Efficient subjective evaluation: Pair-wise comparisons

Rafal Mantiuk

Bangor University

UK

Research Institute of Visual Computing

Outline

- Why do we need quality assessment?
- Quality assessment overview
- The method of pair-wise comparisons
- Basic statistics review
- Pair-wise comparison data analysis
 - Statistical significance
 - Practical significance

The purpose of quality assessment

To compare algorithms in terms of image or video quality

The purpose of quality assessment

 To provide evidence of improvement over the state-of-the-art

Algorithm A

Algorithm B

Algorithm C

The purpose of quality assessment

- To optimize perceptual quality of a system
 - The best trade-off between cost and quality
 - The impact of technology variables (resolution, contrast, etc.) on perceived image quality

Subjective quality assessment methods

Pair-wise comparison method

- Example: video quality
- Task: You will see two video sequences one after another. Select the sequence of higher quality.

Comparison matrix

Results can be stored in a comparison matrix

$$C = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$$

• $C_{ij} = n$ means that

- condition Cj was preferred over Ci n times

Full and reduced designs

- Full design
 - Compare all pairs of conditions
 - This requires 0.5*n*(n-1) comparisons for n conditions
 - Tedious if *n* is large
- Reduced design
 - We assume transitivity
 - If C1 > C2 and C2 > C3 then C1 > C3
 - no need to do all comparisons
 - There are numerous "block designs" (before computers)
 - But the task is also a sorting problem
 - The number comparison can be reduced to n*log(n) for a "human quick-sort"

Time efficiency

Time efficiency

Time efficiency

Rafał Mantiuk, Bangor University

Time efficiency – corrected for the effect size

Rafał Mantiuk, Bangor University

Learning effect

- Participants may
 - change their criteria,
 - become more sensitive (training),
 - become less sensitive (tiredness)
 - in the middle of the experiment
- To control the learning effect
 - Run training session
 - should cover the range of stimuli so that a participant can determine his/her criteria
 - Keep the sessions short (<20 min, <40 min)
 - Pay participants
 - Randomize stimuli (as much as possible)
 - To hide bias in the variance

Data collection

Typical results file

observer	sessior	scene	condition_id_1	condition_id_2	select	criterion
jpt	3	window	irawan05	ledda04	1	perceptual
jpt	3	corridor	irawan05	ledda04	1	perceptual
jpt	3	corridor	irawan05	ferwerda96	1	perceptual
jpt	3	park	hateren06	irawan05	1	perceptual
jpt	3	park	hateren06	pattanaik00	0	perceptual
jpt	3	lab	irawan05	pattanaik00	1	perceptual
jpt	3	entrance	pattanaik00	ferwerda96	1	perceptual
jpt	3	window	irawan05	pattanaik00	1	perceptual
jpt	3	corridor	irawan05	benoit09	0	perceptual
jpt	3	entrance	pattanaik00	benoit09	0	perceptual
jpt	3	lab	irawan05	hateren06	1	perceptual

- Store it as CSV (comma-separated values)
- Matlab has great tools to analyze such data
 - Check statistical toolbox, "dataset" class

Experiment considerations

- How many observers?
 - Depends, but between 15 and 30 is usually sufficient
 - Retrospective power analysis can help finding the right number of observers
- Repeated measurements?
 - The same observer completes the experiment more than once
 - Makes the analysis more complicated better avoided
 - Unless the data are averaged per participant before the analysis
- How many images?
 - It is very difficult to collect a representative sample
 - Some standards recommend using about 100 images impractical in most case
 - Focus more on difficult / extreme case
 - Avoid averaging results over all images

Outline

- Why do we need quality assessment?
- Quality assessment overview
- The method of pair-wise comparisons
- Basics of statistics review
- Pair-wise comparison data analysis
 - Statistical significance
 - Practical significance

Statistics - review

- Measured values are random variables
 - Example: 30 observers rated an image from 0 to 100

Assuming that the measured distribution is normal
 mean – estimates how an average observer rates

Standard deviation and standard error

Should the results in the paper include error bars for the standard error or for the standard deviation?

Confidence intervals

If the same experiment is repeated with the same number of observers, in 95% of the cases the average value is expected to be within the range of the confidence interval

$$ci = \begin{bmatrix} -1.96 \cdot SE; & 1.96 \cdot SE \end{bmatrix}$$

95% confidence interval is the most common choice for the error bars.

Psychometrical scales

- Nominal [red; green; blue]
 - Determination of equality
 - Task: Assign one of the labels to a stimulus
- Ordinal [1st; 2nd; 3rd]
 - Determination of greater or less than
 - Task: Order stimuli according to *ness
- Interval [1; 2.5; 3.2] x better than the reference
 - Determination of differences (distances)
 - Task: Assign score 0-100 to a stimulus
- Ratio [20; 30; 80] points in an absolute scale
 - Determination of equality of ratios (reference "0" is known)

Good reference

 Statistical Methods for Psychology David. C. Howell

Outline

- Why do we need quality assessment?
- Quality assessment overview
- The method of pair-wise comparisons
- Basic statistics review
- Pair-wise comparison data analysis
 - Statistical significance
 - Practical significance

Data analysis

- Statistical significance
 - Whether there is enough evidence in the data to say that condition A is better than condition B
 - Involves statistical testing
 - We want to reject H₀ at 0.05 significance level
 - The more samples with have, the more likely we will reject $\rm H_{\rm 0}$
- Practical significance
 - What percentage of the population will notice that A is different than B

- Condition jp2k_large on average collected less votes than condition reference in this experiment
- But would it collect less votes if we run the experiment again with different observers?
- Statistical testing is meant to provide an *evidence* that the difference in votes will be observed in at least 95% of repetitions of the experiment (under certain assumptions)

Statistical significance (with matlab)

 Step 1: Create per-observer comparison matrices
 ^[0 1 1]

$$C = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

 Step 2: Sum up columns to computer per observer votes

$$V = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$$

- Step 3: Create data set with the number of votes
 - per scene, observer, condition

observer	scene	condition	votes
AdnanNez	AbruptMotion	Photomatix	3
AdnanNez	AbruptMotion	Photoshop	1
AdnanNez	AbruptMotion	Sen2013	2
AdnanNez	AbruptMotion	Zimmer2011	0
AlmaS	AbruptMotion	Photomatix	2
AlmaS	AbruptMotion	Photoshop	1
AlmaS	AbruptMotion	Sen2013	3
AlmaS	AbruptMotion	Zimmer2011	0
AmarB.	AbruptMotion	Photomatix	3

- Step 4: For each scene, run Kruskall-Wallis test
- D = dataset('File', 'results.csv', 'Delimiter', ','); ____ n Matlab
 - Dss = D(strcmp(D.scene, 'AbruptMotion'), :);
 - [p, t, stats] = kruskalwallis(Dss.votes', Dss.condition');

Step 5: Run multiple-comparison test:

 Step 6: Report which conditions are statistically significantly different

Statistical testing – common misconceptions

- No statistical significance does not mean that the two conditions are the same
 - Statistical test is likely to fail (H₀ cannot be rejected) if there are not enough observers
 - It is a good idea to run retrospective power analysis
- The standard statistical testing does not generalize the results to the entire population of images
 - It only ensures that the results are likely to be the same for different group of observers, but the same images
 - It is very hard to prove that the quality difference generalizes to the entire population of images

Practical significance - scaling

- Scaling: to map user judgments into meaningful interval scale
- Typically that scale is in just-noticeabledifference units
 - The difference of
 1 JND means that
 75% of observers
 would choose
 one condition
 over another
 - Useful to show "practical" significance

- Good reference:
 - Psychometric Scaling: A
 Toolkit for Imaging Systems
 Development
 - Peter G. Engeldrum
 - 2000

Step 1: Create per-scene comparison matrix

$$C = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 5 & 4 & 0 \end{bmatrix}$$

Step 2: Change the votes into probabilities

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{3} \\ \frac{5}{6} & \frac{2}{3} & \frac{1}{2} \end{bmatrix}$$
 Put 0.5 on the diagonal

Step 3: Transform probabilities into JND difference values

$$S_d(P) = \frac{12}{\pi} a \sin\left(\sqrt{P}\right) - 3$$

 Used instead of the inverse cumulative normal distrib.

Step 4: Solve for S_{1..3}

$$S_{d} = \begin{bmatrix} S_{1} - S_{1} & S_{2} - S_{1} & S_{3} - S_{1} \\ S_{1} - S_{2} & S_{2} - S_{2} & S_{3} - S_{2} \\ S_{1} - S_{3} & S_{2} - S_{3} & S_{3} - S_{3} \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 5 & 4 & 0 \end{bmatrix}$$

The least square solution (up to an arbitrary offset) can be found by summing up the 0.5 of the columns
 [0 0 -1.39]

$$S_d = \begin{bmatrix} 0 & 0 & -1.39 \\ 0 & 0 & -0.65 \\ 1.39 & 0.65 & 0 \end{bmatrix}$$
$$S = \begin{bmatrix} 0.69 & 0.32 & -1.02 \end{bmatrix}$$

Rafał Mantiuk, Bangor University

Problem with scaling

- If the observers are unanimous for any pair, the JND difference is undefined
- The function

$$S_d(P) = \frac{12}{\pi} a \sin\left(\sqrt{P}\right) - 3$$

is a quick fix that limits JND different to <-3;3> range (unlike normal distribution)

Better solution:

Silverstein, D., & Farrell, J. (2001). Efficient method for paired comparison. Journal of Electronic Imaging, 10, 394.

Confidence interval for JND scaling

- Can be found by **bootstrapping**
- From the original sample generate 500 (or more) random samples with repetitions
 - Original sample: A, B, C, D, E (letters are any numbers)
 - Random sample 1: A, A, C, D, E
 - Random sample 2: B, C, C, D, D
- Compute statistics or perform JND scaling on each random sample
- Compute 5th and 95th percentile of the resulting distribution

- . . .

Summary

- Quality assessment overview
- Pair-wise comparisons
- Basic statistics review
- Pair-wise comparison data analysis
 - Statistical significance
 - Practical significance