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HDR & VR ?

 Do we need HDR VR headsets? 

 OLED contrast 1,000,000:1
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http://www.oculusvr.com/



ToC

 HDR in a nutshell

 Display technologies in VR

 Perception & image quality

 Example: Temporal Resolution Multiplexing

Rafał Mantiuk, Univ. of Cambridge8



Slide 9

Dynamic range

max  L

min L

(for SNR>3)

Luminance
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Dynamic range (contrast)

 As ratio:

 Usually written as C:1, for example 1000:1.

 As “orders of magnitude” 

or log10 units:

 As stops:

   

C =
Lmax

Lmin

   

C10 = log10

Lmax

Lmin

   

C2 = log2

Lmax

Lmin

One  stop is doubling

of halving the amount of light
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Visible colour gamut

 The eye can perceive more colours 

and brightness levels than 

 a display can produce

 a JPEG file can store

 The premise of HDR:

 Visual perception and not the 

technology should define accuracy 

and the range of colours

 The current standards not fully 

follow to this principle
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 HDR cameras/formats/displays attempt 

capture/represent/reproduce (almost) 

all visible colours

 They represent scene colours and 

therefore we often call this representation 

scene-referred

 SDR cameras/formats/devices attempt 

to capture/represent/reproduce only 

colours of a standard sRGB colour 

gamut, mimicking the capabilities of 

CRTs monitors

 They represent display colours and 

therefore we often call this representation 

display-referred

 13

Standard vs. High Dynamic Range



Luminous efficiency function 

(weighting)

Light spectrum (radiance)

Luminance

 Luminance – measure of light intensity weighted by the 

sensitivity of the achromatic mechanism. Units: cd/m2

Luminance
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From rendering to display
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From rendering to display
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Luminance and Luma

 Luminance

 Photometric quantity 

defined by the spectral 

luminous efficiency function

 L ≈ 0.2126 R + 0.7152 G + 

0.0722 B

 Units: cd/m2

 Luma

 Gray-scale value computed 

from LDR (gamma 

corrected) image

 Y = 0.2126 R’ + 0.7152 G’
+ 0.0722 B’

 R’ – prime denotes gamma 

correction

 Unitless

R ' = R1/g

17 Rafał Mantiuk, Univ. of Cambridge



Sensitivity to luminance

 Weber-law – the just-noticeable difference 

is proportional to the magnitude of a 

stimulus

The smallest 

detectable 

luminance 

difference

Background 

(adapting) 

luminance

Constant

L

ΔLTypical stimuli:

Ernst Heinrich Weber
[From wikipedia]

18 Rafał Mantiuk, Univ. of Cambridge



Consequence of the Weber-law

 Smallest detectable difference in luminance

 Adding or subtracting luminance will have different visual 

impact depending on the background luminance

 Unlike LDR luma values, luminance values are not

perceptually uniform!

L ΔL

100 cd/m2 1 cd/m2

1 cd/m2 0.01 cd/m2
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For k=1%
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How to make luminance (more) 

perceptually uniform?

 Using “Fechnerian” integration

luminance - L

re
s
p
o
n
s
e

 -
R

1

ΔL

dR

dl
(L) =

1

DL(L)
Derivative of 

response
Detection 

threshold

 

R(L) =
1

L(l)
dl

0

L


Luminance 

transducer:
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Assuming the Weber law

 and given the luminance transducer

 the response of the visual system to light is:

 

R(L) =
1

L(l)
dl

0

L


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Fechner law

 Response of the visual system to luminance 

is approximately logarithmic

 The values of HDR pixel values are much 

more intuitive when they are plotted / 

considered / processed in the logarithmic 

domain

Gustav Fechner
[From Wikipedia]

 

R(L) = aln(L)
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ToC

 HDR in a nutshell

 Display technologies in VR

 Perception & image quality

 Example: Temporal Resolution Multiplexing
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VR display technologies

TFT-LCD AMOLED

 Contrast:  <3000:1

 Transmissive

 Complex temporal 

response

 Arbitrary bright

 Constant power at 

constant backlight

 Contrast: >10,000:1

 Emmisive

 Rapid response

 Brightness affects longevity

 Power varies with image 

content
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TN, STN, MVA, 

PVA, IPS



LCD

 color may change with the viewing angle

 contrast up to 3000:1

 higher resolution results in smaller fill-factor

 color LCD transmits only up to 8% (more often close to 

3-5%) light when set to full white

TN LCD
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LCD temporal response

 Experiment on an IPS LCD screen

 We rapidly switched between two 

intensity levels at 120Hz

 Measured luminance integrated 

over 1s

 The top plot shows the difference 

between expected (
𝐼𝑡−1+𝐼𝑡

2
) and 

measured luminance

 The bottom plot: intensity 

measurement for the full 

brightness and half-brightness 

display settings
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OLED

 based on 

electrophosphorescence

 large viewing angle

 the power consumption 

varies with the brightness of 

the image

 fast (< 1 microsec)

 arbitrary sizes

 life-span is a concern

 more difficult to produce
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Low persistence displays

 Most VR displays flash an 

image for a fraction of 

frame duration

 This reduces hold-type 

blur

 And also reduces the 

perceived lag of the 

rendering
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Lens in VR displays

 Aberrations when viewing off-center 

 Chromatic aberration

 Loss of resolution

 Difficult to eliminate if the exact eye 

position is unknown

 Glare

 Scattering of the light in the lens

 From Fresnel fringes

 Reduces dynamic range
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Resolution

 Relevant units: pixels per visual degree [ppd]

 Nyquist frequency in cycles per degree = ½ of ppd

 PC & mobile resolution

 1981: 12” 320x200 monitor @50cm: 10.9 ppd

 1990: 12” 1024x768 monitor @50cm: 37 ppd

 2011: 3.5” 960x640 iPhone @30cm: 68 ppd

 2016: 31” 4K monitor @50cm: 50 ppd

 2018: 6” phone @30cm: 117 ppd

 VR resolution

 2016 HTC Vive: 10 ppd

 2018 HTC Vive Pro: 13 ppd
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ToC

 HDR in a nutshell

 Display technologies in VR

 Perception & image quality

 Example: Temporal Resolution Multiplexing
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(Camera) image reconstruction model 

 Can we come up with a similar model for visual system? 

Rafał Mantiuk, University of Cambridge34

𝑌 = 𝑔𝑋 + 𝜂

Noise

Captured 

image

Latent 

image

Convolution 

kernel



Modeling visual system

Rafał Mantiuk, University of Cambridge35

LGN
Visual

Cortex

PhotoreceptorsLens

Retinal ganglion cells
Cornea

Adaptation
Spectral sensitivity Spatial- / orientation- / temporal-

Selective channels

Luminance masking

Defocus &

Aberrations
Glare

Colour opponency
P & M visual pathways Contrast masking

Integration

Detection

Contrast Sensitivity Function

Excellent visualization of the human eye:

https://animagraffs.com/human-eye/



Spatial frequency  [cycles per degree]
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Campbell & Robson contrast sensitivity chart
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Contrast Sensitivity Function

  

CSF = S(r,q,w,l,i2,d,e)

Spatial frequency

Orientation

Temporal frequency

Adapting luminance

Stimulus size

Viewing distance

Eccentricity
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Contrast Sensitivity Function

 Sensitivity = inverse of 

the detection threshold

𝑆 =
𝐿𝑏
Δ𝐿

 Detection of barely 

noticeable luminance 

difference Δ𝐿 on a 

uniform background 𝐿𝑏
 Varies with luminance
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iPhone 4

Retina display

HTC Vive

CSF models:

Barten, P. G. J. (2004). 

https://doi.org/10.1117/12.537476

Mantiuk, R., Kim, K. J., Rempel, A. G., & 

Heidrich, W. (2011) 

https://doi.org/10.1145/2010324.1964935

https://doi.org/10.1117/12.537476


Spatio-chromatic CSF
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High brightness HDR display 

[15,000 cd/m2]
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Color CSF across the luminance range
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Color CSF across the luminance range
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Color CSF across the luminance range

Rafał Mantiuk, University of Cambridge44



Color CSF across the luminance range
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Color CSF across the luminance range

Rafał Mantiuk, University of Cambridge46



Color CSF across the luminance range
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Spatio-chromatic CSF

 Chromatic channels (red-green, blue-yellow) are much 

less sensitive to high frequencies

 This is why we can (often) get away with 

chroma subsampling in image/video compression
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Contrast Constancy

 CSF is NOT MTF of 

visual system

 Contrast constancy

 There is little variation in 

magnitude of perceived 

contrast above the 

detection threshold
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Contrast constancy

No CSF above the detection threshold

50



Modeling visual perception

 Since visual system is highly non-linear, a linear model

cannot be used.

 Visual processing is an unknown non-linear function:
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𝑌 = 𝑔𝑋 + 𝜂

CSF is NOT MTF!

𝑌 = 𝑓[𝑋]

Visual processing

Input image

Percept

(not an image)



Predicting visible differences with CSF

 But we can use CSF to find the probability of spotting a 

difference beween a pair of images 𝑋1 and 𝑋2:
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𝑝 𝑓[𝑋1] = 𝑓[𝑋2] |𝑋1, 𝑋2, 𝐶𝑆𝐹

𝑋1

𝑋2

𝑃𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
Wavelet

decomposition

Δ𝐿
/

Compute

contrast

𝐿𝑏

Background

luminance

-1

Wavelet

reconstruction

Psychometric

function

X

𝐶𝑆𝐹

Δ𝐿

𝐿𝑏

𝐿𝑏
Δ𝐿𝑡ℎ𝑟

(simplified) Visual Difference Predictor
Daly, S. (1993). 

Mantiuk, R., et al. (2011) 

https://doi.org/10.1145/2010324.1964935



Retinal velocity

 Sensitivity drops rapidly once 

images start to move

 The eye tracks moving objects

 Smooth Pursuit Eye Motion 

(SPEM)

 Stabilizes images on the retina

 But tracking is not perfect

 Loss of sensitivity mostly caused 

by imperfect SPEM

 SPEM worse at high velocities

 Motion sharpenning

 Masks the loss of higher 

frequencies Rafał Mantiuk, Univ. of Cambridge56

Spatio-velocity contrast sensitivity

Kelly’s model [1979]



Hold-on blur

 The eye smoothly follows a moving object

 But the image on the display is “frozen” for 1/60th of a 

second

Rafał Mantiuk, Univ. of Cambridge57
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Hold-on blur

 The eye smoothly follows a moving object

 But the image on the display is “frozen” for 1/60th of a 

second
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Hold-on blur

 The eye smoothly follows a moving object

 But the image on the display is “frozen” for 1/60th of a 

second
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Flicker

 Critical Flicker Frequency

 Strongly depends on 

luminance – big issue for 

HDR VR headsets

 Increases with eccentricity

 and stimulus size

 It is possible to detect 

flicker even at 2kHz

 For saccadic eye motion
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[Hartmann et al. 1979]



Simulation (cyber) sickness

 Conflict between vestibular 

and visual systems

 When camera motion 

inconsistent with head motion

 Frame of reference (e.g. 

cockpit) helps

 Worse with larger FOV

 Worse with high luminance 

and flicker
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ToC

 HDR in a nutshell

 Display technologies in VR

 Perception & image quality

 Example: Temporal Resolution Multiplexing
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VR rendering – required bandwidth

2 × (1400 × 1600) × 90 × 3 ≈ 1.13GBps ≈ 9Gbps

2 eyes resolution refresh rate pixel data



TRM: Temporal Resolution Multiplexing

 Render every second frame at a lower resolution

 Transfer high- and low-resolution frames

 When displaying

 Compensate for the loss of high frequencies

 Model display and its limitations

 Handle the limited dynamic range
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See the demo in 

the break!

[Denes et al. 2019, Temporal Resolution 

Multiplexing …, TCVCG/IEEE VR]



TRM: Why does it work? 

 The eye cannot see high spatio-temporal frequencies

 The eye cannot see the loss of sharpness for moving 

objects – motion sharpenning
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Spatio-temporal

CSF

Spatio-velocity

CSF

No need to render

these frequencies

Head motion „masks” 

higher frequences



Summary

 VR/AR display technologies must exploit the limitations 

of the visual system

 Because the display / rendering bandwidth is becoming too 

large

 HDR for VR is a great idea because

 It gives more realistic experience

 Better quality with the same number of pixels 

 Additional depth cues

 HDR for VR is bad idea because

 Increased flicker visibility

 Increased simulation sickness

 Lens glare will reduce the effective dynamic range
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