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The purpose of quality assessment 
§  To compare algorithms in terms of image or 

video quality 
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The purpose of quality assessment 
§  To provide evidence of improvement over the 

state-of-the-art 
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Algorithm A Algorithm B Algorithm C 



The purpose of quality assessment 
§  To optimize perceptual quality of a system 

–  The best trade-off between cost and quality 
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§  The impact of 
technology 
variables 
(resolution, 
contrast, etc.) on 
perceived image 
quality 



Subjective quality assessment methods 
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Subjective quality 
assessment 

Ranking 
ordinal scaling 

Rating 
direct interval scaling 

Pair-wise 
comparisons 

Rank order 
method 

Single 
stimulus with 

hidden 
reference 

Double 
stimulus 

... ... 



Pair-wise comparison method 
§  Example: video quality 
§  Task: You will see two video sequences one 

after another. Select the sequence of higher 
quality. 

Rafał Mantiuk, Bangor University 7 



Comparison matrix 
§  Results can be stored in a comparison matrix 

 

§  Cij = n means that  
–  condition Cj was preferred over Ci n times 
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Full and reduced designs 
§  Full design 

–  Compare all pairs of conditions 
–  This requires 0.5*n*(n-1)  

comparisons for n conditions 
–  Tedious if n is large 

§  Reduced design 
–  We assume transitivity 

§  If C1 > C2 and C2 > C3 then C1 > C3  
–  no need to do all comparisons 

–  There are numerous “block designs” (before computers) 
–  But the task is also a sorting problem 

§  The number comparison can be reduced to n*log(n) for a 
“human quick-sort” 
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Time efficiency 
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Time efficiency 
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Time efficiency 
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Time efficiency – corrected for the effect size 



Learning effect 
§  Participants may  

–  change their criteria,  
–  become more sensitive (training),  
–  become less sensitive (tiredness) 
–  in the middle of the experiment 

§  To control the learning effect 
–  Run training session 

§  should cover the range of stimuli so that a participant can 
determine his/her criteria 

–  Keep the sessions short (<20 min, <40 min) 
–  Pay participants 
–  Randomize stimuli (as much as possible) 

§  To hide bias in the variance 

Rafał Mantiuk, Bangor University 14 



Data collection 
§  Typical results file 
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§  Store it as CSV (comma-separated values) 
§  Matlab has great tools to analyze such data 

§  Check statistical toolbox, “dataset” class 



Experiment considerations 
§  How many observers? 

–  Depends, but between 15 and 30 is usually sufficient 
–  Retrospective power analysis can help finding the right number 

of observers 

§  Repeated measurements? 
–  The same observer completes the experiment more than once 
–  Makes the analysis more complicated - better avoided 
–  Unless the data are averaged per participant before the analysis 

§  How many images? 
–  It is very difficult to collect a representative sample 

§  Some standards recommend using about 100 images – impractical 
in most case 

–  Focus more on difficult / extreme case 
–  Avoid averaging results over all images 
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Statistics - review 
§  Measured values are random variables 

–  Example: 30 observers rated an image from 0 to 100 

–  Assuming that the measured distribution is normal 
§ mean – estimates how an average observer rates 
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Standard deviation and standard error 
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Should the results in the paper include error bars for the 
standard error or for the standard deviation?  

Standard error of the mean 



Confidence intervals 
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If the same experiment is 
repeated with the same 
number of observers, in 
95% of the cases the 
average value is 
expected to be within the 
range of the confidence 
interval 

€ 

ci = −1.96⋅ SE; 1.96⋅ SE[ ]

95% confidence interval is the most 
common choice for the error bars. 



Psychometrical scales 
§  Nominal   [red; green; blue] 

–  Determination of equality 
–  Task: Assign one of the labels to a stimulus 

§  Ordinal                 [1st; 2nd; 3rd ] 
–  Determination of greater or less than 
–  Task: Order stimuli according to *ness 

§  Interval                 [1; 2.5; 3.2] x better than the reference 
–  Determination of differences (distances) 
–  Task: Assign score 0-100 to a stimulus 

§  Ratio   [20; 30; 80] points in an absolute scale  
–  Determination of equality of ratios (reference “0” is known) 
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Good reference 
§  Statistical Methods for 

Psychology 
David. C. Howell 
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Data analysis 
§  Statistical significance 

–  Whether there is enough evidence in the data to say 
that condition A is better than condition B 

–  Involves statistical testing 
§ We want to reject H0 at 0.05 significance level 

–  The more samples with have, the more likely we will 
reject H0 

§  Practical significance 
–  What percentage of the population will notice that A is 

different than B 
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Statistical significance 
§  Condition jp2k_large on average collected less votes than condition 

reference in this experiment 
§  But would it collect less votes if we run the experiment again with 

different observers? 
§  Statistical testing is meant to provide an evidence that the difference 

in votes will be observed in at least 95% of repetitions of the 
experiment  (under certain assumptions) 
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Statistical significance (with matlab) 
§  Step 1: Create per-observer comparison 

matrices 

 
§  Step 2: Sum up columns to computer per 

observer votes 
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Statistical significance 
§  Step 3: Create data set with the number of votes 

–  per scene, observer, condition 

§  Step 4: For each scene, run Kruskall-Wallis test 
–  D = dataset( ‘File’, ‘results.csv’, ‘Delimiter’, ‘,’ ); 
–  Dss = D( strcmp(D.scene, ‘AbruptMotion’), : ); 
–  [p, t, stats] = kruskalwallis( Dss.votes’, Dss.condition’ ); 
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Statistical significance 
§  Step 5: Run multiple-comparison test: 

–  multcompare( stats ) 

Rafał Mantiuk, Bangor University 28 

in
 M

at
la

b 



Statistical significance 
§  Step 6: Report which conditions are statistically 

significantly different 
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Statistical testing – common misconceptions 
§  No statistical significance does not mean that the two 

conditions are the same 
–  Statistical test is likely to fail (H0 cannot be rejected) if there are 

not enough observers 
–  It is a good idea to run retrospective power analysis 

§  The standard statistical testing does not generalize the 
results to the entire population of images 
–  It only ensures that the results are likely to be the same for 

different group of observers, but the same images 
–  It is very hard to prove that the quality difference generalizes to 

the entire population of images 
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Practical significance - scaling 
§  Scaling: to map user judgments into meaningful 

interval scale 
§  Typically that scale is in just-noticeable-

difference units 
–  The difference of 

1 JND means that 
75% of observers 
would choose  
one condition  
over another  

–  Useful to show 
“practical” 
significance 
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Data analysis - scaling 
§  Good reference: 

–  Psychometric Scaling: A 
Toolkit for Imaging Systems 
Development 

–  Peter G. Engeldrum 
–  2000 
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Data analysis - scaling 
§  Step 1: Create per-scene comparison matrix 

§  Step 2: Change the votes into probabilities 
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Data analysis - scaling 
§  Step 3: Transform probabilities into JND 

difference values 

–  Used instead of the inverse  
cumulative normal distrib. 
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Data analysis - scaling 
§  Step 4: Solve for S1..3 

§  The least square solution (up to an arbitrary 
offset) can be found by summing up the 0.5 of 
the columns  
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Problem with scaling 
§  If the observers are  unanimous 

for any pair, the JND difference is 
undefined 

§  The function 
 
 
is a quick fix that limits JND 
different to <-3;3> range (unlike 
normal distribution) 

§  Better solution: 
Silverstein, D., & Farrell, J. (2001). Efficient 

method for paired comparison. Journal of 
Electronic Imaging, 10, 394. 
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Confidence interval for JND scaling 
§  Can be found by bootstrapping 
§  From the original sample generate 500 (or more) 

random samples with repetitions 
–  Original sample:     A, B, C, D, E  (letters are any numbers) 
–  Random sample 1: A, A, C, D, E 
–  Random sample 2: B, C, C, D, D 
– … 

§  Compute statistics or perform JND scaling on 
each random sample 

§  Compute 5th and 95th percentile of the resulting 
distribution 

Rafał Mantiuk, Bangor University 37 



Summary 
§  Quality assessment – overview 
§  Pair-wise comparisons 
§  Basic statistics – review 
§  Pair-wise comparison – data analysis 

–  Statistical significance 
–  Practical significance 

38 Rafał Mantiuk, Bangor University 


