213, aAch
0,S =

157.1, ρAch
0,S = 0.7023, kAch

a,T = 0.0002412,

kAch
b,T = 2.676, aAch

0,T = 3.816, ρAch
0,T = 3.014,

Temporal

channels

βAch
S = 1.331, σAch

S = 10.58, βAch
T = 0.1898,

σAch
T = 0.08448, mAch

ω = 2.415, cAch
ω = 4.704,

Luminance kAch
s1,S = 56.49, kAch

s2,S = 7.547, kAch
s3,S = 0.1445,

kAch
s4,S = 5.583e − 7, kAch

s5,S = 9.669e9, kAch
ρ1,S =

1.781, kAch
ρ2,S = 91.57, kAch

ρ3,S = 0.2567, kAch
s1,T =

0.1934, kAch
s2,T = 2748, kAch

ρ,T = 0.0003167,

Eccentricity kAch
e1 = 0.0189, kAch

e2 = 0.02399, kAch
e1,nasal =

0.008136, kAch
e2,nasal = 0.04007

Table 6: The fitted parameters for SRG.

Part Parameters

Size and

spatial freq.

kRG
b,S = 2.421, aRG

0,S = 2.816442e3, ρRG
0,S =

0.0711058,

Temporal

channels

βRG
S = 1.156, σRG

S = 16.43,

Luminance kRG
s1,S = 681.4, kRG

s2,S = 38, kRG
s3,S = 0.4804,

kRG
ρ,S = 0.01784,

Eccentricity kRG
e1 = 2.05e − 69, kRG

e2 = 0.05914, kRG
e1,nasal =

0.1811, kRG
e2,nasal = 2.896e− 5
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Table 7: The fitted parameters for SYV.

Part Parameters

Size and

spatial freq.

kYV
b,S = 2.682, aYV

0,S = 2.827890e7, ρYV
0,S =

0.000635093,

Temporal

channels

βYV
S = 0.9691, σYV

S = 7.15,

Luminance kYV
s1,S = 166.7, kYV

s2,S = 62.9, kYV
s3,S = 0.4119,

kYV
ρ,S = 0.004258,

Eccentricity kYV
e1 = 0.008066, kYV

e2 = 0.003569, kYV
e1,nasal =

0.01107, kYV
e2,nasal = 5.858e− 141
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