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Preface
For generations, people have defined and protected their property and their privacy

using locks, fences, signatures, seals, account books, and meters. These have been sup-

ported by a host of social constructs ranging from international treaties through na-

tional laws to manners and customs.

This is changing, and quickly. Most records are now electronic, from bank accounts

to registers of real property; and transactions are increasingly electronic, as shopping

moves to the Internet. Just as important, but less obvious, are the many everyday sys-

tems that have been quietly automated. Burglar alarms no longer wake up the neigh-

borhood, but send silent messages to the police; students no longer fill their dormitory

washers and dryers with coins, but credit them using a smartcard they recharge at the

college bookstore; locks are no longer simple mechanical affairs, but are operated by

electronic remote controls or swipe cards; and instead of renting videocassettes, mil-

lions of people get their movies from satellite or cable channels. Even the humble

banknote is no longer just ink on paper, but may contain digital watermarks that enable

many forgeries to be detected by machine.

How good is all this new security technology? Unfortunately, the honest answer is

“nowhere near as good as it should be.” New systems are often rapidly broken, and the

same elementary mistakes are repeated in one application after another. It often takes

four or five attempts to get a security design right, and that is far too many.

The media regularly report security breaches on the Internet; banks fight their cus-

tomers over “phantom withdrawals” from cash machines; VISA reports huge increases

in the number of disputed Internet credit card transactions; satellite TV companies

hound pirates who copy their smartcards; and law enforcement agencies try to stake

out territory in cyberspace with laws controlling the use of encryption. Worse still,

features interact. A mobile phone that calls the last number again if one of the keys is

pressed by accident may be just a minor nuisance—until someone invents a machine

that dispenses a can of soft drink every time its phone number is called. When all of a

sudden you find 50 cans of Coke on your phone bill, who is responsible, the phone

company, the handset manufacturer, or the vending machine operator? Once almost

every electronic device that affects your life is connected to the Internet—which Mi-

crosoft expects to happen by 2010—what does ‘Internet security’ mean to you, and

how do you cope with it?

As well as the systems that fail, many systems just don’t work well enough. Medical

record systems don’t let doctors share personal health information as they would like,

but still don’t protect it against inquisitive private eyes. Zillion-dollar military systems

prevent anyone without a “top secret” clearance from getting at intelligence data, but

are often designed so that almost everyone needs this clearance to do any work. Pas-

senger ticket systems are designed to prevent customers cheating, but when trustbust-

ers break up the railroad, they cannot stop the new rail companies cheating each other.
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Many of these failures could have been foreseen if designers had just a little bit more

knowledge of what had been tried, and had failed, elsewhere.

Security engineering is the new discipline that is starting to emerge out of all this

chaos.

Although most of the underlying technologies (cryptology, software reliability, tam-

per resistance, security printing, auditing, etc.) are relatively well understood, the

knowledge and experience of how to apply them effectively is much scarcer. And since

the move from mechanical to digital mechanisms is happening everywhere at once,

there just has not been time for the lessons learned to percolate through the engineering

community. Time and again, we see the same old square wheels being reinvented.

The industries that have managed the transition most capably are often those that

have been able to borrow an appropriate technology from another discipline. Examples

include the reuse of technology designed for military identify-friend-or-foe equipment

in bank cash machines and even prepayment gas meters. So even if a security designer

has serious expertise in some particular speciality—whether as a mathematician work-

ing with ciphers or a chemist developing banknote inks—it is still prudent to have an

overview of the whole subject. The essence of good security engineering is under-

standing the potential threats to a system, then applying an appropriate mix of protec-

tive measures—both technological and organizational—to control them. Knowing what

has worked, and more importantly what has failed, in other applications is a great help

in developing judgment. It can also save a lot of money.

The purpose of this book is to give a solid introduction to security engineering, as

we understand it at the beginning of the twenty-first century. My goal is that it works

at four different levels:

• As a textbook that you can read from one end to the other over a few days as

an introduction to the subject. The book is to be used mainly by the working

IT professional who needs to learn about the subject, but it can also be used in

a one-semester course in a university.

• As a reference book to which you can come for an overview of the workings of
some particular type of system. These systems include cash machines, taxi
meters, radar jammers, anonymous medical record databases, and so on.

• As an introduction to the underlying technologies, such as crypto, access con-
trol, inference control, tamper resistance, and seals. Space prevents me from
going into great depth; but I provide a basic road map for each subject, plus a
reading list for the curious (and a list of open research problems for the pro-
spective graduate student).

• As an original scientific contribution in which I have tried to draw out the

common principles that underlie security engineering, and the lessons that

people building one kind of system should have learned from others. In the

many years I have been working in security, I keep coming across these. For

example, a simple attack on stream ciphers wasn’t known to the people who

designed a common antiaircraft fire control radar so it was easy to jam; while

a trick well known to the radar community wasn’t understood by banknote

printers and people who design copyright marking schemes, which led to a

quite general attack on most digital watermarks.
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I have tried to keep this book resolutely mid-Atlantic; a security engineering book

has to be, as many of the fundamental technologies are American, while many of the

interesting applications are European. (This isn’t surprising given the better funding of

U.S. universities and research labs, and the greater diversity of nations and markets in

Europe.) What’s more, many of the successful European innovations—from the smart-

card to the GSM mobile phone to the pay-per-view TV service—have crossed the At-

lantic and now thrive in the Americas. Both the science, and the case studies, are nec-

essary.

This book grew out of the security engineering courses I teach at Cambridge Univer-

sity, but I have rewritten my notes to make them self-contained and added at least as

much material again. It should be useful to the established professional security man-

ager or consultant as a first-line reference; to the computer science professor doing

research in cryptology; to the working police detective trying to figure out the latest

computer scam; and to policy wonks struggling with the conflicts involved in regulat-

ing cryptography and anonymity. Above all, it is aimed at Dilbert. My main audience

is the working programmer or engineer who is trying to design real systems that will

keep on working despite the best efforts of customers, managers, and everybody else.

This book is divided into three parts.

• The first looks at basic concepts, starting with the central concept of a security

protocol, and going on to human-computer interface issues, access controls,

cryptology, and distributed system issues. It does not assume any particular

technical background other than basic computer literacy. It is based on an In-

troduction to Security course that I teach to second-year undergraduates.

• The second part looks in much more detail at a number of important applica-
tions, such as military communications, medical record systems, cash ma-
chines, mobile phones, and pay-TV. These are used to introduce more of the
advanced technologies and concepts. It also considers information security
from the viewpoint of a number of different interest groups, such as compa-
nies, consumers, criminals, police, and spies. This material is drawn from my
senior course on security, from research work, and from experience consulting.

• The third part looks at the organizational and policy issues: how computer se-

curity interacts with law, with evidence, and with corporate politics; how we

can gain confidence that a system will perform as intended; and how the whole

business of security engineering can best be managed.

I believe that building systems that continue to perform robustly in the face of mal-

ice is one of the most important, interesting, and difficult tasks facing engineers in the

twenty-first century.

Ross Anderson

Cambridge, January 2001
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About the Author
Why should I have been the person to write this book? Well, I seem to have accumu-

lated the right mix of experience and qualifications over the last 25 years. I graduated

in mathematics and natural science from Cambridge (England) in the 1970s, and got a

qualification in computer engineering; my first proper job was in avionics; and I be-

came interested in cryptology and computer security in the mid-1980s. After working

in the banking industry for several years, I started doing consultancy for companies

that designed equipment for banks, and then working on other applications of this

technology, such as prepayment electricity meters.

I moved to academia in 1992, but continued to consult to industry on security tech-

nology. During the 1990s, the number of applications that employed cryptology rose

rapidly: burglar alarms, car door locks, road toll tags, and satellite TV encryption sys-

tems all made their appearance. As the first legal disputes about these systems came

along, I was lucky enough to be an expert witness in some of the important cases. The

research team I lead had the good fortune to be in the right place at the right time when

several crucial technologies, such as tamper resistance and digital watermarking, be-

came hot topics.

By about 1996, it started to become clear to me that the existing textbooks were too

specialized. The security textbooks focused on the access control mechanisms in oper-

ating systems, while the cryptology books gave very detailed expositions of the design

of cryptographic algorithms and protocols. These topics are interesting, and important.

However they are only part of the story. Most system designers are not overly con-

cerned with crypto or operating system internals, but with how to use these tools ef-

fectively. They are quite right in this, as the inappropriate use of mechanisms is one of

the main causes of security failure. I was encouraged by the success of a number of

articles I wrote on security engineering (starting with “Why Cryptosystems Fail” in

1993); and the need to teach an undergraduate class in security led to the development

of a set of lecture notes that made up about half of this book. Finally, in 1999, I got

round to rewriting them for a general technical audience.

I have learned a lot in the process; writing down what you think you know is a good

way of finding out what you don’t. I have also had a lot of fun. I hope you have as

much fun reading it!
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Foreword
In a paper he wrote with Roger Needham, Ross Anderson coined the phrase “pro-

gramming Satan’s computer” to describe the problems faced by computer-security en-

gineers. It’s the sort of evocative image I’ve come to expect from Ross, and a phrase

I’ve used ever since.

Programming a computer is straightforward: keep hammering away at the problem

until the computer does what it’s supposed to do. Large application programs and op-

erating systems are a lot more complicated, but the methodology is basically the same.

Writing a reliable computer program is much harder, because the program needs to

work even in the face of random errors and mistakes: Murphy’s computer, if you will.

Significant research has gone into reliable software design, and there are many mis-

sion-critical software applications that are designed to withstand Murphy’s Law.

Writing a secure computer program is another matter entirely. Security involves

making sure things work, not in the presence of random faults, but in the face of an

intelligent and malicious adversary trying to ensure that things fail in the worst possi-

ble way at the worst possible time ... again and again. It truly is programming Satan’s

computer.

Security engineering is different from any other kind of programming. It’s a point I

made over and over again: in my own book, Secrets and Lies, in my monthly newslet-

ter Crypto-Gram, and in my other writings. And it’s a point Ross makes in every

chapter of this book. This is why, if you’re doing any security engineering ... if you’re

even thinking of doing any security engineering, you need to read this book. It’s the

first, and only, end-to-end modern security design and engineering book ever written.

And it comes just in time. You can divide the history of the Internet into three

waves. The first wave centered around mainframes and terminals. Computers were ex-

pensive and rare. The second wave, from about 1992 until now, centered around per-

sonal computers, browsers, and large application programs. And the third, starting

now, will see the connection of all sorts of devices that are currently in proprietary

networks, standalone, and non-computerized. By 2003, there will be more mobile

phones connected to the Internet than computers. Within a few years we’ll see many of

the world’s refrigerators, heart monitors, bus and train ticket dispensers, burglar

alarms, and electricity meters talking IP. Personal computers will be a minority player

on the Internet.

Security engineering, especially in this third wave, requires you to think differently.

You need to figure out not how something works, but how something can be made to

not work. You have to imagine an intelligent and malicious adversary inside your sys-

tem (remember Satan’s computer), constantly trying new ways to subvert it. You have

to consider all the ways your system can fail, most of them having nothing to do with

the design itself. You have to look at everything backwards, upside down, and side-

ways. You have to think like an alien.

As the late great science fiction editor John W. Campbell, said: “An alien thinks as

well as a human, but not like a human.” Computer security is a lot like that. Ross is
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one of those rare people who can think like an alien, and then explain that thinking to

humans. Have fun reading.

Bruce Schneier

January 2001
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Legal Notice
I cannot emphasize too strongly that the tricks taught in this book are intended only to

enable you to build better systems. They are not in any way given as a means of help-

ing you to break into systems, subvert copyright protection mechanisms, or do any-

thing else unethical or illegal.

Where possible I have tried to give case histories at a level of detail that illustrates

the underlying principles without giving a “hacker’s cookbook.”

Should This Book Be Published at All?

There are people who believe that the knowledge contained in this book should not be

published. This is an old debate; in previous centuries, people objected to the publica-

tion of books on locksmithing, on the grounds that they were likely to help the bad

guys more than the good guys.

I think that these fears are answered in the first book in English that discussed

cryptology. This was a treatise on optical and acoustic telegraphy written by Bishop

John Wilkins in 1641 [805]. He traced scientific censorship back to the Egyptian

priests who forbade the use of alphabetic writing on the grounds that it would spread

literacy among the common people and thus foster dissent. As he said:

It will not follow that everything must be suppresst which may be abused... If all those

useful inventions that are liable to abuse should therefore be concealed there is not

any Art or Science which may be lawfully profest.

The question was raised again in the nineteenth century, when some well-meaning

people wanted to ban books on locksmithing. A contemporary writer on the subject

replied [750]:

Many well-meaning persons suppose that the discussion respecting the means for

baffling the supposed safety of locks offers a premium for dishonesty, by showing

others how to be dishonest. This is a fallacy. Rogues are very keen in their profession,

and already know much more than we can teach them respecting their several kinds of

roguery. Rogues knew a good deal about lockpicking long before locksmiths discussed

it among themselves ... if there be harm, it will be much more than counterbalanced by

good.

These views have been borne out by long experience since. As for me, I worked for

two separate banks for three and a half years on cash machine security, but I learned

significant new tricks from a document written by a convicted card fraudster that cir-

culated in the U.K. prison system. Many government agencies are now coming round

to this point of view. It is encouraging to see, for example, that the U.S. National Secu-

rity Agency has published the specifications of the encryption algorithm (Skipjack) and

the key management protocol (KEA) used to protect secret U.S. government traffic.
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Their judgment is clearly that the potential harm done by letting the Iraqis use a decent

encryption algorithm is less than the good that will be done by having commercial off-

the-shelf software compatible with Federal encryption standards.

In short, while some bad guys will benefit from a book such as this, they mostly

know the tricks already, and the good guys will benefit much more.
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Hartel, David Håsäther, Konstantin Hyppönen, Oliver Jorns, Markus Kuhn,
Garry McKay, Joe Osborne, Avi Rubin, Sam Simpson, M Taylor, Peter Taylor,
Paul Thomas, Nick Volenec, Randall Walker, Keith Willis, Stuart Wray and
Stefek Zaba.

xxxvii





Legal Notice

I cannot emphasize too strongly that the tricks taught in this book are intended
only to enable you to build better systems. They are not in any way given as
a means of helping you to break into systems, subvert copyright protection
mechanisms, or do anything else unethical or illegal.

Where possible I have tried to give case histories at a level of detail that
illustrates the underlying principles without giving a ‘hacker’s cookbook’.

Should This Book Be Published at All?

There are people who believe that the knowledge contained in this book
should not be published. This is an old debate; in previous centuries, people
objected to the publication of books on locksmithing, on the grounds that they
were likely to help the bad guys more than the good guys.

I think that these fears are answered in the first book in English that
discussed cryptology. This was a treatise on optical and acoustic telegraphy
written by Bishop John Wilkins in 1641 [805]. He traced scientific censorship
back to the Egyptian priests who forbade the use of alphabetic writing on the
grounds that it would spread literacy among the common people and thus
foster dissent. As he said:

It will not follow that everything must be suppresst which may be abused. . .

If all those useful inventions that are liable to abuse should therefore be
concealed there is not any Art or Science which may be lawfully profest.

The question was raised again in the nineteenth century, when some well-
meaning people wanted to ban books on locksmithing. A contemporary writer
on the subject replied [750]:

xxxix



xl Legal Notice

Many well-meaning persons suppose that the discussion respecting the
means for baffling the supposed safety of locks offers a premium for
dishonesty, by showing others how to be dishonest. This is a fallacy.
Rogues are very keen in their profession, and already know much more
than we can teach them respecting their several kinds of roguery. Rogues
knew a good deal about lockpicking long before locksmiths discussed
it among themselves . . . if there be harm, it will be much more than
counterbalanced by good.

These views have been borne out by long experience since. As for me, I
worked for two separate banks for three and a half years on cash machine
security, but I learned significant new tricks from a document written by
a convicted card fraudster that circulated in the U.K. prison system. Many
government agencies are now coming round to this point of view. It is
encouraging to see, for example, that the U.S. National Security Agency has
published the specifications of the encryption algorithm (Skipjack) and the key
management protocol (KEA) used to protect secret U.S. government traffic.
Their judgment is clearly that the potential harm done by letting the Iraqis
use a decent encryption algorithm is less than the good that will be done by
having commercial off-the-shelf software compatible with Federal encryption
standards.

In short, while some bad guys will benefit from a book such as this, they
mostly know the tricks already, and the good guys will benefit much more.
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PART

One

In this section of the book, I cover the basics of security engineering technology.

The first chapter sets out to define the subject matter by giving an overview of the

secure distributed systems found in four environments: a bank, an air force base, a

hospital, and the home. The second chapter is on security protocols, which lie at

the heart of the subject: they specify how the players in a system—whether people,

computers, or other electronic devices—communicate with each other. The third,

on passwords and similar mechanisms, looks in more detail at a particularly simple

kind of security protocol that is widely used to authenticate people to computers,

and provides the foundation on which many secure systems are built.

The next two chapters are on access control and cryptography. Even once a cli-

ent (be it a phone, a PC, or whatever) has authenticated itself satisfactorily to a

server—whether with a password or a more elaborate protocol—we still need

mechanisms to control which data it can read or write on the server, and which

transactions it can execute. It is simplest to examine these issues first in the con-

text of a single centralized system (access control) before we consider how they

can be implemented in a more distributed manner using multiple servers, perhaps

in different domains, for which the key enabling technology is cryptography.

Cryptography is the art (and science) of codes and ciphers. It is much more than a

technical means for keeping messages secret from an eavesdropper. Nowadays it is

largely concerned with authenticity and management issues: “taking trust from

where it exists to where it’s needed” [535].

The final chapter in this part is on distributed systems. Researchers in this field

are interested in topics such as concurrency control, fault tolerance, and naming.

These take on subtle new meanings when systems must be made resilient against

malice as well as against accidental failure. Using old data—replaying old trans-

actions or reusing the credentials of a user who has left some time ago—is a seri-

ous problem, as is the multitude of names by which people are known to different

systems (email addresses, credit card numbers, subscriber numbers, etc.). Many

system failures are due to a lack of appreciation of these issues.

Most of the material in these chapters is standard textbook fare, and the chapters

are intended to be pedagogic rather than encyclopaedic, so I have not put in as
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many citations as in the rest of the book. I hope, however, that even experts will

find some of the case studies of value.
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CHAPTER

1

What Is Security Engineering?

Out of the crooked timber of humanity, no straight thing was ever made

—IMMANUEL KANT

The world is never going to be perfect, either on- or offline; so let’s not set impossibly

high standards for online

—ESTHER DYSON

Security engineering is about building systems to remain dependable in the face of

malice, error, or mischance. As a discipline, it focuses on the tools, processes, and

methods needed to design, implement, and test complete systems, and to adapt existing

systems as their environment evolves.

Security engineering requires cross-disciplinary expertise, ranging from cryptogra-

phy and computer security through hardware tamper-resistance and formal methods to

a knowledge of applied psychology, organizational and audit methods and the law.

System engineering skills, from business process analysis through software engineer-

ing to evaluation and testing, are also important; but they are not sufficient, as they

deal only with error and mischance rather than malice.

Many security systems have critical assurance requirements. Their failure may en-

danger human life and the environment (as with nuclear safety and control systems), do

serious damage to major economic infrastructure (cash machines and other bank sys-

tems), endanger personal privacy (medical record systems), undermine the viability of

whole business sectors (pay-TV), and facilitate crime (burglar and car alarms). Even

the perception that a system is more vulnerable than it really is (as with paying with a

credit card over the Internet) can significantly hold up economic development.

The conventional view is that while software engineering is about ensuring that cer-

tain things happen (“John can read this file”), security is about ensuring that they don’t

(“The Chinese government can’t read this file”). Reality is much more complex. Secu-

rity requirements differ greatly from one system to another. One typically needs some

combination of user authentication, transaction integrity and accountability, fault-
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tolerance, message secrecy, and covertness. But many systems fail because their de-

signers protect the wrong things, or protect the right things but in the wrong way.

In order to see the range of security requirements that systems have to deliver, we

will now take a quick look at four application areas: a bank, an air force base, a hospi-

tal, and the home. Once we have given some concrete examples of the kind of protec-

tion that security engineers are called on to provide, we will be in a position to attempt

some definitions.

1.1 Example 1: A Bank

Banks operate a surprisingly large range of security-critical computer systems:

• The core of a bank’s operations is usually a branch bookkeeping system. This

keeps customer account master files plus a number of journals that record the

day’s transactions. The main threat to this system is the bank’s own staff;

about one percent of bankers are fired each year, mostly for petty dishonesty

(the average theft is only a few thousand dollars). The main defense comes

from bookkeeping procedures that have evolved over centuries. For example,

each debit against one account must be matched by an equal and opposite

credit against another; so money can only be moved within a bank, never cre-

ated or destroyed. In addition, large transfers of money might need two or

three people to authorize them. There are also alarm systems that look for un-

usual volumes or patterns of transactions, and staff are required to take regular

vacations during which they have no access to the bank’s premises or systems.

• The public face of the bank is its automatic teller machines. Authenticating
transactions based on a customer’s card and personal identification num-
ber—in such a way as to defend against both outside and inside attack—is
harder than it looks! There have been many local epidemics of “phantom with-
drawals” when villains (or bank staff) have found and exploited loopholes in
the system. Automatic teller machines are also interesting as they were the
first large-scale commercial use of cryptography, and they helped establish a
number of crypto standards.

• Behind the scenes are a number of high-value messaging systems. These are
used to move large sums of money (whether between local banks or between
banks internationally); to trade in securities; to issue letters of credit and guar-
antees; and so on. An attack on such a system is the dream of the sophisticated
white-collar criminal. The defense is a mixture of bookkeeping procedures,
access controls, and cryptography.

• Most bank branches still have a large safe or strongroom, whose burglar
alarms are in constant communication with a security company’s control cen-
ter. Cryptography is used to prevent a robber manipulating the communica-
tions and making the alarm appear to say “all’s well” when it isn’t.

• Over the last few years, many banks have acquired an Internet presence, with

a Web site and facilities for customers to manage their accounts online. They

also issue credit cards that customers use to shop online, and they acquire the

resulting transactions from merchants. To protect this business, they use stan-
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dard Internet security technology, including the SSL/TLS encryption built into

Web browsers, and firewalls to prevent people who hack the Web server from

tunneling back into the main bookkeeping systems that lie behind it.

We will look at these applications in later chapters. Banking computer security is

important for a number of reasons. Until quite recently, banks were the main non-

military market for many computer security products, so they had a disproportionate

influence on security standards. Second, even where their technology isn’t blessed by

an international standard, it is often widely used in other sectors anyway. Burglar

alarms originally developed for bank vaults are used everywhere from jewelers’ shops

to the home; they are even used by supermarkets to detect when freezer cabinets have

been sabotaged by shop staff who hope to be given the food that would otherwise

spoil.

1.2 Example 2: An Air Force Base

Military systems have also been an important technology driver. They have motivated

much of the academic research that governments have funded into computer security in

the last 20 years. As with banking, there is not one single application but many:

• Some of the most sophisticated installations are the electronic warfare systems

whose goals include trying to jam enemy radars while preventing the enemy

from jamming yours. This area of information warfare is particularly instruc-

tive because for decades, well-funded research labs have been developing so-

phisticated countermeasures, counter-countermeasures, and so on—with a

depth, subtlety, and range of deception strategies that are still not found else-

where. Their use in battle has given insights that are not available anywhere

else. These insights are likely to be valuable now that the service-denial at-

tacks, which are the mainstay of electronic warfare, are starting to be seen on

the Net, and now that governments are starting to talk of “information war-

fare.”

• Military communication systems have some interesting requirements. It is of-
ten not sufficient just to encipher messages: an enemy, who sees traffic en-
crypted with somebody else’s keys may simply locate the transmitter and
attack it. Low-probability-of-intercept (LPI) radio links are one answer; they
use a number of tricks, such as spread-spectrum modulation, that are now be-
ing adopted in applications such as copyright marking.

• Military organizations have some of the biggest systems for logistics and in-
ventory management, and they have a number of special assurance require-
ments. For example, one may have a separate stores management system at
each different security level: a general system for things like jet fuel and boot
polish, plus a second secret system for stores and equipment whose location
might give away tactical intentions. (This is very like the business that keeps
separate sets of books for its partners and for the tax man, and can cause simi-
lar problems for the poor auditor.) There may also be intelligence systems and
command systems with even higher protection requirements. The general rule
is that sensitive information may not flow down to less-restrictive classifica-



Chapter 1: What is Security Engineering?

6

tions. So you can copy a file from a Secret stores system to a Top Secret com-
mand system, but not vice versa. The same rule applies to intelligence systems
that collect data using wiretaps: information must flow up to the intelligence
analyst from the target of investigation, but the target must not know which
communications have been intercepted. Managing multiple systems with in-
formation flow restrictions is a difficult problem that has inspired a lot of re-
search.

• The particular problems of protecting nuclear weapons have given rise over

the last two generations to a lot of interesting security technology. These range

from electronic authentication systems, which prevent weapons being used

without the permission of the national command authority, through seals and

alarm systems, to methods of identifying people with a high degree of cer-

tainty using biometrics such as iris patterns.

The civilian security engineer can learn a lot from these technologies. For example,

many early systems for inserting copyright marks into digital audio and video, which

used ideas from spread-spectrum radio, were vulnerable to desynchronization attacks,

which are also a problem for some spread-spectrum systems. Another example comes

from munitions management, in which a typical system enforces rules such as, “Don’t

put explosives and detonators in the same truck.” Such techniques may be more widely

applicable, as in satisfying hygiene rules that forbid raw and cooked meats being han-

dled together.

1.3 Example 3: A Hospital

From food hygiene we move on to healthcare. Hospitals use a number of fairly stan-

dard systems for bookkeeping and the like, but also have a number of interesting pro-

tection requirements—mostly to do with patient safety and privacy:

• As Web-based technologies are adopted in hospitals, they present interesting

new assurance problems. For example, as reference books—such as directories

of drugs—are moved online, doctors need assurance that life-critical data

(such as the figures for dosage per body weight) are exactly as published by

the relevant authority, and have not been mangled in some way, whether acci-

dental or deliberate. Many of these safety problems could affect other Web

systems in a few years’ time. Another example is that as doctors start to access

Web pages containing patients’ records from home or from laptops in their

cars, suitable electronic authentication and encryption tools are starting to be

required.

• Patient record systems should not let all the staff see every patient’s record, or
privacy violations can be expected. These systems need to implement rules
such as, “nurses can see the records of any patient who has been cared for in
their department at any time during the previous 90 days.” This can be hard to
do with traditional computer security mechanisms, as roles can change (nurses
move from one department to another); and there are cross-system dependen-
cies (the patient records system may end up relying on the personnel system
for access control decisions, so any failure of the personnel system can have
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implications for safety, for privacy, or for both). Applications such as these are
inspiring research in role-based access control.

• Patient records are often anonymized for use in research, but this is difficult to
do well. Simply encrypting patient names is usually not adequate, as an en-
quiry such as “Show me all records of 59-year-old males who were treated for
a broken collarbone on September 15, 1966,” would usually be enough to find
the record of a politician who was known to have sustained such an injury as a
college athlete. But if records cannot be anonymized properly, then much
stricter rules will usually have to be followed when handling the data, and this
will increase the cost of medical research.

• New technology can introduce risks that are just not understood. Hospital ad-

ministrators understand the need for backup procedures to deal with outages of

power, telephone service, and so on, but medical practice is rapidly coming to

depend on the Net in ways that are often not documented. For example, indi-

vidual clinical departments may start using online drug databases; stop keep-

ing adequate paper copies of drug formularies; and never inform the

contingency planning team. So attacks that degrade network services (such as

viruses and distributed denial-of-service attacks) might have serious conse-

quences for medical practice.

We will look at medical system security in more detail later. This is a much younger

field than banking IT or military systems, but as healthcare accounts for a larger pro-

portion of GNP than either of them in all developed countries, and as hospitals are

adopting IT at an increasing rate, it looks set to become important.

1.4 Example 4: The Home

You might not think that the typical family operates any secure distributed systems.

But consider the following:

• Many people use some of the systems we’ve already described. You may use a

Web-based electronic banking system to pay bills; and in a few years you may

have encrypted online access to your medical records. Your burglar alarm may

send an encrypted “all’s well” signal to the security company every few min-

utes, rather than waking up the neighborhood when something happens.

• Your car may have an electronic immobilizer that sends an encrypted chal-
lenge to a radio transponder in the key fob; the transponder has to respond cor-
rectly before the car will start. Since all but the most sophisticated thieves now
have to tow the car away and fit a new engine controller before they can sell it,
this makes theft harder, and reduces your insurance premiums. However, it
also increases the number of car-jackings: criminals who want a getaway car
are more likely to take one at gunpoint.

• Early mobile phones were easy for villains to “clone.” Users could suddenly
find their bills inflated by hundreds or even thousands of dollars. The current
GSM digital mobile phones authenticate themselves to the network by a cryp-
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tographic challenge-response protocol similar to the ones used in car-locks and
immobilizers.

• Satellite TV set-top boxes decipher movies as long as you keep paying your
subscription; DVD players use copy control mechanisms based on cryptogra-
phy and copyright marking to make it harder to copy disks (or to play them
outside a certain geographic area).

• In many countries, households that can’t get credit can get prepayment meters

for electricity and gas, which they top off using a smartcard or other electronic

key which they refill at a local store. Many universities use similar technolo-

gies to get students pay for photocopier use, washing machines, and even soft

drinks.

The chances are that you already use many systems that enforce some protection

policy or other using largely electronic mechanisms. Over the next few decades, the

number of such systems is going to increase rapidly. Unfortunately, based on past ex-

perience, many of them will be badly designed. The necessary skills are just not spread

widely enough.

The aim of this book is to enable you to design such systems better. To do this, an

engineer or programmer needs to learn about current systems, how they work, and—at

least as important—how they have failed in the past. Civil engineers learn far more

from the one bridge that falls down than from the hundred that stay up; exactly the

same holds in security engineering.

1.5 Definitions

Many of the terms used in security engineering are straightforward, but some are mis-

leading or even controversial. Though there are more detailed definitions of technical

terms in the relevant chapters, which you can find using the index, I point out here

where the main problems lie.

The first thing we need to clarify is what we mean by system. In practice, this can

denote:

1. A product or component, such as a cryptographic protocol, a smartcard, or the

hardware of a PC.

2. A collection of the above plus an operating system, communications, and

other things that make up an organization’s infrastructure.

3. The above plus one or more applications (accounts, payroll, design and so

on).

4. Any or all of the above plus IT staff.

5. Any or all of the above plus internal users and management.

6. Any or all of the above plus customers and other external users.

7. Any or all of the above plus the surrounding environment including the me-

dia, competitors, regulators, and politicians.
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Confusion among these definitions is an extremely fertile source of errors and vul-

nerabilities. Broadly speaking, the vendor and evaluator communities focus on the first

(and occasionally) the second of them, while a business will focus on the sixth (and

occasionally the fifth). Ignoring the human components, and thus neglecting usability

and liability issues, is one of the primary causes of security failure, so we will gener-

ally use definition 6 or 7. When we take a more restrictive view, the meaning should be

clear from the context.

The next set of problems comes from lack of clarity about who the players are and

what they are trying to prove. In the literature on security and cryptology, it’s a con-

vention that principals in security protocols are identified by names chosen with (usu-

ally) successive initial letters—much like hurricanes—and so we see lots of statements

such as, “Alice authenticates herself to Bob.” This makes things much more readable,

but often at the expense of precision. Do we mean that Alice proves to Bob that her

name actually is Alice, or that she proves she’s got a particular credential? Do we

mean that the authentication is done by Alice the human being, or by a smartcard or

software tool acting as Alice’s agent? In that case, are we sure it’s Alice, and not per-

haps Cherie to whom Alice lent her card, or David who stole her card, or Eve who

hacked her PC?

By a subject I mean a physical person (human, ET, . . .), in any role including that of

an operator, principal, or victim. By a person, I mean either a physical person or a le-

gal person such as a company or government.

A principal is an entity that participates in a security system. This entity can be a

subject, a person, a role, or a piece of equipment, such as a PC, smartcard, or card-

reader terminal. A principal can also be a communications channel (which might be a

port number or a crypto key, depending on the circumstance). A principal can also be a

compound of other principals; examples are a group (Alice or Bob), a conjunction

(Alice and Bob acting together), a compound role (Alice acting as Bob’s manager), and

a delegation (Bob acting for Alice in her absence). Beware that groups and roles are

not the same. By a group I mean a set of principals, while a role is a function assumed

by different persons in succession (such as “the officer of the watch on the USS

Nimitz” or “the president for the time being of the Icelandic Medical Association”). A

principal may be considered at more than one level of abstraction; for example, “Bob

acting for Alice in her absence” might mean “Bob’s smartcard representing Bob who is

acting for Alice in her absence” or even “Bob operating Alice’s smartcard in her ab-

sence.” When I have to consider more detail, I’ll be more specific.

The meaning of the word identity is controversial. When I am being careful, I will

use it to mean a correspondence between the names of two principals signifying that

they refer to the same person or equipment. For example, it may be important to know

that the Bob in “Alice acting as Bob’s manager” is the same as the Bob in “Bob acting

as Charlie’s manager” and in “Bob as branch manager signing a bank draft jointly with

David.” Often, the term identity is abused to mean simply “name,” an abuse entrenched

by such phrases as “user identity” and “citizen’s identity card.” Where there is no pos-

sibility of being ambiguous, I’ll sometimes lapse into this vernacular usage in order to

avoid pomposity.

The definitions of trust and trustworthy are often confused. The following example

illustrates the difference: if an NSA employee is observed in a toilet stall at Baltimore
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Washington International Airport selling key material to a Chinese diplomat, then (as-

suming his operation was not authorized) he can be described as “trusted but not trust-

worthy.” Hereafter, I’ll use the NSA definition that a trusted system or component is

one whose failure can break the security policy, while a trustworthy system or compo-

nent is one that won’t fail.

Beware, though, that there are many alternative definitions of trust. A U.K. military

view stresses auditability and fail-secure properties: a trusted systems element is one

“whose integrity cannot be assured by external observation of its behavior while in

operation.” Other definitions often have to do with whether a particular system is ap-

proved by authority: a trusted system might be “a system that won’t get me fired if it

gets hacked on my watch” or even “a system that we can insure.” I won’t use either of

these definitions. When I mean a system that isn’t failure-evident, or an approved sys-

tem, or an insured system, I’ll say so.

The definition of confidentiality versus privacy versus secrecy opens another can of

worms. These terms clearly overlap; but, equally clearly, they are not exactly the same.

If my neighbor cuts down some ivy at our common fence with the result that his kids

can look into my garden and tease my dogs, it’s not my confidentiality that has been

invaded. And the duty to keep quiet about the affairs of a former employer is a duty of

confidence, not of privacy.

I’ll use these words as follows:

• Secrecy is a technical term that refers to the effect of the mechanisms used to

limit the number of principals who can access information, such as cryptogra-

phy or computer access controls.

• Confidentiality involves an obligation to protect some other person’s or orga-
nization’s secrets if you know them.

• Privacy is the ability and/or right to protect your personal secrets; it extends to

the ability and/or right to prevent invasions of your personal space (the exact

definition varies quite sharply from one country to another). Privacy can ex-

tend to families but not to legal persons such as corporations.

Thus, for example, hospital patients have a right to privacy; in order to uphold this

right, the doctors, nurses, and other staff have a duty of confidence toward their pa-

tients. The hospital has no right of privacy in respect of its business dealings, but those

employees who are privy to them may have a duty of confidence. So, in short, privacy

is secrecy for the benefit of the individual, while confidentiality is secrecy for the

benefit of the organization.

There is a further complexity in that it’s often not sufficient to keep the contents of

messages secret. For example, many countries have laws making the treatment of

sexually transmitted diseases secret, yet a private eye who could find out that you were

exchanging encrypted messages with an STD clinic might well draw the conclusion

that you were being treated there. So one may also have to protect metadata such as the

source or destination of messages. Anonymity can be just as important a factor in pri-

vacy (or confidentiality) as secrecy. To make things even more complex, some writers

refer to what I’ve called secrecy as message content confidentiality, and to what I’ve

called anonymity as message source (or destination) confidentiality.
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The meanings of authenticity and integrity can also vary subtly. In the academic lit-

erature on security protocols, authenticity means integrity plus freshness: you have

established that you are speaking to a genuine principal, not a replay of previous mes-

sages. There is a similar idea in banking protocols. In a country whose banking laws

state that checks are no longer valid after six months, a seven-month-old uncashed

check has integrity (assuming it has not been altered), but is no longer valid. (Bankers

would not use the word authenticity in this context.) The military usage of authenticity

tends to apply to the identity of principals and orders they give, while integrity applies

to stored data. Thus, we can talk about the integrity of a database of electronic warfare

threats (it has not been corrupted, whether by the other side or by Murphy), but the

authenticity of a general’s orders (which has an overlap with the academic usage).

There are also some strange usages. For example, one can talk about an authentic copy

of a deceptive order given by the other side’s electronic warfare people; here, the

authenticity refers to the act of copying and storage. Similarly, a police crime scene

officer will talk about preserving the integrity of a cheque that was not authentic but

forged, by placing it in an evidence bag.

The last matter I’ll clarify here is the terminology that describes what we’re trying to

achieve. A vulnerability is a property of a system or its environment, which, in con-

junction with an internal or external threat, can lead to a security failure, which is a

state of affairs contrary to the system’s security policy. By security policy I mean a

succinct statement of a system’s protection strategy (for example, “each credit must be

matched by an equal and opposite debit, and all transactions over $1,000 must be

authorized by two managers”). A security target is a more detailed specification, which

sets out the means by which a security policy will be implemented in a particular prod-

uct—encryption and digital signature mechanisms, access controls, audit logs, and so

on—and which will be used as the yardstick to evaluate whether the designers and

implementers have done a proper job. Between these two levels we may find a protec-

tion profile, which is like a security target except written in a sufficiently device-

independent way to allow comparative evaluations among different products and dif-

ferent versions of the same product. I’ll elaborate on security policies, security targets,

and protection profiles in Chapter 7 and Chapter 23. In general, the word protection

will mean a property such as confidentiality or integrity, defined in a sufficiently ab-

stract way for us to reason about it in the context of general systems rather than spe-

cific implementations.

Finally, it’s worth noting that much of the terminological confusion in security engi-

neering is somewhat political in nature. Security is a terribly overloaded word, and of-

ten means quite incompatible things to different people. To a corporation, it might

mean the ability to monitor all employees’ email and Web browsing activity; to the

employees, it might mean being able to use email and the Web without being moni-

tored.

1.6 Summary

I am reminded of a passage from Lewis Carroll:
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‘When I use a word,’ Humpty Dumpty said, in a rather scornful tone, ‘it means just

what I choose it to mean—neither more nor less.’ ‘The question is,’ said Alice,

‘whether you can make words mean so many different things.’ ‘The question is,’ said

Humpty Dumpty, ‘which is to be master—that’s all.’

It is important for the security engineer to develop sensitivity about the different nu-

ances of meaning that common words acquire in different applications, and to be able

to formalize what the security policy and target actually are. That may sometimes be

inconvenient for clients who wish to get away with something, but, in general, robust

security design requires that the protection goals are made explicit.
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CHAPTER

2

Protocols

It is impossible to foresee the consequences of being clever.

—CHRISTOPHER STRACHEY

If security engineering has a unifying theme, it is the study of security protocols.

Rather than starting off with a formal definition of a security protocol, I will give a

rough indication, then refine it using a number of examples. As this is an engineering

book, I will also give several examples of how protocols fail.

A typical security system consists of a number of principals such as people, compa-

nies, computers, and magnetic card readers, which communicate using a variety of

channels including phones, email, radio, infrared, and by carrying data on physical de-

vices such as bank cards and transport tickets. The security protocols are the rules that

govern these communications. They are typically designed so that the system will sur-

vive malicious acts such as people telling lies on the phone, hostile governments jam-

ming radio, or forgers altering the data on train tickets. Protection against all possible

attacks is often too expensive, so protocols are typically designed under certain as-

sumptions about the threats. Evaluating a protocol thus involves answering two ques-

tions. First, is the threat model realistic? Second, does the protocol deal with it?

Protocols may be extremely simple, such as swiping a badge through a reader in or-

der to enter a building; or they may be very complex. The world’s networks of cash

machines have dozens of protocols specifying how a cash machine interacts with cus-

tomers, how it talks to the bank that operates it, how the bank communicates with the

network operator, how money gets settled between banks, how encryption keys are set

up between the various principals, and what sort of alarm messages may be transmitted

(such as instructions to capture a card). All these protocols have to work together in a

large and complex system.

Often, a seemingly innocuous design feature opens up a serious flaw. For example,

in the past, a number of banks encrypted the customer’s PIN using a key known only to

their central computers and cash machines, and wrote it to the card magnetic strip. The

idea was to let the cash machine verify PINs locally, which saved on communications
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and even allowed a limited service to be provided when the cash machine was offline.

After this system had been used for many years without incident, a programmer (who

was playing around with a card reader used in a building access control system) dis-

covered that he could alter the magnetic strip of his own bank card by substituting his

wife’s bank account number for his own. He could then take money out of her account

using the modified card and his own PIN. He realized that this also enabled him to loot

any other customer’s account, and he went on to steal hundreds of thousands over a

period of years. The affected banks had to spend millions on changing their systems.

So we need to look systematically at security protocols and how they fail. As they

are widely deployed and often very badly designed, I’ll give a number of examples

from different applications.

2.1 Password Eavesdropping Risks

Passwords are still the foundation on which much of computer security rests, as they

are the main mechanism used to authenticate human users to computer systems. In the

form of PINs, they are also used in many embedded systems, from cash machines

through mobile phones to burglar alarms. They raise many problems, such as the diffi-

culty people have in choosing passwords that are difficult to guess, or remembering

passwords generated randomly by the system.

We discuss the “human interface” problems of passwords in the next chapter. For

now, let us consider the limitations of embedded systems that use passwords. The typi-

cal application is the remote control used to open your garage or to unlock the doors of

cars manufactured up to the mid-1990s. These primitive remote controls just broadcast

their 16-bit serial number, which also acts as the password.

An attack that became common was to use a “grabber,” a device that would record a

code and replay it later. These devices, seemingly from Taiwan, arrived on the market

in about 1995; they enabled thieves lurking in parking lots to record the signal used to

lock a car door and then replay it to unlock the car once the owner had left.

One countermeasure was to use separate codes for lock and unlock. But this is still

not ideal. First, the thief can lurk outside your house and record the unlock code before

you drive away in the morning; he can then come back at night and help himself. Sec-

ond, 16-bit passwords are too short. In the mid-1990s, devices appeared that could try

all possible codes one after the other. A code would be found on average after about

2
15

 tries, which at 10 per second would take less than an hour. A thief operating in a

parking lot with a hundred vehicles within range could be rewarded in less than a min-

ute with a car helpfully flashing its lights.

Another countermeasure was to double the length of the password from 16 to 32

bits. The manufacturers proudly advertised “over 4 billion codes.” But this only

showed they hadn’t really understood the problem. There was still only one code (or

two codes) for each car, and although guessing was now impractical, grabbers still

worked fine.

Using a serial number as a password has a further vulnerability in that there may be

many people who have access to it. In the case of a car, this might mean all the dealer

staff and, perhaps, the state motor vehicle registration agency. Some burglar alarms
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have also used serial numbers as master passwords; this is even worse, as the serial

number may appear on the order, the delivery note, the invoice, and all the other stan-

dard paperwork.

Simple passwords are sometimes the appropriate technology, even when they double

as serial numbers. For example, my monthly season ticket for the swimming pool sim-

ply has a barcode. I’m sure I could make a passable forgery with our photocopier and

laminating machine, but the turnstile is attended and the attendants get to know the

“regulars,” so there is no need for anything more expensive. My cardkey for getting

into the laboratory where I work is slightly harder to forge, as it uses an infrared bar-

code. Again, this is probably quite adequate—our more expensive equipment is in

rooms with additional door locks. We’ll discuss passwords in more detail in Chapter 3.

But for things that lots of people want to steal, like cars, a better technology is needed.

This brings us to cryptographic authentication protocols.

2.2 Who Goes There? Simple Authentication

A simple example of an authentication device is an infrared token used in some multi-

storey parking garages to enable subscribers to raise the barrier. This first transmits its

serial number and then transmits an authentication block that consists of the same se-

rial number, followed by a random number, all encrypted using a key that is unique to

the device.

I will postpone discussion of how to encrypt data and what properties the cipher

should have; here, I will simply use the notation {X}K for the message X encrypted un-

der the key K. Then the protocol between the access token in the car and the parking

garage can be written as:

T Æ G : T, {T, N}KT

This is the standard protocol engineering notation, and can be a bit confusing at first,

so we’ll take it slowly.

The in-car token sends its name, T, followed by the encrypted value of T concate-

nated with N, where N stands for “number used once,” or nonce. The purpose of nonce

is to assure the recipient that the message is fresh, that is, it is not a replay of an old

message that an attacker observed. Verification is simple: the parking garage server

reads T, gets the corresponding key, KT, deciphers the rest of the message, checks that

the plaintext contains T, and, finally, that the nonce N has not been seen before.

One reason many people get confused is that to the left of the colon, T identifies one

of the principals (the token that represents the subscriber), whereas to the right it

means the name (that is, the serial number) of the token. Another cause of confusion is

that once we start discussing attacks on protocols, we can suddenly start finding that

the token T’s message intended for the parking garage G was actually intercepted by

the freeloader F and played back at some later time. So the notation is unfortunate, but

it’s too thoroughly entrenched now to change easily. Professionals often think of the T

Æ G to the left of the colon as simply a hint of what the protocol designer had in mind.

The term nonce can mean anything that guarantees the freshness of a message. A

nonce may, according to the context, be a random number, a serial number, or a ran-

dom challenge received from a third party. There are subtle differences between the
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three approaches, such as in the level of resistance they offer to various kinds of replay

attack. (We’ll discuss these later.) But in very low-cost systems, the first two predomi-

nate, as it tends to be cheaper to have a communication channel in one direction only.

Key management in such devices can be simple. A typical garage token’s key KT is

simply its serial number encrypted under a global master key, KM, known to the cen-

tral server:

KT = {T}KM

This is known as key diversification. It gives a very simple way of implementing ac-

cess tokens, and is very widely used in smartcard-based systems as well. But there is

still plenty of room for error.

At least two manufacturers have made the mistake of only checking that the nonce is

different from last time, so that, given two valid codes A and B, the series ABABAB. . .

was interpreted as a series of independently valid codes. In one car lock, the thief could

open the door by replaying the last-but-one code. Another example comes from the

world of prepayment utility meters. Over a million households in the United Kingdom,

plus many millions in developing countries, have an electricity or gas meter designed

so that they can purchase encrypted tokens to take home and insert into the meter,

which then dispenses the purchased quantity of electricity or gas. One electricity meter

widely used in South Africa checked only that the nonce in the decrypted command

was different from last time. So the customer could charge the meter up to the limit by

buying two low-value power tickets and then repeatedly feeding them in one after the

other [39].

The question of whether to use a random number or a counter is not as easy as it

might seem [195]. With random numbers, the lock has to remember a reasonable num-

ber of past codes. There’s also the valet attack; someone who has temporary access to

the token—such as a valet parking attendant—can record a number of access codes and

replay them later to steal your car.

The problem with counters is maintaining synchronization. A key may be used for

more than one lock, and may also be activated by jostling against something in your

pocket (I once took an experimental token home where it was gnawed by my dogs). So

there has to be a way to recover after the counter has been incremented hundreds or

possibly even thousands of times. This can be turned to advantage by allowing the lock

to “learn,” or synchronize on, a key under certain conditions; but the details are not

always designed thoughtfully. One common product uses a 16-bit counter, and allows

access when the counter value that is deciphered is the last valid code incremented by

no more than 16. To cope with cases where the token has been used more than 16 times

elsewhere (or chewed by a family pet), the lock will open on a second press, provided

that the counter value has been incremented between 17 and 32,767 times since a valid

code was entered (the counter rolls over so that 0 is the successor of 65,535). This

opens it to a replay attack, because someone only needs six access codes—say for val-

ues 0, 1, 20,000, 20,001, 40,000 and 40,001 to break the system completely.

So designing even a simple token authentication mechanism is not straightforward.

There are many attacks that do not involve “breaking” the encryption. Such attacks are

likely to become more common as cryptographic authentication mechanisms prolifer-

ate.
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An example that may become contentious is accessory control. It is common for the

makers of games consoles to build in challenge-response protocols to prevent software

cartridges or other accessories being used with their product unless a license fee is

paid. This practice is spreading. According to one vendor of authentication chips, some

printer companies have begun to embed authentication in printers to ensure that genu-

ine toner cartridges are used. If a competitor’s product is loaded instead, the printer

will quietly downgrade from 1200 dpi to 300 dpi. In mobile phones, much of the profit

is made on batteries, and authentication protocols can be used to spot competitors’

products so they can be drained more quickly. (I wonder how long it will be before the

research that toner cartridge and battery manufactures will do to defeat these systems

will hit the street in the form of better car theft tools?)

2.2.1 Challenge and Response

The most modern car door locks use a more sophisticated two-pass protocol, often

called challenge-response. As the car key is inserted into the steering lock, the engine

management unit sends a challenge, consisting of a random n-bit number to the key

using a short-range radio signal. The car key computes a response by encrypting the

challenge. In this way, writing E for the engine controller, T for the transponder in the

car key, K for the cryptographic key shared between the transponder and the engine

controller, and N for the random challenge, the protocol may look something like:

E Æ T : N

T Æ E : {T, N}K

This is still not bulletproof. In one system, the random numbers generated by the en-

gine management unit turned out to be rather predictable, so it was possible for a thief

to interrogate the key in the car owner’s pocket, as he passed, with the anticipated next

challenge.

In fact, most of the widely used software products that incorporate encryp-

tion—including Kerberos, Netscape, and PGP—have been broken at some time or an-

other because their random-number generators weren’t random enough [340, 256]. The

fix used varies from one application to another. It’s possible to build hardware random-

number generators using radioactive decay, but this isn’t common because of environ-

mental concerns. There are various sources of randomness that can be used in large

systems such as PCs; for example, it’s possible to use the small variations in the rota-

tional velocity of the hard disk caused by air turbulence [225]. Practical systems for

PCs often mix the randomness available from a number of environmental sources, such

as network traffic and keystroke timing, and from internal system sources [363]; the

way these sources are combined is often critical [447]. But in a typical embedded sys-

tem such as a car lock, the random challenge is generated by encrypting a counter us-

ing a special key that is kept inside the device, and not used for any other purpose.

Locks are not the only application of challenge-response protocols. Many organiza-

tions—including most U.S. banks, many phone companies, and a number of defense

agencies—issue their staff password generators that enable them to log on to corporate

computer systems [808]. These may look like calculators (and even function as calcu-

lators) but their main function is as follows: When you want to log in to a machine on

the network, you call up a logon screen and are presented with a random challenge of
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maybe seven digits. You key this into your password generator, together with a PIN of

maybe four digits. The device encrypts these 11 digits using a secret key shared with

the corporate security server, and displays the first seven digits of the result. You enter

these seven digits as your password. (See Figure 2.1.) If you have a password generator

with the right secret key, and you enter the PIN right, and you type in the result cor-

rectly, then the corporate computer system lets you in. But if you do not have a genu-

ine password generator for which you know the PIN, your chance of logging on is

small.

Figure 2.1 Password generator use.

Formally, with S for the server, P for the password generator, PIN for the user’s per-

sonal identification number that bootstraps the password generator, U for the user, and

N for the random nonce:

S Æ U : N

U Æ P : N, PIN

P Æ U : {N, PIN}K

U Æ S : {N, PIN}K

(For a more detailed description of one of the more popular challenge-response

products, see [15, p. 211 ff].)

The encryption in challenge-response protocols does not always need to be inverti-

ble, and so in general it can be accomplished using a “one-way function” or “crypto-

graphic hash function,” which has the property that it’s less subject to export

restrictions than are encryption algorithms. (For its technical properties, see Chapter 5,

“Cryptology.”)
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2.2.2 The MIG-in-the-Middle Attack

There is an interesting attack on challenge-response systems that appears to have

played a role in bringing peace to Southern Africa.

The ever increasing speeds of warplanes in the 1930s and 1940s, together with the

invention of the jet engine, radar and rocketry, made it ever more difficult for air de-

fence forces to tell their own craft apart from the enemy’s. This led to a serious risk of

“fratricide”—people shooting down their colleagues by mistake—and drove the devel-

opment of identify-friend-or-foe (IFF) systems. These were first fielded in World War

II, and in their early form enabled an airplane illuminated by radar to broadcast an

identifying number to signal friendly intent. In 1952, this system was adopted to iden-

tify civil aircraft to air traffic controllers and, worried about the loss of security once it

became widely used, the U.S. Air Force started a research programme to incorporate

cryptographic protection in the system. Nowadays, the typical air defense system sends

random challenges with its radar signals, and friendly aircraft have equipment and keys

that enable them to identify themselves with correct responses.

U.S. aircraft use an IFF system called ‘Mode XII,’ and systems are under develop-

ment for ground troops too. But the South African Air Force (SAAF) had been cut off

from Western arms supplies by sanctions and had to design its own system.

In the late 1980s, South African troops were fighting a war in northern Namibia and

southern Angola. The goals were to keep Namibia under white rule and to impose a

client government (UNITA) on Angola. Because the South African Defense Force con-

sisted largely of conscripts from a small, white population, it was essential to limit

casualties. So, most South African troops remained in Namibia on policing duties

while the fighting to the north was done by UNITA troops. The role of the SAAF was

twofold: to provide tactical support to UNITA by bombing targets in Angola, and to

ensure that the Angolans and their Cuban allies did not return the compliment in Na-

mibia.

Suddenly, Cuban aircraft broke through the South African air defenses and bombed

a South African camp in northern Namibia, killing a number of white conscripts. This

proof that its air supremacy had been lost helped the Pretoria government decide to

hand over Namibia to the insurgents—itself a huge step on the road to majority rule in

South Africa several years later. The raid may have been the last successful military

operation ever carried out by Soviet bloc forces.

Some years afterward, a former SAAF officer told me how the Cubans had pulled it

off. Several MIGs had loitered in southern Angola, just north of the South African air

defense belt, until a flight of SAAF Impala bombers raided a target in Angola. Then

the MIGs turned sharply and flew openly through the SAAF’s air defenses, which sent

IFF challenges. The MIGs relayed them to the Angolan air defense batteries, which

transmitted them at a SAAF bomber; the responses were relayed back in real time to

the MIGs, which retransmitted them and were allowed through (see Figure 2.2). Ac-

cording to my informant, this had a significant effect on the general staff in Pretoria.

Being not only outfought by black opponents, but actually outsmarted, was not con-

sistent with the world view they had held until then.

I have no independent confirmation on this story from the Angolan or Cuban side.

But the basic technique is at least as old as World War II, and illustrates the basic idea

behind an attack known to the cryptographic community as the man-in-the-middle or
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(more recently) the middleperson attack. We will come across it again and again in

applications ranging from pay-TV to Internet security protocols. It even applies in on-

line gaming. As the mathematician John Conway once remarked, it’s easy to beat a

grandmaster at postal chess: just play two grandmasters at once, one as white and the

other as black, and relay the moves between them!

Figure 2.2 The MIG-in-the middle attack.

In many cases, middleperson attacks are possible but not economic. In the case of

car keys, it should certainly be possible to steal a car by having an accomplice follow

the driver, and electronically relay the radio challenge to you as you work the lock. But

it would be a lot simpler to just pick the driver’s pocket or mug him.

2.2.3 Reflection Attacks

Other interesting problems arise with mutual authentication, that is, when two princi-

pals have to identify each other. Suppose, that a simple challenge-response IFF system

designed to prevent anti-aircraft gunners attacking friendly aircraft also had to be de-
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ployed in a fighter-bomber. Now suppose that the air force simply installed one of its

air gunners’ challenge units in each aircraft and connected it to the fire-control radar.

But now an enemy bomber might reflect a challenge back at our fighter, get a correct

response, and then reflect that back as its own response:

F Æ B : N

B Æ F : N

F Æ B : {N}K

B Æ F : {N}K

So we will want to integrate the challenge system with the response generator. It is

still not enough for the two units to be connected and share a list of outstanding chal-

lenges, as an enemy attacked by two of our aircraft might reflect a challenge from one

of them to be answered by the other. Likewise, it might not be acceptable to switch

manually from “attack” to “defense” mode during air combat.

There are a number of ways of stopping this reflection attack. In many cases, it is

sufficient to include the names of the two parties in the authentication exchange. In the

previous example, we might require a friendly bomber to reply to the challenge:

F Æ B : N

with a response such as:

B Æ F : {B, N}K

Thus, a reflected response {F, N} (or even {F¢, N} from the fighter pilot’s wingman)

could be detected.

This is a much simplified account of IFF but it serves to illustrate the different trust

assumptions that underlie an authentication protocol. If you send out a challenge N and

receive, within 20 milliseconds, a response {N}K, then, because light can travel a bit

under 3,730 miles in 20 ms, you know that there is someone with the key K within

2,000 miles. But that’s all you know. If you can be sure that the response was not com-

puted using your own equipment, you now know that there is someone else with the

key K within 2,000 miles. If you make the further assumption that all copies of the key

K are securely held in equipment that may be trusted to operate properly, and you see

{B, N}K, you might be justified in deducing that the aircraft with callsign B is within

2,000 miles. A clear understanding of trust assumptions and their consequences is at

the heart of security protocol design.

By now you might think that the protocol design aspects of IFF have been exhaus-

tively discussed. But we’ve omitted one of the most important problems—and one

which the designers of early IFF systems did not anticipate. As radar returns are weak,

the signal from the IFF transmitter on board an aircraft will often be audible at a much

greater range than the return. The Allies learned this the hard way; in January 1944,

decrypts of Enigma messages revealed that the Germans were plotting British and

American bombers at twice the normal radar range by interrogating their IFF. So many

modern systems authenticate the challenge as well as the response. The NATO mode

XII, for example, has a 32 bit encrypted challenge, and a different valid challenge is

generated for every interrogation signal, of which there are typically 250 per second.

Theoretically there is no need to switch off over enemy territory, but in practice an en-

emy who can record valid challenges can replay them as part of an attack.

There are many other aspects of IFF which are less protocol related, such as the dif-

ficulties posed by neutrals, error rates in dense operational environments, how to deal
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with equipment failure, how to manage keys, and how to cope with multinational coa-

litions such as that put together for Operation Desert Storm. We’ll return to IFF in

Chapter 16. For now, the spurious challenge problem serves to reinforce an important

point: that the correctness of a security protocol depends on the assumptions made

about the requirements. A protocol that can protect against one kind of attack (being

shot down by your own side) but which increases the exposure to an even more likely

attack (being shot down by the other side) does more harm than good. In fact, the spu-

rious challenge problem became so serious in World War II that some experts advo-

cated abandoning IFF altogether, rather than taking the risk that one bomber pilot in a

formation of hundreds would ignore orders and leave his IFF switched on.

2.3 Manipulating the Message

One kind of middleperson attack is often treated as a separate category of attack. This

is where the attacker does not just reflect identification information, but manipulates

the message content in some way. We saw an example at the beginning of this chapter:

ATM cards designed for offline operation could be manipulated in order to steal

money. In effect, the magnetic card acted as a store-and-forward communication chan-

nel between the bank’s mainframe computer and its cash machines whenever the phone

lines (or the mainframe) were down.

Another example is when dishonest cabbies insert pulse generators in the cable that

connects their taximeter to a sensor in their taxi’s gearbox. The sensor sends pulses as

the prop shaft turns, which let the meter work out how far the taxi has gone. A pirate

device, which inserts extra pulses, makes the taxi appear to have gone further. We’ll

discuss such attacks at much greater length in Chapter 10, “Monitoring Systems.” Sec-

tion 10.4.

However, many application-level message manipulation attacks are really just vari-

ants on the replay attack, which we saw previously. They aren’t limited to low-grade

systems, such as remote door locks that can be defeated by recording and replaying a

fixed password. The Intelsat satellites used for international telephone and data traffic

have robust mechanisms to prevent a command being accepted twice—otherwise, an

attacker could repeatedly order the same maneuver to be carried out until the satellite

ran out of fuel [617].

Another example is a key log attack, which defeats many pay-TV systems (it’s also

known as delayed data transfer, or DDT). Typical pay-TV equipment has a decoder

which deciphers the video signal and a customer smartcard which generates the deci-

phering keys. These keys are recomputed several times a second using a one-way en-

cryption function applied to various “entitlement control messages” that appear in the

signal. Such systems can be very elaborate (and we’ll discuss some more complex at-

tacks on them later), but there is a very simple attack that works against a lot of them.

If the messages that pass between the smartcard and the decoder are the same for all

decoders (which is usually the case), then subscribers can record logs of all the keys

sent by their cards to their decoders, and post them to the Net. Someone without a sub-

scription, but who has video-recorded the enciphered program, can then download the

key log and use it to decipher the tape.
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Changing pay-TV protocols to prevent DDT attacks can be difficult. The base of in-

stalled equipment is huge, and many of the obvious countermeasures have an adverse

effect on legitimate customers (such as by preventing them from videotaping movies).

Pay-TV companies generally ignore this attack, since connecting a PC to a satellite TV

decoder through a special hardware adaptor is something only hobbyists do; it is too

inconvenient to be a real threat to their revenue stream.

2.4 Changing the Environment

A very common cause of protocol failure is that the environment changes, so that as-

sumptions that were originally true no longer hold, and the security protocols cannot

cope with the new threats.

One nice example comes from the ticketing systems used by London Transport. In

the early 1980s, passengers devised a number of scams to cut the cost of commuting.

For example, a passenger who commuted a long distance from a suburban station to

downtown might buy two cheaper, short-distance season tickets—one between their

suburban station and a nearby one, and the other between their destination and another

downtown station. These would let them get through the barriers; on the rare occasions

they were challenged by an inspector in between, they would claim that they’d boarded

at a rural station that had a broken ticket machine.

A large investment later, the system had all the features necessary to stop such

scams: all barriers were automatic, tickets could retain state, and the laws had been

changed so that people caught without tickets got fined on the spot.

But then the whole environment changed, as parts of the system were privatized to

create dozens of rail and bus companies. Some of the new operating companies started

cheating each other, and there was nothing the system could do about it! For example,

when a one-day travel pass was sold, the revenue was distributed between the various

bus, train, and subway operators using a formula that depended on where it was sold.

Suddenly, the train companies had a motive to book all their ticket sales through the

outlet that let them keep the largest percentage. Chaos and litigation ensued.

The transport system’s problem was not new; it had been observed in the Italian ski

resort of Val di Fassa in the mid-1970s. There, one could buy a monthly pass for all the

ski lifts in the valley. An attendant at one of the lifts was observed with a deck of

cards, one of which he swiped through the reader between each of the guests. It turned

out that the revenue was divided up between the various lift operators according to the

number of people who had passed their turnstiles. So each operator sought to inflate its

own figures as much as it could [730].

Another relevant example comes from the world of cash machine fraud. In 1993 and

1994, Holland suffered an epidemic of phantom withdrawals; there was much contro-

versy in the press, with the banks claiming that their systems were secure, while many

people wrote to the papers claiming to have been cheated. Eventually, the banks were

shamed into actively investigating the claims, and noticed that many of the victims had

used their bank cards at a certain filling station near Utrecht. This was staked out and

one of the staff was arrested. It turned out that he had tapped the line from the card
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reader to the PC that controlled it; his tap recorded the magnetic stripe details from

their cards while he used his eyeballs to capture their PINs [19].

Why had the system been designed so badly? Well, when the standards for managing

magnetic stripe cards and PINs were developed in the early 1980s, by organizations

such as IBM and VISA, the engineers had made two assumptions. The first was that

the contents of the magnetic strip—the card number, version number, and expiration

date—was not secret, while the PIN was [548]. (The analogy used was that the mag-

netic strip was the holder’s name and the PIN their password. We will have more to

say on the subtleties of naming later.) The second assumption was that bank card

equipment would only be operated in trustworthy environments, such as in a physically

robust automatic teller machine, or by a bank clerk at a teller station. So it was

“clearly” only necessary to encrypt the PIN on its way from the PIN pad to the server;

the magnetic strip data could be sent in clear from the card reader.

Both of these assumptions had changed by 1993. An epidemic of card forgery,

mostly in the Far East in the late 1980s, drove banks to introduce authentication codes

on the magnetic strips. Also, the commercial success of the bank card industry led

banks in many countries to extend the use of debit cards from ATMs to terminals in all

manner of shops. The combination of these two environmental changes undermined the

original system design: instead of putting a card whose magnetic strip contained no

security data into a trusted machine, people were putting a card that did rely on secu-

rity data in the strip into an untrusted machine. These changes had come about so

gradually, and over such a long period, that the industry didn’t see the problem com-

ing.

2.5 Chosen Protocol Attacks

Some people are trying to sell the idea of a “multifunction smartcard,” an authentica-

tion device that could be used in a wide range of transactions to save users having to

carry around dozens of different cards and keys.

This introduces some interesting new risks. Suppose that you use your card to sign

bank transactions; a common way of doing this would be to have the card compute a

digital signature on the transaction data. In fact, to save on computation, the signature

is usually computed on a random-looking 20-byte digest of the transaction. (We’ll dis-

cuss in Chapter 5 how to compute such digests.) Now suppose that this card can be

used by any other application that anyone cares to design. How might the Mafia design

a protocol to attack it?

Here’s one example. At present people visiting a Web porn site are often asked for

“proof of age,” which usually involves giving a credit card number, whether to the site

itself or to an age-checking service. If credit cards become able to do digital signatures,

it would be natural for the porn site to ask the customer to sign a random challenge as

proof of age. A porn site could then mount a “Mafia-in-the-middle“ attack, as shown in

Figure 2.3. The perpetrators wait until an unsuspecting customer visits their site, then

order something resellable (such as gold coins) from a dealer, playing the role of the

coin dealer’s customer. When the coin dealer sends them the transaction digest for sig-

nature, they relay it through their porn site to the waiting customer in the form of a
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random challenge. The customer signs it, the Mafia gets the gold coins, and when

thousands of people suddenly complain about the huge charges to their cards at the end

of the month, the porn site has vanished—along with the gold [446].

Figure 2.3 The Mafia-in-the-middle attack.

This is a more extreme variant on the Utrecht scam. There are several lessons: using

crypto keys (or other authentication mechanisms) in more than one application can be

dangerous; and letting other people bootstrap their own application security off yours

can be downright foolish.

2.6 Managing Encryption Keys

The examples of security protocols that we have discussed so far are mostly about

authenticating a principal’s name, or application data such as the impulses driving a

taximeter. There is one further class of authentication protocols that is very important:

the protocols used to manage cryptographic keys. Until recently, such protocols were

largely used in the background to support other operations; much of the technology

was developed to manage the keys used by cash machines and banks to communicate

with each other. But now, systems such as pay-TV use key management to control ac-

cess to the system directly.

Authentication protocols are now also used in distributed computer systems for gen-

eral key management purposes, and, therefore are going to be very important. Kerberos

was the first such system to come into widespread use, and a variant of it is used in

Windows 2000. I’ll now lay the foundations for an understanding of Kerberos.

2.6.1 Basic Key Management

The basic idea behind key distribution protocols is that where two principals want to

communicate, they may use a trusted third party to effect an introduction.

I remarked that in the literature on authentication protocols, it is conventional to

give the principals human names to avoid getting lost in too much algebraic notation.

So I will call the two communicating principals Alice and Bob, and the trusted third

party Sam. But please don’t assume that we are talking about human principals. Alice

and Bob are likely to be programs, while Sam is a server; Alice might be a program in

a taximeter, Bob the program in a gearbox sensor, and Sam the computer at the taxi

inspection station.
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Anyway, a simple authentication protocol could run as follows:

1. Alice first calls Sam and asks for a key for communicating with Bob.

2. Sam responds by sending Alice a pair of certificates. Each contains a copy of

a key, the first encrypted so only Alice can read it, and the second encrypted

so only Bob can read it.

3. Alice then calls Bob and presents the second certificate as her introduction.

Each of them decrypts the appropriate certificate under the key they share

with Sam, and thereby gets access to the new key. Alice can now use the key

to send encrypted messages to Bob, and to receive messages from him in re-

turn.

I mentioned that replay attacks are a known problem with authentication protocols,

so in order that both Bob and Alice can check that the certificates are fresh, Sam may

include a timestamp in each of them. If certificates never expire, there could well be

serious problems dealing with users whose privileges have been revoked.

Using our protocol notation, we could describe this as:

A Æ S : A, B

S Æ A : {A, B, KAB, T}KAS ’ {A, B, KAB, T}KBS

A Æ B : {A, B, KAB, T}KBS ’ {M}KAB

Expanding the notation, Alice calls Sam and says she’d like to talk to Bob. Sam

makes up a session key message consisting of Alice’s name, Bob’s name, a key for

them to use, and a timestamp. Sam encrypts this under the key he shares with Alice,

and with the key he shares with Bob. He gives both ciphertexts to Alice. Alice re-

trieves the key from the ciphertext that was encrypted to her, and passes on to Bob the

ciphertext encrypted for him. She now sends him whatever message she wanted to

send, encrypted using this key.

2.6.2 The Needham-Schroeder Protocol

Many things can go wrong. We will see plenty of examples later; for now, a famous

historical example will suffice. Many existing key distribution protocols are derived

from a protocol invented by Roger Needham and Mike Schroeder in 1978 [589]. It is

somewhat similar to the one we’ve just discussed, but uses nonces rather than time-

stamps. It runs as follows:
Message 1 A Æ S : A, B, NA

Message 2 S Æ A : {NA, B, KAB, {KAB, A}KBS} KAS

Message 3 A Æ B : {KAB, A}KBS

Message 4 B Æ A : {NB}KAB

Message 5 A Æ B : {NB–1}KAB
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Here, Alice takes the initiative, and tells Sam: “I’m Alice; I want to talk to Bob, and

my random nonce is NA.” Sam provides her with a session key, encrypted using the key

she shares with him. This ciphertext also contains her nonce so she can confirm it’s not

a replay. He also gives her a certificate to convey this key to Bob. She passes the cer-

tificate to Bob, who then does a challenge-response to check that she is present and

alert.

There is a subtle problem with this protocol: Bob has to assume that the key KAB he

receives from Sam (via Alice) is fresh. This is not necessarily so: Alice could have

waited a year between steps 2 and 3. In many applications this may not be important; it

might even help Alice to cache keys against possible server failures. But if an oppo-

nent—say Charlie—ever got hold of Alice’s key KAS he could use it to set up session

keys with many other principals.

Suppose, for example, that Alice had also asked for and received a key to communi-

cate with Dorothy, and after Charlie stole her key he sent messages to Sam pretending

to be Alice, and got keys for Freddie and Ginger. He might also have observed mes-

sage 2 in her protocol exchanges with Dorothy, that is, when Sam sent her a key for

communicating with Dorothy, encrypted under the key KAS which is now compro-

mised. So now Charlie could impersonate Alice to Dorothy, and also to Freddie and

Ginger. So when Alice finds out that her key has been stolen, perhaps by comparing

message logs with Dorothy, she’d have to get Sam contact everyone for whom she’d

ever been issued a key, and tell them that her old key was no longer valid. She could

not do this herself as she doesn’t know anything about Freddie and Ginger. In other

words, revocation is a problem: Sam will probably have to keep complete logs of eve-

rything he has ever done, and these logs would grow in size forever unless the princi-

pals’ names expired at some fixed time in the future.

Over 20 years later, this example still generates controversy in the security protocols

community. The simplistic view is that Needham and Schroeder just got it wrong; the

view argued by Susan Pancho and Dieter Gollmann (for which I have much sympathy)

is that this is one more example of a protocol failure brought on by shifting assump-

tions [345, 600]. 1978 was a kinder, gentler world; computer security then concerned

itself with keeping the bad guys out, while nowadays we expect the bad guys to be us-

ers of the system. The Needham-Schroeder paper explicitly assumes that all principals

behave themselves, and that attacks come only from outsiders [589]. Under these as-

sumptions, the protocol remains sound.

2.6.3 Kerberos

An important practical derivative of the Needham-Schroeder protocol may be found in

Kerberos, a distributed access control system that originated at MIT and is now the

default authentication option in Windows 2000 [735]. Instead of a single trusted third

party, Kerberos has two kinds: an authentication server to which users log on, and a

ticket-granting server that gives them tickets allowing access to various resources such

as files. This enables more scalable access management. In a university, for example,

one might manage students through their halls of residence, but manage file servers by

departments; in a company, the personnel people might register users to the payroll
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system, while departmental administrators manage resources such as servers and print-

ers.

First, Alice logs on to the authentication server using a password. The client soft-

ware in her PC fetches a ticket from this server, which is encrypted under her password

and which contains a session key KAS. Assuming she gets the password right, she now

controls KAS; to get access to a resource B, controlled by the ticket-granting server S,

the following protocol takes place. Its outcome is a key, KAB, with timestamp TS and

lifetime L, which will be used to authenticate Alice’s subsequent traffic with that re-

source:
A Æ S : A, B

S Æ A : {TS, L, KAB, B, {TS, L, KAB, A}KBS} KAS

A Æ B : {TS, L, KAB, A}KBS ’ {A, TA} KAB

B Æ A : {TA+1}KAB

Translating this into English: Alice asks the ticket-granting server for access to B. If

this is permissible, the ticket {TS, L, KAB, A}KBS is created containing a suitable key KAB

and given to Alice to use. She also gets a copy of the key in a form readable by her,

namely encrypted under KAS. She now verifies the ticket by sending a timestamp, TA, to

the resource, which confirms its aliveness by sending back the timestamp incremented

by one (this is a convention to indicate that the resource was able to decrypt the ticket

correctly and extract the key KAB).

The vulnerability of Needham-Schroeder has been fixed by introducing timestamps

rather than random nonces. But, as in most of life, we get little in security for free.

There is now a new vulnerability, namely that the clocks on our various clients and

servers might get out of synch; they might even be desynchronized deliberately as part

of a more complex attack.

2.7 Getting Formal

Subtle difficulties of the kind we have seen with the protocols just discussed, and the

many ways in which protection properties depend on quite narrow (and often unobvi-

ous) starting assumptions, have led researchers to apply formal methods to key distri-

bution protocols. The goal of this exercise was originally to decide whether a protocol

was right or wrong. Either it should be proved correct or an attack should be exhibited.

More recently, this has expanded to clarifying the assumptions that underlie a given

protocol.

There are a number of different approaches to verifying the correctness of protocols.

The best known is a logic of belief, the BAN logic, named after its inventors Mike Bur-

rows, Martín Abadi, and Roger Needham [148]. It reasons about what is reasonable for

a principal to believe, given sight of certain messages, timestamps, and so on. A sec-

ond is the random oracle model, which I touch on in Chapter 5, and which is favored

by many mathematicians working at the theoretical end of the subject; this appears to

be less expressive than logies of belief, but can tie protocol properties down to the

properties of the underlying encryption algorithms. Finally, a number of researchers

have applied mainstream formal methods such as CSP and Lotos.
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Some history exists of flaws being found in protocols that had been proved correct

using formal methods; the following subsection offers a typical example.

2.7.1 A Typical Smartcard Banking Protocol

This system, currently called COPAC, is an electronic purse system used by VISA in

countries with poor telecommunications [35]. It was the first live financial system

whose underlying protocol suite was designed and verified using such formal tech-

niques, and in particular a variant of the BAN logic. A very similar protocol is now

also used in the “Geldkarte,” an electronic purse issued by banks in Germany to their

clients.

Transactions take place from a customer smartcard to a merchant smartcard. The

customer gives the merchant an electronic check with two authentication codes on it,

one that can be checked by the network and one that can be checked by the customer’s

bank. A simplified version of the protocol is as follows:

C Æ R : {C, NC}K

R Æ C : {R, NR, C, NC}K

C Æ R : {C, NC, R, NR, X}K

In English: the customer and the retailer share a key, K. Using this key, the customer

card encrypts a message containing its account number, C, and a customer transaction

serial number, NC. The retailer confirms its name, R, and its transaction serial number,

NR, as well as the information it has just received from the customer. The customer

now sends the electronic check, X, along with all the data exchanged so far in the pro-

tocol. One can think of the electronic check as being stapled to a payment advice with

the customer’s and retailer’s names, and their respective reference numbers. (The rea-

son for repeating all previous data in each message is to prevent message manipulation

attacks using cut-and-paste.)

2.7.2 The BAN Logic

The BAN logic provides a formal method for reasoning about the beliefs of principals

in cryptographic protocols. Its underlying idea is that we will believe that a message is

authentic if it is encrypted with a relevant key and it is also fresh (that is, generated

during the current run of the protocol). Further assumptions include that principals will

only assert statements they believe in, and that some principals are authorities for cer-

tain kinds of statement. This is formalized using a notation that includes:

• A |≡ X: A believes X, or, more accurately, that A is entitled to believe X.

• A |~ X: A once said X (without implying that this utterance was recent or not).

• A |fi X: A has jurisdiction over X; in other words, A is the authority on X, and
is to be trusted on it.

• A <| X: A sees X; that is, someone sent a message to A containing X in such a
way that A can read and repeat it.



Chapter 2: Protocols

30

• #X: X is fresh; that is, X contains a current timestamp or some information
showing that it was uttered by the relevant principal during the current run of
the protocol.

• {X}K: X encrypted under the key K, as in the rest of this chapter.

• A ´
K
 B: A and B share the key K; in other words, it is an appropriate key for

them to use to communicate.

Other symbols deal, for example, with public key operations and with passwords,

but they do not concern us here.

These symbols are manipulated using a set of postulates, which include:

The message-meaning rule. States that if A sees a message encrypted under K, and K is

a good key for communicating with B, then A will believe that the message was once

said by B. (We assume that each principal can recognize and ignore his or her own

messages.) Formally:

A |≡ A ´
K
 B, A <| {X}K

A |≡ B |~ X

The nonce-verification rule. States that if a principal once said a message, and the mes-

sage is fresh, then that principal still believes it. Formally:

A |≡ #X, A |≡ B |~ X

A |≡ B |≡ X

The jurisdiction rule. States that if a principal believes something, and is an authority

on the matter, then he or she should be believed. Formally, we write that:

A |≡ B |fi X, A |≡ B |≡ X

A |≡ X

In this notation, the statements on the top are the conditions; the one on the bottom

is the result. A number of further rules cover the more mechanical aspects of manipu-

lation; for example, a principal who sees a statement sees its components provided he

or she knows the necessary keys; and if part of a formula is known to be fresh, then the

whole formula must be.

2.7.3 Verifying the Payment Protocol

Assuming that the key, K, is available only to principals who can be trusted to execute

the protocol faithfully, formal verification is now straightforward. The trick is to start

from the desired result and work backward. In this case, we wish to prove that the re-

tailer should trust the check; that is, R |≡ X (the syntax of checks and cryptographic

keys is similar for our purposes here; a check is good if and only if it is genuine and

fresh).

Now R |≡ X will follow under the jurisdiction rule from R |≡ C |fi X (R believes C

has jurisdiction over X) and R |≡ C |≡ X (R believes C believes X).

The former condition follows from the hardware constraint, that no one except C

could have uttered a text of the form {C, ...}K.

The latter, that R |≡ C |≡ X, must be deduced using the nonce verification rule from

#X (X is fresh) and R |≡ C |~ X (R believes C uttered X).
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#X follows from its occurrence in {C, NC, R, NR, X}K which contains the sequence

number NR, while R |≡ C |~ X follows from the hardware constraint.

This summary of the proof is, of necessity, telegraphic. If you want to understand

logics of authentication in detail, you should consult the original papers, and refer to

the recommendations for further reading at the end of this chapter.

2.7.4 Limitations of Formal Verification

Formal methods can be an excellent way of finding bugs in security protocol designs,

as they force the designer to make everything explicit and thus confront difficult de-

sign choices that might otherwise be fudged. However, they have their limitations, too.

One problem is in the external assumptions we make. For example, we assumed that

the key wasn’t available to anyone who might use it in an unauthorized manner. In

practice, this is not always true. Although the COPAC purse protocol is executed in

tamper-resistant smartcards, their software can have bugs; and in any case the tamper-

resistance they offer is never complete. (I explain this in Chapter 14, “Physical Tamper

Resistance.”) So the system has various fallback mechanisms for detecting and reacting

to card forgery, such as “shadow accounts,” which track the amount of money that

should be on each card and which are updated as transactions are cleared. It also has

lists of hot cards that are distributed to terminals; these are needed anyway for stolen

cards, and can be used for forged cards too.

Second, there are often problems with the idealization of the protocol. A well-known

example comes from the application of the BAN logic to protocols using public key

cryptography; a version of the message meaning rule which only applies to digital sig-

nature was erroneously thought to apply to decryption as well, leading to a positive

verification of a flawed protocol. Another example is given by a flaw found in an early

version of the COPAC system. There the key, K, actually consisted of two keys; the

encryption was done first with a “transaction key,” which was diversified (that is, each

card had its own variant), then again with a “bank key,” which was not diversified. The

former was done by the network operator and the latter by the bank that issued the

card. The reasons for this included dual control and to ensure that an attacker who

managed to drill the keys out of a single card would only be able to forge that card, not

make forgeries that would pass as other cards (and thus defeat the hot card mecha-

nism). But since the bank key was not diversified, it would be known to any attacker

who has broken a card. This means that the attacker could undo the outer wrapping of

encryption; and in some circumstances, message replay was possible. (The bank key

was diversified in later versions before any villains discovered and exploited the flaw.)

In this case there was no failure of the formal method, as no attempt was ever made

to verify the diversification mechanism. But it does illustrate a common problem in

security engineering, that vulnerabilities arise at the boundary between two protection

technologies. In this case, there were three technologies: the hardware tamper resis-

tance, the authentication protocol, and the shadow account/hot card list mechanisms.

Different protection technologies are often the domain of different experts who don’t

completely understand the assumptions made by the others. (That’s one reason security

engineers need a book such as this one: to help subject specialists understand each oth-

ers’ tools and to communicate with each other more effectively.)
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For these reasons, people have explored alternative ways of assuring the design of

authentication protocols, including the idea of protocol robustness. Just as structured

programming techniques aim to ensure that software is designed methodically and that

nothing of importance is left out, so robust protocol design is largely about explicit-

ness. Robustness principles include that the interpretation of a protocol should depend

only on its content, not its context; thus, everything of importance (such as principals’

names) should be stated explicitly in the messages. There are other issues concerning

the freshness provided by serial numbers, timestamps, and random challenges, and on

the way encryption is used. If the protocol uses public key cryptography or digital sig-

nature mechanisms, there are further more technical robustness issues.

2.8 Summary

Passwords are not always an adequate means of protection, especially if they have to

be used more than once over an open communications channel. Simple authentication

protocols, whether one-pass (e.g., using random nonces) or two-pass (challenge-

response) are appropriate in many cases, and are fielded in all sorts of systems from

remote car-door locks through military IFF systems to authentication in distributed

computer systems.

It is difficult to design effective security protocols. They suffer from a number of

potential problems, including middleperson attacks, modification attacks, reflection

attacks, and replay attacks. These threats can interact with implementation vulnerabili-

ties such as poor random number generators. Using mathematical techniques to verify

the correctness of protocols can help, but it won’t catch all the bugs. Some of the most

pernicious failures are caused by creeping changes in the environment for which a

protocol was designed, so that the protection it gives is no longer adequate.

Research Problems

During the past few years, some people have thought that protocols had been “done,”

and that we should turn to new research topics. These people have been repeatedly

proved wrong by the emergence of new protocol applications, with a new crop of er-

rors and attacks to be explored. Key management protocols were a focus of research in

the early 1990s; during the mid-1990s, the flood of proposals for electronic commerce

mechanisms kept us busy; and in the later 1990s, a whole series of mechanisms pro-

posed for protecting copyright on the Internet provided us with targets.

Will we continue to develop faulty protocols that other people attack, or will we

manage to develop a methodology for designing them right first time? What are the

exact uses and limitations of formal methods (and other mathematical approaches, such

as the random oracle model)?

At the system level, how do we manage the tension between the principle that robust

protocols are generally those in which everything is completely specified and checked

(principals’ names, roles, security policy statement, protocol version, time, date, se-

quence number, security context, maker of grandmother’s kitchen sink) and the system
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engineering principle that a good specification should not overconstrain the imple-

menter?

Further Reading

Research papers on security protocols are scattered fairly widely throughout the lit-

erature. The main introductory papers to read are probably the original Needham-

Schroeder paper [589]; the Burrows-Abadi-Needham authentication logic [148]; papers

by Martín Abadi and Roger Needham, and by Roger Needham and myself on protocol

robustness [2, 47]. There is also a survey paper which Roger and I wrote, and which

introduced the phrase ‘programming Satan’s computer’ (discussed by Bruce Schneier

in the foreword) as a metaphor for security protocol design [48]. In [449] there is an

analysis of a defective security protocol, carried out using three different formal meth-

ods. Beyond that, the proceedings of the security protocols workshops [183, 184] pro-

vide leads to current research; and many papers appear in a wide range of conferences.
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CHAPTER

3

Passwords

Humans are incapable of securely storing high-quality cryptographic keys, and they have

unacceptable speed and accuracy when performing cryptographic operations. (They are

also large, expensive to maintain, difficult to manage, and they pollute the environment. It

is astonishing that these devices continue to be manufactured and deployed. But they are

sufficiently pervasive that we must design our protocols around their limitations.)

—KAUFMAN, PERLMAN, AND SPECINER [444]

Taking care of old-fashioned access control tokens such as metal keys is a matter of

common sense. But common sense is not always adequate for the measures used to

protect computer systems. The human-machine gap causes security problems in a

number of contexts, from straightforward system administration to the ways in which

users mismanage security products such as encryption software [803]. (I won’t use the

fashionable euphemism “human computer interface”: “chasm” might be better.) How-

ever, most of the problems arise in a simple context in which they are relatively easy to

analyze and discuss—the management of passwords.

In addition to things that are “obviously” passwords, such as the password you use

to log on to your computer and the PIN that activates your bank card, there are many

other things (and combinations of things) that have an equivalent effect. The most no-

torious are the likes of Social Security numbers and your mother’s maiden name,

which many organizations use to recognize you. For example, AT&T’s wireless serv-

ice contract states that anyone who knows your name, address, phone number and the

last four digits of your social security number is authorized to make changes to your

account; it also disclaims all liability for lack of privacy [201].

The ease with which such data can be guessed or found out from more or less public

sources has given rise to a huge identity theft industry [285]. Criminals obtain credit

cards, mobile phones, and other assets in your name, loot them, and leave you to sort

out the mess. In the United States, about half a million people are the victims of this

kind of fraud each year.

Passwords are one of the biggest practical problems facing security engineers today.

They are the (often shaky) foundation on which much of information security is built.

Remembering a password is contingent on frequent use (so that passwords are im-

printed well on memory) and consistent context (so that different passwords do not



Chapter 3: Passwords

36

interfere with each other in memory). Neither of these conditions is met when people

are asked to choose passwords for a large number of Web sites that they visit rarely. So

as they become principals in more and more electronic systems, the same passwords

get used over and over again. Not only may attacks be carried out by outsiders guess-

ing passwords, but by insiders in other systems.

3.1 Basics

In a typical system, human users must authenticate themselves to a client (which may

be a PC, a mobile phone, an ATM, or whatever), and the client in turn authenticates

itself to one or more servers or services (such as an electronic banking system or a

phone company). As explained in Chapter 2, “Protocols,” authenticating electronic de-

vices to each other is a more or less manageable problem (at least in theory). Authenti-

cating people to devices is more difficult.

There are basically three ways to do it. The first is that the person retains physical

control of the device—as with a remote car-door key, a PDA, or even a laptop com-

puter. The second is that he or she presents something he or she knows, such as a

password. The third is to use a biometric, such as a fingerprint or iris pattern. (These

options are commonly summed up as “something you have, something you know, or

something you are.”) For reasons of cost, most systems take the second option. Even

where we use a physical token such as a hand-held password generator, it is common

to use a password as well to lock it.

So passwords matter, and managing them is a serious real-world problem. We’ll

look at the human issues first, then at the different kinds of attack model, and finally at

technical attacks and defenses. All of these issues are important, so tackling only one

of them is likely to lead to a bad design.

3.2 Applied Psychology Issues

There are basically three types of concern:

• Will the user break the system security by disclosing the password to a third

party, whether accidentally, on purpose, or as a result of deception?

• Will the user enter the password correctly with a high enough probability?

• Will users remember the password, or will they have to either write it down or

choose one that’s easy for the attacker to guess?

3.2.1 Social Engineering

One of the most severe practical threats to the confidentiality of information is that the

attacker will extract it directly, from people who are authorized to access it, by telling

some plausible untruth. This attack, known as social engineering, will be discussed at

greater length in Chapter 8, which deals with medical systems, as it is the main current

threat to medical privacy. The typical perpetrator is an insurance investigator who

phones a hospital or doctor’s office pretending to be a doctor involved in the emer-

gency care of the target of investigation. This technique, also known as ‘blagging’ in



Security Engineering: A Guide to Building Dependable Distributed Systems

37

Britain and ‘pretexting’ in America, is widely used to extract information from banks,

insurance companies, and other firms that hold personal information; some people earn

a living at it [261].

Passwords are often extracted by false pretext phone calls. A harrassed system ad-

ministrator is called once or twice on trivial matters by someone who claims to be a

very senior manager’s personal assistant; once he has accepted the caller’s story, she

calls and urgently demands a high-level password on some plausible pretext. Unless an

organization has well-thought-out policies, attacks of this kind are very likely to work.

In a systematic experimental study, for example, 336 computer science students at the

University of Sydney were sent an email message asking them to supply their password

on the pretext that it was required to “validate” the password database after a suspected

break-in. 138 of them returned a valid password. Some were suspicious: 30 returned a

plausible-looking but invalid password, while over 200 changed their passwords with-

out official prompting. But very few of them reported the email to authority [354].

One company controls this vulnerability with a policy that states: “The root pass-

word for each machine shall be too long to remember, at least 16 alpha and numeric

characters chosen at random by the system; it shall be written on a piece of paper and

kept in an envelope in the room where the machine is located; it may never be divulged

over the telephone or used over the network; it may only be entered at the console of

the machine that it controls.” If a rule like this is rigidly enforced throughout an orga-

nization, a pretext attack on a root password becomes conspicuous, and is much less

likely to succeed.

Another approach, used at the NSA, is to have different-colored internal and exter-

nal telephones that are not connected to each other, and rules that when the external

phone in a room is off-hook, classified material can’t even be discussed in the room,

let alone on the phone. A somewhat less extreme approach (used at our laboratory) is

to have different ring tones for internal and external calls. This works as long as you

have alert system administrators. Physical authentication devices, like the password

generator discussed in Chapter 2, are even better but are often too expensive, incom-

patible with legacy systems, or contrary to some policy (whether reasonable or not).

3.2.2 Difficulties with Reliable Password Entry

The second human issue is that if a password is too long or complex, the user might

have difficulty entering it correctly. A long random password may confuse the person

entering it, and if the operation they are trying to perform is urgent, this might have

safety or other implications.

One application in which this is important is encrypted access codes. By quoting a

reservation number, we get access to a hotel room or rental car. Airline ticketing is

going this way, with many operators giving passengers a number to quote at the de-

parture gate rather than a boarding card. As the numbers get longer, what happens to

the error rate?

An interesting study was done in South Africa, in the context of the prepaid elec-

tricity meters used to sell electricity in areas where the customers have no credit rating

and often not even an address. With one make of meter, the customer hands some

money to a sales agent, and in return gets one or more 20-digit numbers printed out on

a receipt. He takes this receipt home and enters the numbers at a keypad in his meter.

These numbers are encrypted commands, whether to dispense electricity, to change the

tariff or whatever; the meter decrypts them and acts on them.
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When this meter was introduced, there was concern that since about a third of the

population was illiterate, and people might get lost halfway through entering the num-

ber, this meter might be unusable in practice. But it turned out that illiteracy was not a

problem; even people who could not read had no difficulty with numbers (“Everybody

can use a phone,” as one of the engineers said). Entry errors were a greater problem,

but were solved by printing the 20 digits in two rows, containing, respectively, three

and two groups of four digits [39].

A quite different application is the firing codes for U.S. nuclear weapons. These

consist of only 12 decimal digits. If they are ever used, it is likely that the operators

will be under the most extreme stress, and possibly using improvised or obsolete com-

munications channels. Experiments suggested that 12 digits was the maximum that

could be conveyed reliably in such circumstances.

3.2.3 Difficulties with Remembering the Password

The greatest source of complaints about passwords is the fact that most people find

them hard to remember [146, 823]. Twelve to twenty digits may be fine when they can

be simply copied from a telegram or a meter ticket, but when customers are expected to

memorize passwords, they either choose values that are easy for attackers to guess, or

write them down, or both.

The problems are not limited to computer access. For example, one chain of hotels

in France introduced completely unattended service. You would turn up at the hotel,

swipe your credit card in the reception machine, and get a receipt with a numerical ac-

cess code that would unlock your room door. To keep costs down, the rooms did not

have en suite bathrooms, so guests had to use communal facilities. The usual failure

mode was that a guest, having gone to the bathroom, would forget his access code.

Unless he had taken the receipt with him, he’d end up having to sleep on the bathroom

floor until the staff arrived the following morning.

Problems related to password memorability can be discussed under two main head-

ings: design errors, and operational failures.

3.2.3.1 Design Errors

Attempts to design systems so as to make passwords memorable are a frequent source

of severe design errors—especially with the many systems being built rapidly by un-

skilled people for electronic business. An instructive, and important, example of how

not to do it is to ask customers for “your mother’s maiden name.” Many banks, gov-

ernment departments, and other organizations authenticate their customers in this way.

There are two rather obvious problems: first, your mother’s maiden name is easy for a

thief to find out, whether by asking around, chasing birth and marriage records, or us-

ing online genealogical databases. Second, even if you decide that from now on your

mother’s maiden name is going to be, say, Yngstrom (or even yGt5r4ad), rather than

Smith, there are problems. You might break your credit card agreement, and perhaps

invalidate your insurance cover, by giving false data.

Moreover, asking for a maiden name makes assumptions that don’t hold for all cul-

tures (Icelanders have no surnames, and women from many other countries don’t

change their names on marriage). There might be no provision for changing such a

password, so if it ever becomes known to a thief you could have to close and reopen

bank accounts. Finally, you will be asked to give it to a lot of organizations, any one of
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which might have a crooked employee. You could always tell “Yngstrom” to your

bank. “Jones” to the phone company, “Geraghty” to the travel agent, and so on; but

data are shared extensively between companies, so you could easily end up confusing

their systems (not to mention yourself).

Slightly more thoughtfully designed e-commerce sites ask for a password explicitly

rather than a maiden name. But the sheer number of applications for which the average

person is asked to use a password nowadays exceeds the powers of human memory. So

either customers will write passwords down (despite being told not to) or they will use

the same password for many different purposes. Thus, the password you use to authen-

ticate the customer of the electronic banking system you’ve just designed, is quite pos-

sibly known to a Mafia-operated porn site as well.

The risk you face as a consumer is not just a direct loss through identity theft or

fraud. Badly designed password mechanisms can undermine your credibility and can

cause you to lose a genuine legal claim. For example, if a thief manages to forge a

copy of your cash machine card, then loots your bank account, the bank will ask

whether you have ever shared your personal identification number with any other per-

son or company. If you admit to using the same number for your mobile phone, the

bank may well say that either you were grossly negligent by allowing someone to see

you using the phone, or somebody at the phone company must be to blame. In either

case, it’s up to you to find them and sue them.

Some organizations try to find other security information. My bank asks its business

customers the value of the last check from their account that was cleared. In theory,

this could be a good system: it has the advantage that even if someone compromises

my password—such as by overhearing me doing a transaction on the telephone—the

security of the system usually recovers more or less automatically. The implementation

details bear some attention though. When this system was first introduced, I wondered

whether a supplier, to whom I’d just written a check, had a chance of impersonating

me. I concluded that asking for the last three checks’ values would be safer. But the

problem I actually had was different. Having given the checkbook to our accountant

for the annual audit, I couldn’t authenticate myself to get a balance over the phone and

had to visit the branch.

Attempts to find alternative solutions have more often hit the rocks. One bank sent

its customers a letter warning them against writing down their PIN, and instead sup-

plied a distinctive piece of cardboard on which they were supposed to conceal their

PIN in the following way: suppose your PIN is 2256. Choose a four-letter word, say

blue. Write these four letters down in the second, second, fifth, and sixth columns of

the card, respectively, as shown in Figure 3.1. Then fill up the empty boxes with ran-

dom letters.

Figure 3.1 A bad mnemonic system for bank PINs.
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This is clearly a bad idea. Even if the random letters aren’t written in a slightly dif-

ferent way, a quick check shows that a 4 by 10 matrix of random letters may yield

about two dozen words (unless there’s an “s” on the bottom row, when you can get 40

to 50). So the odds that the thief can guess the PIN, given three attempts, have just

shortened from 1 in 3000-odd to 1 in 8.

Some banks allow customers to choose their own PINs. It is believed that about a

third of customers use a birthdate, in which case the odds against the thief are now a

bit over 100 to 1 (and much shorter if the thief knows the victim). Even if this risk is

thought acceptable, the PIN might still be set to the same value as the PIN used with a

mobile phone that’s shared with family members. To analyze this problem, we have to

consider a number of different threat models, which we’ll come to in the next section.

3.2.3.2 Operational Issues

A failure to think through the sort of rules that organizations should make, and enforce,

to support the password mechanisms they have implemented has led to some really

spectacular cases. One important case in Britain in the late 1980s was R v. Gold and

Schifreen. The defendants saw a phone number for the development system for Prestel

(an early public email service run by British Telecom) in a note stuck on a terminal at

an exhibition. They dialed in later, and found that the welcome screen had an all-

powerful maintenance password displayed on it. They tried this on the live system, too,

and it worked! They proceeded to take over the Duke of Edinburgh’s electronic mail

account, and sent mail ‘from’ him to someone they didn’t like, announcing the award

of a knighthood. This crime so shocked the establishment that when prosecutors failed

to convict the defendants under the laws then in force, Parliament passed Britain’s first

computer crime law.

Placing an administrator password in an envelope taped to the side of a workstation

in an office that is always attended or locked may in some circumstances be reasonable

practice. The people who can get at it are those who can physically access the machine

anyway. But if you operate a policy like this, then you have to see to it that people un-

derstand the reasoning behind it, and don’t think that the password can as easily be left

on a logon screen. For someone to use the same administrator password for the live

system as in the development environment is much less excusable.

A similar and very general error is failing to reset the default passwords supplied

with certain system services. For example, one top-selling dial access system in the

1980s had a default software support user name of 999999 and a password of 9999. It

also had a default supervisor name of 777777, with a password of 7777. Most sites

didn’t change these passwords, and many of them were hacked once the practice be-

came widely known. Failure to change default passwords as supplied by the equipment

vendor has affected many kinds of computer, some cryptographic equipment, and even

mobile phones (where many users never bother to change an installed PIN of 0000).
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3.3 System Issues

After gaining an understanding the psychology of the users, the next step is to under-

stand that of the attackers. Just as we can only talk about the soundness of a security

protocol in the context of a specific threat model, so we can only judge whether a

given password scheme is sound by considering the type of attacks we are trying to

defend against. Broadly speaking, these are:

Targeted attack on one account. An intruder tries to guess a particular user’s pass-

word. He might try to guess the PIN for Bill Gates’s bank account, or a rival’s logon

password at the office, in order to do mischief directly.

Attempt to penetrate any account on a system. The intruder tries to get a logon as any

user of the system. This might be to steal service directly (e.g., use a phone card

service without paying) or as a stepping stone to a wider attack.

Attempt to penetrate any account on any system. The intruder wants an account on

any system in a given domain; it doesn’t matter which one. For example, common

teenage hacker motives are to get a place to hide pirated software or pornography, or

a platform from which attacks can be launched anonymously on other systems. More

serious threats come from skilled people attacking a target organization. A spy seek-

ing classified information might initially try to hack any computer in the ⋅mil name-

space, while a private eye tasked to get access to Microsoft’s intranet might only need

a logon to some random machine in microsoft.com.

Service denial attack The attacker may wish to prevent the legitimate user from using

the system. This might be targeted on a particular account (such as cancelling some-

body’s credit cards in order to annoy them) or systemwide.

This taxonomy is useful because it helps us ask many relevant questions when se-

lecting or designing a password system. However, there are other issues that interact

with the type of attacks that are expected and the kind of countermeasures that can be

used.

3.3.1 Protecting Oneself or Others?

First, to what extent does the system need to protect users from each other? In some

systems—such as mobile phone systems and cash machine systems—no one should be

able to use the service at someone else’s expense. It is assumed that the attackers are

already legitimate users of the system. So systems are (or at least should be) carefully

designed so that knowledge of one user’s password will not allow another identifiable

user’s account to be compromised: they provide multilateral security (which we dis-

cuss at greater length in Chapter 8). A user who chooses a password that is easy to

guess harms only himself, and so a wide variation in password strength can perhaps be

tolerated. (Bear in mind that the passwords people choose are very often easy for their

spouses or partners to guess [146], so some thought needs to be given to issues such as

what happens when a cheated partner seeks vengeance. This is a common enough

problem.)
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But with many systems, it can be bad news if even one enemy gains access. Operat-

ing systems such as Unix and Windows may have been designed to protect one user

against accidental interference by another, but they are not hardened to protect against

capable malicious actions by other users. These systems have many well-publicized

vulnerabilities, with more being published constantly on the Web. A competent oppo-

nent who can get a single account on a shared computer system can usually become the

system administrator fairly quickly; and from there he can do whatever he likes. The

typical exploitation path is thus outsider to normal user to administrator, with the first

of these steps being the hard one. So it may not be a good idea to let users choose

whatever password they like. With military systems in particular, it is common to as-

sign users random passwords in order to guarantee a minimum password strength. (I’ll

have more to say on this later.)

3.3.2 Intrusion Detection Issues

The second question concerns the manner in which the password system might interact

with an intrusion detection system. Organizations such as banks often have a rule that a

terminal and user account are frozen after three bad password attempts; it is then nec-

essary to contact an administrator to reactivate them. This could be rather dangerous in

a military system, as an enemy who got access to the network could use a flood of false

logon attempts to mount a service denial attack; if given a list of all the user names on

a machine, it might well be possible to take it out of service completely.

It’s not just military systems where you have to pay attention to this. Telephone

calling cards are another example; they usually have a prefix, followed by the local

number to which they’re billed, and a four-digit PIN. One phone company scans call-

ing card numbers and cancels any for which more than one PIN appears. This leaves

them wide open to anyone who wants to cancel someone else’s card. (It also doesn’t

stop the crook who wants to guess a valid card number, as he can just try the same PIN

with a whole lot of different local phone numbers.)

The design of intrusion detection systems varies greatly by what they are supposed

to achieve. They can range from simple threshold alarms, which go off after three bad

logon attempts to a particular account, up through much more sophisticated and dis-

tributed systems designed to cope with intruders who might try one password on many

accounts, or on one account on each of many machines, or whatever. There’s more on

intrusion detection in Chapter 18; here, I’m just flagging up the fact that password and

intrusion detection policies interact.

3.3.3 Can Users Be Trained?

The third question is whether users can be trained and disciplined. In a corporate or

military environment—and even to some extent in a university—you can control your

user population. You can teach them how to choose good passwords; you can give

negative feedback if they choose bad ones; you can issue them with random passwords,

and order that if these passwords are written down they must be treated the same as the

data they protect (so ‘Top Secret’ passwords must be sealed in an envelope, in a safe,

in a room that’s locked when not occupied, in a building patrolled by guards). You can

see to it that only cleared people have access to the terminals where the passwords can

be used. You can send the guards round at night to check that no-one’s left a note of a
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password lying around. You can operate a clean desk policy so that nothing can be

overlooked in a pile of papers in plain sight.

Colleagues and I studied the benefits that can be obtained by training users [815].

While writing this book, I could not find any account of experiments on this that would

hold water by the standards of applied psychology (i.e., randomized controlled trials

with big enough groups for the results to be statistically significant). The closest I

found was a study of the recall rates, forgetting rates, and guessing rates of various

types of password [146]; this is valuable, but doesn’t tell us the actual (as opposed to

likely) effects of giving users various kinds of advice. We therefore selected three

groups of about a hundred volunteers from our first-year science students.

• The red (control) group was given the usual advice (devise a password of at

least six characters long, including one nonletter).

• The green group was told to think of a passphrase and select letters from it to

build a password. Thus, “It’s 12 noon and I am hungry” would give I S12&IAH.

• The yellow group was told to select eight characters (alpha or numeric) at ran-

dom from a table we gave them, write them down, and destroy the note after a

week or two once they’d memorized the password.

What we expected to find was that the red group’s passwords would be easier to

guess than the green group’s, which would in turn be easier than the yellow group’s;

and that the yellow group would have the most difficulty remembering their passwords

(or would be forced to reset them more often), followed by green and then red. But

that’s not what we found.

About 30 percent of the control group chose passwords that could be guessed using

cracking software (which I discuss later), versus about 10 percent for the other two

groups. So passphrases and random passwords seemed to be about equally effective.

When we looked at password reset rates, there was no significant difference between

the three groups. When we asked the students whether they’d found their passwords

hard to remember (or had written them down), the yellow group had significantly more

problems than the other two; but there was no significant difference between red and

green.

The conclusions we drew were as follows.

• For those users who follow instructions, the use of passwords based on mne-

monic phrases offers the best of both worlds. They are as easy to remember as

naively selected passwords, and as hard to guess as random passwords.

• Merely using mnemonic passwords or random passwords does not help much,

as the problem then becomes one of user compliance. A significant number of

users (perhaps a third of them) just don’t do what they’re told.

So, while centrally assigned, randomly selected passwords may be a good strategy

for the military, its value comes from the fact that the passwords are centrally assigned

(thus compelling user compliance) rather than from the fact that they’re random (mne-

monic phrases would do just as well).

However, there are at least two cases where centrally assigned passwords may be in-

appropriate. The first is where a user controls access to a resource that the organization

should not be able to override. Where digital signatures are used to provide evidence,

and a user’s digital signing key is protected by a password, then assigning this pass-
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word centrally could enable the system administrator to get at the signing key and

forge messages, which would destroy the evidential value of the signature.

The second, and more subtle, case is systems that offer a service to the public.

Whether you offer a service through dedicated terminals, such as cash machines or

mobile phones, or over the Net to standard PCs, you can’t expect to train and discipline

your users; and if you try to, there is a real risk that a judge will find your contract

terms unreasonable.

Perhaps the ideal solution is instruct users to choose mnemonic passwords, and to

have a password cracking program installed as a password filter; users who try to

choose a password on its guessing list are told to try again. More empirical psycho-

logical research on this topic is needed.

3.3.4 The Growing Famine for Security Data

The fourth question is the really hard one: will your users compromise their passwords

by using them on other systems?

People who are allowed to select their own password or PIN will often choose the

same one for a number of systems, so it’s easy to remember. If you don’t let customers

change their PINs, some of them will write them down. You can forbid this in their

contract, but they’ll do it anyway. Some people will just take their business elsewhere

(given the option, I prefer to use Web sites that don’t ask for a password at all, regard-

less of whether I choose it or they do).

There is a severe shortage of good security information by which people can be

identified and can authorize actions. Attempts to solve the problem by issuing people

with “multifunction” smartcards have so far foundered on arguments over whose logo

will go on front and who will control the mailing list. It would require less expenditure

on infrastructure if we could get people to authorize transactions using existing equip-

ment such as mobile phones. But even if, in a few years’ time, everyone in the world

has a third-generation mobile phone capable of doing banking transactions and of re-

ceiving encrypted text messages containing authorization codes for Web-based e-

commerce transactions, there will remain a whole host of technical problems. These

include the chosen protocol attack, which we discussed in the previous chapter, and the

difficulties of preventing programs from interfering with each other, which we will

discuss in the next.

Even more serious problems are likely to arise from business and legal issues, such

as what if a single company gets control of everyone’s credit card data, or purchase

history data, or both. We’ll discuss these issues in Chapters 19 through 21.

3.4 Technical Protection of Passwords

A broad range of attacks can be used to recover other people’s passwords. Some of

them target the password entry mechanism, while others exploit the way that pass-

words are stored.

3.4.1 Attacks on Password Entry

Password entry is often poorly protected.
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3.4.1.1 Interface Design

Sometimes the problem is thoughtless interface design. For example, some very com-

mon models of cash machine had a vertical keyboard at head height, making it simple

for a pickpocket to watch a customer enter her PIN before lifting her purse from her

handbag. The keyboards were at a reasonable height for the men who designed them,

but women—and men in many countries are a few inches shorter and were highly ex-

posed. Ironically, one of these machines “protected client privacy” by forcing the cus-

tomer to gaze at the screen through a narrow slot. Your balance was private, but your

PIN was not!

Many pay telephones have a similar problem, and shoulder surfing of calling card

details (as it’s known in the industry) has been endemic at some locations such as ma-

jor U.S. train stations and airports. For that reason, I usually cover my dialling hand

with my body or my other hand when entering a card number or PIN in a public

place—but systems shouldn’t be designed on the assumption that all customers will do

this.

3.4.1.2 Eavesdropping

Taking care with password entry may stop the bad guys looking over your shoulder as

you use your calling card at an airport telephone, but it won’t stop all the eavesdrop-

ping attacks. For example, a hotel manager might abuse his switchboard facilities to

log the keystrokes you enter at the phone in your room. That way, he might get the

credit card number you used to buy a ticket from an automated service; and if this isn’t

the card number you use to pay your hotel bill, he can plunder your account with much

less risk.

Many networked computer systems still send a password in clear over a local area

network for checking at a server; anyone who can program a machine on the network,

or attach his own sniffer equipment, can harvest them. This is one reason that Micro-

soft adopted the Kerberos authentication protocol for Windows 2000—the cleartext

password is not transmitted over the network. (NT v 4 used a proprietary authentica-

tion protocol.)

3.4.1.3 The Need for Trusted Path

The machine to which you log on may be malicious. A simple attack program may be

left running on an unattended machine in a public terminal room; it will look just like

the usual logon screen, prompting for a user name and password. When an unsuspect-

ing user does this, it will save the password somewhere in the system, reply “sorry,

wrong password” and then vanish, invoking the genuine password program. The user

will assume that he made a typing error the first time and think no more of it. This is

why Windows NT has a “secure attention sequence,” namely ctrl-alt-del, which is

guaranteed to take you to a genuine password prompt. A facility that assures the user

she’s talking to a genuine system is called a trusted path.

If the whole terminal equipment is bogus, then of course all bets are off. We once

caught a student installing modified keyboards in our public terminal room to capture

passwords. When the attacker is prepared to take this much trouble, then all the ctrl-

alt-del sequence achieves is to make his software design task simpler.
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There have also been a few cases of criminals setting up false cash machines. In one

famous case in Connecticut in 1993, the bad guys even bought genuine cash machines

(on credit), installed them in a shopping mall, and proceeded to collect PINs and card

details from unsuspecting bank customers who tried to use them [19]. Within a year,

crooks in London had copied the idea, then enlarged on it by setting up a whole bogus

bank branch [405]. Other cases have involved home-built cash machines, fitting false

fronts over the front of genuine cash machines, or even replacing the card-operated

door locks at the entrance to ATM facilities. Such attacks are even easier in countries

where cards are used with PINs at the point of sale.

3.4.1.4 Technical Defeats of Password Retry Counters

Many kids find out that a bicycle combination lock can usually be broken in a few

minutes by solving each ring in order of looseness. The same idea works against a

number of computer systems. The PDP-10 TENEX operating system checked pass-

words one character at a time, and stopped as soon as one of them was wrong. This

opened up a timing attack, whereby the attacker would repeatedly place a guessed

password in memory at a suitable location, have it verified as part of a file access re-

quest, and wait to see how long it took to be rejected [493]. An error in the first char-

acter would be reported almost at once, an error in the second character would take a

little longer to report, and in the third character a little longer still, and so on. So it was

possible to guess the characters one after another, and instead of a password of N char-

acters drawn from an alphabet of A characters taking A
N
/2 guesses on average, it took

AN/2. (Bear in mind that, in 30 years’ time, all that might remain of the system you’re

building today is the memory of its more newsworthy security failures.)

A similar attack worked on one remote car-locking device: as soon as a wrong byte

was transmitted from the key fob, the red telltale light on the receiver came on.

Password retry limits fail in other ways, too. With some smartcards, it has been pos-

sible to determine the customer PIN by trying each possible input value and looking at

the card’s power consumption, then issuing a reset if the input was wrong. The reason

was that a wrong PIN caused a PIN retry counter to be decremented, and writing to the

EEPROM memory that held this counter caused a current surge of several milliamps,

which could be detected in time to reset the card before the write was complete [478].

3.4.2 Attacks on Password Storage

Passwords have often been vulnerable where they are stored. There was a horrendous

bug in one operating system update in the 1980s: a user who entered a wrong pass-

word, and was told “sorry, wrong password” merely had to hit carriage return to get

into the system anyway. This was spotted quickly, and a patch was shipped, but almost

a hundred U.S. government systems in Germany were using unlicensed copies of the

software and didn’t get the patch, with the result that hackers were able to get in and

steal information, which they are rumored to have sold to the KGB.

Another horrible programming error struck a U.K. bank, which issued all its cus-

tomers with the same PIN by mistake. As the procedures for handling PINs were care-

fully controlled, no one in the bank got access to anyone’s PIN other than his or her

own, so the mistake wasn’t spotted until after thousands of customer cards had been

shipped.
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3.4.2.1 Attacks via the Audit Trail

In systems that log failed password attempts, the log usually contains a large number

of passwords, as users get the “username, password” sequence out of phase. If the logs

are not well protected, then attacks become easy. Someone who sees an audit record of

a failed login with a nonexistent user name of e5gv, 8yp can be 99 percent sure that

this string is a password for one of the valid user names on the system.

3.4.2.2 One-Way Encryption

Password storage has also been a problem for some systems. Keeping a plaintext file of

passwords can be dangerous. In MIT’s Compatible Time Sharing System, ctss (a

predecessor of Multics), it once happened that one person was editing the message of

the day, while another was editing the password file. Because of a software bug, the

two editor temporary files got swapped, with the result that everyone who logged on

was greeted with a copy of the password file!

As a result of such incidents, passwords are often protected by encrypting them us-

ing a one-way algorithm, an innovation due to Roger Needham and Mike Guy. The

password, when entered, is passed through a one-way function, and the user is logged

on only if it matches a previously stored value.

Sometimes it isn’t possible to protect a file of security information by one-way en-

cryption, however, such as when this information must be processed in some way. The

classic example is in GSM mobile phones, where each user has a cryptographic key on

the home location register database. As this key is used to compute challenge-response

pairs for authenticating users over the air, it is kept in the clear. (We will discuss the

reasons for this design decision, and the possible alternatives, in Chapter 17).

3.4.2.3 Password Cracking

However, some systems that do use an encrypted password file make it world readable

(Unix is the prime example—a design error now too well entrenched to change easily).

This means that an opponent who can fetch this file can then try to break passwords

offline using a dictionary; he encrypts the values in his dictionary and compares them

with those in the file (an activity called a dictionary attack, or more colloquially,

password cracking). NT is slightly better, but the password file can still be accessed by

users who know what they’re doing, and passwords may be passed to other systems

(such as Netware, or earlier versions of NT) in old formats that use old, weak protec-

tion mechanisms for compatibility reasons.

Left to their own devices, people will use spouses’ names, single letters, or even just

hit Enter which gives an empty string as their password. So some systems require

minimum password lengths, or even check user-entered passwords against a dictionary

of bad choices. Still, designing a password quality enforcement mechanism is harder

than one might think. Grampp and Morris’s classic paper on Unix security [350] re-

ports that after software became available that forced passwords to be at least six char-

acters long and have at least one nonletter, they made a file of the 20 most common

female names, each followed by a single digit. Of these 200 passwords, at least one

was in use on each of several dozen machines they examined.

According to one report, when users were compelled to change their passwords, and

prevented from using the previous few choices, they changed passwords rapidly to ex-
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haust the history list and get back to their favorite password. A response, of forbidding

password changes until after 15 days, meant that users couldn’t change compromised

passwords without help from the system administrator [603]. In my own experience,

insisting on alphanumeric passwords and forcing a password change once a month led

people to choose passwords such as julia03 for March, julia04 for April, and so on. So

I am not at all convinced that demanding frequent password changes is a good idea.

A well-known study was conducted by Klein who gathered 25,000 Unix passwords

in the form of encrypted password files and ran cracking software to guess them [460].

He found that 21 to 25 percent of passwords could be guessed, depending on the

amount of effort put in. Dictionary words accounted for 7.4 percent, common names

for 4 percent, combinations of user and account name 2.7 percent, and so on down a

list of less-probable choices such as words from science fiction (0.4 percent) and sports

terms (0.2 percent). Some of these were straightforward dictionary searches; others

used patterns. For example, the algorithm for constructing combinations of user and

account names would take an account klone belonging to the user Daniel V. Klein and

try passwords such as klone, klone, klone123, dvk, dvkdvk, leinad, neilk, DvkkvD,

and so on.

There are publicly available programs (crack for Unix and L0phtcrack for Windows

[481]) that implement this kind of search. They can be used by system administrators

to find bad passwords on their systems. They can just as easily be used by a bad guy

who has got a copy of your password file. So password cracking is something to which

you have to pay attention, especially if your system contains any machines running

Unix or Linux. One way to use a program like crack is to filter user password choices;

another is to use a custom program that understands language statistics and rejects

passwords that are too likely to be chosen by others at random [98, 220]; another is to

mix the two ideas using a suitable coding scheme [725].

3.4.3 Absolute Limits

Regardless of how well passwords are managed, there are often absolute limits im-

posed by the design of the operating system or other platform on which the system is

built. For example, Unix systems limit the length of the password to eight characters

(you can often enter more than this, but the ninth and subsequent characters are ig-

nored). The effort required to try all possible passwords—the total exhaust time, in

cryptanalytic jargon—is 96
8
 or about 2

52
; the average effort for a search is half of this.

A well-financed government agency (or a well-organized hacker group, using PCs dis-

tributed across the Internet) could now break any encrypted password in a standard

Unix password file.

This motivates more technical defenses against password cracking, including

shadow passwords, that is, encrypted passwords hidden in a private file (most modern

Unices), using an obscure mechanism to do the encryption (Novell), or using a secret

key with the encryption (MVS). The strength of these mechanisms may vary.

For the above reasons, military system administrators often prefer to issue random

passwords. This also lets the probability of password-guessing attacks be estimated and

managed. For example, if L is the maximum password lifetime, R is login attempt rate,

S is the size of the password space, then the probability that a password can be guessed

in its lifetime is:

P = LR/S
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This equation is taken from the U.S. Department of Defense password management

guideline [242]. There are a couple of problems with this doctrine. First (the niggle)

the password space can be completely exhausted, in which case LR/S > 1, and P isn’t

defined as a probability. Second (more serious) is that the attacker is not interested in

guessing a password as much as getting acess to an account. So one has to take account

of the number of users. If a large defense network has a million possible passwords and

a million users, and the alarm goes off after three bad password attempts on any ac-

count, then the attack is to try one password for every single account. Thus, the quan-

tity of real interest is the probability that the password space can be exhausted in the

lifetime of the system at the maximum feasible password guess rate.

To take a concrete example, U.K. government systems tend to issue passwords that

have been randomly selected with a fixed template of consonants, vowels, and numbers

designed to make them easier to remember, such as CVCNCVCN (e.g., fuR5_Eb8). If

passwords are not case-sensitive, the guess probability is only 21
4
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29
.

So if an attacker could guess 100 passwords a second—perhaps distributed across

10,000 accounts on hundreds of machines on a network, so as not to raise the

alarm—then he’d need about 5 million seconds, or two months, to get in.

In commercial systems, you can have a policy of simply blocking accounts after a

number of false password attempts. If the threshold were three bad guesses in any one

month, then with 10,000 accounts the maximum guess rate would be 30,000 passwords

per month, and the rate at which guessing could be carried out undetectably would be

much lower. But military system designers are reluctant to introduce account blocking,

as it leaves them open to service denial attacks. As I mentioned in Section 3.3.2, an

enemy who gets access to the network and enters enough wrong password guesses

could freeze every account on the whole system.

3.5 Summary

Password management is one of the most important and yet most difficult design

problems in many secure systems. As people get accounts on more and more systems,

they reuse passwords in ways that expose serious vulnerabilities. But even where users

operate in a controlled environment, things are by no means straightforward.

The ability to do offline password guessing more or less guarantees that an attacker

will be able to compromise at least some accounts on any system, unless passwords are

centrally assigned or filtered when users choose them. Where possible, one should stop

offline guessing, for example, by keeping the password file secret. But systems such as

Unix are often bought because of their large software base, and the software your cus-

tomer wants to use may make changing the password mechanism difficult.

Critical questions to ask when designing a password system include not just whether

people might reuse passwords, but also whether they need to be protected from each

other, whether they can be trained and disciplined, and whether accounts can be frozen

after a fixed number of bad guesses. You also have to consider whether attackers will

target a particular account, or be happy with breaking any account on a machine or a

network; and technical protection issues such as whether passwords can be snooped by

malicious software, false terminals, or network eavesdropping.



Chapter 3: Passwords

50

Research Problems

I mentioned the lack of published empirical research. Although a little has been done,

there’s a lot more to do. For example, what are the best ways of enforcing user compli-

ance with a password policy? There are some extreme solutions—such as issuing each

user with a printed list of random passwords, each of which can be used once

only—and these certainly work. But what can be done in applications where such

drastic measures aren’t justified?

Another problem, which straddles the borderline with security protocol design, is

whether we can design interactive password systems that are better. There are various

visual schemes and memorization schemes in the literature, and some early products:

one system presents users with nine faces, only one of which is of a person they know;

they have to pick the right face several times in a row to log on [223]. Other schemes

present a table of numbers, and let the user do a secret computation using mental

arithmetic. Designing such schemes is fairly easy; evaluating them is harder, as it in-

volves elements of cryptology, psychology, and systems engineering.

An increasingly common mechanism is to ask for several pieces of security infor-

mation rather than one. A call center might ask not just for your mother’s maiden

name, a password, and the amount of your last purchase, but also your dog’s nickname

and your favorite color. The underlying idea is that although an attacker might find out

anything you know, it’s much harder for him to find out everything you know. Again,

such schemes need careful evaluation of their usability and effectiveness using the

tools of applied psychology.

Further Reading

There isn’t as much literature on passwords as one would like, despite the subject’s

importance. The papers by Bob Morris and Ken Thompson [561], Fred Grampp and

Bob Morris [350], and Dan Klein [460], are the classics. The DoD guidelines are very

influential [242].
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CHAPTER

4

Access Control

Going all the way back to early time-sharing systems, we systems people regarded the

users, and any code they wrote, as the mortal enemies of us and each other. We were like

the police force in a violent slum.

—ROGER NEEDHAM

Microsoft could have incorporated effective security measures as standard, but good

sense prevailed. Security systems have a nasty habit of backfiring, and there is no doubt

they would cause enormous problems.

—RICK MAYBURY

4.1 Introduction

Access control is the traditional center of gravity of computer security. It is where se-

curity engineering meets computer science. Its function is to control which principals

(persons, processes, machines, . . .) have access to which resources in the sys-

tem—which files they can read, which programs they can execute, how they share data

with other principals, and so on.

This chapter necessarily assumes more computer science background than previous

chapters, but I try to keep it to a minimum.
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Figure 4.1 Access controls at different levels in a system.

Access control works at a number of levels, as shown in Figure 4.1, and described in

the following:

1. The access control mechanisms, which the user sees at the application level,

may express a very rich and complex security policy. A modern online busi-

ness could assign staff to one of dozens of different roles, each of which could

initiate some subset of several hundred possible transactions in the system.

Some of these (such as credit card transactions with customers) might require

online authorization from a third party while others (such as refunds) might

require dual control.

2. The applications may be written on top of middleware, such as a database

management system or bookkeeping package, which enforces a number of

protection properties. For example, bookkeeping software may ensure that a

transaction that debits one ledger for a certain amount must credit another

ledger for the same amount.

3. The middleware will use facilities provided by the underlying operating sys-

tem. As this constructs resources such as files and communications ports from

lower-level components, it acquires the responsibility for providing ways to

control access to them.

4. Finally, the operating system access controls will usually rely on hardware

features provided by the processor or by associated memory management

hardware. These control which memory addresses a given process can access.

As we work up from the hardware through the operating system and middleware to

the application layer, the controls become progressively more complex and less reli-

able. Most actual computer frauds involve staff accidentally discovering features of the

application code that they can exploit in an opportunistic way, or just abusing features

of the application that they were trusted not to. But in this chapter, we will focus on the

fundamentals: access control at the hardware and operating system level. (Application-

level controls aren’t different in principle, but I leave detailed discussion to Part 2 of

this book.)

As with the other building blocks discussed so far, access control makes sense only

in the context of a protection goal, typically expressed as a security policy. This puts

us at a slight disadvantage when discussing PCs running single-user operating systems

such as DOS and Win95/98, which have no overt security policy: any process can

modify any data. People do have implicit protection goals, though; you don’t expect a
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shrink-wrap program to trash your hard disk. So an explicit security policy is a good

idea, especially when products support some features that appear to provide protection,

such as login IDs.

I mention one protection technique—sandboxing—later, but leave off a substantial

discussion of viruses and the like to Section 18.4. In what follows, the focus will be on

protection mechanisms for systems that support the isolation of multiple processes. I

discuss operating system mechanisms first, as it is their requirements that usually drive

hardware protection system design.

4.2 Operating System Access Controls

The access controls provided with an operating system typically authenticate principals

using some mechanism such as passwords or Kerberos, then mediate their access to

files, communications ports, and other system resources.

Their effect can often be modelled by a matrix of access permissions, with columns

for files and rows for users. We’ll write r for permission to read, w for permission to

write, x for permission to execute a program, and (–) for no access at all, as shown in

Figure 4.2.

In this simplified example, Sam is the system administrator, and has universal access

(except to the audit trail, which even he should only be able to read). Alice, the man-

ager, needs to execute the operating system and application, but only through the ap-

proved interfaces—she mustn’t have the ability to tamper with them. She also needs to

read and write the data. Bob, the auditor, can read everything.

Figure 4.2 Naive access control matrix.

Figure 4.3 Example access control matrix for bookkeeping.

This is often enough, but in the specific case of a bookkeeping system, it’s not quite

what we need. We want to ensure that transactions are well formed—that each debit is

matched by a credit somewhere else—so we would not want Alice to have uninhibited

write access to the account file. We would also prefer that Sam didn’t have this access;

so that all write access to the accounting data file was via the accounting program. The
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access permissions might now look like those shown in Figure 4.3. (There is still an

indirect vulnerability in that Sam could overwrite the accounts program with an unau-

thorised one of his own devising, but we’ll leave off discussing that till Chapter 9.)

Another way of expressing a policy of this type would be with access triples of user,

program, file. In the general case, our concern isn’t with a program as much as a pro-

tection domain, which is a set of processes or threads that share access to the same re-

sources (though at any given time they might have different files open or different

scheduling priorities).

Access control matrices (whether in two or three dimensions) can be used to imple-

ment protection mechanisms, as well as just model them. But they do not scale well.

For instance, a bank with 50,000 staff and 300 applications would have an access con-

trol matrix of 15 million entries. This is inconveniently large. It might not only impose

a performance problem but also be vulnerable to administrators’ mistakes. We will

usually need a more compact way of storing and managing this information. The two

main ways of doing this are to use groups or roles to manage the privileges of large

sets of users simultaneously, or to store the access control matrix either by columns

(access control lists) or rows (capabilities, sometimes known as “tickets”) or certifi-

cates [662, 804].

4.2.1 Groups and Roles

When we look at large organizations, we usually find that most staff fit into one or

other of a small number of categories. A bank might have 40 or 50 such categories:

teller, chief teller, branch accountant, branch manager, and so on. The remainder (such

as the security manager, and chief foreign exchange dealer,...), who need to have their

access rights defined individually, may amount to only a few dozen people.

So we want a small number of predefined groups, or functional roles, to which staff

can be assigned. Some people use the words group and role interchangeably, and with

many systems they are; but the more careful definition is that a group is a list of prin-

cipals, while a role is a fixed set of access permissions that one or more principals may

assume for a period of time using some defined procedure. The classic example of a

role is the officer of the watch on a ship. There is exactly one watchkeeper at any one

time, and there is a formal procedure whereby one officer relieves another when the

watch changes. In fact, in most military applications, it’s the role that matters rather

than the individual.

Groups and roles can be combined. The officers of the watch of all ships currently at

sea is a group of roles. In banking, the manager of the Cambridge branch might have

his or her privileges expressed by membership of the group manager and assumption

of the role acting manager of Cambridge branch. The group manager might express a

rank in the organization (and perhaps even a salary scale) while the role acting man-

ager might include an assistant accountant standing in while the manager, deputy man-

ager, and branch accountant are all sick.

Whether we need to be careful about this distinction is a matter for the application.

In a warship, we want even an able seaman to be allowed to stand watch if all the offi-

cers have been killed. In a bank, we might have a policy that “transfers over $10 mil-

lion must be approved by two staff, one with the rank of manager and one with the

rank of assistant accountant.” In the event of sickness, the assistant accountant acting

as manager would have to get the regional head office to provide the second signature

on a large transfer.
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Until recently, some support for groups and roles existed but was not very widely

used. Developers either implemented this kind of functionality in their application

code, or as custom middleware (in the 1980s, I worked on two bank projects where

group support was hand-coded as extensions to the mainframe operating system). Re-

cently, Windows 2000 (Win2K) has been launched with very extensive support for

groups, while academic researchers have started working on role-based access control

(RBAC), which I discuss further in Chapter 7. We will have to wait and see whether

either of these has a major effect on application development practices.

Figure 4.4 Access control list (ACL).

4.2.2 Access Control Lists

Another way of simplifying access rights management is to store the access control

matrix a column at a time, along with the resource to which the column refers. This is

called an access control list, or ACL. In the first of the examples, the ACL for file 3

(the account file) might look as shown in Figure 4.4.

ACLs have a number of advantages and disadvantages as a means of managing secu-

rity state. These can be divided into general properties of ACLs and specific properties

of particular implementations.

ACLs are widely used in environments where users manage their own file security,

such as the Unix systems common in universities and science labs. Where access con-

trol policy is set centrally, they are suited to environments where protection is data-

oriented; they are less suited where the user population is large and constantly chang-

ing, or where users want to be able to delegate their authority to run a particular pro-

gram to another user for some set period of time. ACLs are simple to implement, but

are not efficient as a means of doing security checking at runtime, as the typical oper-

ating system knows which user is running a particular program, rather than which files

it has been authorized to access since it was invoked. The operating system must either

check the ACL at each file access or keep track of the active access rights in some

other way.

Finally, distributing the access rules into ACLs can make it tedious to find all the

files to which a user has access. Revoking the access of an employee who has just been

fired, for example, will usually have to be done by cancelling their password or other

authentication mechanism. It may also be tedious to run systemwide checks, such as

verifying that no files have been left world-writable. This could involve checking

ACLs on millions of user files.

Let’s look at two important examples of ACLs: their implementation in Unix and

NT.
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4.2.3 Unix Operating System Security

In Unix (and its popular variant Linux), files are not allowed to have arbitrary access

control lists, but simply rwx attributes for the resource owner, the group, and the world.

These attributes allow the file to be read, written, and executed. The access control list

as normally displayed has a flag to show whether the file is a directory; then flags r, w,

and x for owner, group, and world respectively; it then has the owner’s name and the

group name. A directory with all flags set would have the ACL:
drwxrwxrwx Alice Accounts

In the first example in Figure 4.4, the ACL of file 3 would be:
-rw-r—–---Alice Accounts

This records that the file is not a directory; the file owner can read and write it;

group members can read it but not write it; nongroup members have no access at all;

the file owner is Alice; and the group is Accounts.

In Unix, the program that gets control when the machine is booted (the operating

system kernel) runs as the supervisor, and has unrestricted access to the whole ma-

chine. All other programs run as users, and have their access mediated by the supervi-

sor. Access decisions are made on the basis of the userid associated with the program.

However if this is zero (root), then the access control decision is “yes.” So root can do

what it likes—access any file, become any user, or whatever. What’s more, there are

certain things that only root can do, such as starting certain communication processes.

The root userid is typically made available to the system administrator.

This means that (with most flavors of Unix) the system administrator can do any-

thing, so we have difficulty implementing an audit trail as a file that he cannot modify.

This not only means that, in our example, Sam could tinker with the accounts, and have

difficulty defending himself if he were falsely accused of tinkering, but that a hacker

who managed to become the system administrator could remove all evidence of his

intrusion. A common defense is to send the system log to a printer in a locked room

or—if the volumes of data are too great—to another machine that is administered by

somebody else.

The Berkeley distributions, including FreeBSD, go some way toward fixing the

problem. Files can be set to be append-only, immutable or undeletable for user, system

or both. When set by a user at a sufficient security level during the boot process, they

cannot be overridden or removed later, even by root. Various military variants go to

even greater trouble to allow separation of duty. However, the simplest and most

common way to protect logs against root compromise is to keep them on a separate

server.

Second, ACLs contain only the names of users, not of programs, so there is no

straightforward way to implement access triples of (user, program, file). Instead, Unix

provides an indirect method: the suid and sgid file attributes.

The owner of a program can mark it as suid. This enables it to run with the privilege

of its owner rather than the privilege of the user who has invoked it; sgid does the

same for groups. Thus, in order to achieve the functionality needed by Figure 4.3, we

could create a user “account-package” to own file 2 (the accounts package), make the

file suid, and place it in a directory to which Alice has access. This special user could

then be given the access control attributes we want for the accounts program.

One way of looking at this is that an access control problem that is naturally mod-

elled in three dimensions—the triples (user, program, data)—is being implemented

using two-dimensional mechanisms. These mechanisms are much less intuitive than
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triples, and people make many mistakes implementing them. Programmers are often

lazy or facing tight deadlines; so they just make the application suid root, and it can do

anything.

This practice leads to some rather shocking security holes. The responsibility for

making access control decisions is moved from the operating system environment to

the program, and most programmers are insufficiently experienced and careful to check

everything that they should. In particular, the person invoking a suid root program

controls its environment and can often manipulate this to cause protection failures.

Third, ACLs are not very good at expressing changing state. Managing stateful ac-

cess rules, such as dual control, becomes difficult; one either has to do it at the appli-

cation level or use suid/sgid again. Also, it’s hard to track the files that a user might

have open (as you typically want to do when revoking their rights on a system).

Fourth, the Unix ACL names only one user. Older versions allow a process to hold

only one group ID at a time and force it to use a privileged program to access other

groups; newer Unix systems put a process in all groups that the user is in. This is still

much less expressive than one might like. In theory, the ACL and su mechanisms can

often be used to achieve the desired effect. In practice, programmers are often too lazy

to figure out how to do this, and so design their code to require much more privilege

than it really ought to.

4.2.4 Windows NT

Another important operating system whose protection is largely based on access con-

trol lists is Windows NT. The current version of NT (version 5, or Win2K) is fairly

complex, so it’s helpful to trace its antecedents. (This can also be useful if you have to

help manage upgrades from NT4 to Win2K).

NT4 protection is very much like Unix, and appears to be inspired by it, so it’s sim-

pler to describe the main innovations.

First, rather than just read, write, and execute, there are separate attributes for take

ownership, change permissions, and delete, which means that more flexible delegation

can be supported. These attributes apply to groups as well as users, and group permis-

sions allow you to achieve much the same effect as sgid programs in Unix. Attributes

are not simply on or off, as in Unix, but have multiple values: you can set Access-

Denied, AccessAllowed, or SystemAudit. These are parsed in that order. If an Access-

Denied is encountered in an ACL for the relevant user or group, then no access is

permitted, regardless of any conflicting AccessAllowed flags.

A benefit of the richer syntax is that you can arrange matters so that much less than

full administrator privileges are required for everyday configuration tasks, such as in-

stalling printers. (This is rarely done, though.)

Second, users and resources can be partitioned into domains with distinct adminis-

trators, and trust can be inherited between domains in one direction or both. In a typi-

cal large company, you might put all the users into a domain administered by the

personnel department, while resources such as servers and printers could be in resource

domains under departmental control; individual workstations might even be adminis-

tered by their users. Things would be arranged so that the departmental resource do-

mains trust the user domain, but not vice versa—so a corrupt or careless departmental

administrator couldn’t do much damage outside his or her own domain. The individual

workstations would in turn trust the department (but not vice versa) so that users could

perform tasks that require local privilege (installing many software packages requires
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this). Administrators are all-powerful (so you can’t create truly tamper-resistant audit

trails without using write-once storage devices), but the damage they can do can be

limited by suitable organization. The data structure used to manage all this, and hide

the ACL details from the user interface, is called the Registry.

Problems with designing an NT architecture in very large organizations include

naming issues (which we’ll explore later), the way domains scale as the number of

principals increases (badly), and the restriction that a user in another domain can’t be

an administrator (which can cause complex interactions between local and global

groups).

One peculiarity of NT is that everyone is a principal, not a default or an absence of

control, so remove everyone means just prevent a file being generally accessible. A

resource can be locked quickly by setting everyone to have no access. This brings us

naturally to the subject of capabilities.

4.2.5 Capabilities

The next way to manage the access control matrix is to store it by rows. These are

called capabilities. In the example in Figure 4.2, Bob’s capabilities would be as shown

in Figure 4.5.

The strengths and weaknesses of capabilities are more or less the opposite of ACLs.

Runtime security checking is more efficient, and we can do delegation without much

difficulty: Bob could create a certificate saying “Here is my capability, and I hereby

delegate to David the right to read file 4 from 9 A.M. to 1 P.M.; signed Bob.” On the

other hand, changing a file’s status can suddenly become more tricky, as it can be dif-

ficult to find out which users have access. This can be tiresome when investigating an

incident or preparing evidence of a crime.

There were a number of experimental implementations in the 1970s, which were

rather like file passwords; users would get hard-to-guess bitstrings for the various read,

write, and other capabilities to which they were entitled. It was found that such an ar-

rangement could give very comprehensive protection [804]. It was not untypical to find

that almost all of an operating system could run in user mode, rather than as supervi-

sor, so operating system bugs were not security critical. (In fact, many operating sys-

tem bugs caused security violations, which made debugging the operating system much

easier.)

The IBM AS/400 series systems employed capability-based protection, and enjoyed

some commercial success. Now capabilities are making a comeback in the form of

public key certificates. We’ll discuss the mechanisms of public key cryptography in

Chapter 5, and give more concrete details of certificate-based systems, such as

SSL/TLS, in Section 19.5. For now, think of a public key certificate as a credential

signed by some authority, which declares that the holder of a certain cryptographic key

is a certain person, a member of some group, or the holder of some privilege.

Figure 4.5 A capability.
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As an example of where certificate-based capabilities can be useful, consider a hos-

pital. If we implemented a rule stating “a nurse will have access to all the patients who

are on her ward, or who have been there in the last 90 days,” naively, each access con-

trol decision in the patient record system would require several references to adminis-

trative systems, to find out which nurses and which patients were on which ward,

when. This means that a failure of the administrative systems can now affect patient

safety much more directly than was previously the case, which is a clearly bad thing.

Matters can be much simplified by giving nurses certificates that entitle them to access

the files associated with their current ward. Such a system is starting to be fielded at

our university hospital.

One point to bear in mind is that as public key certificates are often considered to be

“crypto” rather than “access control,” their implications for access control policies and

architectures are not always thought through. The lessons that could have been learned

from the capability systems of the 1970s are generally having to be rediscovered (the

hard way). In general, the boundary between crypto and access control is a fault line

where things can easily go wrong. The experts often come from different backgrounds,

and the products from different suppliers.

4.2.6 Added Features in Windows 2000

A number of systems, from mainframe access control products to research systems,

have combined ACLs and capabilities in an attempt to get the best of both worlds. But

the most important application of capabilities is in Win2K.

Win2K adds capabilities in two ways that can override or complement the ACLs of

NT4. First, users or groups can be either whitelisted or blacklisted by means of pro-

files. (Some limited blacklisting was also possible in NT4.) Security policy is set by

groups rather than for the system as a whole. Groups are intended to be the primary

method for centralized configuration management and control (group policy overrides

individual profiles). Group policy can be associated with sites, domains, or organiza-

tional units, so it can start to tackle some of the real complexity problems with naming.

Policies can be created using standard tools or by custom-coding (Microsoft has an-

nounced that group policy data will be exposed in a standard schema). Groups are de-

fined in the Active Directory, an object-oriented database which organizes users,

groups, machines, and organizational units within a domain in a hierarchical name-

space, indexing them so they can searched for on any attribute. There are also finer-

grained access control lists on individual resources.

As already mentioned, Win2K uses Kerberos as its main means of authenticating us-

ers across networks.
1
 This is encapsulated behind the Security Support Provider Inter-

face (SSPI), which enables administrators to plug in other authentication services.

                                                            
1In fact, it’s a proprietary variant, with changes to the ticket format, which prevent

Win2K clients from working with existing Unix Kerberos infrastructures. The documenta-

tion for the changes is released on condition that it not be used to make compatible imple-

mentations. Microsoft’s goal is to get everyone to install Win2K Kerberos servers. This has

caused an outcry in the open systems community [76].
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This brings us to the second way in which capabilities insinuate their way into

Win2K: in many applications, people are likely to use the public key protocol

SSL/TLS, which is widely used on the Web, and which is based on public key certifi-

cates. The management of these certificates can provide another, capability-oriented,

layer of access control outside the purview of the Active Directory. (I discuss SSL/TLS

in Section 19.5.)

There are various backward-compatibility issues. For example, high-security con-

figurations of Win2K with full cryptographic authentication can’t interwork with NT4

systems. This is because an active directory can exist alongside the registry of NT4,

but the registry can’t read it. So the deployment of Win2K’s high-security features in

large organizations is likely to be delayed until all the important applications have mi-

grated.

Win2K provides a richer and more flexible set of access control tools than any sys-

tem previously sold in mass markets. It does still have design limitations. Implement-

ing roles whose requirements differ from those of groups could be tricky in some

applications; SSL certificates are the obvious way to do this, but would require an ex-

ternal management infrastructure. Second, Windows is still (in most of its incarna-

tions) a single-user operating system, in the sense that only one person can operate a

PC at a time. Thus, if I want to run an unprivileged, sacrificial user on my PC for ac-

cessing untrustworthy Web sites that might contain malicious code, I have to log off

and log on again, or use other techniques that are so inconvenient that few users will

bother. So users still do not get the benefit from the operating system’s protection

properties that they might wish when browsing the Web.

4.2.7 Granularity

A practical problem with all current flavors of access control system is granularity. As

the operating system works with files, this will usually be the smallest object with

which its access control mechanisms can deal. So it will be application-level mecha-

nisms that, for example, ensure that a bank customer at a cash machine can see his or

her own balance but not anybody else’s.

But it goes deeper than that. Many applications are built using database tools that

give rise to some problems that are much the same whether running DB2 on MVS or

Oracle on Unix. All the application data is bundled together in one file, and the oper-

ating system must either grant or deny a user access to the lot. So, if you developed

your branch accounting system under a database product, then you’ll probably have to

manage one access mechanism at the operating system level and another at the data-

base or application level. Many real problems result. For example, the administration

of the operating system and the database system may be performed by different de-

partments, which do not talk to each other; and often user pressure drives IT depart-

ments to put in crude hacks that make the various access control systems seem to work

as one, but that open up serious holes.

Another granularity problem is single sign-on. Despite the best efforts of computer

managers, most large companies accumulate systems of many different architectures,

so users get more and more logons to different systems; consequently, the cost of ad-

ministering them escalates. Many organizations want to give each employee a single

logon to all the machines on the network. A crude solution is to endow their PCs with a

menu of hosts to which a logon is allowed, and hide the necessary userids and pass-

words in scripts. More sophisticated solutions may involve a single security server
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through which all logons must pass, or a smartcard to do multiple authentication proto-

cols for different systems. Such solutions are hard to engineer properly. Whichever

route one takes, the security of the best system can easily be reduced to that of the

worst.

4.2.8 Sandboxing and Proof-Carrying Code

Another way of implementing access control is a software sandbox. Here users want to

run some code that they have downloaded from the Web as an applet. Their concern is

that the applet might do something nasty, such as taking a list of all their files and

mailing it off to a software marketing company.

The designers of Java tackle this problem by providing a “sandbox” for such

code—a restricted environment in which it has no access to the local hard disk (or at

most only temporary access to a restricted directory), and is only allowed to communi-

cate with the host it came from. These security objectives are met by having the code

executed by an interpreter—the Java Virtual Machine (JVM)—which has only limited

access rights [346]. Java is also used on smartcards, but (in current implementations at

least) the JVM is, in effect, a compiler external to the card, which raises the issue of

how the code it outputs can be gotten to the card in a trustworthy manner.

An alternative is proof-carrying code. Here, code to be executed must carry with it a

proof that it doesn’t do anything that contravenes the local security policy. This way,

rather than using an interpreter with the resulting speed penalty, one merely has to trust

a short program that checks the proofs supplied by downloaded programs before al-

lowing them to be executed. The huge overhead of a JVM is not necessary [585].

Both of these are less general alternatives to an architecture that supports proper su-

pervisor-level confinement.

4.2.9 Object Request Brokers

There has been much interest of late in object-oriented software development, as it has

the potential to cut the cost of software maintenance. An object consists of code and

data bundled together, accessible only through specified externally visible methods.

This also gives the potential for much more powerful and flexible access control. Much

research is underway with the goal of producing a uniform security interface that is

independent of the underlying operating system and hardware.

The idea is to base security functions on the object request broker, or ORB, a soft-

ware component that mediates communications between objects. Many research efforts

focus on the Common Object Request Broker Architecture (CORBA), which is an at-

tempt at an industry standard for object-oriented systems. The most important aspect of

this is that an ORB is a means of controlling calls that are made across protection do-

mains. This approach appears promising but is still under development. (A book on

CORBA security is [112].)
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4.3 Hardware Protection

Most access control systems set out not just to control what users can do, but to limit

what programs can do as well. In most systems, users can either write programs or

download and install them. Programs may be buggy or even malicious.

Preventing one process from interfering with another is the protection problem. The

confinement problem is usually defined as that of preventing programs communicating

outward other than through authorized channels. This comes in several flavors. The

goal may be to prevent active interference, such as memory overwriting, and to stop

one process reading another’s memory directly. This is what commercial operating

systems set out to do. Military systems may also try to protect metadata—data about

other data, subjects, or processes—so that, for example, a user can’t find out which

other users are logged on to the system or which processes they are running. In some

applications, such as processing census data, confinement means allowing a program to

read data but not release anything about it other than the results of certain constrained

queries; this is covered further in Chapter 7.

Unless one uses sandboxing techniques (which are too restrictive for general pro-

gramming environments), solving the confinement problem on a single processor

means, at the very least, having a mechanism that will stop one program from over-

writing another’s code or data. There may be areas of memory that are shared in order

to allow interprocess communication; but programs must be protected from accidental

or deliberate modification, and they must have access to memory that is similarly pro-

tected.

This usually means that hardware access control must be integrated with the proces-

sor’s memory management functions. A typical mechanism is segment addressing.

Memory is addressed by two registers, a segment register that points to a segment of

memory, and another address register that points to a location within that segment. The

segment registers are controlled by the operating system, and often by a special com-

ponent of it called the reference monitor, which links the access control mechanisms

with the hardware.

The actual implementation has become more complex as the processors themselves

have. Early IBM mainframes had a two-state CPU: the machine was either in author-

ized state or it was not. In the latter case, the program was restricted to a memory seg-

ment allocated by the operating system. In the former, it could alter the segment

registers at will. An authorized program was one that was loaded from an authorized

library.

Any desired access control policy can be implemented on top of this, given suitable

authorized libraries, but this is not always efficient; and system security depends on

keeping bad code (whether malicious or buggy) out of the authorized libraries. Later

processors have offered more complex hardware mechanisms. Multics, an operating

system developed at MIT in the 1960s and that inspired the development of Unix, in-

troduced rings of protection which express differing levels of privilege: ring 0 pro-

grams had complete access to disk, supervisor states ran in ring 2, and user code at

various less privileged levels [687]. Its features have to some extent been adopted in

more recent processors, such as the Intel main processor line from the 80286 onward.
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There are a number of general problems with interfacing hardware and software se-

curity mechanisms. For example, it often happens that a less privileged process such as

application code needs to invoke a more privileged process such as a device driver.

The mechanisms for doing this need to be designed with some care, or security bugs

can be expected. The IBM mainframe operating system MVS, for example, had a bug

in which a program that executed a normal and an authorized task concurrently could

make the former authorized too [493]. Also, performance may depend quite drastically

on whether routines at different privilege levels are called by reference or by value

[687].

4.3.1 Intel 80_86/Pentium Processors

Early Intel processors, such as the 8088/8086 used in early PCs, had no distinction

between system and user mode, and thus no protection at all—any running program

controlled the whole machine. The 80286 added protected segment addressing and

rings, so for the first time it could run proper operating systems. The 80386 had built-

in virtual memory and large enough memory segments (4 Gb) that they could be ig-

nored and the machine treated as a 32-bit flat-address machine. The 486 and Pentium

series chips added more performance (caches, out-of-order execution and MMX). The

Pentium 3 finally added a new security feature—a processor serial number. This

caused such a storm of protest, driven by privacy advocates who feared it could be

used for all sorts of “big brother” purposes, that it will apparently be discontinued in

future Pentium products. (But identifying a PC will remain easy, as there are many

other serial numbers in disk controllers and other components that a snooping program

can read.)

The rings of protection are supported by a number of mechanisms. The current

privilege level can be changed only by a process in ring 0 (the kernel). Procedures can-

not access objects in lower-level rings directly; but there are gates that allow execution

of code at a different privilege level and that manage the supporting infrastructure,

such as multiple stack segments for different privilege levels and exception handling.

(For more details, see [404].)

The Pentium’s successor architecture, the IA-64, was not yet available at the time of

writing. According to the advance publicity, its memory management is based on di-

viding the virtual address space of each process into several regions whose identifiers

specify the set of translations belonging to a process, and provide a unique intermedi-

ate virtual address. This is to help avoid thrashing problems in caches and in transla-

tion lookaside buffers. Regions also provide efficient shared areas between processes.

Like the Pentium, the IA-64 has four protection rings [382].

4.3.2 ARM Processors

The ARM is the 32-bit processor core most commonly licensed to third-party vendors

of embedded systems. The original ARM (which stood for Acorn Rise Machine) was

the first commercial RISC design. Its modern day successors are important because

they are incorporated in all sorts of security-sensitive applications from mobile phones

to the Capstone chips used by the U.S. government to protect secret data. A fast multi-

ply-and-accumulate instruction and low-power consumption make the ARM very at-

tractive for embedded applications doing public key cryptography and/or signal

processing. (The standard reference is [325].)
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The ARM is licensed as a processor core, which chip designers can include in their

products, plus a number of optional add-ons. The basic core contains separate banks of

registers for user and system processes, plus a software-interrupt mechanism that puts

the processor in supervisor mode and transfers control to a process at a fixed address.

The core contains no memory management, so ARM-based designs can have their

hardware protection extensively customized. A system control coprocessor is available

to help with this. It can support domains of processes that have similar access rights

(and thus share the same translation tables) but that retain some protection from each

other. This enables fast context switching. Standard product ARM CPU chips, from the

model 600 onward, have this memory support built in.

One version, the Amulet, uses self-timed logic. Eliminating the clock saves power

and reduces RF interference, but makes it necessary to introduce hardware protection

features, such as register locking, into the main processor itself so that contention be-

tween different hardware processes can be managed. This is an interesting example of

protection techniques typical of an operating system being recycled in mainline proces-

sor design.

4.3.3 Security Processors

Some modern smartcards are based on ARM processors, and the preceding remarks

apply (though memory limitations mean that only basic hardware protection may be

used). But the great majority of the microprocessor smartcards in the field still have 8-

bit processors. Some of them have memory management routines that let certain ad-

dresses be read only when passwords are entered into a register in the preceding few

instructions. The goal is that the various principals with a stake in the card—perhaps a

card manufacturer, an OEM, a network, and a bank—can all have their secrets on the

card and yet be protected from each other. This may be a matter of software; but some

cards have small, hardwired access control matrices to enforce this protection.

There are other kinds of specialized hardware security support for cryptography and

access control. Some of the encryption devices used in banking to handle ATM PINs

have an authorized state, which must be set (by two console passwords or a physical

key) when PINs are to be printed. This enables a shift supervisor to control when this

job is run. Similar devices are used by the military to distribute keys. We’ll discuss

cryptoprocessors in more detail in Chapter 14, “Physical Tamper Resistance.”

4.3.4 Other Processors

Some research systems in the 1970s implemented very extensive security checking in

the hardware, from Multics to various capability systems. Some systems have a fence

address, a boundary in the hardware below which only the operating system has ac-

cess. More recent work has looked at quality of service (QoS) issues, and for ways in

which one can guarantee that no process will hog the CPU to the extent that other

processes are blocked. Such mechanisms are now starting to be introduced commer-

cially (‘Quality of Service Technology is promised by Microsoft for ‘the Win2K

timeframe’.) The interaction of such features with access control and protection gener-

ally is one of the things to watch out for in the future.
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4.4 What Goes Wrong

Popular operating systems such as Unix/Linux and Windows are very large and com-

plex, so they have many bugs. They are used in a huge range of systems, so their fea-

tures are tested daily by millions of users under very diverse of circumstances.

Consequently, many of the bugs are found and reported. Thanks to the Net, knowledge

spreads widely and rapidly. Thus, at any one time, there may be dozens of security

flaws that are known and for which attack scripts may be circulating on the Net. Until

recently, this problem was limited. The banking industry used mainframes that ran less

widely understood operating systems, while the military used custom “multilevel se-

cure” operating systems, which were not available to outsiders at all. Nowadays, both

of these industries are being forced by cost pressures to adopt commodity operating

systems, so the publication of attack scripts has the potential to undermine a great

range of systems.

The usual goal of an attacker is to get a normal account on the system and then be-

come the system administrator, in order to take over the system completely. A surpris-

ing number of operating system bugs allow the transition from user to root. Such flaws

can be classified in a number of ways, such as by the type of programming error, by

the stage in the development process at which it was introduced, or by the level in the

system at which things go wrong [493]. The failure might not even be in the technical

implementation, but in the higher-level design. The user interface might induce people

to mismanage access rights or do other stupid things that cause the access control to be

bypassed (see Section 4.4.3 for some examples).

In general, the higher in a system we build the protection mechanisms, the more

complex they’ll be, the more other software they’ll rely on, and the closer they’ll be to

the error-prone mark 1 human being, thus, the less dependable they are likely to be.

4.4.1 Smashing the Stack

Many, if not most, of the technical attacks on operating systems that are reported in

Computer Emergency Response Team (CERT) bulletins and security mailing lists in-

volve memory-overwriting attacks, colloquially known as “smashing the stack” (see

Figure 4.6).

Programmers are often careless about checking the size of arguments. A classic ex-

ample was a vulnerability in the Unix finger command. A widespread implementation

of this would accept an argument of any length, although only 256 bytes had been allo-

cated for this argument by the program. The result was that when an attacker used the

command with a longer argument, the trailing bytes of the argument ended up being

executed by the CPU.

The usual technique is to arrange for the trailing bytes of the argument to have a

landing pad, a long space of no-operation (NOP) commands or other register com-

mands that don’t change the control flow, and whose task is to catch the processor if it

executes any of them. The landing pad delivers the processor to the attack code, which

will do something like creating a root account with no password or starting a shell with

administrative privilege directly.

Many of the vulnerabilities reported routinely by CERT and bugtraq are variants on

this theme. There is really no excuse for the problem to continue, as it has been well

known for a generation. Most of the early 1960s time-sharing systems suffered from it,
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and fixed it [349]. Penetration analysis efforts at the System Development Corporation

in the early 1970s showed that the problem of “unexpected parameters” was still one of

the most frequently used attack strategies [503]. Intel’s 80286 processor introduced

explicit parameter-checking instructions—verify read, verify write, and verify

length—in 1982, but they were avoided by most software designers to prevent archi-

tecture dependencies. In 1988, large numbers of Unix computers were brought down

simultaneously by the “Internet worm,” which used the finger vulnerability just de-

scribed, and thus brought memory-overwriting attacks to the notice of the mass media

[724]. Yet programmers still don’t check the size of arguments, and holes continue to

be found. The attack isn’t even limited to networked computer systems: at least one

smartcard could be defeated by passing it a message longer than its programmer had

anticipated.

Figure 4.6 Stack Smashing Attack.

A recent survey paper describes memory-overwriting attacks as the “attack of the

decade” [207].

4.4.2 Other Technical Attacks

After memory-overwriting attacks, race conditions are probably next. These are where

a transaction is carried out in two or more stages, and it is possible for someone to alter

it after the stage that involves verifying access rights.

For example, the Unix command to create a directory, mkdir, formerly worked in

two steps: the storage was allocated, then ownership was transferred to the user. Since

these steps were separate, a user could initiate a mkdir in background; and if this com-

pleted orly the first step before being suspended, a second process could be used to

replace the newly created directory with a link to the password file. Then the original

process would resume, and change ownership of the password file to the user. The /

tmp directory, used for temporary files, can often be abused in this way; the trick is to

wait until an application run by a privileged user writes a file here, then change it to a

symbolic link to another file somewhere else—which will be removed when the privi-

leged user’s application tries to delete the temporary file.

A wide variety of other bugs have enabled users to assume root status and take over

the system. For example, the PDP-10 TENEX operating system had the bug that the

program address could overflow into the next bit of the process state word, which was

the privilege-mode bit; this meant that a program overflow could put a program in su-
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pervisor state. In another example, some Unix implementations had the feature that if a

user tried to execute the command su when the maximum number of files were open,

then su was unable to open the password file, and responded by giving the user root

status.

There have also been a number of bugs that allowed service denial attacks. For ex-

ample, Multics had a global limit on the number of files that could be open at once, but

no local limits. A user could exhaust this limit and lock the system so that not even the

administrator could log on [493]. And until the late 1990s, most implementations of the

Internet protocols allocated a fixed amount of buffer space to process the SYN packets

with which TCP/IP connections are initiated. The result was SYN flooding attacks. By

sending a large number of SYN packets, an attacker could exhaust the available buffer

space and prevent the machine accepting any new connections. This is now fixed using

syncookies, discussed in Chapter 18, in Part 2.

4.4.3 User Interface Failures

One of the earliest attacks to be devised was the Trojan Horse, a program that the ad-

ministrator is invited to run and that will do some harm if he does so. People would

write games that checked occasionally whether the player was the system administra-

tor, and if so would create another administrator account with a known password.

Another trick is to write a program that has the same name as a commonly used

system utility, such as the Is command which lists all the files in a Unix directory, and

design it to abuse the administrator privilege (if any) before invoking the genuine util-

ity. The next step is to complain to the administrator that something is wrong with this

directory. When the administrator enters the directory and types Is to see what’s there,

the damage is done. The fix is simple: an administrator’s PATH variable (the list of

directories that will be searched for a suitably named program when a command is in-

voked) shouldn’t contain ‘.’ (the symbol for the current directory). Recent Unix ver-

sions are shipped with this as a default; but it’s still an unnecessary trap for the

unwary.

Perhaps the most serious example of user interface failure, in terms of the number of

systems at risk, is in Windows NT. In this operating system, a user must be the system

administrator to install anything. This might be useful, as a configuration option, to

prevent staff in a bank branch from running games on their PCs at lunchtime, and

picking up viruses. However, most environments are much less controlled, and people

need to be able to install software to get their work done. In practice, this means that

millions of people have administrator privileges who shouldn’t need them, and are vul-

nerable to attacks in which malicious code simply pops up a box telling them to do

something. Microsoft’s response to this has been the one-way trust mechanism already

discussed, which makes it possible to configure systems so that people can administer

their own machines without having too much power to damage other IT resources in

the company. However, this requires some care to implement properly. It also provides

no protection where applications such as Web servers must run as root, are visible to

the outside world, and contain software bugs that enable them to be taken over.

Another example, which might be argued is an interface failure, comes from the use

of active content of various kinds such as ActiveX controls. These can be a menace

because users have no intuitively clear way of controlling them, and they can be used

to launch serious attacks. Even Java, for all its supposed security, has suffered a num-

ber of attacks that exploited careless implementations [226]. However, many people



Chapter 4: Access Controls

68

(and many companies) are unwilling to forgo the bells and whistles that active content

can provide.

4.4.4 Why So Many Things Go Wrong

We’ve already mentioned the basic problems faced by operating system security de-

signers: their products are huge and therefore buggy, and are tested by large numbers

of users in parallel, some of whom will publicize their discoveries rather than reporting

them to the vendor. There are other structural problems, too.

One of the more serious causes of failure is kernel bloat. Under Unix, all device

drivers, filesystems, and so on must be in the kernel. The Windows 2000 kernel con-

tains drivers for a large number of smartcards, card readers, and the like, many of

which were written by equipment vendors. So large quantities of code are trusted, in

that they are put inside the security perimeter. It can’t really be a good idea for soft-

ware companies to enable so many of their suppliers to break their systems, whether on

purpose or accidentally. Some other systems, such as MVS, introduced mechanisms

that decrease the level of trust needed by many utilities. However, the means to do this

in the most common operating systems are few and relatively nonstandard.

Even more seriously, application developers often make their programs run as root.

This may be easier, as it avoids permission problems. It also often introduces horrible

vulnerabilities where more limited privilege could have been used with only a modi-

cum of thought and a minor redesign. There are many systems—such as 1pr / 1pd, the

Unix lineprinter subsystem—that do not need to run as root but do anyway on most

systems. This has also been a source of security failures in the past (e.g., getting the

printer to spool to the password file).

Some applications need a certain amount of privilege. For example, mail delivery

agents must be able to deal with user mailboxes. But while a prudent designer would

restrict this privilege to a small part of the application, most agents are written so that

the whole program needs to run as root. The classic example is sendmail, which has a

long history of serious security holes; but many other MTAs also have problems. The

general effect is that a bug that ought to compromise only one person’s mail may end

up giving root privilege to an outside attacker.

Sometimes the cure is almost as bad as the disease. Some programmers avoid root

bloat and the difficulty of getting non-root software installed and working securely by

leaving important shared data structures and resources accessible to all users. Many

systems store mail in a file per user in a world-writeable directory, which makes mail

forgery easy. The Unix file utmp—the list of users logged in—is frequently used for

security checking of various kinds, but is also frequently world-writeable! This should

have been built as a service rather than a file, but fixing problems like these once the

initial design decisions have been made can be difficult.
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4.4.5 Remedies

Some classes of vulnerability can be fixed using automatic tools. Stack-overwriting

attacks, for example, are largely due to the lack of proper bounds checking in C (the

language most commonly used to write operating systems). Various tools are available

on the Net for checking C programs for potential problems; there is even a compiler

patch called StackGuard, which puts a canary next to the return address on the stack.

This can be a random 32-bit value chosen when the program is started, and checked

when a function is torn down. If the stack has been overwritten meanwhile, then with

high probability the canary will change [207].

But, in general, much more effort needs to be put into design, coding, and testing.

Rather than overusing powerful tools such as setuid in Unix and administrator privi-

lege in NT, designers should create groups with limited powers, and be clear about

what the compromise of that group should mean for the rest of the system. Programs

should have only as much privilege as necessary: the principle of least privilege [662].

Software should also be designed so that the default configuration, and in general,

the easiest way of doing something, is safe. But, many systems are shipped with dan-

gerous defaults.

Finally, there’s a contrarian view, of which you should be aware, as it’s held by

some senior Microsoft people: that access control doesn’t matter. Computers are be-

coming single-purpose or single-user devices. Single-purpose devices, such as Web

servers that deliver a single service, don’t need much in the way of access control as

there’s nothing for operating system access controls to do; the job of separating users

from each other is best left to the application code. As for the PC on your desk, if all

the software on it comes from a single source, then again there’s no need for the oper-

ating system to provide separation [588]. Not everyone agrees with this: the NSA view

is at the other extreme, with deep distrust of application-level security and heavy em-

phasis on using the mechanisms of trusted operating systems [510]. But one way or

another, it’s remarkable how little effective use is made of the access control mecha-

nisms shipped with modern operating systems.

4.4.6 Environmental Creep

I have pointed out repeatedly that many security failures result from environmental

change undermining a security model. Mechanisms that were adequate in a restricted

environment often fail in a more general one.

Access control mechanisms are no exception. Unix, for example, was originally de-

signed as a “single-user Multics” (hence the name). It then became an operating system

to be used by a number of skilled and trustworthy people in a laboratory who were

sharing a single machine. In this environment, the function of the security mechanisms

is primarily to contain mistakes, to prevent one user’s typing errors or program crashes

from deleting or overwriting another user’s files. The original security mechanisms

were quite adequate for this purpose.

But Unix security became a classic “success disaster.” Unix was repeatedly extended

without proper consideration being given to how the protection mechanisms also

needed to be extended. The Berkeley extensions (rsh, rhosts, etc.) were based on an

extension from a single machine to a network of machines that were all on one LAN
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and all under one management. Mechanisms such as rhosts were based on a tuple

(username,hostname) rather than just a user name, and saw the beginning of the trans-

fer of trust.

The Internet mechanisms (telnet, ftp, DNS, SMTP), which grew out of Arpanet in

the 1970s, were written for mainframes on what was originally a secure WAN. Main-

frames were autonomous, the network was outside the security protocols, and there

was no transfer of authorization. Remote authentication, which the Berkeley model

was starting to make prudent, was simply not supported. The Sun contributions (NFS,

NIS, RPC, etc.) were based on a workstation model of the universe, with a multiple

LAN environment with distributed management, but still usually in a single organiza-

tion. (A proper tutorial on topics such as DNS and NFS is beyond the scope of this

book, but there is some more detailed background material in Chapter 18, “Network

Attack and Defense,” Section 18.2.)

Mixing all these different models of computation together has resulted in chaos.

Some of their initial assumptions still apply partially, but none of them applies globally

any more. The Internet now has hundreds of millions of PCs and workstations, millions

of LANs, thousands of interconnected WANs, and managements that are not just inde-

pendent but may be in conflict (including nation states and substate groups at war with

each other). Many workstations have no management at all.

Users, instead of being trustworthy but occasionally incompetent, are now largely

incompetent—but some are both competent and hostile. Code used to be simply

buggy—but now there is a significant amount of malicious code out there. Attacks on

communications networks used to be the purview of national intelligence agen-

cies—now they can be done by script kiddies, a term used to refer to relatively un-

skilled people who have downloaded attack tools from the Net and launched them

without any real idea of how they work.

Unix and Internet security gives us yet another example of a system that started out

reasonably well designed but that was undermined by a changing environment.

Win2K and its predecessors in the NT product series have more extensive protection

mechanisms than Unix, but have been around for much less time. Realistically, all we

can say is that the jury is still out.

4.5 Summary

Access control mechanisms operate at a number of levels in a system, from applica-

tions down through the operating system to the hardware. Higher-level mechanisms

can be more expressive, but also tend to be more vulnerable to attack, for a variety of

reasons ranging from intrinsic complexity to implementer skill levels. Most attacks

involve the opportunistic exploitation of bugs; and software that is very large, very

widely used, or both (as with operating systems) is particularly likely to have security

bugs found and publicized. Operating systems are also vulnerable to environmental

changes that undermine the assumptions used in their design.

The main function of access control in computer operating systems is to limit the

damage that can be done by particular groups, users, and programs whether through

error or malice. The most important fielded examples are Unix and NT, which are

similar in many respects, though NT is more expressive. Access control is also an im-

portant part of the design of special-purpose hardware such as smartcards and other
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encryption devices. New techniques are being developed to cope with object-oriented

systems and mobile code. But implementation remains generally awful.

The general concepts of access control from read, write, and execute permissions to

groups and roles will crop up again and again. In some distributed systems, they may

not be immediately obvious, as the underlying mechanisms can be quite different. An

example comes from public key infrastructures, which are a reimplementation of an

old access control concept, the capability.

Research Problems

Most of the issues in access control were identified by the 1960s or early 1970s, and

were worked out on experimental systems such as Multics [687] and the CAP [804].

Much of the research in access control systems since has involved reworking the basic

themes in new contexts, such as object-oriented systems and mobile code.

A recent thread of research is how to combine access control with the admission

control mechanisms used to provide quality of service guaranteed in multimedia oper-

ating systems. Another topic is how to implement and manage access control effi-

ciently in large complex systems, using techniques such as roles.

Further Reading

The best textbook to use for a more detailed introduction to access control issues is

Dieter Gollmann’s Computer Security [344]. A technical report from U.S. Navy Labs

gives a useful reference to many of the flaws found in operating systems over the last

30 years or so [493]. One of the earliest reports on the subject (and indeed on computer

security in general) is by Willis Ware [791]. One of the most influential early papers is

by Jerry Saltzer and Mike Schroeder [662]; Butler Lampson’s influential paper on the

confinement problem is at [488].

The classic description of Unix security is in the paper by Fred Grampp and Bob

Morris [350]. The most comprehensive textbook on this subject is Simson Garfinkel

and Gene Spafford’s Practical Unix and Internet Security [331]; the classic on the In-

ternet side of things is Bill Cheswick and Steve Bellovin’s Firewalls and Internet Se-

curity [94], with many examples of network attacks on Unix systems.

The protection mechanisms of Windows NT4 are described briefly in Gollmann, but

much more thoroughly in Karanjit Siyan’s reference book, Windows NT Server 4 [711].

For Win2K, I’ve used the Microsoft online documentation; no doubt a number of text-

books will appear very soon. There is a history of microprocessor architectures at [79],

and a reference book for Java security written by its architect Li Gong [346].

All these topics are fast-moving; the attacks that are making the headlines change

significantly (at least in their details) from one year to the next. To keep up, you should

not just read textbooks, but follow the latest notices from CERT, and mailing lists such

as bugtraq.
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CHAPTER

5

Cryptography

ZHQM ZMGM ZMFM

—G. JULIUS CAESAR

XYAWO GAOOA GPEMO HPQCW IPNLG RPIXL TXLOA NNYCS YXBOY MNBIN YOBTY

QYNAI

—JOHN F. KENNEDY

5.1 Introduction

Cryptography is where security engineering meets mathematics. It provides us with the

tools that underlie most modern security protocols. It is probably the key enabling

technology for protecting distributed systems, yet it is surprisingly hard to do right. As

we’ve already seen in Chapter 2, “Protocols,” cryptography has often been used to

protect the wrong things, or used to protect them in the wrong way. We’ll see plenty

more examples when we start looking in detail at real applications.

Unfortunately, the computer security and cryptology communities have drifted apart

over the last 20 years. Security people don’t always understand the available crypto

tools, and crypto people don’t always understand the real-world problems. There are a

number of reasons for this, such as different professional backgrounds (computer sci-

ence versus mathematics) and different research funding (governments have tried to

promote computer security research while suppressing cryptography). It reminds me of

a story told by a medical friend. While she was young, she worked for a few years in a

country where, for economic reasons, they’d shortened their medical degrees and con-

centrated on producing specialists as quickly as possible. One day, a patient who’d had

both kidneys removed and was awaiting a transplant needed her dialysis shunt redone.

The surgeon sent the patient back from the theater on the grounds that there was no

urinalysis on file. It just didn’t occur to him that a patient with no kidneys couldn’t

produce any urine.

Just as a doctor needs to understand physiology as well as surgery, so a security en-

gineer needs to be familiar with cryptology as well as computer security (and much
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else). This chapter is aimed at people without a training in cryptology; cryptologists

will find little in it which they don’t already know. As I only have a few dozen pages,

and a proper exposition of modern cryptography would run into thousands, I won’t go

into much of the mathematics (there are plenty books that do that; see the end of the

chapter for further reading). I’ll just explain the basic intuitions and constructions that

seem to cause the most confusion. If you have to use cryptography in anything resem-

bling a novel way, then I strongly recommend that you read a lot more about it.

Computer security people often ask for non-mathematical definitions of crypto-

graphic terms. The basic terminology is that cryptography refers to the science and art

of designing ciphers; cryptanalysis to the science and art of breaking them; while

cryptology, often shortened to just crypto, is the study of both. The input to an encryp-

tion process is commonly called the plaintext, and the output the ciphertext. Thereafter,

things get somewhat more complicated. There are a number of cryptographic primi-

tives—basic building blocks, such as block ciphers, stream ciphers, and hash functions.

Block ciphers may either have one key for both encryption and decryption, in which

case they’re called shared key (also secret key or symmetric), or have separate keys for

encryption and decryption, in which case they’re called public key or asymmetric. A

digital signature scheme is a special type of asymmetric crypto primitive.

In the rest of this chapter, I will first give some simple historical examples to illus-

trate the basic concepts. I’ll then try to fine-tune definitions by introducing the random

oracle model, which many cryptologists use. Finally, I’ll show how some of the more

important cryptographic algorithms actually work, and how they can be used to protect

data.

5.2 Historical Background

Suetonius tells us that Julius Caesar enciphered his dispatches by writing D for A, E

for B and so on [742]. When Augustus Caesar ascended the throne, he changed the im-

perial cipher system so that C was now written for A, D for B, and so on. In modern

terminology, we would say that he changed the key from D to C.

The Arabs generalized this idea to the monoalphabetic substitution, in which a key-

word is used to permute the cipher alphabet. We will write the plaintext in lowercase

letters, and the ciphertext in uppercase, as shown in Figure 5.1.

CYAN RWSGKFR AN AH RHTFANY MSOYRM OYSH SMSEAC NCMAKO; but breaking ciphers of

this kind is a straightforward pencil and paper puzzle, which you may have done in

primary school. The trick is that some letters, and combinations of letters, are much

more common than others; in English the most common letters are e, t, a, i, o, n, s, h, r,

d, l, u in that order. Artificial intelligence researchers have shown some interest in

writing programs to solve monoalphabetic substitutions; using letter and digraph (let-

ter-pair) frequencies alone. They typically succeed with about 600 letters of ciphertext,

while-smarter strategies, such as guessing probable words, can cut this to about 150

letters. A human cryptanalyst will usually require much less.

Figure 5.1 Monoalphabetic substitution cipher.
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There are basically two ways to make a stronger cipher: the stream cipher and the

block cipher. In the former, you make the encryption rule depend on a plaintext sym-

bol’s position in the stream of plaintext symbols, while in the latter you encrypt several

plaintext symbols at once in a block. Let’s look at early examples.

5.2.1 An Early Stream Cipher: The Vigenère

An early stream cipher is commonly ascribed to the Frenchman Blaise de Vigenère, a

diplomat who served King Charles IX. It works by adding a key repeatedly into the

plaintext using the convention that A = 0, B = 1, . . . , Z = 25; and addition is carried

out modulo 26—that is, if the result is greater than 25, we subtract as many multiples

of 26 as are needed to bring us into the range [0, . . . ,25], that is, [A, . . . ,Z]. Mathe-

maticians write this as:

C = P + K mod 26

For example, when we add P(15) to U(20) we get 35, which we reduce to 9 by sub-

tracting 26; 9 corresponds to J, so the encryption of P under the key U (and of U under

the key P) is J. In this notation, Julius Caesar’s system used a fixed key, K = D

(modulo 23, as the alphabet Caesar used wrote U as V, J as I, and had no W), while

Augustus Caesar’s used K = C, and Vigenère used a repeating key, also known as a

running key. Various means were developed to do this addition quickly, including

printed tables and, for field use, cipher wheels. Whatever the implementation technol-

ogy, the encryption using a repeated keyword for the key would look as shown in Fig-

ure 5.2.

A number of people appear to have worked out how to solve polyalphabetic ciphers,

from the notorious womanizer Casanova to computing pioneer Charles Babbage. How-

ever, the first published solution was in 1863 by Friedrich Kasiski, a Prussian infantry

officer [441]. He noticed that given a long enough piece of ciphertext, repeated pat-

terns will appear at multiples of the keyword length.

In Figure 5.2, for example, we see “KIOV” repeated after nine letters, and “NU” after

six. Since three divides both six and nine, we might guess a keyword of three letters. It

follows that ciphertext letters one, four, seven, and so on all enciphered under the same

keyletter; so we can use frequency analysis techniques to guess the most likely values

of this letter, then repeat the process for the second and third letters of the key.

Figure 5.2 A Vigenère polyalphabetic substitution cipher.

5.2.2 The One-Time Pad

One way to make a stream cipher of this type proof against attacks is for the key se-

quence to be as long as the plaintext, and to never repeat. This was proposed by Gilbert

Vernam during World War I [428]; its effect is that given any ciphertext, and any

plaintext of the same length, there is a key that decrypts the ciphertext to the plaintext.

Regardless of the amount of computation that opponents can do, they are none the
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wiser, as all possible plaintexts are just as likely. This system is known as the one-time

pad. Leo Marks’ engaging book on cryptography in the Special Operations Executive

in World War II [523] relates how one-time key material was printed on silk, which

agents could conceal inside their clothing; whenever a key had been used, it was torn

off and burned.

An example should explain all this. Suppose you had intercepted a message from a

wartime German agent, which you knew started with “Heil Hitler,” and that the first 10

letters of ciphertext were DGTYI BWPJA. This means that the first 10 letters of the one-

time pad were wclnb tdefj, as shown in Figure 5.3.

Once he had burned the piece of silk with his key material, the spy could claim that

he was actually a member of the anti-Nazi underground resistance, and that the mes-

sage actually said “Hang Hitler.” This is quite possible, as the key material could just

as easily have been wggsb tdefj, as shown in Figure 5.4.

Now, we rarely get anything for nothing in cryptology, and the price of the perfect

secrecy of the one-time pad is that it fails completely to protect message integrity.

Suppose that you wanted to get this spy into trouble; you could change the ciphertext

to DCYTI BWPJA, as shown in Figure 5.5.

During the World War II, Claude Shannon proved that a cipher has perfect secrecy if

and only if there are as many possible keys as possible plaintexts, and if every key is

equally likely; therefore, the one-time pad is the only kind of system that offers perfect

secrecy [694, 695].

Figure 5.3 A spy’s message.

Figure 5.4 What the spy claimed he said.

Figure 5.5 Manipulating the message in Figure 5.3 to entrap the spy.
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The one-time pad is still used for high-level diplomatic and intelligence traffic, but it

consumes as much key material as there is traffic, hence is too expensive for most ap-

plications. It’s more common for stream ciphers to use a suitable pseudorandom num-

ber generator to expand a short key into a long keystream. The data is then encrypted

by exclusive-or’ing the keystream, one bit at a time, with the data. It’s not enough for

the keystream to appear “random” in the sense of passing the standard series random-

ness tests; it also must have the property that an opponent who gets their hands on even

a number of keystream bits should not be able to predict any more of them. I’ll for-

malize this more tightly in the next section.

Stream ciphers are commonly used nowadays in hardware applications where the

number of gates has to be minimized to save power. We’ll look at some actual designs

in later chapters, including the A5 algorithm used to encipher GSM mobile phone traf-

fic (in Chapter 17, “Telecom System Security”), and the multiplex shift register system

used in pay-per-view TV (in Chapter 20, “Copyright and Privacy Protection”). How-

ever, block ciphers are more suited for many applications where encryption is done in

software, so let’s look at them next.

5.2.3 An Early Block Cipher: Playfair

One of the best-known early block ciphers is the Playfair system. It was invented in

1854 by Sir Charles Wheatstone, a telegraph pioneer who also invented the concertina

and the Wheatstone bridge. The reason it’s not called the Wheatstone cipher is that he

demonstrated it to Baron Playfair, a politician; Playfair in turn demonstrated it to

Prince Albert and to Lord Palmerston (later Prime Minister) on a napkin after dinner.

This cipher uses a 5 by 5 grid, in which the alphabet is placed, permuted by the

keyword, and omitting the letter J (see Figure 5.6).

The plaintext is first conditioned by replacing J with I wherever it occurs, then di-

viding it into letter pairs, preventing double letters occurring in a pair by separating

them with an x, and finally adding a z if necessary to complete the last letter pair. The

example Playfair wrote on his napkin was “Lord Granville’s letter,” which becomes

“lo rd gr an vi lx le sl et te rz”.

It is then enciphered two letters at a time using the following rules:

• If two letters are in the same row or column, they are replaced by the suc-

ceeding letters. For example, “am” enciphers to “LE.”

• Otherwise, the two letters stand at two of the corners of a rectangle in the ta-

ble, and we replace them with the letters at the other two corners of this rec-

tangle. For example, “lo” enciphers to “MT.”

Figure 5.6 The Playfair enciphering tableau.
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Figure 5.7 Example of Playfair enciphering.

We can now encipher our specimen text as shown in Figure 5.7.

Variants of this cipher were used by the British army as a field cipher in World War

I, and by the Americans and Germans in World War II. It’s a substantial improvement

on Vigenère, as the statistics an analyst can collect are of digraphs (letter pairs) rather

than single letters, so the distribution is much flatter, and more ciphertext is needed for

an attack.

Again, it’s not enough for the output of a block cipher to just look intuitively “ran-

dom.” Playfair ciphertexts do look random, but they have the property that if you

change a single letter of a plaintext pair, then often only a single letter of the ciphertext

will change. Thus, using the key in Figure 5.7, rd enciphers to TB while rf enciphers to

OB and rg enciphers to NB. One consequence is that, given enough ciphertext or a few

probable words, the table (or an equivalent one) can be reconstructed [326]. We will

want the effects of small changes in a block cipher’s input to diffuse completely

through its output: changing one input bit should, on average, cause half of the output

bits to change. I’ll tighten these ideas up in the next section.

The security of a block cipher can be greatly improved by choosing a longer block

length than two characters. For example, the Data Encryption Standard (DES), which

is widely used in banking, has a block length of 64 bits, which equates to eight ASCII

characters and the Advanced Encryption Standard (AES), which is replacing it in many

applications, has a block length of twice this. I discuss the internal details of DES and

AES below; for the time being, I’ll just remark that an eight byte or sixteen byte block

size is not enough of itself. For example, if a bank account number always appears at

the same place in a transaction format, then it’s likely to produce the same ciphertext

every time a transaction involving it is encrypted with the same key. This could allow

an opponent who can eavesdrop on the line to monitor a customer’s transaction pattern;

it might also be exploited by an opponent to cut and paste parts of a ciphertext in order

to produce a seemingly genuine but unauthorized transaction. Unless the block is as

large as the message, the ciphertext will contain more than one block, and we will look

later at ways of binding them together.

5.2.4 One-Way Functions

The third classical type of cipher is the one-way function. This evolved to protect the

integrity and authenticity of messages, which as we’ve seen is not protected at all by

many simple ciphers, where it is often easy to manipulate the ciphertext in such a way

as to cause a predictable change in the plaintext.

After the invention of the telegraph in the mid-nineteenth century, banks rapidly be-

came its main users, and developed systems for transferring money electronically. Of

course, it isn’t the money itself that is “wired,” but a payment instruction, such as:

To Lombard Bank, London. Please pay from our account with you no. 1234567890 the

sum of £1000 to John Smith of 456 Chesterton Road, who has an account with HSBC

Bank Cambridge no. 301234 4567890123, and notify him that this was for “wedding
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present from Doreen Smith.” From First Cowboy Bank of Santa Barbara, CA, USA.

Charges to be paid by us.

Since telegraph messages were relayed from one office to another by human opera-

tors, it was possible for an operator to manipulate a payment message.

Banks, telegraph companies, and shipping companies developed code books, which

not only could protect transactions, but also shorten them—which was very important

given the costs of international telegrams at the time. A code book was essentially a

block cipher that mapped words or phrases to fixed-length groups of letters or num-

bers. Thus, “Please pay from our account with you no” might become “AFVCT.” A

competing technology was rotor machines, mechanical cipher devices that produce a

very long sequence of pseudorandom numbers, and combine them with plaintext to get

ciphertext; these were independently invented by a number of people, many of whom

dreamed of making a fortune selling them to the banking industry. Banks weren’t in

general interested, but rotor machines became the main high-level ciphers used by the

combatants in World War II.

The banks realized that neither mechanical stream ciphers nor code books protected

message authenticity. If, for example, the codeword for 1000 is mauve and for

1,000,000 is magenta, then the crooked telegraph clerk who can compare the coded

traffic with known transactions should be able to figure this out and substitute one for

the other.

The critical innovation was to use a code book, but make the coding one-way by

adding the code groups together into a number called a test key. (Modern cryptogra-

phers would describe it as a hash value or message authentication code, terms I’ll de-

fine more carefully later.)

Here is a simple example. Suppose that the bank has a code book with a table of

numbers corresponding to payment amounts, as in Figure 5.8. In order to authenticate a

transaction for $376,514, we add 53 (no millions), 54 (300,000), 29 (70,000) and 71

(6,000). (It’s common to ignore the less significant digits of the amount.) This gives us

a test key of 207.

Most real systems were more complex than this; they usually had tables for currency

codes, dates, and even recipient account numbers. In the better systems, the code

groups were four digits long rather than two; and to make it harder for an attacker to

reconstruct the tables, the test keys were compressed: a key of 7549 might become 23

by adding the first and second digits, and the third and fourth digits, and ignoring the

carry.

Test keys are not strong by the standards of modern cryptography. Given somewhere

between a few dozen and a few hundred tested messages, depending on the design de-

tails, a patient analyst could reconstruct enough of the tables to forge a transaction.

With a few carefully chosen messages inserted into the banking system by an accom-

plice, it’s even easier still. But the banks got away with it: test keys worked fine from

the late nineteenth century through the 1980s. In several years working as a bank secu-

rity consultant, and listening to elderly bank auditors’ tales over lunch, I only heard of

two cases of fraud that exploited it: one external attempt involving cryptanalysis,

which failed because the attacker didn’t understand bank procedures, and one success-

ful but small fraud involving a crooked staff member. I’ll explain the systems that re-

placed test keys, and cover the whole issue of how to tie cryptographic authentication

mechanisms to procedural protection such as dual control, in Chapter 9, “Banking and
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Bookkeeping.” For now, test keys are the classic example of a one-way function used

for authentication.

Figure 5.8 A simple test key system.

Later examples included functions for applications discussed in the previous chap-

ters, such as storing passwords in a one-way encrypted password file, and computing a

response from a challenge in an authentication protocol.

5.2.5 Asymmetric Primitives

Finally, some modern cryptosystems are asymmetric, in that different keys are used for

encryption and decryption. For example, I publish on my Web page a public key with

which people can encrypt messages to send to me; I can then decrypt them using the

corresponding private key.

There are some precomputer examples of this too; perhaps the best is the postal

service. You can send me a private message simply by addressing it to me and drop-

ping it into a post box. Once that’s done, I should be the only person who’ll be able to

read it. There are, of course, many things that can go wrong. You might get my address

wrong (whether by error or as a result of deception); the police might get a warrant to

open my mail; the letter might be stolen by a dishonest postman; a fraudster might re-

direct my mail without my knowledge; or a thief might steal the letter from my mail-

box. Similar things can go wrong with public key cryptography. False public keys can

be inserted into the system; computers can be hacked; people can be coerced; and so

on. We’ll look at these problems in more detail in later chapters.

Another asymmetric application of cryptography is the digital signature. The idea

here is that I can sign a message using a private signature key, then anybody can check

this using my public signature verification key. Again, there are precomputer ana-

logues in the form of manuscript signatures and seals; and again, there is a remarkably

similar litany of things that can go wrong, both with the old way of doing things and

with the new.

5.3 The Random Oracle Model

Before delving into the detailed design of modern ciphers, I want to take a few pages

to refine the definitions of the various types of cipher. (Readers who are phobic about

theoretical computer science should skip this section at a first pass; I’ve included it

because a basic understanding of random oracles is needed to understand many recent

research papers on cryptography.)

The random oracle model seeks to formalize the idea that a cipher is “good” if, when

viewed in a suitable way, it is indistinguishable from a random function of a certain
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type. I will call a cryptographic primitive pseudorandom if it passes all the statistical

and other tests that a random function of the appropriate type would pass, in whichever

model of computation we are using. Of course, the cryptographic primitive will actu-

ally be an algorithm, implemented as an array of gates in hardware or a program in

software; but the outputs should “look random” by being indistinguishable from a suit-

able random oracle given the type and the number of tests that our computation model

permits.

In this way, we can hope to separate the problem of designing ciphers from the

problem of using them correctly. Mathematicians who design ciphers can provide evi-

dence that their cipher is pseudorandom. Quite separately, a computer scientist who

has designed a cryptographic protocol can try to prove that it is secure on the assump-

tion that the crypto primitives used to implement it are pseudorandom. The process

isn’t infallible, as we saw with proofs of protocol correctness. Theorems can have

bugs, just like programs; the problem could be idealized wrongly; or the mathemati-

cians might be using a different model of computation from the computer scientists.

But at least some progress can be made.

You can visualize a random oracle as an elf sitting in a black box with a source of

physical randomness and some means of storage (see Figure 5.9)—represented in the

figure by the dice and the scroll. The elf will accept inputs of a certain type, then look

in the scroll to see whether this query has ever been answered before. If so, it will give

the answer it finds there; if not, it will generate an answer at random by throwing the

dice. We’ll further assume that there is some kind of bandwidth limitation—that the elf

will answer only so many queries every second. This ideal will turn out to be useful as

a way of refining our notions of a stream cipher, a hash function, a block cipher, a

public key encryption algorithm and a digital signature scheme.

Finally, we can get a useful simplification of our conceptual model by noting that

encryption can be used to protect data across time as well as across distance. A good

example is when we encrypt data before storing it with a third-party backup service,

and may decrypt it later if we have to recover from a disk crash. In this case, we need

only a single encryption/decryption device, rather than one at each end of a communi-

cations link. This is the sort of application we will be modelling here. The user takes a

diskette to the cipher machine, types in a key, issues an instruction, and the data get

transformed in the appropriate way.

Figure 5.9 The random oracle.
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Let’s look at this model in more detail for these different cryptographic primitives.

5.3.1 Random Functions: Hash Functions

The first type of random oracle is the random function. A random function accepts an

input string of any length, and outputs a random string of fixed length, say n bits long.

So the elf just has a simple list of inputs and outputs, which grows steadily as it works.

(We’ll ignore any effects of the size of the scroll and assume that all queries are an-

swered in constant time.)

Random functions are our model for one-way functions or cryptographic hash func-

tions, which have many practical uses. They were first used in computer systems for

one-way encryption of passwords in the 1960s and—as mentioned in Chapter 2—are

used today in a number of authentication systems. They are also used to compute mes-

sage digests; given a message M, we can pass it through a pseudorandom function to

get a digest, say h(M), which can stand in for the message in various applications. One

example is a digital signature: signature algorithms tend to be slow if the message is

long, so it’s usually convenient to sign a message digest rather than the message itself.

Another application is timestamping. If we want evidence that we possessed a given

electronic document by a certain date, we might submit it to an online timestamping

service. However, if the document is still secret—for example an invention that we

plan to patent, and for which we merely want to establish a priority date—then we

might not send the timestamping service the whole document, but just the message di-

gest.

The output of the hash function is known as the hash value or message digest; an in-

put corresponding to a given hash value is its preimage; the verb to hash is used to

refer to computation of the hash value. Colloquially, the hash is also used as a noun to

refer to the hash value.

5.3.1.1 Properties

The first main property of a random function is one-wayness. Given knowledge of an

input x, we can easily compute the hash value h(x); but it is very difficult given the

hash value h(x) to find a corresponding preimage x if one is not already known. (The

elf will only pick outputs for given inputs, not the other way round.) As the output is

random, the best an attacker who wants to invert a random function can do is to keep

on feeding in more inputs until he or she gets lucky. A pseudorandom function will

have the same property; or this could be used to distinguish it from a random function,

contrary to our definition. It follows that a pseudorandom function will also be a one-

way function, provided there are enough possible outputs that the opponent can’t find a

desired target output by chance. This means choosing the output to be an n-bit number

where the opponent can’t do anything near 2” computations.

A second property of pseudorandom functions is that the output will not give any in-

formation at all about even part of the input. Thus, one-way encryption of the value x

can be accomplished by concatenating it with a secret key k and computing h(x, k). If

the hash function isn’t random enough though, using it for one-way encryption in this

manner is asking for trouble. A topical example comes from the authentication in GSM

mobile phones, where a 16-byte challenge from the base station is concatenated with a

16-byte secret key known to the phone into a 32-byte number, and passed through a

hash function to give an 11-byte output [138]. The idea is that the phone company also
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knows k and can check this computation, while someone who eavesdrops on the radio

link can only get a number of values of the random challenge x and corresponding out-

put from h(x, k). The eavesdropper must not be able to get any information about k or

be able to compute h(y, k) for a new input y. But the one-way function used by most

phone companies isn’t one-way enough, with the result that an eavesdropper who can

pretend to be a base station and send a phone about 60,000 suitable challenges and get

the responses can compute the key. I’ll discuss this failure in more detail in Chapter

17, Section 17.3.3.

A third property of pseudorandom functions with sufficiently long outputs is that it

is hard to find collisions, that is, different messages M1 ! M2 with h(M1)=h(M2). Unless

the opponent can find a shortcut attack (which would mean the function wasn’t really

pseudorandom), then the best way of finding a collision is to collect a large set of mes-

sages Mi and their corresponding hashes h(Mi), sort the hashes, and look for a match. If

the hash function output is an n-bit number, so that there are 2
n
 possible hash values,

then the number of hashes the enemy will need to compute before he or she can expect

to find a match will be about the square root of this, namely 2
n/2

 hashes. This fact is of

major importance in security engineering, so let’s look at it more closely.

5.3.1.2 The Birthday Theorem

The birthday theorem, first known as capture-recapture statistics, was invented in the

1930s to count fish [679]. Suppose there are N fish in a lake, and you catch m of them,

tag them, and throw them back; then when you first catch a fish you’ve tagged already,

m should be “about” the square root of N. The intuitive reason this holds is that once

you have !N samples, each could potentially match any of the others, so the number of

possible matches is about !N!N or N, which is what you need.
1

The birthday theorem has many applications for the security engineer. For example,

if we have a biometric system that can authenticate a person’s claim to identity with a

probability of only one in a million that two randomly selected subjects will be falsely

identified as the same person, this doesn’t mean that we can use it as a reliable means

of identification in a university with a user population of twenty thousand staff and

students. This is because there will be almost two hundred million possible pairs. In

fact, you can expect to find the first collision—the first pair of people who can be

mistaken for each other by the system—once you have somewhat over a thousand peo-

ple enrolled.

In some applications collision search attacks aren’t a problem, such as in challenge

response protocols where an attacker would have to be able to find the answer to the

challenge just issued, and where you can prevent challenges repeating. (For example,

the challenge might not be really random but generated by encrypting a counter.) In

identify-friend-or-foe (IFF) systems, for example, common equipment has a response

length of 48 to 80 bits.

                                                            

1
 More precisely, the probability that m fish chosen randomly from N fish are different is " = N(N

– 1) ··· (N – m + 1)/N
m
 which is asymptotically solved by N ! m

2
/2 log(1/ ")[451].
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However, there are other applications in which collisions are unacceptable. In a

digital signature application, if it were possible to find collisions with h(M1) = h(M2)

but M1 ! M2, then a Mafia-owned bookstore’s Web site might get you to sign a mes-

sage M1 saying something like, “I hereby order a copy of Rubber Fetish volume 7 for

$32.95,” and then present the signature together with an M2, saying something like, “I

hereby mortgage my house for $75,000; and please make the funds payable to Mafia

Holdings Inc., Bermuda.”

For this reason, hash functions used with digital signature schemes generally have n

large enough to make them collision-free, that is, that 2
n/2

 computations are impractical

for an opponent. The two most common are MD5, which has a 128-bit output and will

thus require about 2
64

 computations to break, and SHA1 with a 160-bit output and a

work factor for the cryptanalyst of about 2
80

. MD5, at least, is starting to look vulner-

able: already in 1994, a design was published for a $10 million machine that would

find collisions in 24 days, and SHA1 will also be vulnerable in time. So the U.S. Na-

tional Institute of Standards and Technology (NIST) has recently introduced still wider

hash functions—SHA256 with a 256-bit output, and SHA512 with 512 bits. In the ab-

sence of cryptanalytic shortcut attacks—that is, attacks requiring less computation than

brute force search—these should require 2
128

 and 2
256

 effort respectively to find a colli-

sion. This should keep Moore’s Law at bay for a generation or two. In general, a pru-

dent designer will use a longer hash function where this is possible, and the use of the

MD series hash functions in new systems should be avoided (MD5 had a predecessor

MD4 which turned out to be cryptanalytically weak, with collisions and preimages

being found).

Thus, a pseudorandom function is also often referred to as being collision-free or

collision-intractable. This doesn’t mean that collisions don’t exist—they must, as the

set of possible inputs is larger than the set of possible outputs—just that you will never

find any of them. The (usually unstated) assumption is that the output must be long

enough.

5.3.2 Random Generators: Stream Ciphers

The second basic cryptographic primitive is the random generator, also known as a

keystream generator or stream cipher. This is also a random function, but unlike in the

hash function case it has a short input and a long output. (If we had a good pseudoran-

dom function whose input and output were a billion bits long, and we never wanted to

handle any objects larger than this, we could turn it into a hash function by throwing

away all but a few hundred bits of the output, and a stream cipher by padding all but a

few hundred bits of the input with a constant.) At the conceptual level, however, it’s

common to think of a stream cipher as a random oracle whose input length is fixed

while the output is a very long stream of bits, known as the keystream. It can be used

quite simply to protect the confidentiality of backup data: we go to the keystream gen-

erator, enter a key, get a long file of random bits, and exclusive-or it with our plaintext

data to get ciphertext, which we then send to our backup contractor. We can think of

the elf generating a random tape of the required length each time he is presented with a

new key as input, giving it to us and keeping a copy of it on his scroll for reference in

case he’s given the same input again. If we need to recover the data, we go back to the

generator, enter the same key, get the same long file of random data, and exclusive-or

it with our ciphertext to get our plaintext data back again. Other people with access to
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the keystream generator won’t be able to generate the same keystream unless they

know the key.

I mentioned the one-time pad, and Shannon’s result that a cipher has perfect secrecy

if and only if there are as many possible keys as possible plaintexts, and every key is

equally likely. Such security is called unconditional (or statistical) security, as it

doesn’t depend either on the computing power available to the opponent or on there

being no future advances in mathematics that provide a shortcut attack on the cipher.

One-time pad systems are a very close fit for our theoretical model, except that they

are typically used to secure communications across space rather than time: there are

two communicating parties who have shared a copy of the randomly generated key-

stream in advance. Vernam’s original telegraph cipher machine used punched paper

tape; of which two copies were made in advance, one for the sender and one for the

receiver. A modern diplomatic system might use optical tape, shipped in a tamper-

evident container in a diplomatic bag. Various techniques have been used to do the

random generation. Marks describes how SOE agents’ silken keys were manufactured

in Oxford by little old ladies shuffling counters.

One important problem with keystream generators is that we want to prevent the

same keystream being used more than once, whether to encrypt more than one backup

tape or to encrypt more than one message sent on a communications channel. During

World War II, the amount of Russian diplomatic traffic exceeded the quantity of one-

time tape they had distributed in advance to their embassies, so it was reused. This was

a serious blunder. If M1 + K = C1, and M2 + K = C2, then the opponent can combine the

two ciphertexts to get a combination of two messages: C1 – C2 = M1 – M2; and if the

messages Mi have enough redundancy, then they can be recovered. Text messages do

in fact contain enough redundancy for much to be recovered; and in the case of the

Russian traffic, this led to the Venona project in which the United States and United

Kingdom decrypted large amounts of wartime Russian traffic afterward and broke up a

number of Russian spy rings. The saying is: “Avoid the two-time tape!”

Exactly the same consideration holds for any stream cipher, and the normal engi-

neering practice when using an algorithmic keystream generator is to have a seed as

well as a key. Each time the cipher is used, we want it to generate a different key-

stream, so the key supplied to the cipher should be different. So, if the long-term key

that two users share is K, they may concatenate it with a seed that is a message number

N (or some other nonce), then pass it through a hash function to form a working key

h(K, N). This working key is the one actually fed to the cipher machine.

5.3.3 Random Permutations: Block Ciphers

The third type of primitive, and the most important in modern commercial cryptogra-

phy, is the block cipher, which we model as a random permutation. Here, the function

is invertible, and the input plaintext and the output ciphertext are of a fixed size. With

Playfair, both input and output are two characters; with DES, they’re both bit strings of

64 bits. Whatever the number of symbols and the underlying alphabet, encryption acts

on a block of fixed length. (If you want to encrypt a shorter input, you have to pad it,

as with the final z in our Playfair example.)
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We can visualize block encryption as follows. As before, we have an elf in a box

with dice and a scroll. On the left is a column of plaintexts, and on the right is a col-

umn of ciphertexts. When we ask the elf to encrypt a message, it checks in the left-

hand column to see if has a record of it. If not, it uses the dice to generate a random

ciphertext of the appropriate size (and one that doesn’t appear yet in the right-hand

column of the scroll), and writes down the plaintext/ciphertext pair in the scroll. If it

does find a record, it gives us the corresponding ciphertext from the right-hand col-

umn.

When asked to decrypt, the elf does the same, but with the function of the columns

reversed: he takes the input ciphertext, checks it (this time on the right-hand scroll);

and if he finds it, he gives the message with which it was previously associated. If not,

he generates a message at random (which does not already appear in the left column)

and notes it down.

A block cipher is a keyed family of pseudorandom permutations. For each key, we

have a single permutation that is independent of all the others. We can think of each

key as corresponding to a different scroll. The intuitive idea is that, given the plaintext

and the key, a cipher machine should output the ciphertext; and given the ciphertext

and the key, it should output the plaintext; but given only the plaintext and the cipher-

text, it should output nothing.

Let’s write a block cipher using the notation established for encryption in Chapter 2:

C = {M}K

The random permutation model also allows us to define different types of attack on

block ciphers. In a known plaintext attack, the opponent is just given a number of ran-

domly chosen inputs and outputs from the oracle corresponding to a target key. In a

chosen plaintext attack, the opponent is allowed to put a certain number of plaintext

queries and get the corresponding ciphertexts. In a chosen ciphertext attack, he gets to

make a number of ciphertext queries. In a chosen plaintext/ciphertext attack, he is al-

lowed to make queries of either type. Finally, in a related key attack, the opponent can

make queries that will be answered using keys related to the target key K (such as K +

1 and K + 2).

In each case, the objective of the attacker may be either to deduce the answer to a

query he hasn’t already made (a forgery attack), or to recover the key (unsurprisingly

known as a key recovery attack).

This precision about attacks is important. When someone discovers a vulnerability

in a cryptographic primitive, it may or may not be relevant to your application. Often,

it won’t be, but it will be hyped by the media, so you will need to be able to explain

clearly to your boss and your customers why it’s not a problem. To do this, you have to

look carefully at what kind of attack has been found, and what the parameters are. For

example, the first major attack announced on the DES algorithm requires 2
47

 chosen

plaintexts to recover the key, while the next major attack improved this to 2
43

 known

plaintexts. While these attacks were of great scientific importance, their practical engi-

neering effect was zero, as no practical systems make that much known (let alone cho-

sen) text available to an attacker. Such attacks are often referred to as certificational.

They can have a commercial effect, though: the attacks on DES undermined confi-

dence in it, and started moving people to other ciphers. In some other cases, an attack

that started off as certificational has been developed by later ideas into an exploit.
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Which sort of attacks you should be worried about depends very much on your ap-

plication. With a broadcast entertainment system, for example, you can buy a decoder,

observe a lot of material, and compare it with the enciphered broadcast signal; so a

known-plaintext attack is the main threat to worry about. But there are surprisingly

many applications where chosen plaintext attacks are possible. Obvious ones include

ATMs, where, if you allow customers to change their PINs at will, they can change

them through a range of possible values and observe the enciphered equivalents using a

wiretap on the line from the ATM to the bank. A more traditional example is diplo-

matic messaging systems, where it has been known for a host government to give an

ambassador a message to transmit to her capital that has been specially designed to

help the local cryptanalysts fill out the missing gaps in the ambassador’s code book

[428]. In general, if the opponent can insert any kind of message into your system, it’s

chosen plaintext attacks you should worry about.

The other attacks are more specialized. Chosen plaintext/ciphertext attacks may be a

worry where the threat is a lunchtime attacker, someone who gets temporary access to

some cryptographic equipment while its authorized user is out. Related key attacks are

of concern where the block cipher is used as a building block in the construction of a

hash function (which I discuss later).

5.3.4 Public Key Encryption and Trapdoor One-Way Permu-
tations

A public key encryption algorithm is a special kind of block cipher in which the elf will

perform the encryption corresponding to a particular key for anyone who requests it,

but will do the decryption operation only for the key’s owner. To continue with our

analogy, the user might give a secret name to the scroll, which only she and the elf

know, use the elf’s public one-way function to compute a hash of this secret name,

publish the hash, and instruct the elf to perform the encryption operation for anybody

who quotes this hash.

This means that a principal, say Alice, can publish a key; and if Bob wants to, he can

now encrypt a message and send it to her, even if they have never met. All that is nec-

essary is that they have access to the oracle. There are some more details that have to

be taken care of, such as how Alice’s name can be bound to the key, and indeed

whether it means anything to Bob. We’ll deal with these later.

A common way of implementing public key encryption is the trapdoor one-way

permutation. This is a computation that anyone can perform, but that can be reversed

only by someone who knows a trapdoor such as a secret key. This model is like the

one-way function model of a cryptographic hash function, but I state it formally none-

theless: a public key encryption primitive consists of a function that, given a random

input R, will return two keys, KR (the public encryption key) and KR
–1

 (the private de-

cryption key) with the properties that:
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• Given KR, it is unfeasible to compute KR
–1

 (so it’s not possible to compute R

either).

• There is an encryption function {...} that, applied to a message M using the
encryption key KR, will produce a ciphertext C = {M}KR.

• There is a decryption function that, applied to a ciphertext C, using the de-

cryption key KR
–1

, will produce the original message M = {C}KR
–1

.

For practical purposes, we will want the oracle to be replicated at both ends of the

communications channel, and this means either using tamper-resistant hardware or

(more commonly) implementing its functions using mathematics rather than metal.

That’s why the second of our models, which is somewhat less abstract than the first,

can be more useful. Anyway, we’ll look at implementation details later.

5.3.5 Digital Signatures

The final cryptographic primitive I’ll define here is the digital signature. The basic

idea is that a signature on a message can be created by only one person, but checked by

anyone. It can thus perform the sort of function in the electronic world that ordinary

signatures do in the world of paper.

Signature schemes can be deterministic or randomized: in the first, computing a sig-

nature on a message will always give the same result; in the second, it will give a dif-

ferent result each time you compute it. (The latter is more like handwritten signatures;

no two are ever alike but the bank has a means of deciding whether a given specimen is

genuine or forged). Also, signature schemes may or may not support message recovery.

If they do, then, given the signature, anyone can recover the message on which it was

generated; if they don’t, then the verifier needs to know or guess the message before he

can perform the verification. (There are further, more specialized, signature schemes,

such as blind signatures and threshold signatures, but I’ll postpone discussion of them

for now.)

Formally, a signature scheme, like public key encryption scheme, has a keypair gen-

eration function that, given a random input R will return two keys, # R (the private

signing key) and VR (the public signature verification key) with the properties that:

• Given the public signature verification key VR, it is infeasible to compute, the

private signing key # R.

• There is a digital signature function that, given a message M and a private sig-
nature key # R, will produce a signature Sig#R (M).

• There is a signature verification function that, given the signature Sig#R (M)

and the public signature verification key VR, will output TRUE if the signature

was computed correctly with # R; otherwise, it will output FALSE.

In our random oracle model, we can model a digital signature algorithm as a random

function that reduces any input message to a one-way hash value of fixed length, fol-

lowed by a special kind of block cipher in which the elf will perform the operation in

one direction, known as signature, for only one principal, while in the other direction,

it will perform verification for anybody.
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Signature verification can take two forms. In the basic scheme, the elf (or the sig-

nature verification algorithm) outputs only TRUE or FALSE, depending on whether

the signature is good. But in a scheme with message recovery, anyone can input a sig-

nature and get back the message corresponding to it. In our elf model, this means that

if the elf has seen the signature before, it will give the message corresponding to it on

the scroll; otherwise, it will give a random value (and record the input and the random

output as a signature and message pair). This is sometimes desirable: when sending

short messages over a low-bandwidth channel, it can save space if only the signature

has to be sent rather than the signature plus the message. An example is in the ma-

chine-printed postage stamps, or indicia, being brought into use in the United States

and other countries: the stamp consists of a 2-d barcode with a digital signature made

by the postal meter and that must contain all sorts of information, such as the value, the

date, and the sender’s and recipient’s post codes. There’s more detail about this at the

end of Chapter 12, “Security Printing and Seals.”

However, in the general case, we do not need message recovery, as the message to

be signed may be of arbitrary length; so we will first pass it through a hash function

and then sign the hash value. As hash functions are one-way, the resulting compound

signature scheme does not have message recovery—although if the underlying signa-

ture scheme does, then the hash of the message can be recovered from the signature.

5.4 Symmetric Crypto Primitives

Now that we have defined the basic crypto primitives, we will look under the hood to

see how they can be implemented in practice. While most explanations are geared to-

ward graduate mathematics students, the presentation I’ll give here is based on one

I’ve developed over several years with computer science students. So I hope it will let

the non-mathematician grasp the essentials. In fact, even at the research level, most of

cryptography is as much computer science as mathematics. Modern attacks on ciphers

are put together from guessing bits, searching for patterns, sorting possible results, and

so on, rather than from anything particularly highbrow.

We’ll focus in this section on block ciphers, then in the next section move on to how

you can make hash functions and stream ciphers from them, and vice versa. (In later

chapters, we’ll also look at some special-purpose ciphers.)

5.4.1 SP-Networks

Shannon suggested in the 1940s that strong ciphers could be built by combining sub-

stitution with transposition repeatedly. For example, one might add some key material

to a block of input text, then shuffle subsets of the input, and continue in this way a

number of times. He described the properties of a cipher as being confusion and diffu-

sion—adding unknown key values will confuse an attacker about the value of a plain-

text symbol, while diffusion means spreading the plaintext information through the

ciphertext. Block ciphers need diffusion as well as confusion.
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The earliest block ciphers were simple networks that combined substitution and

permutation circuits, and so were called SP-networks. The diagram in Figure 5.10

shows an SP-network with 16 inputs, which we can imagine as the bits of a 16-bit

number, and two layers of 4-bit invertible substitution boxes (or S-boxes), each of

which can be visualized as a lookup table containing some permutation of the numbers

0 to 15.

Figure 5.10 A simple 16-bit SP-network block cipher.

The point of this arrangement is that if we were to implement an arbitrary 16-bit to

16-bit function in digital logic, we would need 2
20

 bits of memory—one lookup table

of 2
16

 bits for each single output bit. That’s hundreds of thousands of gates, while a 4-

bit to 4-bit function takes only 64 bits of memory. One might hope that with suitable

choices of parameters, the function produced by iterating this simple structure would

be indistinguishable from a random 16-bit to 16-bit function to an opponent who didn’t

know the value of the key. The key might consist of some choice of a number of 4-bit

S-boxes, or it might be added at each round to provide confusion, and the resulting text

fed through the S-boxes to provide diffusion.

Three things need to be done to make such a design secure:

1. The cipher needs to be “wide” enough.

2. The cipher needs to have enough rounds.

3. The S-boxes need to be suitably chosen.

5.4.1.1 Block Size

First, a block cipher that operated on 16-bit blocks would have rather limited applica-

bility, as an opponent could just build a dictionary of plaintext and ciphertext blocks as

he or she observed them. The birthday theorem tells us that even if the input plaintexts

were random, the opponent would expect to find a match as soon as she had seen a lit-

tle over 2
8
 blocks. So a practical block cipher will usually deal with plaintexts and ci-

phertexts of 64 bits, 128 bits, or even more. If we are using 4-bit to 4-bit S-boxes, we

may have 16 of them (for a 64-bit block size) or 32 of them (for a 128 bit block size).
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5.4.1.2 Number of Rounds

Second, we must have enough rounds. The two rounds in Figure 5.10 are completely

inadequate, as an opponent can deduce the values of the S-boxes by tweaking input bits

in suitable patterns. For example, she could hold the rightmost 12 bits constant and try

tweaking the leftmost 4 bits, to deduce the values in the top left S-box. (The attack is

slightly more complicated than this, as sometimes a tweak in an input bit to an S-box

won’t produce a change in any output bit, so we have to change one of its other inputs

and tweak again. But implementing it is still a simple student exercise.)

The number of rounds we require depends on the speed with which data diffuse

through the cipher. In the above simple example, diffusion is very slow because each

output bit from one round of S-boxes is connected to only one input bit in the next

round. Instead of having a simple permutation of the wires, it is more efficient to have

a linear transformation in which each input bit in one round is the exclusive-or of sev-

eral output bits in the previous round. Of course, if the block cipher is to be used for

decryption as well as encryption, this linear transformation will have to be invertible.

We’ll see some concrete examples below in the sections on AES and Serpent.

5.4.1.3 Choice of S-Boxes

The design of the S-boxes also affects the number of rounds required for security, and

studying bad choices gives us our entry into the deeper theory of block ciphers. Sup-

pose that the S-box were the permutation that maps the inputs (0, 1, 2,..., 15) to the

outputs (5, 7, 0, 2, 4, 3, 1, 6, 8, 10, 15, 12, 9, 11, 14, 13). Then the most significant bit

of its input would come through unchanged as the most significant bit of its output. If

the same S-box were used in both rounds in the preceding cipher, then the most sig-

nificant bit of the input block would pass through to become the most significant bit of

the output block. So we certainly couldn’t pretend that our cipher was pseudorandom.

5.4.1.4 Linear Cryptanalysis

Attacks on real block ciphers are usually harder to spot than in this artificial example,

but they use the same ideas. It might turn out that the S-box had the property that bit 1

of the input was equal to bit 2, plus bit 4 of the output; more commonly, there will be

linear approximations to an S-box, which hold with a certain probability. Linear cryp-

tanalysis [526] proceeds by collecting a number of relations such as “bit 2 plus bit 5 of

the input to the first S-box is equal to bit 1 plus bit 8 of the output, with probability

13/16,” then searching for ways to glue them together into an algebraic relation be-

tween input bits, output bits, and keybits that holds with a probability different from

one-half. If we can find a linear relationship that holds over the whole cipher with

probability p = 0.5 + 1/M, then according to probability theory, we can expect to start

recovering keybits once we have about M
2
 known texts. If the best linear relationship

has an M
2
 greater than the total possible number of known texts (namely 2

n
 where the

inputs and outputs are n-bits wide), then we consider the cipher to be secure against

linear cryptanalysis.
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5.4.1.5 Differential Cryptanalysis

Differential cryptanalysis [102] is similar but is based on the probability that a given

change in the input to an S-box will give rise to a certain change in the output. A typi-

cal observation on an 8-bit S-box might be that “if we flip input bits 2, 3, and 7 at

once, then with probability 11/16 the only output bits that will flip are 0 and 1.” In

fact, with any nonlinear Boolean function, tweaking some combination of input bits

will cause some combination of output bits to change with a probability different from

one half. The analysis procedure is to look at all possible input difference patterns and

look for those values $i, $o such that an input change of $i will produce an output

change of $o with particularly high (or low) probability.

As in linear cryptanalysis, we then search for ways to join things up so that an input

difference that we can feed into the cipher will produce a known output difference with

a useful probability over a number of rounds. Given enough chosen inputs, we will see

the expected output and be able to make deductions about the key. As in linear cryp-

tanalysis, it’s common to consider the cipher to be secure if the number of texts re-

quired for an attack is greater than the total possible number of different texts for that

key. (We have to be careful of pathological cases, such as if we had a cipher with a 32-

bit block and a 128-bit key with a differential attack whose success probability given a

single pair was 2
–40

. Given a lot of text under a number of keys, we’d eventually solve

for the current key.)

There are a quite a few variants on these two themes. For example, instead of look-

ing for high-probability differences, we can look for differences that can’t happen (or

that happen only rarely). This has the charming name of impossible cryptanalysis, even

though it definitely possible against many systems [101]. There are also various spe-

cialized attacks on particular ciphers.

Block cipher design involves a number of trade-offs. For example, we can reduce

the per-round information leakage, and thus the required number of rounds, by de-

signing the rounds carefully. However, a complex design might be slow in software, or

need a lot of gates in hardware, so using simple rounds but more of them might be

better. Simple rounds may also be easier to analyze. A prudent designer will also use

more rounds than are strictly necessary to block the attacks known today, in order to

give some margin of safety against improved mathematics in the future. We may be

able to show that a cipher resists all the attacks we know of, but this says little about

whether it will resist the attacks we don’t know of yet. (A general security proof for a

block cipher would appear to imply a proof about an attacker’s computational powers,

which might entail a result such as P ! NP that would revolutionize computer science.)

The point that the security engineer should remember is that block cipher cryptana-

lysis is a complex subject about which we have a fairly extensive theory, so it is better

to use an off-the-shelf design that has been thoroughly scrutinized by experts, rather

than rolling your own.

5.4.1.6 Serpent

As a concrete example, the encryption algorithm Serpent is an SP-network with input

and output block sizes of 128 bits. These are processed through 32 rounds, in each of

which we first add 128 bits of key material, then pass the text through 32 S-boxes of 4-

bits width, then perform a linear transformation that takes each output of one round to

the inputs of a number of S-boxes in the next round. Rather than each input bit in one
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round coming from a single output bit in the last, it is the exclusive-or of between two

and seven of them. This means that a change in an input bit propagates rapidly through

the cipher—a so-called avalanche effect that makes both linear and differential attacks

harder. After the final round, a further 128 bits of key material are added to give the

ciphertext. The 33 times 128 bits of key material required are computed from a user-

supplied key of up to 256 bits.

This is a real cipher using the structure of Figure 5.10, but modified to be “wide”

enough and to have enough rounds. The S-boxes are chosen to make linear and differ-

ential analysis hard; they have fairly tight bounds on the maximum linear correlation

between input and output bits, and on the maximum effect of toggling patterns of input

bits. Each of the 32 S-boxes in a given round is the same; this means that bit-slicing

techniques can be used to give a very efficient software implementation on 32-bit

processors.

Its simple structure makes Serpent easy to analyze, and it can be shown that it with-

stands all the currently known attacks. (A full specification of Serpent is given in [40]

and can be downloaded, together with implementations in a number of languages, from

[41].)

5.4.2 The Advanced Encryption Standard (AES)

This discussion has prepared us to describe the Advanced Encryption Standard, an al-

gorithm also known as Rijndael after its inventors Vincent Rijmen and Joan Daemen.
2

This algorithm acts on 128-bit blocks and can use a key of 128, 192 or 256 bits in

length. It is an SP-network; in order to specify it, we need to fix the S-boxes, the linear

transformation between the rounds, and the way in which the key is added into the

computation.

Rijndael uses a single S-box which acts on a byte input to give a byte output. For

implementation purposes it can be regarded simply as a lookup table of 256 bytes; it is

actually defined by the equation S(x) = M(1/x) + b over the field GF(2
8
) where M is a

suitably chosen matrix and b is a constant. This construction gives tight differential

and linear bounds.

The linear transformation is based on arranging the 16 bytes of the value being enci-

phered in a square and then doing bytewise shuffling and mixing operations. (Rijndael

is descended from an earlier cipher called Square, which introduced this technique.)

The first step in the linear transformation is the shuffle in which the top row of four

bytes is left unchanged, while the second row is shifted one place to the left, the third

row by two places and the fourth row by three places. The second step is a column

mixing step in which the four bytes in a column are mixed using a matrix multiplica-

tion. This is illustrated in Figure 5.11 which shows, as an example, how a change in the

value of the third byte in the first column is propagated. The effect of this combination

is that a change in the input to the cipher can potentially affect all of the output after

just two rounds.

                                                            

2
 If you’re from Holland, Belgium or South Africa, Rijndael is pronounced just as you would ex-

pect; if you’re not a Dutch speaker, it is something like ‘rain-dahl.’ The ‘J’ is not a consonant in
Dutch, so Rijndael is not pronounced anything like ‘Region Deal,’ and Rijmen is pronounced as

‘Raymen’ not ‘Ridgemen.’
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Figure 5.11 The Rijndael linear transformation, illustrated by its effect on byte 3 of the in-

put.

The key material is added byte by byte after the linear transformation. This means

that 16 bytes of key material are needed per round; they are derived from the user sup-

plied key material by means of a recurrence relation.

The algorithm uses 10 rounds with 128-bit keys, 12 rounds with 192-bit keys and 14

rounds with 256-bit keys. These give about a 50% margin of safety; the best shortcut

attacks known at the time of writing can tackle 6 rounds for 128 bit keys, 7 rounds for

192 bit keys and 9 rounds for 256 bit keys. The general belief in the block cipher

community is that even if advances in the state of the art do permit attacks on Rijndael

with the full number of rounds, they will be purely certificational attacks in that they

will require infeasibly large numbers of texts. (Rijndael’s margin of safety against at-

tacks that require only feasible numbers of texts is about 100%.) Although there is no

proof of security—whether in the sense of pseudorandomness, or in the weaker sense

of an absence of shortcut attacks—there is now a high level of confidence that Rijndael

is secure for all practical purposes.

Even although I was an author of Serpent which was an unsuccessful finalist in the

AES competition (Rijndael got 86 votes, Serpent 59 votes, Twofish 31 votes, RC6 23

votes and MARS 13 votes at the last AES conference), and although Serpent was de-

signed to have an even larger security margin than Rijndael, I recommend to my clients

that they use Rijndael where a general purpose block cipher is required. I recommend

the 256-bit-key version, and not because I think that the 10 rounds of the 128-bit-key

variant will be broken anytime soon. Longer keys are better because some key bits of-

ten leak in real products, as we’ll discuss at some length in Chapters 14 and 15. It does

not make any sense to implement Serpent as well, ‘just in case Rijndael is broken’: the

risk of a fatal error in the algorithm negotiation protocol is orders of magnitude greater

than the risk that anyone will come up with a production attack on Rijndael. (We’ll see

a number of examples later where using multiple algorithms, or using an algorithm like

DES multiple times, caused something to break horribly.)

The definitive specification of Rijndael will be published sometime in 2001 as a

Federal Information processing Standard. Meanwhile, the algorithm is described in

papers on the Rijndael home page [647]; there are also a number of implementations

available both there and elsewhere on the net. The paper describing Rijndael’s prede-

cessor, Square, is at [213].
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Figure 5.12 The Feistel cipher structure.

5.4.3 Feistel Ciphers

Most block ciphers use a more complex structure, which was invented by Horst Feis-

tel’s technicians while they were developing cryptographic protection for IFF in the

1950s and early 1960s. Feistel then moved to IBM and founded a research group that

produced the Data Encryption Standard, (DES) algorithm, which is the mainstay of

financial transaction processing security.

A Feistel cipher has the ladder structure shown in Figure 5.12. The input is split up

into two blocks, the left half and the right half. A round function f1 of the left half is

computed and combined with the right half, using exclusive-or (binary addition with-

out carry), though in some Feistel ciphers addition with carry is also used. (We use the

notation % for exclusive-or.) Then, a function f2 of the right half is computed and com-

bined with the left half, and so on. Finally (if the number of rounds is even), the left

half and right half are swapped.

A notation you may see for the Feistel cipher is & (f, g, h,...) where f, g, h, ... are the

successive round functions. Under this notation, the preceding cipher is & (f1, f2, f3).

The basic result that enables us to decrypt a Feistel cipher—and, indeed, the whole

point of his design—is that:

& 
–1

 (f1, f2, ..., f2k – 1) = & (f2k – 1, ..., f2, f1)

In other words, to decrypt, we just use the round functions in the reverse order.

Thus, the round functions fi do not have to be invertible, and the Feistel structure lets

us turn any one-way function into a block cipher. This means that we are less con-

strained in trying to choose a round function with good diffusion and confusion prop-

erties; it can more easily satisfy any other design constraints such as code size, table

size, software speed, hardware gate count, and so on.

5.4.3.1 The Luby-Rackoff Result

The seminal theoretical result on Feistel ciphers was proved by Mike Luby and Charlie

Rackoff in 1988. They showed that if fi were random functions, then & (f1, f2, f3) was

indistinguishable from a random permutation under chosen plaintext attack. This result

was soon extended to show that & (f1, f2, f3, f4) was indistinguishable under chosen

plaintext/ciphertext attack—in other words, it was a pseudorandom permutation.
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I am omitting a number of technicalities. In engineering terms, the effect is that,

given a really good round function, four rounds of Feistel are enough. So if we have a

hash function in which we have confidence, it is straightforward to construct a block

cipher from it.

5.4.3.2 DES

The DES algorithm is widely used in banking, government, and embedded applica-

tions. For example, it is the standard in automatic teller machine networks.

The DES algorithm is a Feistel cipher, with a 64-bit block and 56-bit key. Its round

function operates on 32-bit half-blocks, and consists of four operations:

• First, the block is expanded from 32 bits to 48.

• Next, 48 bits of round key are mixed using exclusive-or.

• The result is passed through a row of eight S-boxes, each of which takes a 6-
bit input and provides a 4-bit output.

• Finally, the bits of the output are permuted according to a fixed pattern.

The effect of the expansion, key mixing, and S-boxes is shown in the diagram in

Figure 5.13.

The round keys are derived from the user-supplied key by using each user keybit in

about 14 different rounds according to a slightly irregular pattern. (A full specification

of DES is given in [575]; code can be found in [681] or downloaded from many places

on the Web.)

DES was introduced in 1974 and caused some controversy. The most telling criti-

cism was that the key is too short. Someone who wants to find a 56-bit key using brute

force—that is by trying all possible keys—will have a total exhaust time of 2
56

 encryp-

tions and an average solution time of half that, namely 2
55

 encryptions. Diffie and

Hellman pointed out that a DES keysearch machine could be built with a million chips,

each testing a million keys a second; as a million is about 2
20

, this would take on aver-

age 2
15

 seconds, or just over nine hours, to find the key. They argued that such a ma-

chine could be built for $20 million in 1977 [249]. IBM, whose scientists invented

DES, retorted that they would charge the U.S. government $200 million to build such a

machine. (Perhaps both were right.)

Figure 5.13 The DES round function.



Security Engineering: A Guide to Building Dependable Distributed Systems

97

During the 1980s, there were persistent rumors of DES keysearch machines being

built by various intelligence agencies, but the first successful public keysearch took

place in 1997. In a distributed effort organized over the Net, 14,000 Pentium-level

computers took more than four months to find the key to a challenge. In 1998, the

Electronic Frontier Foundation (EFF) built a DES keysearch machine for under

$250,000; it broke a DES challenge in three days. It contained 1,536 chips run at 40

MHz, each chip containing 24 search units which each took 16 cycles to do a test de-

crypt. The search rate was thus 2.5 million test decryptions per second per search unit,

or 60 million keys per second per chip. (The design of the cracker is public and can be

found at [265].) Clearly, the key length of DES is now definitely inadequate for pro-

tecting data against a capable motivated opponent, and banks are upgrading their pay-

ment systems.

Another criticism of DES was that, since IBM kept its design principles secret at the

request of the U.S. government, perhaps there was a trapdoor that would give them

easy access. However, the design principles were published in 1992 after differential

cryptanalysis was developed and published [205]. Their story was that IBM had dis-

covered these techniques in 1972, and the NSA even earlier. IBM kept the design de-

tails secret at the NSA’s request. We’ll discuss the political aspects of all this in

Chapter 21.

We now have a fairly thorough analysis of DES. The best-known shortcut attack—is

a linear attack using 2
42

 known texts. DES would be secure with more than 20 rounds,

but for practical purposes its security appears to be limited by its keylength. I know of

no applications where an attacker might get hold of even 2
40

 known texts, so the known

shortcut attacks are not an issue in practice. However, its growing vulnerability to key-

search cannot be ignored. If Moore’s law continues, then by 2015 or 2020 it will be

possible to find a DES key on a single PC in a few months, which means even low-

grade systems such as taximeters will be vulnerable to attack using brute-force cryp-

tanalysis. (Your reaction at this point might be “Give me one reason to attack a taxi-

meter!” I will, in Chapter 10, “Monitoring Systems.”)

One way of preventing keysearch is whitening. In addition to the 56-bit key, say k0,

we choose two 64-bit whitening keys k1 and k2, xor’ing the first with the plaintext be-

fore encryption and the second with the output of the encryption to get the ciphertext

afterward. This composite cipher is known as DESX, and is used in the Win2K en-

crypting file system. Formally:

DESX(k0, k1, k2; M) = DES(k0; M % k1) % k2

It can be shown that, on reasonable assumptions, DESX has the properties you’d ex-

pect: it inherits the differential strength of DES, but its resistance to keysearch is in-

creased by the amount of the whitening [457].

Another way of dealing with DES keysearch is to use the algorithm multiple times

with different keys. This is being introduced in banking networks, and the triple-DES

algorithm banks use is now a draft U.S. government standard [575]. Triple-DES does

an encryption, then a decryption, then a further encryption, all with independent keys.

Formally:

3DES(k0, k1, k2; M) = DES(k2; DES
–1

(k1; DES(k0; M)))

The reason for this design is that, by setting the three keys equal, one gets the same

result as a single DES encryption, thus giving a backward-compatibility mode with

legacy equipment. (Some systems use two-key triple-DES, which sets k2 = k0; this gives

an intermediate step between single- and triple-DES).
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5.5 Modes of Operation

In practice, how you use an encryption algorithm is more important than which one

you pick. An important factor is the mode of operation, which specifies how a block

cipher with a fixed block size (8 bytes for DES, 16 for AES) can be extended to proc-

ess messages of arbitrary length.

There are several modes of operation for using a block cipher on multiple blocks.

Understanding them, and choosing the right one for the job, is an important factor in

using a block cipher securely.

5.5.1 Electronic Code Book

In electronic code book (ECB), we just encrypt each succeeding block of plaintext with

our block cipher to get ciphertext, as with the Playfair cipher given as an example ear-

lier. This is adequate for many simple operations, such as challenge-response and some

key management tasks; it’s also used to encrypt PINs in cash machine systems. How-

ever, if we use it to encrypt redundant data, the patterns will show through, letting an

opponent deduce information about the plaintext. For example, if a word processing

format has lots of strings of nulls, then the ciphertext will have a lot of blocks whose

value is the encryption of null characters under the current key.

In one popular corporate email system from the late 1980s, the encryption used was

DES ECB with the key derived from an eight-character password. If you looked at a

ciphertext generated by this system, you saw that a certain block was far more common

than the others—the one that corresponded to a plaintext of nulls. This enabled one of

the simplest attacks on a fielded DES encryption system: just encrypt a null block with

each password in a dictionary, and sort the answers. You can now break on sight any

ciphertext whose password was one of those in your dictionary.

In addition, using ECB mode to encrypt messages of more than one block length and

that have an authenticity requirement—such as bank payment messages—would be

foolish, as messages could be subject to a cut-and-splice attack along the block

boundaries. For example, if a bank message said, “Please pay account number X the

sum Y, and their reference number is Z,” then an attacker might initiate a payment de-

signed so that some of the digits of X could be replaced with some of the digits of Z.

5.5.2 Cipher Block Chaining

Most commercial applications that encrypt more than one block use cipher block

chaining, or CBC, mode. In it, we exclusive-or the previous block of ciphertext to the

current block of plaintext before encryption (see Figure 5.14).

This mode is effective at disguising any patterns in the plaintext: the encryption of

each block depends on all the previous blocks. The input IV is an initialization vector,

a random number that performs the same function as a seed in a stream cipher, and en-

sures that stereotyped plaintext message headers won’t leak information by encrypting

to identical ciphertext blocks.

However, an opponent who knows some of the plaintext may be able to cut and

splice a message (or parts of several messages encrypted under the same key), so the

integrity protection is not total.
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Figure 5.14 Cipher block chaining (CBC) mode.

5.5.3 Output Feedback

Output feedback (OFB) mode consists of repeatedly encrypting an initial value and

using this as a keystream in a stream cipher of the kind discussed earlier. Writing “IV”

for the initialization vector, or seed, the i-th block of keystream will be given by K1 =

{IV}K, Ki = {Ki–1} or:

Ki = {...{{IV}K}K ... total of i times}

This is the standard way of turning a block cipher into a stream cipher. The key K is

expanded into a long stream of blocks Ki of keystream. Keystream is typically com-

bined with the blocks of a message Mi using exclusive-or to give ciphertext Ci = Mi %

Ki; this arrangement is sometimes called an additive stream cipher, as exclusive-or is

just addition modulo 2 (and some old hand systems used addition modulo 26).

Sometimes, a specialist keystream generator is used; for example, the A5 algorithm,

which is covered in Chapter 17, has a much lower gate count than DES, and is thus

used in mobile applications where battery power is the critical design parameter. How-

ever, in the absence of a constraint like this, it is common to use a block cipher in OFB

mode to provide the keystream.

All additive stream ciphers have an important vulnerability: they fail to protect mes-

sage integrity. We mentioned this in the context of the one-time pad in Section 5.2.2,

but it’s important to realize that this doesn’t just affect “perfectly secure” systems but

“real life” stream ciphers, too. Suppose, for example, that a stream cipher were used to

encipher fund transfer messages. These messages are very highly structured; you might

know, for example, that bytes 37–42 contained the amount of money being transferred.

You could then carry out the following attack. You cause the data traffic from a local

bank to go via your computer (whether by physically splicing into the line, or more

simply by using one of the standard routing attacks discussed in Part 2). You go into

the bank and send a modest sum (say, $500) to an accomplice. The ciphertext Ci = Mi

% Ki, duly arrives in your machine. Because you know Mi for bytes 37–42, you know

Ki and can easily construct a modified message that instructs the receiving bank to pay

not $500 but $500,000! This is an example of an attack in depth; it is the price not just

of the perfect secrecy we get from the one-time pad, but of much more humble stream

ciphers too.
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5.5.4 Counter Encryption

One possible drawback of output feedback mode, and in fact of all feedback modes of

block cipher encryption, is latency; feedback modes are hard to parallelize. With CBC,

a whole block of the cipher must be computed between each block input and each

block output; with OFB, we can precompute keystream but storing it requires memory.

This can be inconvenient in very high-speed applications, such as protecting traffic on

155 Mbit/s backbone links. There, as silicon is cheap, we would rather pipeline our

encryption chip, so that it encrypts a new block (or generates a new block of key-

stream) in as few clock ticks as possible.

The simplest solution is often is to generate a keystream by just encrypting a

counter: Ki = {IV + i}K. As before, this is then added to the plaintext to get ciphertext

(so it’s also vulnerable to attacks in depth).

Another problem that this mode solves when using a 64-bit block cipher such as

DES or triple-DES on a very high-speed link is cycle length. An n-bit block cipher in

OFB mode will typically have a cycle length of 2
n/2

 blocks, after which the birthday

theorem will see to it that the keystream will start to repeat. (Once we have a little

more than 2
32

 64-bit values, the odds are that two of them will match.) In CBC mode,

too, the birthday theorem ensures that after about 2
n/2

 blocks, we will start to see re-

peats. Counter-mode encryption, however, has a guaranteed cycle length of 2
n
 rather

than 2
n/2

.

5.5.5 Cipher Feedback

Cipher feedback, or CFB, mode is another kind of stream cipher. It was designed to be

self-synchronizing, in that even if we get a burst error and drop a few bits, the system

will recover synchronization after one block length. This is achieved by using our

block cipher to encrypt the last n-bits of ciphertext, then adding one of the output bits

to the next plaintext bit.

With decryption, the reverse operation is performed, with ciphertext feeding in from

the right, as shown in Figure 5.15. Thus, even if we get a burst error and drop a few

bits, as soon as we’ve received enough ciphertext bits to fill up the shift register, the

system will resynchronize.

Cipher feedback is not used much any more. It is a specialized mode of operation for

applications such as military HF radio links, which are vulnerable to fading, in the

days when digital electronics were relatively expensive. Now that silicon is cheap,

people use dedicated link-layer protocols for synchronization and error correction

rather than trying to combine them with the cryptography.

5.5.6 Message Authentication Code

The next official mode of operation of a block cipher is not used to encipher data, but

to protect its integrity and authenticity. This is the message authentication code, or

MAC. To compute a MAC on a message using a block cipher, we encrypt it using CBC

mode and throw away all the output ciphertext blocks except the last one; this last

block is the MAC. (The intermediate results are kept secret in order to prevent splicing

attacks.)
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Figure 5.15 Ciphertext feedback mode (CFB).

This construction makes the MAC depend on all the plaintext blocks as well as on

the key. It is secure provided the message length is fixed; it can be shown that any at-

tack on a MAC under these circumstances would give an attack on the underlying

block cipher [87]. (If the message length is variable, you have to ensure that a MAC

computed on one string can’t be used as the IV for computing a MAC on a different

string, so that an opponent can’t cheat by getting a MAC on the composition of the two

strings.)

In applications needing both integrity and privacy, the procedure is to first calculate

a MAC on the message using one key, then CBC-encrypt it using a different key. If the

same key is used for both encryption and authentication, the security of the latter is no

longer guaranteed; cut-and-splice attacks are still possible.

There are other possible constructions of MACs: a common one is to use a hash

function with a key, which we’ll look at in more detail in Section 5.6.2. Before we do

that, let’s revisit hash functions.

5.6 Hash Functions

Section 5.4.3.1 showed how the Luby-Rackoff theorem enables us to construct a block

cipher from a hash function. It’s also possible to construct a hash function from a block

cipher. (In fact, we can also construct hash functions and block ciphers from stream

ciphers—therefore, subject to some caveats described in the next section, given any

one of these three primitives, we can construct the other two.)

The trick is to feed the message blocks one at a time to the key input of our block

cipher, and use it to update a hash value (which starts off at, say, H0 = 0). In order to

make this operation noninvertible, we add feedforward: the (i – 1)st hash value is ex-

clusive-or’ed with the output of round i. This is our final mode of operation of a block

cipher (Figure 5.16).
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Figure 5.16 Feedforward mode (hash function).

5.6.1 Extra Requirements on the Underlying Cipher

The birthday effect makes another appearance here, in that if a hash function h is built

using an n-bit block cipher, it is possible to find two messages M1 ! M2 with h(M1) =

h(M2) (hash about 2
n/2

 messages Mi and look for a match). So, a 64-bit block cipher is

not adequate, as the cost of forging a message would be of the order of 2
32

 messages,

which is quite practical.

This is not the only way in which the hash function mode of operation is more de-

manding on the underlying block cipher than a mode such as CBC designed for confi-

dentiality. A good illustration comes from a cipher called Treyfer, which was designed

to encrypt data using as little memory as possible in the 8051 microcontrollers com-

monly found in consumer electronics and domestic appliances [819]. (It takes only 30

bytes of ROM.)

Treyfer “scavenges” its S-box by using 256 bytes from the ROM, which may be

code, or may even—to make commercial cloning riskier—contain a copyright mes-

sage. At each round, it acts on eight bytes of text with eight bytes of key by adding a

byte of text to a byte of key, passing it through the S-box, adding it to the next byte,

then rotating the result by one bit (Figure 5.17). This rotation deals with some of the

problems that might arise if the S-box has uneven randomness across its bitplanes (for

example, if it contains ascii text such as a copyright message). Finally, the algorithm

makes up for its simple round structure and probably less-than-ideal S-box by having a

large number of rounds (32 of them, in fact).

No attacks are known on Treyfer that prevent its use for confidentiality and for

computing MACs. However, the algorithm does have a weakness that prevents its use

in hash functions. It suffers from a fixed-point attack. Given any input, there is a fair

chance we can find a key that will leave the input unchanged. We just have to look to

see, for each byte of input, whether the S-box assumes the output that, when added to

the byte on the right, has the effect of rotating it one bit to the right. If such outputs

exist for each of the input bytes, then it’s easy to choose key values that will leave the

data unchanged after one round, and thus after 32 rounds. The probability that we can
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do this depends on the S-box.
3
 This means that we can easily find collisions if Treyfer

is used as a hash function. (In effect, hash functions have to be based on block ciphers

that withstand chosen key attacks).

Figure 5.17 The basic component of the Treyfer block cipher.

5.6.2 Common Hash Functions and Applications

Algorithms similar to Treyfer have been used in hash functions in key management

protocols in some pay-TV systems, but typically they have a modification to prevent

fixed-point attacks, such as a procedure to add in the round number at each round, or to

mix up the bits of the key in some way (a key-scheduling algorithm).

The three hash functions most commonly used in applications are all related, and are

based on variants of a block cipher with a 512-bit key and a block size of either 128 or

160 bits. MD4 has three rounds and a 128-bit hash value; and a collision has recently

been found for it [255]. MD5 has four rounds and a 128-bit hash value; while the U.S.

Secure Hash Standard has five rounds and a 160-bit hash value. The block ciphers un-

derlying these hash functions are similar; their round function is a complicated mixture

of the register operations available on 32-bit processors [681]. It seems that SHA1 is a

reasonable approximation to a pseudorandom function, as long as our opponents can’t

perform 2
80

 computations; because this number is coming within range of military in-

telligence agencies and large companies, the 256-bit and 512-bit versions of SHA have

been introduced.

                                                            

3
 Curiously, an S-box that is a permutation is always vulnerable, while a randomly selected one

isn’t quite so risky. In many cipher designs, S-boxes that are permutations are essential, or at

least desirable. Treyfer is an interesting exception.
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Hash functions have many uses. One is to compute MACs. A naive method would

be to simply hash the message with a key: MACk(M) = h(k, M). However, the accepted

way of doing this, called HMAC, uses an extra step in which the result of this compu-

tation is hashed again. The two hashing operations are done using variants of the key,

derived by exclusive-or’ing them with two different constants. Thus, HMACk(M) = h(k

% A, h(k %)B, M)). A is constructed by repeating the byte 0 _ 36 as often as necessary,

and B similarly from the byte 0 _ 5C. The reason for this is that it makes collision

finding much harder [474].

Another hash function use is to make commitments that are to be revealed later. For

example, I might wish to timestamp a digital document in order to establish intellectual

priority, but not be willing to reveal the contents yet. In that case, I can submit a hash

of the document to a commercial timestamping service [364]. Later, when I reveal the

document, the fact that its hash was timestamped at a given time establishes that I had

written it by then.

Finally, before we go on to discuss asymmetric cryptography, there are two particu-

lar uses of hash functions that deserve mention: key updating and autokeying.

Key updating means that two or more principals who share a key pass it through a

one-way hash function at agreed times: Ki = h(Ki–1). The point is that if an attacker

compromises one of their systems and steals the key, he only gets the current key and

is unable to decrypt back traffic. This property is known as backward security.

Autokeying means that two or more principals who share a key hash it at agreed

times with the messages they have exchanged since the last key change: Ki+1 = h(Ki,

Mi1, M ....). The point is that if an attacker compromises one of their systems and steals

the key. then as soon as they exchange a message which he doesn’t observe or guess,

security will be recovered in that he can no longer decrypt their traffic. This property is

known as forward security. It is used, for example, in EFT payment terminals in Aus-

tralia [83, 85]. The use of asymmetric crypto allows a slightly stronger form of forward

security, namely that as soon as a compromised terminal exchanges a message with an

uncompromised one that the opponent doesn’t control, then security can be recovered

even if the message is in plain sight. I’ll describe how this trick works next.

5.7 Asymmetric Crypto Primitives

The commonly used building blocks in asymmetric cryptography, that is, public key

encryption and digital signature, are based on number theory. I’ll give only a brief

overview here, then in Part 2 where we discuss applications, I’ll describe in more detail

some of the mechanisms used. (If you find the description assumes too much mathe-

matics, skip the following two sections and read the material from a cryptography text-

book.)

The technique of asymmetric cryptography is to make the security of the cipher de-

pend on the difficulty of solving a certain mathematical problem. The two problems

used in most fielded systems are factorization (used in most commercial systems) and

discrete logarithm (used in many military systems).
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5.7.1 Cryptography Based on Factoring

The prime numbers are the positive whole numbers with no proper divisors; that is, the

only numbers that divide a prime number are 1 and the number itself. By definition, 1

is not prime; so the primes are {2, 3, 5, 7, 11, ...}. The fundamental theorem of arith-

metic states that each natural number greater than 1 factors into prime numbers in a

way that is unique up to the order of the factors. It is easy to find prime numbers and

multiply them together to give a composite number, but much harder to resolve a com-

posite number into its factors. The largest composite product of two large random

primes to have been factorized to date was 512 bits (155 digits) long; when such a

computation was first done, it took several thousand MIPS-years of effort. Recently,

however, some Swedish students managed to factor a 512-bit number surreptitiously to

solve a challenge cipher, so 512-bit composite numbers are now no more ‘secure’ than

56-bit DES keys. However, it is believed that a similar number of 1024 bits length

could not be factored without an advance in mathematics.

The algorithm commonly used to do public key encryption and digital signatures

based on factoring is RSA, named after its inventors Ron Rivest, Adi Shamir, and Len

Adleman [649]. It uses Fermat’s (little) theorem, which states that for all primes p not

dividing a, a
p–1

 '1 modulo p. (Proof: take the set {1, 2, .... p – 1} and multiply each of

them modulo p by a, then cancel out (p – 1)! each side.) Euler’s function ( (n) is the

number of positive integers less than n with which it has no divisor in common; so if n

is the product of two primes pq then ((n) = (p – 1) (q – 1) (the proof is similar).

The encryption key is a modulus N which is hard to factor (take N = pq for two large

randomly chosen primes p and q), plus a public exponent e that has no common factors

with either p – 1 or q – 1. The private key is the factors p and q, which are kept secret.

Where M is the message and C is the ciphertext, encryption is defined by:

C ' M
e
 modulo N

Decryption is the reverse operation:

M ' 
e
!C modulo N

Whoever knows the private key—the factors p and q of N—can easily calculate 
e
!C

(mod N). As ( (N) = (p – 1)(q – 1), and e has no common factors with ( (N), the key’s

owner can find a number d such that de ' 1(modulo ( (N))—she finds the value of d

separately, modulo p – 1 and q – 1, and combines the answers. Thus, 
e
!C (modulo N)

is now computed as C
d
 (modulo N), and decryption works because of Fermat’s theo-

rem:

C
d
 ' {M

e
}

d
 ' M

ed
 ' M

1+k((N)
 ' M .M

k((N)
 ' M ) 1 ' M modulo N

Similarly, the owner of the private key can operate on the message with this to pro-

duce a digital signature:

Sigd(M) ' M
d
 modulo N

and this signature can be verified by raising it to the power e mod N (thus, using e and

N as the public signature verification key) and checking that the message M is recov-

ered:

M ' (Sigd(M))
e
 modulo N
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Neither RSA encryption nor signature is generally safe to use on its own. The reason

is that, encryption being an algebraic process, it preserves certain algebraic properties.

For example, if we have a relation such as M1M2 = M3 that holds among plaintexts,

then the same relationship will hold among ciphertexts C1C2 = C3 and signatures

Sig1Sig2 = Sig3. This property is known as a multiplicative homomorphism (mathemati-

cians describe a function that preserves mathematical structure as a homomorphism).

The homomorphic nature of raw RSA means that it doesn’t meet the random oracle

model definitions of public key encryption or signature.

There are a number of standards that try to stop attacks based on homomorphic

mathematical structure by setting various parts of the input to the algorithm to fixed

constants or to random values. Many of them have been broken. The better solutions

involve processing the message using hash functions as well as random nonces and

padding before the RSA primitive is applied. For example, in optimal asymmetric en-

cryption padding (OAEP), we concatenate the message M with a random nonce N, and

use a hash function h to combine them:

C1 = M % h(N)

C2 = N % h(C1)

In effect, this is a two-round Feistel cipher, which uses h as its round function. The

result, the combination C1, C2, is then encrypted with RSA and sent. The recipient then

computes N as C2 % h(C1) and recovers M as C1 % h(N) [88].

With signatures, things are slightly simpler. In general, it’s often enough to just hash

the message before applying the private key: Sigd = [h(M)]
d
 (mod N). However, in

some applications, one might wish to include further data in the signature block, such

as a timestamp.

5.7.2 Cryptography Based on Discrete Logarithms

While RSA is used in most Web browsers in the SSL protocol, there are other products

(such as PGP) and many government systems that base public key operations on dis-

crete logarithms. These come in a number of flavors, some using “normal” arithmetic,

while others use mathematical structures called elliptic curves. I’ll explain the normal

case, as the elliptic variants use essentially the same idea but the implementation is

more complex.

A primitive root modulo p is a number whose powers generate all the nonzero num-

bers mod p; for example, when working modulo 7, we find that 5
2
 = 25, which reduces

to 4 (modulo 7), then we can compute 5
3
 as 5

2
 x 5 or 4 x 5, which is 20, which reduces

to 6 (modulo 7), and so on, as shown in Figure 5.18.

Thus, 5 is a primitive root modulo 7. This means that given any y, we can always

solve the equation y = 5
x
 (mod 7); x is then called the discrete logarithm of y modulo 7.

Small examples like this can be solved by inspection, but for a large random prime

number p, we do not know how to do this computation. So the mapping f : x * g
x
 (mod

p) is a one-way function, with the additional properties that f(x + y) = f (x) f (y) and
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Figure 5.18 Example of discrete logarithm calculations.

f(nx) = f(x)
n
. In other words, it is a one-way homomorphism. As such, it can be used to

construct digital signature and public key encryption algorithms.

5.7.2.1 Public Key Encryption: The Diffie-Hellman Protocol

To understand how discrete logarithms can be used to build a public key algorithm,

bear in mind that we want a cryptosystem that does not need the users to start off with

a shared secret key. Consider the following “classical” scenario.

Imagine that Anthony wants to send a secret to Brutus, and the only communications

channel available is an untrustworthy courier (say, a slave belonging to Caesar). An-

thony can take the message, put it in a box, padlock it, and get the courier to take it to

Brutus. Brutus could then put his own padlock on it, too, and have it taken back to

Anthony. Anthony in turn would remove his padlock, and have it taken back to Brutus,

who would now at last open it.

Exactly the same can be done using a suitable encryption function that commutes,

that is, has the property that {{M}KA}KB = {{M}KB}KA. Alice can take the message M

and encrypt it with her key K A to get {M}KA which she sends to Bob. Bob encrypts it

again with his key KB getting {{M}KA}KB. But the commutativity property means that

this is just {{M}KB}KA, so Alice can decrypt it using her key KA getting {M}KB. She

sends this to Bob and he can decrypt it with KB, finally recovering the message M. The

keys KA and KB might be long-term keys if this mechanism were to be used as a con-

ventional public-key encryption system, or they might be transient keys if the goal

were to establish a key with forward secrecy.

How can a suitable commutative encryption be implemented? The one-time pad does

commute, but is not suitable here. Suppose Alice chooses a random key xA and sends

Bob M % xA while Bob returns M % xB and Alice finally sends him M % xA % xB ,

then an attacker can simply exclusive-or these three messages together; as X % X = 0

for all X, the two values of xA and xB both cancel our leaving as an answer the plain-

text M.

The discrete logarithm problem comes to the rescue. If we have found values of g

and p such that the discrete log problem to the base g modulo p is hard, then we can

use discrete exponentiation as our encryption function. For example, Alice chooses a

random number xA, calculates g
xA

 modulo p and sends it, together with p, to Bob. Bob

likewise chooses a random number xB and forms g
xAxB

 modulo p, which he passes back

to Alice. Alice can now remove her exponentiation: using Fermat’s theorem, she cal-

culates g
xB 

= (g
xAxB

) 
p-xA

 modulo p and sends it to Bob. Bob can now remove his expo-

nentiation, too, and so finally gets hold of g. The security of this scheme depends on

the difficulty of the discrete logarithm problem.
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In practice, it is tricky to encode a message to be a primitive root; but there is a

much simpler means of achieving the same effect. The first public key encryption

scheme to be published, by Whitfield Diffie and Martin Hellman in 1976, uses g
xAxB

modulo p as the key to a shared key encryption system. The values xA and xB can be

the private keys of the two parties.

Let’s see how this might work to provide a public-key encryption system. The prime

p and generator g are typically common to all users. Alice chooses a secret random

number xA, calculates yA = g
xA

 and publishes it opposite her name in the company

phone book. Bob does the same, choosing a random number xB and publishing yB =

g
xB

. In order to communicate with Bob, Alice fetches yB from the phone book, forms

yB
xA

 which is of course g
xAxB

, and uses this to encrypt the message to Bob. On receiv-

ing it, Bob looks up Alice’s public key yA and forms yA
xB

 which is also equal to g
xAxB

,

so he can decrypt her message

Slightly more work is needed to provide a full solution. Some care is needed when

choosing the parameters p and g; and there are several other details that depend on

whether we want properties such as forward security. Variants on the Diffie-Hellman

theme include the U.S. government key exchange algorithm (KEA) [577], used in net-

work security products such as the Fortezza card, and the so-called Royal Holloway

protocol, which is used by the U.K. government [50].

The biggest problem with such systems is how to be sure that you’ve got a genuine

copy of the phone book, and that the entry you’re interested in isn’t out of date. I’ll

discuss that in Section 5.7.4.

5.7.2.2 Key Establishment

Mechanisms for providing forward security in such protocols are of independent inter-

est. As before, let the prime p and generator g be common to all users. Alice chooses a

random number RA, calculates g
RA

 and sends it to Bob; Bob does the same, choosing a

random number RB and sending g
RB

 to Alice; they then both form g
RA.RB

, which they

use as a session key.

Alice and Bob can now use the session key g
RA.RB

 to encrypt a conversation. They

have managed to create a shared secret “out of nothing.” Even if an opponent had ob-

tained full access to both their machines before this protocol was started, and thus

knew all their stored private keys, then, provided some basic conditions were met (e.g.,

that their random-number generators were not predictable), the opponent still could not

eaves-drop on their traffic. This is the strong version of the forward security property

referred to in Section 5.6.2. The opponent can’t work forward from knowledge of pre-

vious keys that he might have obtained. Provided that Alice and Bob both destroy the

shared secret after use, they will also have backward security; an opponent who gets

access to their equipment subsequently cannot work backward to break their old traffic.

But this protocol has a small problem: although Alice and Bob end up with a session

key, neither of them has any idea with whom they share it.

Suppose that in our padlock protocol, Caesar has just ordered his slave to bring the

box to him instead; he places his own padlock on it next to Anthony’s. The slave takes

the box back to Anthony, who removes his padlock, and brings the box back to Caesar

who opens it. Caesar can even run two instances of the protocol, pretending to Anthony

that he’s Brutus and to Brutus that he’s Anthony. One fix is for Anthony and Brutus to

apply their seals to their locks.
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The same idea leads to a middleperson attack on the Diffie-Hellman protocol unless

transient keys are authenticated. Charlie intercepts Alice’s message to Bob and replies

to it; at the same time, he initiates a key exchange with Bob, pretending to be Alice. He

ends up with a key g
RA.RC

, which he shares with Alice, and another key g
RC.RB

, which he

shares with Bob. As long as he continues to sit in the middle of the network and trans-

late the messages between them, they may have a hard time detecting that their com-

munications are being compromised.

In one secure telephone product, the two principals would read out an eight-digit

hash of the key they had generated, and check that they had the same value, before

starting to discuss classified matters. A more general solution is for Alice and Bob to

sign the messages that they send to each other.

Finally, discrete logarithms and their analogues exist in many other mathematical

structures; thus, for example, elliptic curve cryptography uses discrete logarithms on

an elliptic curve—a curve given by an equation such as y
2
 = x

3
 + ax + b. The algebra

gets somewhat more complex, but the basic underlying ideas are the same.

5.7.2.3 Digital Signature

Suppose that the base p and the generator g (which may or may not be a primitive root)

are public values chosen in some suitable way, and that each user who wishes to sign

messages has a private signing key X and a public signature verification key Y = g
X
.

An ElGamal signature scheme works as follows: choose a message key k at random,

and form r = g
k
 (modulo p). Now form the signature s using a linear equation in k, r,

the message M, and the private key X. There are a number of equations that will do; the

particular one that happens to be used in ElGamal signatures is:

rX + sk = M modulo p – 1

So s is computed as s = (M – rX)/k; this is done modulo ((p). When both sides are

passed through our one-way homomorphism f(x) = g
x
 modulo p we get:

g
rX

 g
sk

 ' g
M

 modulo p

or

Y
r
r

s
 ' g

M
 modulo p

An ElGamal signature on the message M consists of the values r and s, and the re-

cipient can verify it using the above equation.

A few details need to be sorted out to get a functional digital signature scheme. For

example, bad choices of p or g can weaken the algorithm; and we will want to hash the

message M using a hash function so that we can sign messages of arbitrary length, and

so that an opponent can’t use the algorithm’s algebraic structure to forge signatures on

messages that were never signed. Having attended to these details and applied one or

two optimizations, we get the Digital Signature Algorithm (DSA) which is a U.S. stan-

dard and widely used in government applications.
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DSA (also known as DSS, for Digital Signature Standard) assumes a prime p of

typically 1024 bits, a prime q of 160 bits dividing (p – 1), an element g of order q in

the integers modulo p, a secret signing key x, and a public verification key y = g
x
. The

signature on a message M, Sigx(M), is (r, s), where:

r ' (g
k
 (modulo p)) modulo q

s ' (h(M) – xr)/k modulo q

The hash function used here is SHA1.

DSA is the classic example of a randomized digital signature scheme without mes-

sage recovery.

5.7.3 Special-Purpose Primitives

Researchers have discovered a large number of public key and signature primitives

with special properties; I’ll describe only the two that appear to have been fielded to

date: threshold signatures and blind signatures.

Threshold signatures are a mechanism whereby a signing key (or for that matter a

decryption key) can be split up among n principals so that any k out of n can sign a

message (or decrypt one). For k = n, the construction is easy. With RSA, for example,

we can split up the private decryption key d as d = d1+d2+...+dn. For k < n it’s slightly

more complex (but not much) [246]. Threshold signatures are used in systems where a

number of servers process transactions independently and vote independently on the

outcome; they may also be used to implement business rules such as “a check may be

signed by any two of the seven directors.”

Blind signatures can be used to make a signature on a message without knowing

what the message is. For example, if I am using RSA, I can take a random number R,

form R
e
M (mod n), and give it to the signer, who computes (R

e
M)

d
 = R.M

d
 (modulo n).

When he or she gives this back to me, I can divide out R to get the signature M
d
. The

possible application is in digital cash; a bank might agree to honor for $10 any string

M with a unique serial number and a specified form of redundancy, bearing a signature

that verified as correct using the public key (e,n). Such a string is known as a digital

coin. The blind signature protocol shows how a customer can get a bank to sign a coin

without the banker knowing its serial number. The effect is that the digital cash can be

anonymous for the spender. (There are a few more details that need to be sorted out,

such as how to detect people who spend the same coin twice; but these are fixable.)

Blind signatures and digital cash were invented by Chaum [178], along with much

other supporting digital privacy technology covered in Chapter 20 [177].

Researchers continue to suggest new applications for specialist public key mecha-

nisms. A strong candidate is in online elections, where one requires a particular mix-

ture of anonymity and accountability.

5.7.4 Certification

Now that we can do public key encryption and digital signature, we need some mecha-

nism to bind users to keys. The approach proposed by Diffie and Hellman when they

invented digital signatures was to have a directory of the public keys of a system’s

authorized users, such as a phone book. A more common solution, due to Loren

Kohnfelder, is for a certification authority (CA) to sign the user’s public encryption
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and/or signature verification keys giving certificates that contain the user’s name, at-

tributes such as authorizations, and public keys. The CA might be run by the local

system administrator; or it might be a third-party service such as Verisign whose busi-

ness is to sign public key certificates after checking that they belong to the principals

named in them.

A certificate might be described symbolically as:

CA = SigKS(TS,L,A,KA,VA)

where (using the same notation as with Kerberos) TS is the certificate’s starting date

and time, L is the length of time for which it is valid, A is the user’s name, KA is her

public encryption key, and VA is her public signature verification key. In this way, only

the administrator’s public signature verification key needs to be communicated to all

principals in a trustworthy manner.

Distributed system aspects of certification are covered in Chapter 6, “Distributed

Systems”; e-commerce applications in Chapter 19, “Protecting E-Commerce Systems”;

and the policy aspects in Chapter 21, “E-Policy.” At this stage I’ll merely point out that

the protocol aspects are much harder than they look.

One of the first proposed public key protocols was due to Dorothy Denning and

Giovanni Sacco, who in 1981 proposed that two users, say Alice and Bob, set up a

shared DES key KAB as follows. When Alice first wants to communicate with Bob, she

goes to the certification authority and gets current copies of public key certificates for

herself and Bob. She then makes up a key packet containing a timestamp TA, a session

key KAB and a signature, which she computes on these items using her private signing

key. She then encrypts this whole bundle under Bob’s public encryption key and ships

it off to him. Symbolically:

A * B : CA, CB, {TA, KAB, SigKA(TA, KAB)}KB

In 1994, Martín Abadi and Roger Needham pointed out that this protocol is fatally

flawed [2]. Bob, on receiving this message, can masquerade as Alice for as long as

Alice’s timestamp TA remains valid! To see how, suppose that Bob wants to masquer-

ade as Alice to Charlie. He goes to Sam and gets a fresh certificate CC for Charlie, then

strips off the outer encryption {...}KB from message 3 in the preceding protocol. He

now re-encrypts the signed key packet TA, KAB, SigKA(TA, KAB) with Charlie’s public

key—which he gets from CC—and makes up a bogus message 3:

B * C : CA, CC, {TA, KAB, SigKA(TA, KAB)}KC

It is actually quite alarming that such a simple protocol—essentially, a one-line pro-

gram—should have such a serious flaw in it and remain undetected for so long. With a

normal program of only a few lines of code, you might expect to find a bug in it by

looking at it for a minute or two. In fact, public key protocols, if anything, are harder

to design than protocols using shared key encryption, as they are prone to subtle and

pernicious middleperson attacks. This further motivates the use of formal methods to

prove that protocols are correct.

Often, the participants’ names aren’t the most important things which the authenti-

cation mechanism has to establish. In the STU-III secure telephone used by the U.S.
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government and defense contractors, there is a protocol for establishing transient keys

with forward and backward security; to exclude middleperson attacks, users have a

crypto ignition key, a portable electronic device that they can plug into the phone to

identify not just their names, but their security clearance levels. In general, books on

the topic tend to talk about identification as the main goal of authentication and key

management protocols; but in real life, it’s usually authorization that matters. This is

more complex, as it starts to introduce assumptions about the application into the pro-

tocol design. (In fact, the NSA security manual emphasizes the importance of always

knowing whether there is an uncleared person in the room. The STU-III design is a

natural way of extending this to electronic communications.)

One serious weakness of relying on public key certificates is the difficulty of getting

users to understand all their implications and to manage them properly, especially

where they are not an exact reimplementation of a familiar manual control system

[224]. Many other things can go wrong with certification at the level of systems engi-

neering as well, and we’ll look at these in the next chapter.

5.7.5 The Strength of Asymmetric Cryptographic Primitives

To provide the same level of protection as a symmetric block cipher, asymmetric

cryptographic primitives are believed to require at least twice the block length. Elliptic

curve systems appear to achieve this; a 128-bit elliptic scheme could be about as hard

to break as a 64-bit block cipher with a 64-bit key. The commoner schemes, based on

factoring and discrete log, are less robust because there are shortcut attack algorithms

such as the number field sieve, which exploit the fact that some integers are smooth,

that is, they have a large number of small factors. At the time of writing, the number

field sieve has been used to attack keys up to 512 bits, a task comparable in difficulty

to performing keysearch on 56-bit DES keys. The current consensus is that private

keys for RSA and for standard discrete log systems should be at least 1024 bits long,

while 2048 bits gives some useful safety margin against mathematicians making sig-

nificant improvements in algorithms.

There has been some publicity recently about quantum computers. These are devices

that perform a large number of computations simultaneously using superposed quan-

tum states. Peter Shor has shown that if a sufficiently large quantum computer can be

built, then both factoring and discrete logarithm computations will become easy. So far

only very small quantum computers can be built, and many people are sceptical about

whether the technology can be made to work well enough to threaten real systems. In

the event that it can, asymmetric cryptography may have to be abandoned. So it is for-

tunate that many of the things that are currently done with asymmetric mechanisms can

also be done with symmetric ones; thus many authentication protocols can be redes-

igned to use variants on Kerberos.

5.8 Summary

Many ciphers fail because they’re used improperly, so we need a clear model of what a

cipher does. The random oracle model is useful here: we assume that each new value

returned by the encryption engine is random in the sense of being statistically inde-

pendent of all the outputs seen before.
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Block ciphers for symmetric key applications can be constructed by the careful

combination of substitutions and permutations; for asymmetric applications such as

public key encryption and digital signature one uses number theory. In both cases,

there is quite a large body of mathematics to guide us. Other kinds of ciphers—stream

ciphers and hash functions—can be constructed from block ciphers by using them in

suitable modes of operation. These have different error propagation, pattern conceal-

ment, and integrity protection properties.

The basic properties the security engineer needs to understand are not too difficult to

grasp, though there are some subtle things that can go wrong. In particular, it is sur-

prisingly hard to build systems that are robust even when components fail (or are en-

couraged to), and where the cryptographic mechanisms are well integrated with other

measures such as access control and physical security. We’ll return to this repeatedly

in later chapters.

Research Problems

There are many active threads in cryptography research. Many of them are where

crypto meets a particular branch of mathematics (number theory, algebraic geometry,

complexity theory, combinatorics, graph theory, and information theory). The empiri-

cal end of the business is concerned with designing primitives for encryption, signa-

ture, and composite operations, and that perform reasonably well on available

platforms. The two meet in the study of subjects ranging from linear and differential

cryptanalysis to attacks on public key protocols. Research is more driven by the exist-

ing body of knowledge than by applications, though there are exceptions: copyright

protection concerns have been a stimulus, and so has the recent competition to find an

Advanced Encryption Standard.

The best way to get a flavor of what’s going on is to read the last few years’ pro-

ceedings of research conferences, such as Crypto, Eurocrypt, Asiacrypt and Fast Soft-

ware Encryption, all published by Springer-Verlag in the Lecture Notes on Computer

Science (LNCS) series.

Further Reading

The classic papers by Diffie and Hellman [248] and by Rivest, Shamir, and Adleman

[649] are the closest to required reading on this subject. The most popular modern in-

troduction is Bruce Schneier’s Applied Cryptography [681], which covers a lot of

ground at a level a nonmathematician can understand, and which has C source code for

a number of algorithms. The Handbook of Applied Cryptography, by Alfred Menezes,

Paul von Oorschot and Scott Vanstone [544], is the closest to a standard reference

book on the mathematical detail.

More specialized texts include a book by Eli Biham and Adi Shamir [102], which is

the standard reference on differential cryptanalysis; the best explanation of linear

cryptanalysis may be in a textbook by Doug Stinson [738]; the modern theory of block

ciphers can be found developing in the papers of the Fast Software Encryption confer-

ence series during the 1990s (the proceedings are published by Springer-Verlag in the

LNCS series). The original book on modes of operation is Carl Meyer and Steve Mat-
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yas [548]. Neal Koblitz has a good basic introduction to the mathematics behind public

key cryptography [463]; the number field sieve is described in [497]; while quantum

factoring is described in [698].

There’s a shortage of good books on the random oracle model and on theoretical

cryptology in general; all the published texts I’ve seen are very technical and heavy

going. Probably the most well-regarded source is a book being written by Oded

Goldreich: the online fragments of this can be found at [342]. If you need something

with an ISBN, try his lecture notes on ‘Modern Cryptography, Probabilistic Proofs and

Pseudorandomness’ [343], which are pitched at the level of a postgraduate mathemat-

ics student. A less thorough but more readable introduction to randomness and algo-

rithms is in [360]. Current research at the theoretical end of cryptology is found at the

FOCS, STOC, Crypto, Eurocrypt, and Asiacrypt conferences.

The history of cryptology is fascinating, and so many old problems keep on recur-

ring in modern guises that the security engineer should be familiar with it. The stan-

dard work is by David Kahn [428]; there are also compilations of historical articles

from Cryptologia [229, 227, 228], as well as several books on the history of cryptology

during World War II [188, 429, 523, 800]. The NSA Museum at Fort George Meade,

Maryland, is also worth a visit, as is the one at Bletchley Park in England.

Finally, no chapter that introduces public key encryption would be complete without

a mention that, under the name of ‘non-secret encryption,’ it was first discovered by

James Ellis in about 1969. However, as Ellis worked for GCHQ—Britain’s Govern-

ment Communications Headquarters, the equivalent of the NSA—his work remained

classified. The RSA algorithm was then invented by Clifford Cocks, and also kept se-

cret. This story is told in [267]. One effect of the secrecy was that their work was not

used: although it was motivated by the expense of Army key distribution, Britain’s

Ministry of Defence did not start building electronic key distribution systems for its

main networks until 1992. It should also be noted that the classified community did not

pre-invent digital signatures; they remain the achievement of Whit Diffie and Martin

Hellman.
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CHAPTER

6

Distributed Systems

You know you have a distributed system when the crash of a computer you’ve never

heard of stops you from getting any work done.

—LESLIE LAMPORT

We’ve seen in the last few chapters how people can authenticate themselves to systems

(and systems can authenticate themselves to each other) using security protocols; how

access controls can be used to manage which principals can perform which operations

in a system; and some of the mechanics of how crypto can be used to underpin access

control in distributed systems. But there’s much more to building a secure distributed

systems than just implementing access controls, protocols, and crypto. When systems

become large, the scale-up problems are not linear; there is often a qualitative change

in complexity, and some things that are trivial to deal with in a network of only a few

machines and principals (such as naming) suddenly become a big deal.

Over the last 35 years, computer science researchers have built many distributed

systems and studied issues such as concurrency, failure recovery, and naming. The

theory is also supplemented by growing body of experience from industry, commerce,

and government. These issues are central to the design of effective secure systems, but

are often handled rather badly. I’ve already described attacks on security protocols that

can be seen as concurrency failures. If we replicate data to make a system fault-

tolerant, then we may increase the risk of a compromise of confidentiality. Finally,

naming difficulties are probably the main impediment to the construction of public key

infrastructures.

6.1 Concurrency

Processes are said to be concurrent if they run at the same time, and concurrency gives

rise to a number of well-studied problems. Processes may use old data; they can make

inconsistent updates; the order of updates may or may not matter; the system might



Chapter 6: Protocols

116

deadlock; the data in different systems might never converge to consistent values; and

when it’s important to know the exact time, this can be harder than you might think.

Programming concurrent systems is a hard problem in general; and, unfortunately,

most of the textbook examples come from the relatively rarefied world of operating

system internals and thread management. But concurrency control is also a security

issue; like access control, it exists in order to prevent users interfering with each other,

whether accidentally or on purpose. Also, concurrency problems can occur at a number

of levels in a system, from the hardware right up to the business environment. In what

follows, I provide a number of concrete examples that illustrate the effects of

concurrency on security. Of course, these are by no means exhaustive.

6.1.1 Using Old Data versus Paying to Propagate State

I’ve already described two kinds of concurrency problem. First, there are replay attacks

on protocols, where an attacker manages to pass off out-of-date credentials. Second,

there are race conditions. I mentioned the mkdir vulnerability from Unix, in which a

privileged program that is executed in two phases can be attacked halfway through the

process by renaming an object on which it acts. These problems have been around for a

long time. In one of the first multiuser operating systems, IBM’s OS/360, an attempt to

open a file caused it to be read and its permissions checked; if the user was authorized

to access it, it was read again. The user could arrange things so that the file was altered

in between [493].

These are examples of a time-of-check-to-time-of-use (TOCTTOU) attack. (A sys-

tematic way of finding such attacks is presented in [107].) However, preventing them

isn’t always economical, as propagating changes in security state can be expensive.

For example, the banking industry manages lists of all hot credit cards (whether

stolen or abused); but there are millions of them worldwide, so it isn’t possible to keep

a complete hot-card list in every merchant terminal, and it would be too expensive to

verify all transactions with the bank that issued the card. Instead, there are multiple

levels of stand-in processing. Terminals are allowed to process transactions up to a

certain limit (the floor limit) offline; larger transactions need online verification with a

local bank, which will know about all the local hot cards, plus foreign cards that are

being actively abused; above another limit there might be a reference to an organiza-

tion such as VISA with a larger international list; while the largest transactions might

need a reference to the card issuer. In effect, the only transactions that are checked

immediately before use are those that are local or large.

Credit cards are interesting because, as people start to build infrastructures of public

key certificates to support Web shopping based on the SSL, and corporate networks

based on Win2K, there’s a fear that the largest cost will be the revocation of public key

certificates belonging to principals whose credentials have changed—because they

changed address, changed job, had their private key hacked, or whatever. Credit card

networks are the largest existing systems that manage the global propagation of secu-

rity state—which they do by assuming that most events are local, of low value, or both.
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6.1.2 Locking to Prevent Inconsistent Updates

When a number of people are working concurrently on a document, they may use a

product such as RCS to ensure that only one person has write access at any one time to

any given part of it. This illustrates the importance of locking as a way to manage

contention for resources, such as filesystems, and to reduce the likelihood of conflict-

ing updates. Another mechanism is callback; a server may keep a list of all those cli-

ents that rely on it for security state, and notify them when the state changes.

These are also issues in secure distributed systems. Credit cards provide an example.

If I own a hotel, and a customer presents a credit card on checkin, I ask the card com-

pany for a preauthorization, which records the fact that I will want to make a debit in

the near future; I might register a claim on “up to $500” of her available credit. If the

card is cancelled, the following day, her bank can call me and ask me to contact the

police or to get her to pay cash. (My bank might or might not have guaranteed me the

money; it all depends on the sort of contract I’ve managed to negotiate with it.) This is

an example of the publish-register-notify model of how to do robust authorization in

distributed systems (of which there’s a more general description in [65]).

Callback mechanisms don’t provide a universal solution, though. The credential is-

suer might not want to run a callback service, and the customer might object on pri-

vacy grounds to the issuer being told all her comings and goings. Consider passports,

for example. In many countries, government ID is required for many transactions, but

governments won’t provide any guarantee, and most citizens would object if the gov-

ernment kept a record of every time a government-issue ID was presented.

In general, there is a distinction between those credentials whose use gives rise to

some obligation on the issuer, such as credit cards, and the others, such as passports.

Among the differences is the importance of the order in which updates are made.

6.1.3 Order of Updates

If two large transactions arrive at the government’s bank account—say a credit of

$500,000 and a debit of $400,000—then the order in which they are applied may not

matter much. But if they’re arriving at my bank account, the order will have a huge

effect on the outcome! In fact, the problem of deciding the order in which transactions

are applied has no clean solution. It’s closely related to the problem of how to paral-

lelize a computation, and much of the art of building efficient distributed systems lies

in arranging matters so that processes are either simple sequential or completely paral-

lel.

The usual algorithm in retail checking account systems is to batch the transctions

overnight and apply all the credits for each account before applying all the debits. The

inevitable side effect of this is that payments that bounce have to be reversed out. In

practice, chains of failed payments terminate, though in theory this isn’t necessarily so.

In order to limit the systemic risk that a nonterminating payment revocation chain

might bring down the world’s banking system, some interbank payment mechanisms

are moving to real-time gross settlement (RTGS), whereby transactions are booked in

order of arrival. The downside here is that the outcome can depend on network vaga-

ries. Credit cards operate a mixture of the two strategies, with credit limits run in real

time or near real time (each authorization reduces the available credit limit), while set-
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tlement is run just as in a checking account. The downside of this is that by putting

through a large preauthorization, a merchant can tie up your card.

The checking account approach has recently been the subject of research in the par-

allel systems community. The idea is that disconnected applications propose tentative

update transactions that are later applied to a master copy. Various techniques can be

used to avoid instability; mechanisms for tentative update, such as with bank journals,

are particularly important [352].

In other systems, the order in which transactions arrive is much less important.

Passports are a good example. Passport issuers only worry about their creation and ex-

piration dates, not the order in which visas are stamped on them.

6.1.4 Deadlock

Deadlock is another problem. Things may foul up because two systems are each wait-

ing for the other to move first. A famous exposition of deadlock is the dining philoso-

phers’ problem. A number of philosophers are seated round a table; each has a

chopstick on his left, and can eat only when he can pick up the two chopsticks on ei-

ther side. Deadlock can follow if they all try to eat at once, and each picks up, say, the

chopstick on his right. (This problem, and the algorithms that can be used to avoid it,

are presented in a classic paper by Dijkstra [251].)

This can get horribly complex when you have multiple hierarchies of locks, and

they’re distributed across systems, some of which fail (especially where failures can

mean that the locks aren’t reliable). A lot has been written on the problem in the dis-

tributed systems literature [64]. But it is not just a technical matter; there are many

catch-22 situations in business processes. As long as the process is manual, some fudge

may be found to get round the catch, but when it is implemented in software, this op-

tion may no longer be available.

Sometimes it isn’t possible to remove the fudge. In a well-known problem in busi-

ness—the battle of the forms—one company issues an order with its own terms at-

tached, another company accepts it subject to its own terms, and trading proceeds

without any agreement about whose conditions govern the contract. This promises to

worsen as trading becomes more electronic.

6.1.5 Non-convergent State

When designing protocols that update the state of a distributed system, the conven-

tional wisdom is ACID—transactions should be atomic, consistent, isolated, and dura-

ble. A transaction is atomic if you “do it all or not at all”—which makes it easier to

recover the system after a failure. It is consistent if some invariant is preserved, such as

that the books must still balance. This is common in banking systems, and is achieved

by insisting that each credit to one account is matched by an equal and opposite debit

to another (I discuss this more in Chapter 9, “Banking and Bookkeeping”). Transac-

tions are isolated if they look the same to each other, that is, are serializable; and they

are durable if once done they can’t be undone.
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These properties can be too much, or not enough, or both. Each of them can fail or

be attacked in numerous obscure ways, and it’s often sufficient to design the system to

be convergent. This means that, if the transaction volume were to tail off, then eventu-

ally there would be consistent state throughout [565]. Convergence is usually achieved

using semantic tricks such as timestamps and version numbers; it can often be enough

where transactions get appended to files rather than overwritten.

However, in real life, there must also be ways to survive things that go wrong and

that are not completely recoverable. The life of a security or audit manager can be a

constant battle against entropy: apparent deficits (and surpluses) are always turning up,

and sometimes simply can’t be explained. For example, different national systems have

different ideas of which fields in bank transaction records are mandatory or optional,

so payment gateways often have to guess data in order to make things work. Some-

times they guess wrong; and sometimes people see and exploit vulnerabilities that

aren’t understood until much later (if ever). In the end, things get fudged by adding a

correction factor, called something like “branch differences,” and setting a target for

keeping it below a certain annual threshold.

The battle of the forms just mentioned gives an example of a distributed nonelec-

tronic system that doesn’t converge.

In military systems, there is the further problem of dealing with users who request

some data for which they don’t have a clearance. For example, someone might ask the

destination of a warship that’s actually on a secret mission carrying arms to Iran. If the

user isn’t allowed to know this, the system may conceal the fact that the ship is doing

something secret by making up a cover story. (The problems this causes will be dis-

cussed at greater length in Chapter 7, “Multilevel Security.”)

6.1.6 Secure Time

The final kind of concurrency problem with special interest to the security engineer is

the provision of accurate time. As authentication protocols such as Kerberos can be

attacked by inducing an error in the clock, it’s not enough to simply trust a time source

on the network. There is a dangerous recursion in relying exclusively on secure time

for network authentication, as the master clock signal must itself be authenticated. One

of the many bad things that can happen if this isn’t done right is a Cinderella attack. If

a security-critical program such as a firewall has a license with a timelock in it, a bad

man (or a virus) could wind your clock forward “and cause your software to turn into a

pumpkin.”

There are several possible approaches:

• You could furnish every computer with a radio clock, but that can be expen-

sive, and radio clocks—even GPS—can be jammed if the opponent is serious.

• There are clock synchronization protocols described in the research literature
in which a number of clocks “vote” in a way designed to make clock failures
and network delays apparent. Even though these are designed to withstand
random (rather than malicious) failure, they can often be hardened by having
the messages digitally signed.

• You can abandon absolute time and instead use Lamport time, which means

that all you care about is whether event A happened before event B, rather

than what date it is [486]. Using challenge-response rather than timestamps in
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security protocols is an example of this; another is given by timestamping

services that continually hash all documents presented to them into a running

total that’s published, and can thus provide proof that a certain document ex-

isted by a certain date [364].

In most applications, you may end up using the Network Time Protocol (NTP). This

has a moderate amount of protection, with clock voting and authentication of time

servers. It is dependable enough for many purposes.

6.2 Fault Tolerance and Failure Recovery

Failure recovery is often the most important aspect of security engineering, yet is one

of the most neglected. For many years, most of the research papers on computer secu-

rity have dealt with confidentiality, and most of the rest with authenticity and integrity;

availability has been neglected. Yet the actual expenditures of a typical bank are the

other way round. Perhaps a third of all IT costs go to availability and recovery mecha-

nisms, such as hot standby processing sites and multiply redundant networks; a few

percent are invested in integrity mechanisms such as internal audit; and an almost in-

significant amount gets spent on confidentiality mechanisms such as encryption boxes.

As you read through this book, you’ll see that many other applications, from burglar

alarms through electronic warfare to protecting a company from Internet-based service

denial attacks, are fundamentally about availability. Fault tolerance and failure recov-

ery are a huge part of the security engineer’s job.

Classical system fault tolerance is usually based on mechanisms such as logs and

locking, and is greatly complicated when it must be made resilient in the face of mali-

cious attacks on these mechanisms. It interacts with security in a number of ways: the

failure model, the nature of resilience, the location of redundancy used to provide it,

and defense against service denial attacks. I’ll use the following definitions: a fault

may cause an error, which is an incorrect state; this may lead to a failure, which is a

deviation from the system’s specified behavior. The resilience that we build into a

system to tolerate faults and recover from failures will have a number of components,

such as fault detection, error recovery, and if necessary, failure recovery. The meaning

of mean-time-before-failure (MTBF) and mean-time-to-repair (MTTR) should be ob-

vious.

6.2.1 Failure Models

To decide what sort of resilience we need, we must know what sort of attacks are ex-

pected on our system. Much of this will come from an analysis of threats specific to

our operating environment, but there are some general issues that bear mentioning.

6.2.1.1 Byzantine Failure

First, the failures with which we are concerned may be normal or Byzantine. The Byz-

antine fault model is inspired by the idea that there are n generals defending Byz-

antium, t of whom have been bribed by the Turks to cause as much confusion as

possible in the command structure. The generals can pass oral messages by courier,
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and the couriers are trustworthy. Each general can exchange confidential and authentic

communications with each other general (we can also imagine them encrypting and

computing a MAC on each message). What is the maximum number t of traitors that

can be tolerated?

The key observation is that, if we have only three generals, say Anthony, Basil, and

Charalampos, and Anthony is the traitor, then he can tell Basil, “Let’s attack,” and

Charalampos “Let’s retreat.” Basil can now say to Charalampos “Anthony says let’s

attack,” but this doesn’t let Charalampos conclude that Anthony’s the traitor. It could

just as easily be Basil; Anthony could have said “Let’s retreat” to both of them, but

Basil lied when he said “Anthony says let’s attack.”

This beautiful insight is due to Lamport, Shostack, and Peace, who prove that the

problem has a solution if and only if n ≥ 3t + 1 [487]. Of course, if the generals are

able to sign their messages, then no general dare say different things to two different

colleagues. This illustrates the power of digital signatures in particular and of end-to-

end security mechanisms in general. Relying on third parties to introduce principals to

each other or to process transactions between them can give great savings, but if the

third parties ever become untrustworthy then it can impose significant costs.

6.2.1.2 Interaction with Fault Tolerance

We can constrain the failure rate in a number of ways. The two most obvious are by

using fail-stop processors and redundancy. Either of these can make the system more

resilient, but their side effects are rather different. Briefly, while both mechanisms may

be effective at protecting the integrity of data, a fail-stop processor is likely to be more

vulnerable to service denial attacks, whereas redundancy makes confidentiality harder

to achieve. If I have multiple sites with backup data, then confidentiality could be bro-

ken if any of them gets compromised; and if I have some data that I have a duty to de-

stroy, perhaps in response to a court order, then purging it from backup tapes can be a

nightmare.

It is only a slight simplification to say that while replication provides integrity and

availability, tamper resistance provides confidentiality, too. I’ll return to this theme

later. Indeed, the prevalence of replication in commercial systems, and of tamper re-

sistance in military systems, echoes their differing protection priorities.

Still, there are traps for the unwary. In one case in which I was called on as an ex-

pert, my client was arrested while using a credit card in a store, accused of having a

forged card, and beaten up by the police. He was adamant that the card was genuine.

Much later, we got the card examined by VISA who confirmed that it was indeed

genuine. What happened, as well as we can reconstruct it, was this. Credit cards have

two types of redundancy on the magnetic strip: a simple checksum obtained by com-

bining all the bytes on the track using exclusive-or, and a cryptographic checksum,

which I’ll describe in detail later in Section 19.3.2. The former is there to detect errors,

the latter to detect forgery. It appears that, in this particular case, the merchant’s card

reader was out of alignment in such a way as to cause an even number of bit errors,

which cancelled each other out by chance in the simple checksum, while causing the

crypto checksum to fail. The result was a false alarm, and a major disruption in my

client’s life.
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6.2.2 What Is Resilience For?

When introducing redundancy or other resilience mechanisms into a system, we need

to be very clear about what they’re for. An important consideration is whether the re-

silience is contained within a single organization.

In the first case, replication can be an internal feature of the server to make it more

trustworthy. AT&T has built a system called Rampart in which a number of geographi-

cally distinct servers can perform a computation separately, and combine their results

using threshold decryption and signature [639]; the idea is to use it for tasks such as

key management [640]. IBM has a variant on this idea called Proactive Security. Here,

keys are regularly flushed through the system, regardless of whether an attack has been

reported [379]. The idea is to recover even from attackers who break into a server and

then simply bide their time until enough other servers have also been compromised.

The trick of building a secure “virtual server” on top of a number of cheap off-the-

shelf machines has turned out to be attractive to people designing certification author-

ity services, because it’s possible to have very robust evidence of attacks on, or mis-

takes made by, one of the component servers [211]. It also appeals to a number of

navies, as critical resources can be spread around a ship in multiple PCs, and survive

most kinds of damage that don’t actually sink the vessel [309].

But often things are much more complicated. A server may have to protect itself

against malicious clients. A prudent bank, for example, will assume that many of its

customers would cheat it given the chance. Sometimes, the problem is the other way

round, in that we have to rely on a number of services, none of which is completely

trustworthy. In countries without national ID card systems, for example, a retailer who

wants to extend credit to a customer may ask to see three different items that give evi-

dence of the customer’s name and address (say, a gas bill, a phone bill, and a pay slip).

The direction of mistrust has an effect on protocol design. A server faced with mul-

tiple untrustworthy clients, and a client relying on multiple servers that may be incom-

petent, unavailable, or malicious, will both wish to control the flow of messages in a

protocol in order to contain the effects of service denial. Thus, a client facing several

unreliable servers may wish to use an authentication protocol, such as the Needham-

Schroeder protocol discussed above; there, the fact that the client can use old server

tickets is no longer a bug but a feature. This idea can be applied to protocol design in

general [623]. It provides us with another insight into why protocols may fail if the

principal responsible for the design, and the principal who carries the cost of fraud, are

different; and why designing systems for the real world, where all principals are unre-

liable and mutually suspicious, is hard.

At a still higher level, the emphasis might be on security renewability. Pay-TV is a

good example: secret keys and other subscriber management tools are typically kept in

a cheap smartcard rather than in an expensive set-top box, so that even if all the secret

keys are compromised, the operator can recover by mailing new cards out to the sub-

scribers. I’ll go into this in more detail in Chapter 20, “Copyright and Privacy Protec-

tion.”
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6.2.3 At What Level Is the Redundancy?

Systems may be made resilient against errors, attacks, and equipment failures at a

number of levels. As with access control systems, these become progressively more

complex and less reliable as we go up to higher layers in the system.

Some computers have been built with redundancy at the hardware level, such as

multiple CPUs and mirrored disks, to reduce the probability of failure. From the late

1980s, these machines were widely used in transaction processing tasks. Some more

modern systems achieve the same goal using massively parallel server farms; redun-

dant arrays of inexpensive disks (RAID disks) are a similar concept. But none of these

techniques provides a defense against an intruder, let alone faulty or malicious soft-

ware.

At the next level up is process group redundancy. Here, we may run multiple copies

of a system on multiple servers in different locations, and get them to vote on the out-

put. This can stop the kind of attack in which the opponent gets physical access to a

machine and subverts it, whether by mechanical destruction or by inserting unauthor-

ized software, and destroys or alters data. It can’t defend against attacks by authorized

users or damage by bad authorized software.

The next level is backup. Here, we typically take a copy of the system (also known

as a checkpoint) at regular intervals. The backup copies are usually kept on media that

can’t be overwritten, such as tapes with the write-protect tab set, or CDs. We may also

keep journals of all the transactions applied between checkpoints. In general, systems

are made recoverable by a transaction processing strategy of logging the incoming

data, trying to do the transaction, logging it again, and then checking to see whether it

worked. Whatever the detail, backup and recovery mechanisms not only enable us to

recover from physical asset destruction, they also ensure that if we do suffer an attack

at the logical level—such as a time bomb in our software that deletes our customer da-

tabase on a specific date—we have some hope of recovering. These mechanisms are

not infallible, though. The closest that any bank I know of came to a catastrophic com-

puter failure that would have closed their business was when their mainframe software

got progressively more tangled as time progressed, and it just wasn’t feasible to roll

back processing several weeks and try again.

Backup is not the same as fallback. A fallback system is typically a less capable

system to which processing reverts when the main system is unavailable. An example

is the use of manual “zip-zap” machines to capture credit card transactions when elec-

tronic terminals fail.

Fallback systems are an example of redundancy in the application layer—the highest

layer where we can put it. We might require that a transaction above a certain limit be

authorized by two members of staff, that an audit trail be kept of all transactions, and a

number of other things. I’ll discuss such arrangements at greater length in Chapter 9.

It is important to realize that hardware redundancy, group redundancy, backup and

fallback are different mechanisms, which do different things. Redundant disks won’t

protect against a malicious programmer who deletes all your account files; and backups

won’t stop him if, rather than just deleting files, he writes code that slowly inserts

more and more errors. Neither will give much protection against attacks on data confi-

dentiality. On the other hand, the best encryption in the world won’t help you if your

data processing center burns down. Real-world recovery plans and mechanisms can get

fiendishly complex, and involve a mixture of all of the above.
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6.2.4 Service Denial Attacks

One of the reasons we want security services to be fault-tolerant is to make service de-

nial attacks less attractive; more difficult, or both. These attacks are often used as part

of a larger attack plan. For example, one might swamp a host to take it temporarily

offline, then get another machine on the same LAN (which had already been sub-

verted) to assume its identity for a while. Another possible attack is to take down a

security server to force other servers to use cached copies of credentials.

A very powerful defense against service denial is to prevent the opponent mounting

a selective attack. If principals are anonymous—or at least there is no name service

that will tell the opponent where to attack—then an attack may be ineffective. I’ll dis-

cuss this further in the context of burglar alarms and electronic warfare.

Where this isn’t possible, and the opponent knows where to attack, some types of

service denial attacks can be stopped by redundancy and resilience mechanisms, and

others can’t. For example, the TCP/IP protocol has few effective mechanisms for hosts

to protect themselves against various network flooding attacks. An opponent can send

a large number of connection requests, to prevent anyone else establishing a connec-

tion. Defense against this kind of attack tends to involve tracing and arresting the per-

petrator.

Recently, there has been software on the Net that helps the opponent to hack a num-

ber of undefended systems and use these as attack robots to flood the victim. I’ll dis-

cuss this in Chapter 18, “Network Attack and Defense.” For now, I’ll just remark that

stopping such attacks is hard, and replication isn’t a complete solution. If you just

switch to a backup machine, and tell the name service, it will happily give the new IP

address to the attack software as well as to everybody else. Where such a strategy may

be helpful is if the backup machine is substantially more capable and thus can cope

better with the load. For example, you might failover to a high-capacity Web hosting

service. This is in some sense the opposite concept to “fallback.”

Finally, where a more vulnerable fallback system exists, a common technique is to

force its use by a service denial attack. The classic example is the use of smartcards for

bank payments in countries such as France and Norway. Smartcards are generally

harder to forge than magnetic strip cards, but perhaps 1 percent of them fail every year,

thanks to environmental insults such as static. Also, foreign tourists still use magnetic

strip cards. So smartcard payment systems need a fallback mode that does traditional

processing. Many attacks target this fallback mode. One trick is to destroy a smartcard

chip by connecting it to the electricity mains; a more common trick is just to use credit

cards stolen from foreign tourists, or imported from criminals in countries where mag-

netic stripes are still the norm. In the same way, burglar alarms that rely on network

connections for the primary response and fallback to alarm bells may be very vulner-

able if the network can be interrupted by an attacker. Few people pay attention any

more to alarm bells.

6.3 Naming

Naming is a minor, if troublesome, aspect of ordinary distributed systems, but it be-

comes surprisingly hard in security engineering. A topical example (as of 2000) is the



Security Engineering: A Guide to Building Dependable Distributed Systems

125

problem of what sort of names to put on public key certificates. A certificate that says

simply, “The person named Ross Anderson is allowed to administer system X” is of

little use. Before the arrival of Internet search engines, I was the only Ross Anderson I

knew of; now I know of dozens of us. I am also known by different names to dozens of

different systems. Names exist in contexts, and naming the principals in secure systems

is becoming ever more important and difficult.

There is some hope. Most (though not all) of the problems encountered so far have

come from ignoring the established lessons of naming in ordinary distributed systems.

6.3.1 The Distributed Systems View of Naming

During the last quarter of the twentieth century, the distributed systems research com-

munity ran up against many naming problems. The basic algorithm used to bind names

to addresses is known as rendezvous: the principal exporting a name advertises it

somewhere, and the principal seeking to import and use it searches for it. Obvious ex-

amples include phone books and directories in file systems.

However, the distributed systems community soon realized that naming can get

fiendishly complex, and the lessons learned are set out in a classic article by Needham

[587]. I’ll summarize the main points, and look at which of them apply to secure sys-

tems.

1. The function of names is to facilitate sharing. This continues to hold: my bank

account number exists in order to provide a convenient way of sharing the in-

formation that I deposited money last week with the teller from whom I am

trying to withdraw money this week. In general, names are needed when the

data to be shared is changeable. If I only ever wished to withdraw exactly the

same sum as I’d deposited, a bearer deposit certificate would be fine. Con-

versely, names need not be shared—or linked—where data will not be; there

is no need to link my bank account number to my telephone number unless I

am going to pay my phone bill from the account.

2. The naming information may not all be in one place, so resolving names

brings all the general problems of a distributed system. This holds with a

vengeance. A link between a bank account and a phone number assumes both

of them will remain stable. When each system relies on the other, an attack on

one can affect both. In the days when electronic banking was dial-up rather

than Web-based, a bank that identified its customers using calling-line ID was

vulnerable to attacks that circumvented the security of the telephone exchange

(such as tapping into the distribution frame in an apartment block, hacking a

phone company computer, or bribing a phone company employee).

3. It is bad to assume that only so many names will be needed. The shortage of

IP addresses, which motivated the development of IP version 6 (IPv6), is well

enough discussed. What is less well known is that the most expensive upgrade

that the credit card industry ever had to make was not Y2K remediation, but

the move from 13-digit credit card numbers to 16. Issuers originally assumed

that 13 digits would be enough; but the system ended up with tens of thou-

sands of banks (many with dozens of products), so a 6-digit bank identifica-

tion number (BIN number) was needed. Some card issuers have millions of
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customers, so a 9-digit account number is the norm. And there’s also a check

digit (a linear combination of the other digits, which is appended to detect er-

rors).

4. Global names buy you less than you think. For example, the 128-bit addresses

planned for IPv6 can enable every object in the universe to have a unique

name. However, for us to do business, a local name at my end must be re-

solved into this unique name and back into a local name at your end. Invoking

a unique name in the middle may not buy us anything; it may even get in the

way if the unique naming service takes time, costs money, or occasionally

fails (as it surely will). In fact, the name service itself will usually have to be

a distributed system, of the same scale (and security level) as the system

we’re trying to protect. So we can expect no silver bullets from this quarter.

One reason the banking industry is wary of initiatives to set up public key in-

frastructures which would give each citizen the electronic equivalent of an ID

card, is that banks already have unique names for their customers (account

numbers). Adding an extra number does little good, but it has the potential to

add extra costs and failure modes.

5. Names imply commitments, so keep the scheme flexible enough to cope with

organizational changes. This sound principle was ignored in the design of

Cloud Cover, the U.K. government’s key management system for secure

email [50]. There, principals’ private keys are generated by encrypting their

names under departmental master keys. So reorganizations mean that the se-

curity infrastructure must be rebuilt.

6. Names may double as access tickets, or capabilities. We have already seen a

number of examples of this in the chapters on protocols and passwords. In

general, it’s a bad idea to assume that today’s name won’t be tomorrow’s

password or capability—remember the Utrecht fraud discussed in Section 2.4.

(This is one of the arguments for making all names public keys—“keys speak

in cyberspace” in Carl Ellison’s phrase—but we’ve already noted the diffi-

culties of linking keys with names.)

I’ve given a number of examples of how things go wrong when a name

starts being used as a password. But sometimes the roles of name and pass-

word are ambiguous. In order to get entry to the car park I use at the univer-

sity, I speak my surname and parking badge number into a microphone near

the barrier. So if I say, “Anderson, 123” (or whatever), which of these is the

password? (In fact it’s “Anderson,” as anyone can walk through the car park

and note down valid badge numbers from the parking permits displayed on the

cars.) In this context, a lot deserves to be said about biometrics, which I’ll

postpone until Chapter 13.

7. Things are made much simpler if an incorrect name is obvious. In standard

distributed systems, this enables us to take a liberal attitude toward cacheing.

In payment systems, credit card numbers may be accepted while a terminal is

offline as long as the credit card number appears valid (i.e., the last digit is a

proper check digit of the first 15) and is not on the hot-card list. Certificates

provide a higher-quality implementation of the same basic concept.
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It’s important where the name is checked. The credit card check digit algo-

rithm is deployed at the point of sale, so it is inevitably public. A further

check—the card verification value (CVV) on the magnetic strip—is computed

with secret keys, but can be checked at the issuing bank, the acquiring bank,

or even at a network switch (if one trusts these third parties with the keys).

This is more expensive, and still vulnerable to network outages.

8. Consistency is hard, and is often fudged. If directories are replicated, then

you may find yourself unable to read, or to write, depending on whether too

many or too few directories are available. Naming consistency causes prob-

lems for e-commerce in a number of ways, of which perhaps the most notori-

ous is the barcode system. Although this is simple enough in theory—with a

unique numerical code for each product—in practice, it can be a nightmare, as

different manufacturers, distributors, and retailers attach quite different de-

scriptions to the barcodes in their databases. Thus, a search for products by

“Kellogg’s” will throw up quite different results depending on whether or not

an apostrophe is inserted, and this can cause great confusion in the supply

chain. Proposals to fix this problem can be surprisingly complicated [387].

There are also the issues of covergence discussed above; data might not be

consistent across a system, even in theory. There are also the problems of

timeliness, such as the revocation problem for public key certificates.

9. Don’t get too smart. Phone numbers are much more robust than computer

addresses. Amen to that; but it’s too often ignored by secure system design-

ers. Bank account numbers are much easier to deal with than the X.509 cer-

tificates proposed for protocols such as SET—which was supposed to be the

new standard for credit card payments on the Net, but which has so far failed

to take off as a result of its complexity and cost. I discuss X.509 and SET in

Part 2.

10. Some names are bound early, others not; and in general it is a bad thing to

bind early if you can avoid it. A prudent programmer will normally avoid

coding absolute addresses or filenames, as that would make it hard to upgrade

or replace a machine. He will prefer to leave this to a configuration file or an

external service such as DNS. (This is another reason not to put addresses in

names.) Here, there can be a slight tension with some protection goals: secure

systems often want stable and accountable names, as any third-party service

used for last-minute resolution could be a point of attack. Knowing them well

in advance permits preauthorization of transactions and other such optimiza-

tions.

So, of Needham’s 10 principles for distributed naming, nine apply directly to dis-

tributed secure systems. The (partial) exception is whether names should be bound

early or late.

6.3.2 What Else Goes Wrong

Needham’s principles, although very useful, are not sufficient. They were designed for

a world in which naming systems could be designed and imposed at the system

owner’s convenience. When we move from distributed systems in the abstract to the
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reality of modern Internet-based (and otherwise interlinked) service industries, there is

quite a lot more to say.

6.3.2.1 Naming and Identity

The most obvious difference is that the principals in security protocols may be known

by many different kinds of name—a bank account number, a company registration

number, a personal name plus a date of birth or a postal address, a telephone number, a

passport number, a health service patient number, or a userid on a computer system.

As I mentioned in the introductory definitions, a common mistake is to confuse

naming with identity. Identity is when two different names (or instances of the same

name) correspond to the same principal (this is known in the distributed systems lit-

erature as an indirect name or symbolic link). The classic example comes from the

registration of title to real estate. It is very common that someone who wishes to sell a

house uses a different name than they did at the time it was purchased: they might have

changed name on marriage, or after a criminal conviction. Changes in name usage are

also common. For example, the DE Bell of the Bell-LaPadula system (which I’ll dis-

cuss in the next chapter) wrote his name “D. Elliot Bell” in 1973 on that paper; but he

was always known as David, which is how he now writes his name, too. A land regis-

tration system must cope with a lot of identity issues like this.

A more typical example of identity might be a statement such as, “The Jim Smith

who owns bank account number 12345678 is the Robert James Smith with passport

number 98765432 and date of birth 3/4/56.” It may be seen as a symbolic link between

two separate systems—the bank’s and the passport office’s. Note that the latter part of

this identity encapsulates a further identity, which might be something like, “The U.S.

passport office’s file number 98765432 corresponds to the entry in birth register for

3/4/56 of one Robert James Smith.” In general, names may involve several steps of

recursion.

6.3.2.2 Cultural Assumptions

The assumptions that underlie names often change from one country to another. In the

English-speaking world, people may generally use as many names as they please; a

name is simply what you are known by. But some countries forbid the use of aliases,

and others require them to be registered. This can lead to some interesting scams. In at

least one case, a British citizen has evaded pursuit by foreign tax authorities by

changing his name. On a less exalted plane, women who pursue academic careers and

change their name on marriage may wish to retain their former name for professional

use, which means that the name on their scientific papers is different from their name

on the payroll. This has caused a huge row at my university, which introduced a uni-

fied ID card system keyed to payroll names, without support for aliases.

In general, many of the really intractable problems arise when an attempt is made to

unify two local naming systems that turn out to have incompatible assumptions. As

electronics invade everyday life more and more, and systems become linked up, con-

flicts can propagate and have unexpected remote effects. For example, one of the lady

professors in dispute over our university card is also a trustee of the British Library,
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which issues its own admission tickets on the basis of the name on the holder’s home

university library card.

Even human naming conventions are not uniform. Russians are known by a fore-

name, a patronymic, and a surname; Icelanders have no surname but are known instead

by a given name, followed by a patronymic if they are male and a matronymic if they

are female. This causes problems when they travel. When U.S. immigration comes

across Maria Trosttadóttir and learns that Trosttadóttir isn’t a surname or even a patro-

nymic, its standard practice is to compel her to adopt as a surname a patronymic (say,

Carlsson if her father was called Carl). This causes unnecessary offense.

The biggest cultural divide is often thought to be that between the English-speaking

countries, where identity cards are considered to be unacceptable on privacy grounds

(unless they’re called drivers’ licenses or health service cards), and the countries con-

quered by Napoleon (or by the Soviets) where identity cards are the norm. Other ex-

amples are more subtle. I know Germans who refuse to believe that a country can

function at all without a proper system of population registration and ID cards, yet are

asked for their ID card only rarely (for example, to open a bank account or get mar-

ried). Their card number can’t be used as a name, because it is a document number and

changes every time a new card is issued. A Swiss hotelier may be happy to register a

German guest on sight of an ID card rather than a credit card, but if he discovers some

damage after a German guest has checked out, he may be out of luck. And the British

passport office will issue a citizen with more than one passport at the same time, if he

says he needs them to make business trips to (say) Cuba and the USA; so our Swiss

hotelier, finding that a British guest has just left without paying, can’t rely on the pass-

port number to have him stopped at the airport.

There are many other hidden assumptions about the relationship between govern-

ments and people’s names, and they vary from one country to another in ways which

can cause subtle security failures.

6.3.2.3 Semantic Content of Names

Another hazard arises on changing from one type of name to another without adequate

background research. A bank got sued after it moved from storing customer data by

account number to storing it by name and address. The bank wanted to target junk mail

more accurately, so it had a program written to link all the accounts operated by each

of its customers. The effect for one customer was that the bank statement for the ac-

count he maintained for his mistress got sent to his wife, who divorced him.

Sometimes naming is simple, but sometimes it merely appears to be. For example,

when I got a monthly ticket for the local swimming pool, the cashier simply took the

top card off a pile, swiped it through a reader to tell the system it was now live, and

gave it to me. I had been assigned a random name—the serial number on the card.

Many U.S. road toll systems work in much the same way. Sometimes a random,

anonymous name can add commercial value. In Hong Kong, toll tokens for the Aber-

deen tunnel could be bought for cash or at a discount in the form of a refillable card. In

the run-up to the transfer of power from Britain to Beijing, many people preferred to

pay extra for the less traceable version, as they were worried about surveillance by the

new police force.
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Semantics of names can change. I once got a hardware store loyalty card with a ran-

dom account number (and no credit checks). I was offered the chance to change this

into a bank card after the store was taken over by the supermarket, and the supermarket

started a bank. (This appears to have ignored money-laundering regulations that all

new bank customers must be identified and have references taken up.)

Assigning bank account numbers to customers might have seemed unproblem-

atic—but as the above examples show, systems may start to construct assumptions

about relationships between names that are misleading and dangerous.

6.3.2.4 Uniqueness of Names

Human names evolved when we lived in small communities. They were not designed

for the Internet. There are now many more people (and systems) online than we are

used to dealing with. As I remarked at the beginning of this section, I used to be the

only Ross Anderson I knew of, but thanks to Internet search engines, I now know doz-

ens of namesakes. Some of them work in fields I’ve also worked in, such as software

engineering and electric power distribution; the fact that I’m www. ross-anderson.com

and ross.anderson@iee.org is just luck—I got there first. (Even so, rjanderson

@iee.org is somebody else.) So even the combination of a relatively rare name and a

specialized profession is still ambiguous.

6.3.2.5 Stability of Names and Addresses

Many names include some kind of address, yet addresses change. About a quarter of

Cambridge phone book addresses change every year; with email, the turnover is proba-

bly higher. A project to develop a directory of people who use encrypted email, to-

gether with their keys, found that the main cause of changed entries was changes of

email address [42]. (Some people had assumed it would be the loss or theft of keys; the

contribution from this source was precisely zero.)

A potentially serious problem could arise with IPv6. The security community as-

sumes that v6 IP addresses will be stable, so that public key infrastructures can be built

to bind principals of various kinds to them. All sorts of mechanisms have been pro-

posed to map real-world names, addresses, and even document content indelibly and

eternally onto 128-bit strings (see, for example, [365]). The data communications

community, on the other hand, assumes that IPv6 addresses will change regularly. The

more significant bits will change to accommodate more efficient routing algorithms,

while the less significant bits will be used to manage local networks. These assump-

tions can’t both be right.

Distributed systems pioneers considered it a bad thing to put addresses in names

[565]. But in general, there can be multiple layers of abstraction, with some of the ad-

dress information at each layer forming part of the name at the layer above. Also,

whether a namespace is better flat depends on the application. Often people end up

with different names at the departmental and organizational level (such as

rja14@cam.ac.uk and ross.anderson@cl.cam.ac.uk in my own case). So a clean demar-

cation between names and addresses is not always possible.

Authorizations have many (but not all) of the properties of addresses. Designers of

public key infrastructures are beginning to realize that if a public key certificate con-
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tains a list of what it may be used for, then the more things on this list the shorter its

period of usefulness. A similar problem besets systems where names are composite.

For example, some online businesses recognize me by the combination of email ad-

dress and credit card number. This is clearly bad practice. Quite apart from the fact that

I have several email addresses, I have several credit cards. The one I use will depend

on which of them is currently giving the best cashback or the most air miles. (So if the

government passes a law making the use of pseudonyms on the Net illegal, does this

mean I have to stick to the one ISP and the one credit card?)

6.3.2.6 Restrictions on the Use of Names

This brings us to a further problem. Some names may be used only in restricted cir-

cumstances. This may be laid down by law, as with the U.S. Social Security number

(SSN) and its equivalents in many European countries. Sometimes it is a matter of

marketing. I would rather not give out my residential address (or my home phone num-

ber) when shopping on the Web, and will avoid businesses that demand them.

Memorable pseudonyms are sometimes required. In a university, one occasionally

has to change email addresses, for example, when a student is a victim of cyberstalk-

ing. Another example is where a celebrity wants a private mailbox as well as the “ob-

vious” one that goes to her secretary.

Sometimes it’s more serious. Pseudonyms are often used as a privacy-enhancing

technology. They can interact with naming in unexpected ways. For example, it’s fairly

common for hospitals to use a patient number as an index to medical record databases,

as this may allow researchers to use pseudonymous records for some limited purposes

without much further processing. This causes problems when a merger of health main-

tenance organizations, or a new policy directive in a national health service, forces the

hospital to introduce uniform names. Patient confidentiality can be completely under-

mined. (I’ll discuss anonymity further in Chapter 20, and its particular application to

medical databases in Chapter 8.)

Finally, when we come to law and policy, the definition of a name turns out to be

unexpectedly tricky. Regulations that allow police to collect communications

data—that is, a record of who called whom and when—are often very much more lax

than the regulations governing phone tapping; in many countries, police can get this

data just by asking the phone company. An issue that caused a public outcry in the

United Kingdom was whether this enables them to harvest the URLs that people use to

fetch Web pages. URLs often have embedded in them data such as the parameters

passed to search engines. Clearly, there are policemen who would like a list of every-

one who hit a URL such as http://www.google.

com/search?q=cannabis+cultivation+UK; just as clearly, many people would consider

such large-scale trawling to be an unacceptable invasion of privacy. On the other hand,

if the police are limited to monitoring IP addresses, they could have difficulties tracing

criminals who use transient IP addresses provided by free ISP services.

6.3.3 Types of Name

The complexity is organizational and technical, as well as political. I noted in the in-

troduction that names can refer not just to persons and machines acting on their behalf,



Chapter 6: Protocols

132

but also to organizations, roles (“the officer of the watch”), groups, and compound

constructions: principal in role—Alice as manager; delegation—Alice for Bob; con-

junction—Alice and Bob. Conjunction often expresses implicit access rules: “Alice

acting as branch manager plus Bob as a member of the group of branch accountants.”

That’s only the beginning. Names also apply to services (such as NFS or a public

key infrastructure) and channels (which might mean wires, ports, or crypto keys). The

same name might refer to different roles: “Alice as a computer game player” ought to

have less privilege than “Alice the system administrator.” The usual abstraction used in

the security literature is to treat them as different principals. This all means that there’s

no easy mapping between names and principals.

Finally, there are functional tensions that come from the underlying business proc-

esses rather from system design. Businesses mainly want to get paid, while govern-

ments want to identify people uniquely. In effect, business wants a credit card number

while government wants a passport number. Building systems that try to be both—as

some governments are trying to encourage—is a tar-pit. There are many semantic dif-

ferences. You can show your passport to a million people, if you wish, but you had

better not try that with a credit card. Banks want to open accounts for anyone who

turns up with some money; governments want them to verify people’s identity care-

fully in order to discourage money laundering. The list is a long one.

6.4 Summary

Many secure distributed systems have incurred huge costs or developed serious vulner-

abilities, because their designers ignored the basic lessons of how to build (and how

not to build) distributed systems. Most of these lessons are still valid, and there are

more to add.

A large number of security breaches are concurrency failures of one kind or another;

systems use old data, make updates inconsistently or in the wrong order, or assume that

data are consistent when they aren’t and can’t be. Knowing the right time is harder

than it seems.

Fault tolerance and failure recovery are critical. Providing the ability to recover from

security failures, and random physical disasters, is the main purpose of the protection

budget for many organizations. At a more technical level, there are significant interac-

tions between protection and resilience mechanisms. Byzantine failure—where defec-

tive processes conspire, rather than failing randomly—is an issue, and interacts with

our choice of cryptographic tools. There are many different flavors of redundancy, and

we have to use the right combination. We need to protect not just against failures and

attempted manipulation, but also against deliberate attempts to deny service, which

may often be part of larger attack plans.

Many problems also arise from trying to make a name do too much, or making as-

sumptions about it which don’t hold outside of one particular system, or culture, or

jurisdiction. For example, it should be possible to revoke a user’s access to a system by

cancelling their user name without getting sued on account of other functions being

revoked. The simplest solution is often to assign each principal a unique identifier used

for no other purpose, such as a bank account number or a system logon name. But

many problems arise when merging two systems that use naming schemes that are in-
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compatible for some reason. Sometimes this merging can even happen by accident—an

example being when two systems use a common combination such as “name plus date

of birth” to track individuals.

Research Problems

In the research community, secure distributed systems tend to have been discussed as a

side issue by experts on communications protocols and operating systems, rather than

as a discipline in its own right. So it is a relatively open field, and one that I feel holds

much promise over the next five to ten years.

There are many technical issues which I’ve touched on in this chapter, such as how

we design secure time protocols and the complexities of naming. But perhaps the most

important research problem is to work out how to design systems that are resilient in

the face of malice, that degrade gracefully, and whose security can be recovered simply

once the attack is past. This may mean revisiting the definition of convergent applica-

tions. Under what conditions can we recover neatly from corrupt security state? Do we

have to rework recovery (which explores how to rebuild databases from backup tapes)?

What interactions are there between recovery mechanisms and particular protection

technologies? In what respects should protection mechanisms be separated from resil-

ience mechanisms, and in what respects should they be separated? What other pieces

are missing from the jigsaw?

Further Reading

There are many books on distributed systems. I’ve found Sape Mullender’s anthology

[565] to be helpful and thought-provoking for graduate students, while the textbook we

recommend to our undergraduates by Jean Bacon [64] is also worth reading. Geraint

Price has a survey of the literature on the interaction between fault tolerance and secu-

rity [623]. The research literature on concurrency, such as the SIGMOD conferences,

has occasional gems. But the most important practical topic for the working security

engineer is probably contingency planning. There are many books on this topic; the

one I have on my shelf is by Jon Toigo [749].
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PART

Two

In the second part of the book, I describe a large number of applications of secure sys-

tems, many of which introduce particular protection concepts or technologies.

There are four successive themes. Chapters 7 through 9 look at conventional com-

puter security issues, and by discussing what one is trying to do and how it’s done in

different environments—the military, banks, and healthcare—I introduce security pol-

icy models, which set out the protection concepts that real systems try to implement. I

also introduce the first detailed case studies in these chapters. An example is the

worldwide network of automatic teller machines, which illustrates many of the prob-

lems of transferring familiar protection properties from a bank branch to a global dis-

tributed environment using cryptography.

Chapters 10 through 15 look at the hardware engineering aspects of information se-

curity. This includes biometrics, the design of various tokens such as smartcards, tam-

per resistance and tamper evidentness, emission security, and seals. New applications

that illustrate the technologies are described, ranging from electronic warfare and nu-

clear weapons control to taximeters, truck speed limiters, and prepayment gas meters.

The third theme is attacks on networks. I start off in Chapter 16 by covering elec-

tronic and information warfare, as these activities give some of the more extreme ex-

amples and show how far techniques of denial, deception, and exploitation can be

taken by a resourceful opponent under severe operational pressure. This chapter also

gives a view of surveillance and intrusion from the point of view of police forces and

intelligence agencies, and introduces a number of new concepts, such as anonymity

and traffic analysis. We then study the lessons of history by examining frauds on phone

systems and on applications that rely on them in Chapter 17. This sets the scene for a

discussion in Chapter 18 of attacks on computer networks and defensive technologies

such as firewalls and intrusion detection.

The fourth theme is electronic commerce, which I tackle in Chapters 19 and 20. The

most high-profile applications are schemes for protecting credit card transactions on

the Net, such as SSL/TLS; they are also used for other applications such as medical

image distribution. They introduce the debate about public key infrastructures. In ad-

dition, I consider mechanisms for copyright protection, specifically, pay-TV, DVD,

and copyright watermarking.
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One reason for this ordering is to give the chapters a logical progression. Thus, for

example, I discuss frauds against magnetic stripe bank cards before going on to de-

scribe the smartcards that may replace them and the pay-TV systems that actually use

smartcards today. That said, sometimes a neat linear ordering isn’t possible, as a par-

ticular technology has evolved through a number of iterations involving more than one

application. In that case, I try to describe it in a case history.

Finally, to keep the book manageable for readers who will use it primarily as a ref-

erence rather than as a textbook, I have put the more technical material toward the end

of each chapter or section. That way, if you get lost at a first reading, you can just skip

to the next section and carry on.
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CHAPTER

7

Multilevel Security

At times, in the name of national security, secrecy has put that very

 security in harm’s way.

—DANIEL PATRICK MOYNIHAN

I brief;

 you leak;

 he/she commits a criminal offence

 by divulging classified information

—BRITISH CIVIL SERVICE PROVERB

7.1 Introduction

I mentioned in the introduction that military database systems, which can hold infor-

mation at a number of different levels of classification (confidential, secret, top secret,

. . .) have to ensure that data can be read only by a principal whose level is at least as

high as the data’s classification. These systems are important because:

• A huge amount of research has been done on them, thanks to military funding

for computer science in the United States. So the military model of protection

has been worked out in much more detail than any other, and it gives us a lot

of examples of the second-order and even third-order effects of implementing

a security policy rigorously.

• Some of the products developed to support military multilevel security may
find a new lease on life as platforms for firewalls and Web servers. They give
some assurance that even although a firewall or server software might be
hacked, the underlying operating system is not likely to be.
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• Although multilevel concepts were originally developed to support confidenti-
ality in military systems, there are now many commercial systems that use
multilevel integrity policies. For example, phone companies want their billing
system to be able to see what’s happening in their switching system, but not
affect it.

• Multilevel confidentiality ideas are often applied in environments where

they’re ineffective or even harmful, because of the major vested interests and

momentum behind them.

Sir Isaiah Berlin famously described thinkers as either foxes or hedgehogs: a fox

knows many little things, while a hedgehog knows one big thing. The multilevel phi-

losophy is the hedgehog approach to security engineering.

7.2 What Is a Security Policy Model?

Where a top-down approach to security engineering is possible, it will typically take

the form of threat model—security policy—security mechanisms. The critical, and of-

ten neglected, part of this process is the security policy.

By a security policy, I mean a document that expresses clearly and concisely what

the protection mechanisms are to achieve. It is driven by our understanding of threats,

and in turn drives our system design. It will often take the form of statements about

which users may access which data. It plays the same role in specifying the system’s

protection requirements, and evaluating whether they have been met, as the system

specification does for general functionality. Indeed, a security policy may be part of a

system specification, and like the specification, its primary function is to communicate.

Many organizations use the phrase ‘security policy’ to mean a collection of vapid

statements. Figure 7.1 gives a simple example. This sort of waffle is very common, but

is useless to the security engineer.

Its first failing is that it dodges the central issue, namely ‘Who determines “need-to-

know” and how?’ Second, it mixes statements at a number of different levels (organi-

zational approval of a policy logically should not be part of the policy itself). Third,

there is a mechanism, but it’s implied rather than explicit: “staff shall obey”—but what

does this mean they actually have to do? Must the obedience be enforced by the sys-

tem, or are users “on their honor?” Fourth, how are breaches to be detected and who

has a specific duty to report them?

Figure 7.1 A typical corporate information security policy.
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We must do better than this. In fact, because the term ‘security policy’ is widely

abused to mean a collection of managerialist platitudes, there are three more precise

terms that have come into use to describe the specification of protection requirements:

A security policy model is a succinct statement of the protection properties that a

system, or generic type of system, must have. Its key points can typically be written

down in a page or less. It is the document in which the protection goals of the system

are agreed to by an entire community, or with the top management of a customer. It

may also be the basis of formal mathematical analysis.

A security target is a more detailed description of the protection mechanisms that a

specific implementation provides, and how they relate to a list of control objectives

(some but not all of which are typically derived from the policy model). The security

target forms the basis for testing and evaluation of a product.

A protection profile is like a security target but expressed in an implementation-

independent way to enable comparable evaluations across products and versions. This

can involve the use of a semi-formal language or at least of suitable security jargon. A

protection profile is a requirement for products that are to be evaluated under the

Common Criteria [574] (I discuss the Common Criteria in Part 3; they are associated

with a scheme used by many governments for mutual recognition of security evalua-

tions of defense information systems).

When I don’t have to be so precise, I may use the phrase ‘security policy’ to refer to

any or all of the above. I will never use the term to refer to a collection of platitudes.

Sometimes, we are confronted with a completely new application, and have to de-

sign a security policy model from scratch. More commonly, a model already exists; we

just have to choose the right one, and develop it into a security target. Neither of these

steps is easy. Indeed, one of the purposes of this section is to provide a number of se-

curity policy models, describe them in the context of real systems, and examine the

engineering mechanisms (and associated constraints) that a security target can use to

meet them.

Finally, there is a third usage of the phrase ‘security policy,’ to mean a list of spe-

cific configuration settings for some protection product. I will refer to this as configu-

ration management or, occasionally, as trusted configuration management, in what

follows.

7.3 The Bell-LaPadula Security Policy Model

The best-known example of a security policy model was proposed by David Bell and

Len LaPadula in 1973, in response to U.S. Air Force concerns over the security of

time-sharing mainframe systems. By the early 1970s, people had realized that the pro-

tection offered by many commercial operating systems was poor, and was not getting

any better. As soon as one operating system bug was fixed, some other vulnerability

would be discovered. (Modern reliability growth models can quantify this and confirm

that the pessimism was justified; I discuss them further in Section 23.2.4). There was

the constant worry that even unskilled users would discover loopholes, and use them

opportunistically; there was also a keen and growing awareness of the threat from ma-

licious code. There was a serious scare when it was discovered that the Pentagon’s

World Wide Military Command and Control System was vulnerable to Trojan Horse

attacks; this had the effect of restricting its use to people with a ‘Top Secret’ clearance,
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which was inconvenient. Finally, academic and industrial researchers were coming up

with some interesting new ideas on protection, which we’ll discuss below.

A study by James Anderson led the U.S. government to conclude that a secure sys-

tem should do one or two things well; and that these protection properties should be

enforced by mechanisms that were simple enough to verify and that would change only

rarely [16]. It introduced the concept of a reference monitor, a component of the oper-

ating system that would mediate access control decisions and be small enough to be

subject to analysis and tests, the completeness of which could be assured. In modern

parlance, such components—together with their associated operating proce-

dures—make up the Trusted Computing Base (TCB). More formally, the TCB is de-

fined as the set of components (hardware, software, human, etc.) whose correct

functioning is sufficient to ensure that the security policy is enforced, or, more vividly,

whose failure could cause a breach of the security policy. The Anderson report’s goal

was to make the security policy simple enough for the TCB to be amenable to careful

verification.

But what are these core security properties that should be enforced above all others?

7.3.1 Classifications and Clearances

World War II, and the Cold War that followed, led NATO governments to move to a

common protective marking scheme for labelling the sensitivity of documents. Classi-

fications are labels, which run upward from Unclassified through Confidential, Secret,

and Top Secret. The details change from time to time. The original idea was that in-

formation whose compromise could cost lives was marked ‘Secret’ while information

whose compromise could cost many lives was ‘Top Secret’. Government employees

have clearances depending on the care with which they’ve been vetted; in the United

States, for example, a ‘Secret’ clearance involves checking FBI fingerprint files, while

‘Top Secret’ also involves background checks for the previous 5 to 15 years’ employ-

ment [244].

The access control policy was simple: an official could read a document only if his

clearance was at least as high as the document’s classification. So an official cleared to

‘Top Secret’ could read a ‘Secret’ document, but not vice versa. The effect is that in-

formation may only flow upward, from Confidential to Secret to Top Secret (see Fig-

ure 7.2), but it may never flow downward unless an authorized person takes a

deliberate decision to declassify it.

There are also document-handling rules; thus, a ‘Confidential’ document might be

kept in a locked filing cabinet in an ordinary government office, while higher levels

may require safes of an approved type, guarded rooms with control over photocopiers,

and so on. (The NSA security manual [582] gives a summary of the procedures used

with ‘Top Secret’ intelligence data.)

Figure 7.2 Multilevel security.
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The system rapidly became more complicated. The damage criteria for classifying

documents were expanded from possible military consequences to economic harm and

even political embarrassment. Britain has an extra level, ‘Restricted’, between ‘Un-

classified’ and ‘Confidential’; the United States had this, too, but abolished it after the

Freedom of Information Act was passed. America now has two more specific mark-

ings: ‘For Official Use only’ (FOUO) refers to unclassified data that can’t be released

under the Freedom of Information Act (FOIA), while ‘Unclassified but Sensitive’ in-

cludes FOUO plus material that might be released in response to a FOIA request. In

Britain, restricted information is in practice shared freely, but marking everything ‘Re-

stricted’ allows journalists and others involved in leaks to be prosecuted under Official

Secrets law. (Its other main practical effect is that an unclassified U.S. document sent

across the Atlantic automatically becomes ‘Restricted’ in Britain, and then ‘Confiden-

tial’ when shipped back to the United States. American military system builders com-

plain that the U.K. policy breaks the U.S. classification scheme!)

There is also a system of codewords whereby information, especially at Secret and

above, can be further restricted. For example, information that might contain intelli-

gence sources or methods—such as the identities of agents or decrypts of foreign gov-

ernment traffic—is typically classified ‘Top Secret Special Compartmented

Intelligence,’ or TS/SCI, which means that so-called need-to-know restrictions are im-

posed as well, with one or more codewords attached to a file. Some of the codewords

relate to a particular military operation or intelligence source, and are available only to

a group of named users. To read a document, a user must have all the codewords that

are attached to it. A classification label, plus a set of codewords, makes up a security

category or (if there’s at least one codeword) a compartment, which is a set of records

with the same access control policy. I discuss compartmentation in more detail in the

next Chapter 8.

There are also descriptors, caveats, and IDO markings. Descriptors are words such

as ‘Management’, ‘Budget’, and ‘Appointments’: they do not invoke any special han-

dling requirements, so we can deal with a file marked ‘Confidential—Management’ as

if it were simply marked ‘Confidential’. Caveats are warnings, such as “U.K. Eyes

Only,” or the U.S. equivalent, ‘NOFORN’; there are also International Defense Orga-

nization (IDO) markings such as ‘NATO’. The lack of obvious differences between

codewords, descriptors, caveats, and IDO marking is one of the factors that can make

the system confusing. (A more detailed explanation can be found in [630].)

The final generic comment about access control doctrine is that allowing upward-

only flow of information also models what happens in wiretapping. In the old days,

tapping someone’s telephone meant adding a physical wire at the exchange; nowadays,

it’s all done in the telephone exchange software, and the effect is somewhat like mak-

ing the target calls into conference calls with an extra participant. The usual security

requirement is that the target of investigation should not know he is being wiretapped,

so the third party should be silent—and its very presence must remain unknown to the

target. For example, now that wiretaps are usually implemented as silent conference

calls, care has to be taken to ensure that the charge for the conference call facility goes

to the wiretapper, not to the target. Wiretapping requires an information flow policy in

which the ‘High’ principal can see ‘Low’ data, but a ‘Low’ principal can’t tell whether

‘High’ is reading any data, and if so what.
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7.3.2 Information Flow Control

It was in the context of the classification of military and intelligence data that the Bell-

LaPadula (BLP) model of computer security was formulated in 1973 by David Bell

and Len LaPadula [86]. It is also known as multilevel security; systems that implement

it are often called multilevel secure, or MLS, systems. Their basic property is that in-

formation cannot flow downward.

More formally, the Bell-LaPadula model enforces two properties:

• The simple security property: no process may read data at a higher level. This

is also known as no read up (NRU);

• The *-property: no process may write data to a lower level. This is also known

as no write down (NWD).

The *-property was Bell and LaPadula’s critical innovation. It was driven by the fear

of attacks using malicious code. An uncleared user might write a Trojan and leave it

around where a system administrator cleared to ‘Secret’ might execute it; it could then

copy itself into the ‘Secret’ part of the system, read the data there and try to signal it

down somehow. It’s also quite possible that an enemy agent could get a job at a com-

mercial software house and embed some code in a product that would look for secret

documents to copy. If it could then copy them down to where its creator could read it,

the security policy would have been violated. Information might also be leaked as a

result of a bug, if applications could write down.

Vulnerabilities such as malicious and buggy code are assumed to be given. It is

therefore necessary for the system to enforce the security policy independently of user

actions (and, by extension, of the actions taken by programs run by users). So we must

prevent programs running at ‘Secret’ from writing to files at ‘Unclassified’; or, more

generally, prevent any process at High from signalling to any object (or subject) at

Low. In general, when systems are built to enforce a security policy independently of

user actions, they are described as having mandatory access control, as opposed to the

discretionary access control in systems such as Unix where users can take their own

access decisions about their files. (I won’t use these phrases much, as they traditionally

refer only to BLP-type policies and don’t include many other policies whose rules are

just as mandatory).

The Bell-LaPadula model makes it relatively straightforward to verify claims about

the protection provided by a design. Given both the simple security property (no read

up), and the star property (no write down), various results can be proved about the ma-

chine states that can be reached from a given starting state, and this simplifies formal

analysis.

There are some elaborations, such as a trusted subject, a principal who is allowed to

declassify files. To keep things simple, I’ll ignore this; I’ll also ignore the possibility

of incompatible security levels for the time being, and return to them in the next chap-

ter. Finally, in order to simplify matters still further, I will assume from now on that

the system has only two levels, High and Low (unless there is some particular reason

to name individual compartments).

Multilevel security can be implemented in a number of ways. The textbook mecha-

nism is to implement a reference monitor by beefing up the part of an operating system

that supervises all operating system calls and checks access permissions to decide

whether the call can be serviced or not. In practice, things get much more complex as
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it’s hard to build systems whose trusted computing base is substantially less than the

whole operating system kernel (plus quite a number of its utilities).

Another approach that has been gaining ground as hardware costs have fallen is to

replicate systems. One might, for example, have one database at Low and another at

High, with a pump that constantly copies information from Low up to High. I’ll discuss

pumps in more detail later.

7.3.3 Standard Criticisms of Bell-LaPadula

The introduction of BLP caused some excitement: here was a straightforward security

policy that was clear to the intuitive understanding, yet still allowed people to prove

theorems. But John McLean showed that the BLP rules were not in themselves enough.

He introduced System Z, defined as a BLP system with the added feature that a user

can ask the system administrator to temporarily declassify any file from High to Low.

In this way, Low users can read any High file without breaking the BLP assumptions.

Bell’s argument was that System Z cheats by doing something the model doesn’t

allow (changing labels isn’t a valid operation on the state), and McLean’s argument

was that it didn’t explicitly tell him so. The issue is dealt with by introducing a tran-

quility property. The strong tranquility property says that security labels never cnange

during system operation, while the weak tranquility property says that labels never

change in such a way as to violate a defined security policy.

The motivation for the weak property is that in a real system we often want to ob-

serve the principle of least privilege, and start a process at the uncleared level, even if

the owner of the process were cleared to ‘Top Secret’. If she then accesses a confiden-

tial email, that session is automatically upgraded to ‘Confidential’; and in general, her

process is upgraded each time it accesses data at a higher level (this is known as the

high water mark principle). As subjects are usually an abstraction of the memory man-

agement subsystem and file handles, rather than processes, this means that state

changes when access rights change, rather than when data actually moves.

The practical implication of this is that a process accumulates the security label or

labels of every file that it reads, and these become the default label set of every file

that it writes. So a process that has read files at ‘Secret’ and ‘Crypto’ will thereafter

create files marked (at least) ‘Secret Crypto’. This will include temporary copies made

of other files. If it then reads a file at ‘Top Secret Daffodil’, all files it creates after that

will be labelled ‘Top Secret Crypto Daffodil’, and it will not be able to write to any

temporary files at ‘Secret Crypto.’ The effect this has on applications is one of the se-

rious complexities of multilevel security; most application software needs to be re-

written (or at least modified) to run on MLS platforms.

Finally it’s worth noting that even with this refinement, BLP still doesn’t deal with

the creation or destruction of subjects or objects (which is one of the hard problems of

building a real MLS system).

7.3.4 Alternative Formulations

Multilevel security properties have been expressed in many other ways. The first mul-

tilevel security policy was a version of high water mark written in 1967–8 for the

ADEPT-50, a mandatory access control system developed for the IBM S/360 main-

frame [798]. This used triples of level, compartment and group, with the groups being

files, users, terminals, and jobs. As programs (rather than processes) were subjects, it
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was vulnerable to Trojan horse compromises, and it was more complex than need be.

Nonetheless, it laid the foundation for BLP, and also led to the current IBM S/390

mainframe hardware security architecture [394].

Shortly thereafter, a number of teams produced primitive versions of the lattice

model, which I’ll discuss in more detail in Chapter 8, Section 8.2.1. These also made a

significant contribution to the Bell-LaPadula work, as did Honeywell engineers work-

ing on Multics—which led to a system called SCOMP, which I’ll discuss in Section 7

below.

Noninterference was introduced by Joseph Goguen and Jose Meseguer in 1982

[339]. In a system with this property, High’s actions have no effect on what Low can

see. Nondeducibility is less restrictive and was introduced by Sutherland in 1986 [743].

Here the idea is to try and prove that Low cannot deduce anything with 100 percent

certainty about High’s input. Low users can see High actions, just not understand them;

a more formal definition is that any legal string of high-level inputs is compatable with

every string of low-level events. So for every trace Low can see, there’s a similar trace

that didn’t involve High input. But different low-level event streams may require

changes to high-level outputs or reordering of high-level/low-level event sequences.

The motive for nondeducibility is to find a model that can deal with applications

such as a LAN on which there are machines at both Low and High, with the High ma-

chines encrypting their LAN traffic. (A lot more is needed to do this right, from pad-

ding the High traffic with nulls so that Low users can’t do traffic analysis, and even

ensuring that the packets are the same size—see [659] for an early example of such a

system.)

Nondeducibility has historical importance, as it was the first nondeterministic ver-

sion of Goguen and Meseguer’s ideas. But it is hopelessly weak. There’s nothing to

stop Low making deductions about High input with 99 percent certainty. There are also

a whole lot of problems when we are trying to prove results about databases; we have

to take into account any information that can be inferred from data structures (such as

from partial views of data with redundancy), as well as consider the traces of executing

programs. I’ll discuss these problems further in Chapter 8, Section 8.3.

Improved models include generalized noninterference and restrictiveness. The for-

mer is the requirement that if one alters a high-level input event in a legal sequence of

system events, the resulting sequence can be made legal by, at most, altering one or

more subsequent high-level output events. The latter adds a further restriction on the

part of the trace, where the alteration of the high-level outputs can take place. This is

needed for technical reasons, to ensure that two systems satisfying the restrictiveness

property can be composed into a third, which also does. (See [540] which explains

these issues.)

The Harrison-Ruzzo-Ullman model tackles the problem of how to deal with the

creation and deletion of files, an issue on which BLP is silent. It operates on access

matrices and verifies whether there is a sequence of instructions that causes an access

right to leak to somewhere it was initially not present [373]. This is more expressive

than BLP, but more complex and thus less tractable as an aid to verification.

John Woodward proposed a compartmented mode workstation (CMW) policy, which

attempted to model the classification of information using floating labels, as opposed

to the fixed labels associated with BLP [809, 351]. It was ultimately unsuccessful, be-

cause labels tend to either float up too far too fast (if done correctly), or they float up

more slowly (but don’t block all the opportunities for malicious information flow).
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However, CMW ideas have led to real products—albeit products that provide separa-

tion more than information sharing.

The type enforcement model, due to Earl Boebert and Richard Kain [122] and later

extended by Lee Badger and others [66], assigns each subject to a domain, and each

object to a type. There is a domain definition table (DDT), which acts as an access

control matrix between domains and types. This is a natural model in the Unix setting,

as types can often be mapped to directory structures. It is more general than policies

such as BLP, as it starts to deal with integrity as well as confidentiality concerns.

Finally, the policy model getting the most attention at present from researchers is

role-based access control (RBAC), introduced by David Ferraiolo and Richard Kuhn

[291]. This sets out to provide a more general framework for mandatory access control

than BLP in which access decisions don’t depend on users’ names but on the functions

they are currently performing within the organization. Transactions that may be per-

formed by holders of a given role are specified, then mechanisms for granting member-

ship of a role (including delegation). Roles, or groups, had for years been the

mechanism used in practice in organizations such as banks to manage access control;

the RBAC model starts to formalize this. It can deal with integrity issues as well as

confidentiality, by allowing role membership (and thus access rights) to be revised

when certain programs are invoked. Thus, for example, a process calling untrusted

software that had been downloaded from the Net might lose the role membership re-

quired to write to sensitive system files.

7.3.5 The Biba Model

Many textbooks mention in passing a model due to Ken Biba [100], which is often re-

ferred to as “Bell-LaPadula upside down.” It deals with integrity alone and ignores

confidentiality entirely. The key observation is that confidentiality and integrity are in

some sense dual concepts: confidentiality is a constraint on who can read a message,

while integrity is a constraint on who may have written or altered it.

As a concrete application, an electronic medical device such as an ECG may have

two separate modes: calibration and use. The calibration data must be protected from

being corrupted by normal users, who will therefore be able to read it but not write to

it; when a normal user resets the device, it will lose its current user state (i.e., any pa-

tient data in memory) but the calibration will remain unchanged.

To model such a system, we can build a multilevel integrity policy with the rules

that we must only read up (i.e., a user process can read the calibration data) and write

down (i.e., a calibration process can write to a buffer in a user process); but we must

never read down or write up, as either could allow High-integrity objects to become

contaminated with Low—that is, potentially unreliable—data. The Biba model is often

formulated in terms of the low water mark principle, which is the dual of the high wa-

ter mark principle already discussed: the integrity of an object is the lowest level of all

the objects that contributed to its creation.

This was the first formal model of integrity. A surprisingly large number of real

systems work along Biba lines. For example, the passenger information system in a

railroad may get information from the signaling system, but certainly shouldn’t be able

to affect it (other than through a trusted interface, such as one of the control staff).

However, few of the people who build such systems are aware of the Biba model or

what it might teach them.



Chapter 7: Multilevel Security

146

One interesting exception is LOMAC, an extension to Linux that implements a low

water mark policy [313]. It is designed to deal with the problem of malicious code ar-

riving somehow over the Net. The system provides two levels—high and low integ-

rity—with system files at High and the network at Low. As soon as a program (such as

a demon) receives traffic from the network, it is automatically downgraded to Low.

Thus, even if the traffic contains an attack that succeeds in forking a root shell, this

shell won’t have the capability to write to the password file, for example, as a normal

root shell would. As one might expect, a number of system tasks (such as logging) be-

come tricky and require trusted code. Note, though, that this approach merely stops the

malware getting root access; it doesn’t stop it infecting the Low compartment and us-

ing it as a springboard from which to spread elsewhere.

As mentioned above, integrity concerns can also be dealt with by the type enforce-

ment and RBAC models. However, in their usual forms, they revise a principal’s

privilege when an object, is invoked, while low watermark revises it when an object is

read. The latter policy is more prudent where we are concerned with attacks exploiting

code that is not formally invoked but simply read (as with buffer overflow attacks con-

ducted by “data” read from the Internet).

I will introduce more complex models when I discuss banking and bookkeeping

systems in Chapter 9; these are more complex in that they retain security state in the

form of dual control mechanisms, audit trails, and so on.

7.4 Examples of Multilevel Secure Systems

Following some research products in the late 1970s (such as KSOS [99], a kernelized

secure version of Unix), products that implemented multilevel security policies started

arriving in dribs and drabs in the early 1980s. By about 1988, a number of companies

had started implementing MLS versions of their operating systems. MLS concepts

were extended to all sorts of products.

7.4.1 SCOMP

One of the most important products was the Secure Communications Processor

(SCOMP), a Honeywell derivative of Multics, launched in 1983 [311]. This was a no-

expense-spared implementation of what the U.S. Department of Defense believed it

wanted for handling messaging at multiple levels of classification. SCOMP had for-

mally verified hardware and software, with a minimal kernel and four rings of protec-

tion (rather than Multics’ seven) to keep things simple. Its operating system, STOP,

used these rings to maintain up to 32 separate compartments, and to allow appropriate

one-way information flows between them.

SCOMP was used in applications such as military mail guards, specialized firewalls

that typically allow mail to pass from Low to High, but not vice versa [234]. (In gen-

eral, a device that makes information flow one way only is known as a data diode.)

SCOMP’s successor, XTS-300, supports C2G, the Command and Control Guard. This

is used in the time-phased force deployment data (TPFDD) system whose function is to

plan U.S. troop movements and associated logistics. Overall, military plans are devel-

oped as TPFDDs, at a high classification level, then distributed at the appropriate times

as commands to lower levels for implementation. The deliberate downgrading of high
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information raises a number of issues, some of which I’ll deal with later. (In the case

of TPFDD, the guard examines the content of each record before deciding whether to

release it.)

SCOMP’s most significant contribution was to serve as a model for the Orange

Book [240], also known as the Trusted Computer Systems Evaluation Criteria

(TCSEC). This was the first systematic set of standards for secure computer systems,

being introduced in 1985 and finally retired in December 2000. Although it has since

been replaced by the Common Criteria, the Orange Book was enormously influential,

not just in the United States but among allied powers; countries such as Britain, Ger-

many, and Canada based their own national standards on it, and these national stan-

dards were finally subsumed into the Common Criteria [574].

The Orange Book allowed systems to be evaluated at a number of levels, with A1

being the highest, and moving down through B3, B2, B1, and C2 to C1. SCOMP was

the first system to be rated A1. It was also extensively documented in the open litera-

ture. Being first, and being fairly public, it set the standard for the next generation of

military systems. This standard has rarely been met since; in fact, the XTS-300 has

been evaluated only to B3 (the formal proofs of correctness required for an A1 evalua-

tion were dropped).

7.4.2 Blacker

Blacker was a series of encryption devices designed to incorporate MLS technology.

Previously, encryption devices were built with separate processors for the ciphertext,

or Black, end, and the cleartext, or Red, end. Various possible failures can be prevented

if one can coordinate the Red and Black processing. One can also make the device

simpler, and provide greater operational flexibility: the device isn’t limited to separat-

ing two logical networks, but can provide encryption and integrity assurance selec-

tively, and interact in useful ways with routers. But a high level of assurance is

required that the ‘Red’ data won’t leak out via the ‘Black’.

Blacker entered service in 1989, and the main lesson learned from it was the extreme

difficulty of accommodating administrative traffic within a model of classification lev-

els [799]. As late as 1994, it was the only communications security device with an A1

evaluation [97]. So it too had an effect on later systems. It was not widely used though,

and its successor (the Motorola Network Encryption System), which is still in use, has

only a B2 evaluation.

7.4.3 MLS Unix, CMWs, and Trusted Windowing

Most of the available MLS systems are modified versions of Unix, and an example is

AT&T’s System V/MLS [15]. This added security levels and labels, initially by using

some of the bits in the group ID record, and later by using this to point to a more

elaborate structure. This enabled MLS properties to be introduced with minimal

changes to the system kernel. Other products of this kind included Secure Ware (and

its derivatives, such as SCO and HP VirtualVault) and Addamax.
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Compartmented mode workstations (CMWs) allow data at different levels to be

viewed and modified at the same time by a human operator, and ensure that labels at-

tached to the information are updated appropriately. The initial demand came from the

intelligence community, whose analysts may have access to ‘Top Secret’ data, such as

decrypts and agent reports, and produce reports at the ‘Secret’ level for users such as

political leaders and officers in the field. As these reports are vulnerable to capture,

they must not contain any information that would compromise intelligence sources and

methods.

CMWs allow an analyst to view the ‘Top Secret’ data in one window, compose a re-

port in another, and have mechanisms to prevent the accidental copying of the former

into the latter (i.e., cut-and-paste works from ‘Secret’ to ‘Top Secret’, but not vice

versa). CMWs have proved useful in operations, logistics, and drug enforcement as

well [396].

For the engineering issues involved in doing mandatory access control in windowing

systems, see [273,274], which describe a prototype for Trusted X, a system imple-

menting MLS but not information labelling. It runs one instance of X Windows per

sensitivity level, and has a small amount of trusted code that allows users to cut and

paste from a lower level to a higher one. For the specific architectural issues with

Sun’s CMW product, see [281].

7.4.4 The NRL Pump

It was soon realized that simple mail guards and crypto boxes were too restrictive, as

many more networked services were developed besides mail. Traditional MLS mecha-

nisms (such as blind write-ups and periodic read-downs) are inefficient for real-time

services.

Figure 7.3 The NRL pump.

The US Naval Research Laboratory (NRL) therefore developed the Pump (see Fig-

ure 7.3), a one-way data transfer device (a data diode) using buffering to allow one-

way information flow while limiting the bandwidth of possible backward leakage by a

number of mechanisms such as timing randomization of acknowledgment messages

[434,436,437]. The attraction of this approach is that it is possible to build MLS sys-
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tems by using pumps to connect separate systems at different security levels. As these

systems don’t process data at more than one level, they can be built from cheap com-

mercial-off-the-shelf (COTS) components [438]. As the cost of hardware falls, this

becomes the preferred option where it’s possible.

The Australian government has developed a product called Starlight that uses pump-

type technology married to a keyboard switch to provide a nice MLS-type windowing

system (albeit without any visible labels), using a bit of trusted hardware that connects

the keyboard and mouse with High and Low systems [17]. There is no trusted software.

It’s been integrated with the NRL Pump. A number of semi-commercial data diode

products have also been introduced.

7.4.5 Logistics Systems

Military stores, like government documents, can have different classification levels.

Some signals intelligence equipment is ‘Top Secret’, while things like jet fuel and

bootlaces are not; but even such simple commodities may become ‘Secret’ when their

quantities or movements might leak information about tactical intentions. There are

also some peculiarities. For example, an inertial navigation system classified ‘Confi-

dential’ in the peacetime inventory might contain a laser gyro platform classified ‘Se-

cret’ (thus security levels are nonmonotonic).

The systems needed to manage all this seem to be hard to build, as MLS logistics

projects in both the United States and Britain have ended up as expensive disasters.

The Royal Air Force’s Logistics Information Technology System (LITS) was a 10-year

(1989–1999), $500 million project to provide a single stores management system for

the RAF’s 80 bases [571]. It was designed to operate on two levels: ‘Restricted’ for the

jet fuel and boot polish, and ‘Secret’ for special stores such as nuclear bombs. It was

initially implemented as two separate database systems connected by a pump to en-

force the MLS property. The project became a classic tale of escalating costs driven by

creeping requirements changes. One of these changes was the easing of classification

rules at the end of the Cold War. As a result, it was found that almost all the ‘Secret’

information was now static (e.g., operating manuals for air-drop nuclear bombs, which

are now kept in strategic stockpiles rather than at airbases). To save money, the ‘Se-

cret’ information is now kept on a CD and locked up in a safe.

Logistics systems often have application security features too. The classic example

is that ordnance control systems alert users who are about to breach safety rules by

putting explosives and detonators in the same truck or magazine [563].

7.4.6 Purple Penelope

In recent years, most governments’ information security agencies have been unable to

resist user demands to run standard applications (such as MS Office), which are not

available for multilevel secure platforms. One response is ‘Purple Penelope’. This

software, from Britain’s Defence Evaluation and Research Agency, puts an MLS

wrapper round a Windows NT workstation. It implements the high water mark version

of BLP, displaying in the background the current security level of the device, and up-

grading it when necessary as more sensitive resources are read. It ensures that the re-

sulting work product is labelled correctly.

Rather than preventing users from downgrading, as a classical BLP system might do,

it allows them to assign any security label they like to their output. However, if this
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involves a downgrade, it requires the user to confirm the release of the data using a

trusted path interface, thus ensuring no Trojan or virus can release anything completely

unnoticed. Of course, a really clever malicious program can piggyback classified mate-

rial on stuff that the user does wish to release, so there are other tricks to make that

harder. There is also an audit trail to provide a record of all downgrades, so that errors

and attacks (whether by users or by malicious code) can be traced after the fact [620].

7.4.7 Future MLS Systems

The MLS industry sees an opportunity in using its products as platforms for firewalls,

Web servers, and other systems that are likely to come under attack. Thanks to the con-

siderable effort that has often gone into finding and removing security vulnerabilities,

MLS platforms can give more assurance than commodity operating systems that, even

if the firewall or Web server software is hacked, the underlying operating system is

unlikely to be. The usual idea is to use the MLS platform to separate trusted from un-

trusted networks, then introduce simple code to bypass the separation in a controlled

way. In fact, one of the leading firewall vendors (TIS) was until recently focused on

developing MLS operating systems, while Secure Computing Corporation, Cyber-

guard, and Hewlett-Packard have all offered MLS-based firewall products. The long

tradition of using MLS systems as pumps and mail guards means that firewall issues

are relatively well understood in the MLS community. (A typical design is described in

[162].)

However, the BLP controls do not provide enough of a protection benefit in many

commercial environments to justify their high development costs, and widely fielded

products are often better because of the evolution that results from large-scale user

feedback. We find, for example, two firewall products from the same corporation, do-

ing much the same thing, with one of them MLS (the Standard Mail Guard) and the

other based on open source code and aimed at commercial markets (Sidewinder). Ac-

cording to users, the former has “never been able to hold a candle to the latter.”

Perhaps the real future of multilevel systems is not in confidentiality, but integrity.

Many fielded systems implement some variant of the Biba model (even though their

designers may never have heard the word “Biba”). In an electricity utility, for example,

the critical operational systems such as power dispatching should not be affected by

any others; they can be observed by, but not influenced by, the billing system. Simi-

larly, the billing system and the power dispatching system both feed information into

the fraud detection system, and so on, until at the end of the chain we find the execu-

tive information systems, which can observe everything (or at least, summaries of eve-

rything) while having no direct effect on operations.

Researchers are now starting to build models that accommodate both confidentiality

and integrity to observe their interaction and workout how they might apply in envi-

ronments such as smartcards [440]. Another topic is how mandatory access control

models can provide real-time performance guarantees to help prevent service denial

attacks [552]. It’s already clear that many of the lessons learned in multilevel confi-

dentiality systems also go across. So do a number of the failure modes, which I discuss

in the next section.
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7.5 What Goes Wrong

As I’ve frequently pointed out, engineers learn more from the systems that fail than

from those that succeed, and MLS systems have certainly been an effective teacher.

The large effort expended in building systems to follow a simple policy with a high

level of assurance has led to the elucidation of many second- and third-order conse-

quences of information flow controls. I’ll start with the more theoretical and work

through to the business and engineering end.

7.5.1 Composability

Consider a simple device that accepts two High inputs H1 and H2, multiplexes them,

encrypts them by xor’ing them with a one-time pad (i.e., a random generator), outputs

the other copy of the pad on H3, and outputs the ciphertext, which being encrypted with

a cipher system giving perfect secrecy, is considered to be Low (output L). This is

shown in Figure 7.4.

In isolation, this device is provably secure. But if feedback is permitted, then the

output from H3 can be fed back into H2, with the result that the high input H1 now ap-

pears at the low output L.

Timing inconsistencies can also lead to the composition of two secure systems being

insecure (see for example McCullough [534]). Simple information flow doesn’t com-

pose; neither does noninterference or nondeducibility. In general, the problem of how

to compose two or more secure components into a secure system is hard, even at the

relatively uncluttered level of proving results about ideal components. Most of the

problems arise when some sort of feedback is introduced into the system; without it,

composition can be achieved under a number of formal models [541]. However, in real

life, feedback is pervasive, and composition of security properties can be complicated

by detailed interface issues, feature interactions, and so on.

Figure 7.4 Insecure composition of secure systems with feedback.

Finally, the composition of components that have been designed in accordance with

two different security policies is harder still. This is bad enough for different variants

on the BLP theme but even worse when one of the policies is of a non-BLP type, as we

will encounter in the following two chapters.
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7.5.2 The Cascade Problem

An example of the difficulty of composing multilevel secure systems is given by the

cascade problem (Figure 7.5). After the Orange Book introduced a series of graduated

evaluation levels, this led to rules about the number of levels a system can span. For

example, a system evaluated to B3 is in general allowed to process information for us-

ers with a clearance level of Unclassified through Secret, or of Confidential through

Top Secret, but not to process Top Secret data with some users restricted to Unclassi-

fied only [244].

As the diagram shows, it is straightforward to connect two A1 systems in such a way

that this security policy is broken. The first system connects Unclassified and Secret;

and its Secret level communicates with the second system, which also processes Top

Secret information. (The problem is discussed in more detail in [391].) It illustrates

another kind of danger that formal models of security (and practical implementations)

must take into account.

Figure 7.5 The cascade problem.

7.5.3 Covert Channels

One of the reasons these span limits are imposed on multilevel systems emerges from a

famous—and extensively studied—problem: the covert channel. First pointed out by

Butler Lampson in 1973 [488], a covert channel is a mechanism that, though not de-

signed for communication, can nonetheless be abused to allow information to be com-

municated down from High to Low.
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A typical covert channel arises when a High process can signal to a Low process by

affecting some shared resource. For example, it could position the disk head at the out-

side of the drive at time ti to signal that the i-th bit in a High file was a 1, and position

it at the inside to signal that the bit was a 0.

All systems with shared resources must find a balance between covert channel ca-

pacity, resource utilization, and fairness. If a machine is shared between High and

Low, and resources are not allocated in fixed slices, then the High process can signal

by filling up the disk drive, or by using a lot of CPU or bus cycles (some people call

the former case a storage channel and the latter a timing channel, though in practice

they can often be converted into each other). There are many others, such as sequen-

tial-process IDs, shared file locks, and last access times on files; reimplementing all of

these in a multilevel secure way is an enormous task. Various strategies have been

adopted to minimize their bandwidth. For example, we can arrange that the scheduler

assigns a fixed disk quota to each level, and reads the boot sector each time control is

passed downward; we might also allocate a fixed proportion of the available time slices

to processes at each level, and change these proportions infrequently. Each change

might allow one or more bits to be signalled, but such strategies can significantly re-

duce the available bandwidth. (A more complex multilevel design, which uses local

schedulers at each level, plus a global scheduler to maintain overall consistency, is de-

scribed in [435].)

It is also possible to limit the covert channel capacity by introducing noise. Some

machines have had randomized system clocks for this purpose. But some covert chan-

nel capacity almost always remains. (Techniques to analyze the trade-offs between

covert channel capacity and system performance are discussed in [353].)

Covert channels also occur at the application layer. A medical example is that, in

Britain, personal health information derived from visits to genitourinary medicine

(GUM) clinics is High in the sense that it can’t be shared with the patient’s normal

doctor and thus won’t appear in their normal medical record (Low) unless the patient

consents. In one case, a woman’s visit to a GUM clinic “leaked” when the insurer

failed to recall her for a smear test, which her normal doctor knew was due [551]. The

insurer knew that a smear test had been done already by the clinic, and didn’t want to

pay twice. (Some people might say this was a failure of polyinstantiation, which I dis-

cuss in 7, or an inference attack, which I’ll come to in Chapter 8, Section 8.3.)

The worst case known to me as far as bandwidth is concerned is also a feature of a

specific application. It occurs in large early-warning radar systems, where High—the

radar processor—controls hundreds of antenna elements that illuminate Low—the tar-

get—with high-speed pulse trains that are modulated with pseudorandom noise to

make jamming harder. In this case, the radar code must be trusted, as the covert chan-

nel bandwidth is many megabits per second.

The case of greatest general interest is multilevel integrity systems, such as banking

and utility billing, where a programmer who has inserted Trojan code in a high-

integrity bookkeeping system can turn off the billing to an account by a certain pattern

of behavior (in a phone system he might call three numbers in succession, for exam-

ple). Code review is the only real way to block such attacks, though balancing controls

can also help (I discuss this in Chapter 9).
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The best that developers have been able to do consistently with covert channel

bandwidth in time-sharing multilevel operating systems is to limit it to one bit per sec-

ond or so. (That is now the DoD target [241]; techniques for doing a systematic analy-

sis may be found in [448].) One bit per second may be tolerable in an environment

where we wish to prevent large TS/SCI files—such as satellite photographs—leaking

down from TS/SCI users to ‘Secret’ users, and is much less than the rate at which ma-

licious code might hide data in outgoing traffic that would be approved by a guard.

However, it is inadequate if we want to prevent the leakage of a cryptographic key.

This is one of the reasons for the military doctrine of doing crypto in special-purpose

hardware rather than in software. It also explains why span limits are relaxed for

closed security environments—systems in which application code can be introduced

only by suitably cleared personnel (and where “system applications are adequately

protected against the insertion of malicious logic”); in such a case, an A1 system is

allowed to process both Top Secret and Unclassified data simultaneously [244].

7.5.4 The Threat from Viruses

The vast majority of viruses are found in mass-market products such as PCs and Macs.

However, the defense computer community was shocked when Fred Cohen used vi-

ruses to penetrate multilevel secure systems easily in 1983. In his first experiment, a

file virus which took only eight hours to penetrate a system previously believed to be

multilevel secure [192].

There are a number of ways in which viruses and other malicious code can be used

to perform such attacks. If the reference monitor (or other TCB components) can be

corrupted, a virus could deliver the entire system to the attacker, for example by issu-

ing him with an unauthorized clearance. This is why slightly looser rules apply to

closed security environments. But even if the TCB remains intact, the virus could still

use any available covert channel to signal information down.

In many cases, a TCB will provide some protection against viral attacks, as well as

against careless disclosure by users or application software—which is often more im-

portant than malicious disclosure. However, the main effect of viruses on military

doctrine has been to strengthen the perceived case for multilevel security. The argu-

ment goes that, even if personnel can be trusted, one cannot rely on technical measures

short of total isolation to prevent viruses moving up the system, so one must do what-

ever is reasonably possible to stop them signalling back down.

7.5.5 Polyinstantiation

Another problem that has much exercised the research community is polyinstantiation.

Suppose that our High user has created a file named agents, and that our Low user now

tries to do the same. If the MLS operating system prohibits this, it will have leaked

information—namely, that there is a file called agents at High. But if it doesn’t, it will

now have two files with the same name.
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Figure 7.6 How the United States deals with classified data.

Figure 7.7 How Britain deals with classified data.

Often, we can solve the problem by a naming convention, which could be as simple

as giving Low and High users different directories. But the problem remains a hard one

for databases [669]. Suppose that a High user allocates a classified cargo to a ship. The

system will not divulge this information to a Low user, who might think the ship is

empty, and try to allocate it another cargo or even to change its destination.

The solution favored in the United States for such systems is that the High user allo-

cates a Low cover story at the same time as the real High cargo. Thus, the underlying

data will look something like that shown in Figure 7.6.

In the Britain, which does not have a Freedom of Information Act, the theory is sim-

pler: the system will automatically reply ‘Classified’ to a Low user who tries to see or

alter a High record. The two available views would be as shown in Figure 7.7.

This makes the system engineering simpler. It also prevents the mistakes and covert

channels which can still arise with cover stories (e.g., a Low user tries to add a con-

tainer of ammunition for Cyprus). The drawback is that everyone tends to need the

highest available clearance to get their work done. (In practice, of course, cover stories

may still get used so as not to advertise the existence of a covert mission any more than

need be.)

7.5.6 Other Practical Problems

Multilevel secure systems are surprisingly expensive and difficult to build and deploy.

There are many sources of cost and confusion.

• MLS systems are built in small volumes, and often to high standards of physi-

cal robustness, using elaborate documentation, testing, and other quality con-

trol measures driven by military purchasing bureaucracies.

• MLS systems have idiosyncratic administration tools and procedures. A
trained Unix administrator can’t just take on an MLS installation without sig-
nificant further training. A USAF survey showed that many MLS systems
were installed without their features being used [624].
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• Many applications need to be rewritten or at least greatly modified to run un-
der MLS operating systems [655]. For example, CMWs that display informa-
tion at different levels in different windows, and prevent the user from doing
cut-and-paste operations from High to Low, often have problems with code
that tries to manipulate the color map. Access to files might be quite different,
as might the format of things like access control lists. Another source of con-
flict with commercial software is the license server; if a High user invokes an
application, which goes to a license server for permission to execute, an MLS
operating system will promptly reclassify the server High and deny access to
Low users. So, in practice, we usually end up (a) running two separate license
servers, thus violating the license terms; or (b) having an MLS license server
that tracks licenses at all levels and hence must be part of the TCB (this re-
stricts your choice of platforms); or (c) using the licensed software at only one
of the levels.

• Because processes are automatically upgraded as they see new labels, the files
they use have to be, too. New files default to the highest label belonging to any
possible input. The result is a chronic tendency for things to be overclassified.

• It is often inconvenient to deal with “blind write-up”; when a low-level appli-
cation sends data to a higher-level one, BLP prevents any acknowledgment
being sent. The effect is that information vanishes into a “black hole.” The an-
swer to this is varied. Some organizations accept the problem as a fact of life;
in the words of a former NSA chief scientist, “When you pray to God, you do
not expect an individual acknowledgment of each prayer before saying the
next one.” Others use pumps rather than prayer, and accept a residual covert
bandwidth as a fact of life.

• The classification of data is not entirely straightforward:

• In the run-up to a military operation, the location of “innocuous” stores,
such as food, could reveal tactical intentions, and so may be suddenly up-
graded. It follows that the tranquility property cannot simply be assumed.

• Classifications are not necessarily monotone. Equipment classified as
‘Confidential’ in the peacetime inventory may easily contain components
classified ‘Secret’.

• Information may need to be downgraded. An intelligence analyst might
need to take a satellite photo classified at TS/SCI, and paste it into an as-
sessment for field commanders at ‘Secret’. However, information could
have been covertly hidden in the image by a virus, and retrieved later
when the file is downgraded. So, downgrading procedures may involve all
sorts of special filters, such as lossy compression of images and word
processors that scrub and reformat text, in the hope that the only informa-
tion remaining is that which lies in plain sight. (I discuss information hid-
ing in more detail in the context of copyright marking in Chapter 20.)

• We may need to worry about the volume of information available to an
attacker. For example, we might be happy to declassify any single satellite
photo, but declassifying the whole collection would reveal our surveil-
lance capability and the history of our intelligence priorities. Similarly, the
government payroll might not be very sensitive per se, but it is well known
that journalists can often identify intelligence personnel working under ci-
vilian cover from studying the evolution of departmental staff lists over a
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period of a few years. (I delve into this issue—the “aggregation prob-
lem”—in more detail in Chapter 8, Section 8.3.2.)

• A related problem is that the output of an unclassified program acting on
unclassified data may be classified. This is related to the aggregation
problem just noted.

• There are always system components—such as memory management—that
must be able to read and write at all levels. This problem is dealt with by “ab-
stracting it away,” and assuming that memory management is part of the
trusted computing base that enforces BLP. The practical outcome is that an
uncomfortably large part of the operating system (plus utilities, plus window-
ing system software, plus middleware such as database software) often ends up
in the trusted computing base. “TCB bloat” constantly pushes up the cost of
evaluation, and reduces assurance.

• Finally, although MLS systems can prevent undesired things (such as infor-

mation leakage) from happening, they also prevent desired things from hap-

pening, too (such as efficient ways of enabling data to be downgraded from

High to Low, which are essential if many systems are to be useful). So even in

military environments, the benefits MLS systems provide can be very ques-

tionable. The associated doctrine also sets all sorts of traps for government

systems builders. A recent example comes from the debate over a U.K. law to

extend wiretaps to Internet service providers (ISPs). (I discuss this law further

in Chapter 21, “E-Policy”). Opponents of the bill forced the government to de-

clare that information on the existence of an interception operation against an

identified target would be classified ‘Secret’. This would have made wiretaps

on Internet traffic impossible without redeveloping all the systems used by

ISPs to support an MLS security policy—which would be impractical regard-

less of the time or budget available. The U.K. government had to declare that

it wouldn’t apply the laid-down standards in this case because of cost.

7.6 Broader Implications of MLS

The nonmilitary reader’s reaction by this point may well be that MLS is clearly impos-

sible to do properly; there are just too many complications. This may be true, but it’s

also true that Bell-LaPadula is the simplest security policy model we know of; every-

thing else is even harder. We’ll look at other models in the next few chapters.

Anyway, although the MLS program has not delivered what was expected, it has

spun off a lot of useful ideas and know-how. Worrying about not just the direct ways a

secure system can be defeated, but also about the second- and third-order consequences

of the protection mechanisms, has been important in developing the underlying sci-

ence. Practical work on building MLS systems also led people to work through many

other aspects of computer security, such as Trusted Path (how does a user know he or

she is talking to a genuine copy of the operating system?), Trusted Distribution (how

does a user know he or she is installing a genuine copy of the operating system?) and

Trusted Facility Management (how can we be sure it’s all administered correctly?). In

effect, tackling one simplified example of protection in great detail cast light on many

things that previously were glossed over. The resulting lessons can be applied to sys-
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tems with quite different policies. An excellent recent example comes from Cipress, a

prototype system built by the Fraunhofer Institute to provide strict copy and usage

control of digital media [149]. The security policy amounted to a kind of high water

mark; an application which combined a number of protected media streams would pro-

duce an output that could only be accessed by a principal with access to all the keys

that controlled the input streams. This gave rise to many of the problems we have dis-

cussed above, and more: for example, if a media owner revoked access rights to some

content, then this could propagate a lock to large numbers of derivative works.

These lessons are set out in the Rainbow Series of books on computer security,

which were produced by the NSA following the development of SCOMP and the pub-

lication of the Orange Book which it inspired. (These books are so called because of

their different-colored covers.) Though the series is notably silent on some topics, such

as crypto and emission security, it has done a lot to raise consciousness of operational

and evaluation issues which are otherwise easy to ignore (or to dismiss as boring mat-

ters best left to the end purchasers). In fact, the integration of technical protection

mechanisms with operational and procedural controls is one of the most critical, and

neglected, aspects of security engineering. The secure operation of MLS systems is

usually much the weakest link in the chain. The main vulnerability of the STU-III se-

cure telephone, for example, is that generals forget to press the ‘go secure’ button be-

fore discussing classified matters. A particularly instructive case history is that of

Former CIA Director John Deutch. Deutch was supposed to have separate machines at

home for classified and unclassified material, Top Secret communications intelligence

files were found on his unclassified machine, which had been used to access high-risk

web sites in his absence. Deutch said he was unwilling to use the classified CIA net-

work for some purposes because of the risk that CIA colleagues might get access. A

domestic servant, who was an alien, had access to his private machine. Nonetheless,

the risk of compromise was held to be less than that of an intruder sneaking into his

home to take an image of the disk. The report into this mess by the CIA Office of In-

spector General makes instructive reading for anyone concerned with security usability

[761]. I will have more to say on this topic in Part 3, and in the context of a number of

case studies throughout this book.

All that said, the contribution of the MLS model is not all positive. There is a tacti-

cal problem, and a strategic one.

The tactical problem is that the existence of trusted system components, plus a large

set of bureaucratic guidelines, has a strong tendency to displace critical thought. In-

stead of working out a system’s security requirements in a methodical way, designers

just choose what they think is the appropriate security class of component, then regur-

gitate the description of this class as the security specification of the overall system

[624].

One should never lose sight of the human motivations that drive a system design,

and the costs it imposes. Daniel Moynihan [562] provides a critical study of the real

purposes and huge costs of obsessive secrecy in U.S. foreign and military affairs. Fol-

lowing a Senate enquiry, he discovered that President Truman was never told of the

Venona decrypts because the material was considered ‘Army Property’—despite its

being the main motivation for the prosecution of Alger Hiss. As he writes in his book:

“Departments and agencies hoard information, and the government becomes a kind of

market. Secrets become organizational assets, never to be shared save in exchange for

another organization’s assets.” Moynihan reports, for example, that in 1996, the num-
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ber of original classification authorities decreased by 959 to 4,420 (following post-

Cold-War budget cuts), but that the total of all classification actions reported for fiscal

year 1996 increased by 62 percent to 5,789,625.

Yet despite the huge increase in secrecy, the quality of intelligence made available

to the political leadership appears to have declined over time. Effectiveness is under-

mined by interagency feuding and refusal to share information, and by the lack of ef-

fective external critique.
1
 A strong case can be made that MLS systems, by making the

classification process easier but controlled data sharing harder, actually impair opera-

tional effectiveness.

So the strategic problem is that multilevel security has become so entrenched in

government, and in some parts of industry, that it is often used in highly inappropriate

ways. Even long-time intelligence insiders have documented this [425]. To solve many

problems, we need to be a “fox” rather than a “hedgehog.” Even where a simple, man-

datory, access control system could be appropriate, we often need to control informa-

tion flows across, rather than information flows down. Medical systems are a good

example of this; and we will look at them in the next chapter.

7.7 Summary

Multilevel secure systems are used in a number of military applications, most notably

specialized kinds of firewalls (mail guards and pumps). They may turn out to be ex-

cellent platforms for more general kinds of firewall or Web server. Their broader im-

portance comes from two facts: they have been the main subject of computer security

research since the mid-1970s, and their assumptions underlie many of the schemes

used for security evaluation. It is important for practitioners to understand both the

strengths and limitations of MLS systems, so that they can draw on the considerable

research literature when it’s appropriate, and avoid being dragged into error when it’s

not.

Research Problems

Multilevel confidentiality appears to have been “done to death” by generations of re-

search students. The opportunities that remain may concern multilevel integrity, and

the interaction that multilevel systems have with other security policies: how, for ex-

ample, should a military hospital combine BLP with the bookkeeping and patient pri-

vacy policies discussed in the next two chapters?

                                                            

1 Although senior people follow the official line when speaking on the record, in private they rail at
the penalties imposed by the bureaucracy. My favorite quip is from an exasperated British gen-
eral: “What’s the difference between Jurassic Park and the Ministry of Defence? One’s a theme
park full of dinosaurs, and the other’s a movie!”
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Further Reading

One of the better introductions to MLS systems, and especially the problems of data-

bases, is Gollmann’s Computer Security [344]. Amoroso’s Fundamentals of Computer

Security Technology [15] is the best introduction to the formal mathematics underlying

the Bell-LaPadula, noninterference and nondeducibility security models.

The bulk of the published papers on engineering actual multilevel systems can be

found in the annual proceedings of three conferences: the IEEE Symposium on Secu-

rity & Privacy (known as “Oakland,” as that’s where it’s held), the National Computer

Security Conference (renamed the National Information Systems Security Conference

in 1995), whose proceedings are published by the National Institute of Standards and

Technology, and the Computer Security Applications Conference, whose proceedings

are (like Oakland’s) published by the IEEE. Fred Cohen’s experiments on breaking

MLS systems using viruses are described in his book, A Short Course on Computer

Viruses [192]. Many of the classic early papers in the field can be found at the NIST

archive [573]. Finally, the classic on the abuse of the classification process to cover up

waste, fraud, and mismanagement in the public sector was written by Leslie Chapman

[176].
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CHAPTER

8

Multilateral Security

Privacy is a transient notion. It started when people stopped

 believing that God could see everything and stopped when

 governments realized there was a vacancy to be filled.

—ROGER NEEDHAM

You have zero privacy anyway. Get over it.

—SCOTT MCNEALY

8.1 Introduction

Often, our goal is not to prevent information flowing “down” a hierarchy but to prevent

it flowing “across,” between departments. Relevant applications range from healthcare

to national intelligence, and include most applications where the privacy of individual

customers’, citizens’ or patients’ data is at stake. They account for a significant pro-

portion of information processing systems, but their protection is often poorly designed

and implemented. This has led to a number of expensive fiascos.

In such systems, instead of the information flow-control boundaries being horizon-

tal, as in the Bell-LaPadula model (Figure 8.1) we instead need the boundaries to be

mostly vertical, as shown in Figure 8.2.

Figure 8.1 Multilevel security.

Figure 8.2 Multilateral security.
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   These lateral information flow controls may be organizational, as in an intelligence

organization that wants to keep the names of agents working in one foreign country

secret from the department responsible for spying on another. They may be privilege-

based, as in a law firm where different clients’ affairs, and the clients of different part-

ners, must be kept separate. They may even be a mixture of the two, as in medicine

where patient confidentiality is based in law on the rights of the patient, but usually

enforced by limiting medical record access to a particular hospital department.

The control of lateral information flows is a very general problem, of which I’ll use

medical systems as a clear and well-studied example. The problems of these systems

are readily understandable by the nonspecialist, and have considerable economic and

social importance. Much of what we have to say about them goes across with little or

no change to the practice of other professions and to government applications where

access to particular kinds of classified data are restricted to particular teams or depart-

ments.

One minor problem is that of terminology. Information flow controls of the type

we’re interested in are known by a number of different names; in the U.S. intelligence

community, for example, they are known as compartmented security or compartmen-

tation. I will use the European term multilateral security, as the healthcare application

is bigger than intelligence, and the latter term also covers the use of techniques such as

anonymity—the classic case being de-identified research databases of medical records.

This is an important part of multilateral security. As well as preventing overt informa-

tion flows, we also have to prevent information leakage through, for example, statisti-

cal and billing data that get released.

The use of de-identified data has wider applicability. Another example is the proc-

essing of census data. In general, the relevant protection techniques are known as in-

ference control. Despite occasional differences in terminology, however, the problems

facing the operators of census databases and medical research databases are very much

the same.

8.2 Compartmentation, the Chinese Wall, and the BMA
Model

There are (at least) three different models of how to implement access controls and

information flow controls in a multilateral security model. These are compartmenta-

tion, used by the intelligence community; the Chinese Wall model, which describes the

mechanisms used to prevent conflicts of interest in professional practice; and the BMA

model, developed by the British Medical Association to describe the information flows

permitted by medical ethics. Each of these has potential applications outside its field of

origin.

8.2.1 Compartmentation and the Lattice Model

For many years, it has been standard practice in the United States and allied govern-

ments to restrict access to information by the use of codewords as well as classifica-

tions. The best-documented example is the codeword Ultra used during World War II,

to refer to British and American decrypts of German messages enciphered using the



Security Engineering: A Guide to Building Dependable Distributed Systems

163

Enigma machine. The fact that the Enigma had been broken was so important that it

was worth protecting at almost any cost. So Ultra clearances were given to only a small

number of people (in addition to the cryptanalysts and their support staff, the list in-

cluded the Allied leaders, their senior generals, and handpicked analysts.) No one who

had ever held an Ultra clearance could be placed at risk of capture; and the intelligence

could never be used in such a way as to let Hitler suspect that his principal cipher had

been broken. Thus, when Ultra told of a target, such as an Italian convoy to North Af-

rica, the Allies would send over a plane to “spot” it and report its position by radio an

hour or so before the attack. This policy was enforced by special handling rules; for

example, Churchill got his Ultra summaries in a special dispatch box, to which he had

a key but his staff did not. Because such special rules may apply, access to a codeword

is sometimes referred to as an indoctrination, rather than simply a clearance. (Ultra

security is described by David Kahn [429] and Gordon Welchman [800].)

Much the same precautions are in place today to protect information whose com-

promise could expose intelligence sources or methods, such as agent names, cryptana-

lytic successes, the capabilities of equipment used for electronic eavesdropping, and

the performance of surveillance satellites. The proliferation of codewords results in a

large number of compartments, especially at classification levels above Top Secret.

One reason for this is that classifications are inherited by derived work; so a report

written using sources from ‘Secret Desert Storm’ and ‘Top Secret Umbra’ can in the-

ory only be read by someone with a clearance of ‘Top Secret’ and membership of the

groups ‘Umbra’ and ‘Desert Storm’. Each combination of codewords gives a compart-

ment, and some intelligence agencies have over a million active compartments. Man-

aging them is a significant problem. Other agencies let people with high-level

clearances have relatively wide access. But when the control mechanisms fail, the re-

sult can be disastrous; in the Aldrich Ames case, a CIA officer who had accumulated

access to a large number of compartments by virtue of long service and seniority, and

because he worked in counterintelligence, was able to betray almost the entire U.S.

agent network in Russia.

Codewords are, in effect, a pre-computer way of expressing access control groups,

and can be dealt with using a variant of Bell-LaPadula, called the lattice model. Classi-

fications together with codewords form a lattice a mathematical structure in which any

two objects A and B can be in a dominance relation A > B or B > A. They don’t have to

be: A and B could simply be incomparable (but in this case, for the structure to be a

lattice, they will have a least upper bound and a greatest lower bound). As an illustra-

tion, suppose we have a codeword, say, ‘Crypto’. Someone cleared to ‘Top Secret’

would be entitled to read files classified ‘Top Secret’ and ‘Secret’, but would have no

access to files classified ‘Secret Crypto’ unless he or she also had a crypto clearance.

This can be expressed as shown in Figure 8.3.

In order for information systems to support this, we need to distill the essence of

classifications, clearances, and labels into a security policy that we can then use to

drive security targets, implementation, and evaluation. As it happens, the Bell-

LaPadula model appears to go across more or less unchanged. We still have informa-

tion flows between High and Low as before, where High is a compartment that domi-

nates Low. If two nodes in a lattice are incompatible—as with ‘Top Secret’ and ‘Secret

Crypto’ in Figure 8.3—then there should be no information flow between them at all.
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Figure 8.3 A lattice of security labels.

In fact, the lattice and Bell-LaPadula models are essentially equivalent, and were

developed at the same time.

• Roger Schell, Peter Downey, and Gerald Popek of the U.S. Air Force produced

an early lattice model in 1972 [675].

• A Cambridge PhD thesis by Jeffrey Fenton included a representation in which
labels were managed using a matrix [289].

• About this time, the Pentagon’s World Wide Military Command and Control
System (WWMCCS) used a primitive lattice model, but without the *-
property. As I noted in Chapter 7, the demonstration that a fielded, critical,
system handling Top Secret data was vulnerable to attack by Trojan caused
some consternation [674]. It meant that all users had to be cleared to the high-
est level of data in the machine.

• Kenneth Walter, Walter Ogden, William Rounds, Frank Bradshaw, Stan Ames,
and David Shumway of Case Western University produced a more advanced
lattice model, as well as working out a lot of the problems with file and direc-
tory attributes, which they fed to Bell and LaPadula [788, 789].

1

• Finally, the lattice model was systematized and popularized by Dorothy Den-

ning [233].

                                                            

1 Walter and his colleagues deserve more credit than history has given them. They had the main
results first [788], but Bell and LaPadula had their work heavily promoted by the U.S. Air Force.
Fenton has also been largely ignored, not being an American.
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Most products built for the multilevel secure market can be reused in compartmented

mode. But, in practice, these products are not as effective as one might like. It is easy

to use a multilevel operating system to keep data in different compartments sepa-

rate—just give them incompatible labels (‘Secret Tulip’, ‘Secret Daffodil’, ‘Secret

Crocus’, etc.). But the operating system then becomes an isolation mechanism, rather

than a sharing mechanism; the real problem is how to control information sharing.

One solution is to impose least upper bounds in the lattice using some algorithm. An

example comes from the system used by the government of Saudi Arabia to manage

the Haj, the annual pilgrimage to Mecca [385]. While most compartments are by de-

fault Confidential, the combination of data from different compartments is Secret.

Thus, ‘Haj-visas’ and ‘Gov-guest’ are confidential, but their combination is Secret.

In many intelligence systems, where the users are already operating at the highest

level of clearance, data owners don’t want a further classification level at which eve-

rything is visible. So data derived from two compartments effectively creates a third

compartment using the lattice model. The proliferation of millions of compartments is

complex to manage and can be intertwined with applications. A more common solution

is to use a standard multilevel product, such as a mail guard, to ensure that “untrust-

worthy” email goes to filters. But now the core of the trusted computing base consists

of the filters rather than the guard.

Worse, the guard may lose some of the more important functionality of the underly-

ing operating system. For example, the Standard Mail Guard [715] is built on top of an

operating system called LOCK whose basic mechanism is type enforcement, which in

this context can be thought of as a system of unchangeable access rules for processes

and files. Later versions of LOCK support role-based access control, which would be a

more appropriate mechanism to manage the relationships between compartments di-

rectly [386]. Using it merely as a platform to support BLP is wasteful.

In general, the real problems facing users of intelligence systems have to do with

combining data in different compartments, and downgrading it after sanitization. Mul-

tilevel and lattice security models offer little help here.

8.2.2 The Chinese Wall

The second model of multilateral security is the Chinese Wall model, developed by

Brewer and Nash [137]. Its name comes from the fact that financial services firms such

as investment banks have internal rules designed to prevent conflicts of interest, which

they call Chinese Walls.

The model’s scope is wider than just investment banking. Many professional and

services firms have clients who may be in competition with each other: software ven-

dors, advertising agencies, and accountants are other examples. A typical rule is that “a

partner who has worked recently for one company in a business sector may not have

access to the papers of any other company in that sector.” So an advertising copywriter

who has worked on, say, the Shell account, will not be allowed to work on any other

oil company’s account for some fixed period of time.
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The Chinese Wall model thus features a mix of free choice and mandatory access

control: a partner can choose which oil company to work for, but once that decision is

taken their actions in that sector are completely constrained. It also introduces the con-

cept of separation of duty into access control; a given user may perform transaction A

or transaction B, but not both.

Part of the attraction of the Chinese Wall model to the security research community

comes from the fact that it can be expressed in a way that is fairly similar to Bell-

LaPadula If we write, for each object c, y(c) for c’s company and x(c) for c’s conflict-

of-interest class, then, like BLP, it can be expressed in two properties:

The simple security property A subject s has access to c if and only if, for all c¢

that s can read, either y(c) œ x(c¢) or y(c) = y(c¢).

The *-property A subject s can write to c only if s cannot read any c¢ with x(c¢) ≠ ø

and y(c) ≠ y(c¢).

The Chinese Wall model made a seminal contribution to the theory of access con-

trol. It also sparked a debate about the extent to which it is consistent with the BLP

tranquility properties, and some work on the formal semantics of such systems (see, for

example, Foley [300] on the relationship with noninterference). There are also some

interesting new questions about covert channels. For example, could an oil company

find out whether a competitor that used the same investment bank was planning a bid

for a third oil company by asking which specialists were available for consultation and

noticing that their number had dropped suddenly?

In practice, however, Chinese Walls still are implemented using manual methods.

One large software consultancy has each of its staff maintain an “unclassified” cur-

riculum vitae containing entries that have been sanitized and agreed with the customer.

A typical entry might be:

September 97–April 98: Consulted on security requirements for a new branch ac-

counting system for a major U.S. retail bank.

This is not the only control. A consultant’s manager should be aware of possible

conflicts, and not forward the CV to the client if in doubt; if this fails, the client can

spot potential conflicts from the CV; and if this also fails, then the consultant is duty-

bound to report any potential conflicts as soon as they appear.

8.2.3 The BMA Model

Perhaps the most important, interesting, and instructive example of multilateral secu-

rity is found in medical information systems. The healthcare sector spends a much

larger share of national income than the military in developed countries; and although

hospitals are still less automated, they are catching up fast.

Healthcare safety and (especially) privacy have become hot-button issues in many

countries. In the United States, the debate over the privacy regulations being intro-

duced by the Department of Health and Human Services under the Health Insurance

Portability and Accountability Act is unsetting doctors, patients, privacy advocates,

researchers, and marketers; final regulations are due out by the end of 2000. Austrians

are arguing about whether to introduce a smartcard to record health insurance data in a

portable way, and Germans (who already have such a smartcard) are deliberating the

pros and cons of putting emergency medical information (such as current prescriptions

and allergies) on the card, too. The main objection here is that if data currently held on
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a MedAlert bracelet, such as allergies, are moved to a smartcard, there is a significant

risk to patients who fall ill in locations where there is no smartcard reader available,

such as on an airplane or in a foreign country. Not all privacy-enhancing technologies

are without risk!

Everywhere, people are arguing about whether privacy norms will have to be radi-

cally revised as genetic data become widely available. In Iceland, for example, a pro-

ject to build a national medical database that will incorporate not just medical records

but also genetic and genealogical data, so that inherited diseases can be tracked across

generations, has caused an uproar.

The protection of medical information is also a model for protecting personal infor-

mation of other kinds, such as that held on individual customers by banks, insurance

companies, and government agencies. In all European countries (and in many others,

including Canada and Australia) there are data protection laws that restrict the dis-

semination of such data. I’ll discuss data protection law in Part 3; for present purposes,

it’s enough to note that for some classes of data (affecting health, sexual behavior and

preferences, political and trade union activity, and religious beliefs) the data subject

must either give consent to information sharing or have a right of veto. This raises the

issue of how one can construct a security policy in which the access control decisions

are taken not by a central authority (as in Bell-LaPadula) or by the system’s users (as

in discretionary access control) but by the data subjects.

We will look first at the access control aspects.

8.2.3.1 The Threat Model

Currently, the main threat to medical privacy is social engineering (which I mentioned

briefly in Chapter 3). The typical attack on medical record privacy comes from a pri-

vate detective who phones a doctor’s office or health insurer with a plausible tale:

Hello, this is Dr. Burnett of the cardiology department at the Conquest Hospital in

Hastings. Your patient Sam Simmonds has just been admitted here in a coma, and he

has a funny-looking ventricular arrythmia. Can you tell me if there’s anything relevant

in his record?

This kind of attack is usually so successful that in both the United States and Britain

there are people who earn their living doing it [260]. (It’s not restricted to health re-

cords: in June 2000, millionaire British government minister Lord Levy was acutely

embarrassed after someone called the tax office pretending to be him and found out

that he’d only paid £5000 in tax the previous year [638]. But the medical context is a

good one in which to discuss it.)

In 1996, an experiment was done in England whereby the staff at a health authority

(a government-owned insurer that purchases health care for a region or district) were

trained to screen out such false pretext telephone calls. The most important element of

the advice they were given was that they were to always call back—and not to a num-

ber given by the caller, but to the number in the phone book for the hospital or other

institution where the caller claimed to work. It turned out that some 30 telephone en-

quiries a week were bogus. (At that time, there were about 200 health authorities; the

advice given is described in [22].)
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Training staff in this way is more important than most technical protection measures.

But the best staff training in the world won’t protect a system in which too many peo-

ple see too much data. There will always be staff who are careless or even crooked;

and the more records they can see, the more harm they can do.

In one high-profile case, a convicted child rapist working as an orthopedic techni-

cian at Newton-Wellesley Hospital in Newton, Massachusetts, was caught using a for-

mer employee’s password to go through the records of 954 patients to get the phone

numbers of girls to whom he then made obscene phone calls [136]. He ended up doing

jail time. There are many more incidents of a less dramatic nature.

Even where staff behave ethically, a lack of technical understanding can lead to

leaks. Old PCs sold on the second-hand market or given to schools often have recover-

able data on their hard disks; most people are unaware that the usual delete command

does not remove the file, but merely marks the space it occupies as reusable. In a re-

cent headline case, a PC sold on the second-hand market by investment bank Morgan

Grenfell Asset Management had recoverable files containing the financial dealings of

ex-Beatle Paul McCartney [153]. There have been very similar problems with old

health records. Even where staff are honest and conscientious, equipment can still get

stolen; some 11 percent of U.K. family doctors have experienced the theft of a practice

PC, and in one case two prominent society ladies were blackmailed over terminations

of pregnancy following such a theft [23].

The likelihood that a resource will be abused depends on its value and the number of

people who have access to it. Aggregating personal information into large databases

increases both these risk factors at the same time. Put simply, we can live with a situa-

tion in which a doctor’s receptionist has access to 2,000 patients’ records: there will be

abuse from time to time, but at a tolerably low level. However, if the receptionists of

the 5,000 family doctors who might work with a large American HMO, or of the

32,000 in Britain’s National Health Service, all had access to the records of tens of

millions of patients, then abuse would be likely. In a notable recent case, the U.S. Vet-

erans’ Administration is being sued in a class action for violating the privacy of its

180,000 employees; their system makes part of their records visible to their colleagues

(and to some patients). And privacy issues aren’t limited to organizations that treat pa-

tients directly; some of the largest collections of personal health information are in the

hands of health insurers and research organizations. I discuss their special problems in

Section 8.3.

Lateral information flow controls are required even for systems on a much smaller

scale. A good illustration comes from a hospital system whose designers believed that

for reasons of safety, all staff should have access to all records. This design decision

was influenced by lobbying from geriatricians and pediatricians, whose patients are

often treated by a number of specialist departments in the hospital; they were frustrated

by the incompatibilities between different departmental systems. The system was first

fielded in England in Hampshire, where then health minister Gerry Malone had his

parliamentary seat. The system made all lab tests performed for local doctors at the

hospital’s pathology lab visible to most of the hospital’s staff. A nurse who had had a

test done by her family doctor complained to him after she found the result on the hos-

pital system at Basingstoke where she worked; this caused outrage among local med-

ics, and Malone lost his seat in Parliament at the 1997 election (by two votes) [32].
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There are many ad hoc measures that hospitals can take to improve the protection of

existing systems. One of the most effective is to keep the records of former patients in

a separate archive, and give only a small number of admissions staff the power to move

records from there to the main system. Another is to introduce a honey trap, a number

of bogus records with celebrity names. Reportedly, one Boston hospital uses “medical

records” with the names of Kennedy family members for this purpose; staff who

browse them can be identified and disciplined. A particularly ingenious proposal, due

to Gus Simmons, is to investigate all staff who consult a patient record but do not

submit a payment claim to the insurer within 30 days; this aligns the patient’s interest

in privacy with the hospital’s interest in maximizing its income [23].

However, a patchwork of ad hoc measures isn’t a good way to secure a system We

need a proper access control policy, thought through from first principles and driven by

a realistic model of the threats. Which policy is appropriate for healthcare?

8.2.3.2 The Security Policy

This question faced the British Medical Association (BMA) in 1995. The U.K. gov-

ernment had introduced an IT strategy for the National Health Service whose security

policy was multilevel. The idea was that AIDS databases would be at a level corre-

sponding to ‘Secret’; normal patient records at ‘Confidential’; and administrative data,

such as drug prescriptions and bills for treatment, at ‘Restricted’. It was soon realized

that this wasn’t going to work. For example, how should a prescription for AZT be

classified? It’s a drug prescription, so it should be ‘Restricted’; it identifies a person as

HIV positive, so it must be ‘Secret’. So all the ‘Secret’ AZT prescriptions must be re-

moved from the ‘Restricted’ file of drug prescriptions. The same goes for most of the

other prescriptions, as they identify treatments for named individuals and so should be

‘Confidential’. But then what use will the file of prescriptions be to anybody? Pretty

well all it will contain will be prescriptions written by doctors for general surgery

stocks.

A second problem—and one that’s now becoming an issue in the United States—is

that the strategy was based on the idea of a single electronic patient record (EPR) that

would follow the patient around from conception to autopsy, rather than the traditional

system of having different records on the same patient at different hospitals and doc-

tors’ offices, with information flowing between them in the form of referral and dis-

charge letters. An attempt to devise a security policy for the EPR, which would

observe existing ethical norms, became unmanageably complex [355].

In a project for which I was responsible, the BMA developed a security policy to fill

the gap. The critical innovation was to define the medical record not as the total of all

clinical facts relating to a patient, but as the maximum set of facts relating to a patient

and to which the same staff had access. Thus, an individual patient may have more

than one record, and this offended the “purist” advocates of the EPR. But multiple re-

cords are dictated anyway by law and practice. Depending on the country (and even the

state) that you’re in, you may have to keep separate medical records for human fertili-

zation, sexually transmitted diseases, prison medical services, and even birth records

(as they pertain to the health of the mother as well as the child, and can’t simply be

released to the child later without violating the mother’s confidentiality). This situation

is likely to get more complex still as genetic data start being used more widely.
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In many countries, including all the members of the European Union, a special status

is given to patient consent in law as well as in medical ethics. Records can be shared

only with third parties if the patient approves, or in a limited range of statutory excep-

tions, such as tracing contacts of people with infectious diseases such as TB. Defini-

tions are slightly fluid; in some countries, HIV infection is notifiable, in others it isn’t,

and in others the data are collected stealthily.

The goals of the BMA security policy were, therefore, to enforce the principle of

patient consent, and to prevent too many people getting access to too large databases of

identifiable records. It did not try to do anything new, but merely to codify existing

best practice. It also sought to express other security features of medical record man-

agement such as safety and accountability. For example, it must be possible to recon-

struct the contents of the record at any time in the past, so that, for example, if a

malpractice suit is brought, the court can determine what information was available to

the doctor at the time. (The details of the requirements analysis are in [23].)

The policy consists of nine principles:

1. Access control: each identifiable clinical record shall be marked with an ac-

cess control list naming the people or groups of people who may read it and

append data to it. The system shall prevent anyone not on the access control

list from accessing the record in any way

2. Record opening: a clinician may open a record with herself and the patient on

the access control list. Where a patient has been referred, she may open a re-

cord with herself, the patient and the referring clinician(s) on the access con-

trol list

3. Control: One of the clinicians on the access control list must be marked as

being responsible. Only she may alter the access control list, and she may

only add other health care professionals to it

4. Consent and notification: the responsible clinician must notify the patient of

the names on his record’s access control list when it is opened, of all subse-

quent additions, and whenever responsibility is transferred. His consent must

also be obtained, except in emergency or in the case of statutory exemptions

5. Persistence: no-one shall have the ability to delete clinical information until

the appropriate time period has expired

6. Attribution: all accesses to clinical records shall be marked on the record with

the subject’s name, as well as the date and time. An audit trail must also be

kept of all deletions

7. Information flow: Information derived from record A may be appended to re-

cord B if and only if B’s access control list is contained in A’s

8. Aggregation control: there shall be effective measures to prevent the aggrega-

tion of personal health information. In particular, patients must receive special

notification if any person whom it is proposed to add to their access control

list already has access to personal health information on a large number of

people



Security Engineering: A Guide to Building Dependable Distributed Systems

171

9. Trusted computing base: computer systems that handle personal health infor-

mation shall have a subsystem that enforces the above principles in an effec-

tive way. Its effectiveness shall be subject to evaluation by independent

experts.

This policy may seem to be just common sense, but it is surprisingly comprehensive

and radical in technical terms. For example, it is strictly more expressive than the Bell-

LaPadula model; it contains a BLP-type information flow control mechanism in princi-

ple 7, but also contains state. (A fuller discussion from the point of view of access

control, and for a technical audience, can be found at [24].)

Similar policies were developed by other medical bodies, including the Swedish and

German medical associations; the Health Informatics Association of Canada, and an

EU project (these are surveyed in [469]). However, the BMA model is the most de-

tailed and has been subjected to the most rigorous review; it was adopted by the Union

of European Medical Organisations (UEMO) in 1996. (Feedback from public consul-

tation on the policy can be found in [25].)

8.2.3.3 Pilot Implementations

In a top-down approach to security engineering, one should first determine the threat

model, then write the policy, and finally test the policy by observing whether it works

in real life.

BMA-compliant systems have now been implemented both in general practice [374],

and in a hospital system which enforces access rules such as “a ward nurse can see the

records of all patients who have, within the previous 90 days, been on her ward.” (The

hospital system was initially designed independently of the BMA project. When we

learned of each other we were surprised at how much our approaches coincided, and

reassured that we had captured the profession’s expectations in a reasonably accurate

way.)

One of the lessons learned was the difficulty of constructing a small trusted com-

puting base. The hospital records system has to rely on the patient administrative sys-

tem to tell it which patients and which nurses are on which ward. A different prototype

system at a hospital in Cambridge, England, furnishes staff with certificates in smart-

cards, which they use to log on; combining the two ideas into authorization certificates

for access to the records of patients in particular wards may well be the way forward;

the support promised in Win2K for both groups and certificates is promising. As for

the longer term, people are now researching ways in which medical privacy policy can

be expressed using the formalisms and mechanisms of role-based access control.

(Other lessons learned are discussed in [231, 232, 374].)

8.2.4 Comparative Analysis

Which of these three models—lattice, Chinese Wall and BMA—should be used in a

given application? The lattice model on its own isn’t enough, as it shows how to isolate

compartments but not how to manage information flows between them. Both BMA and

Chinese Wall tackle this problem, but BMA is as decentralized as possible, while in

Chinese Wall the assignment of access rights is centralized, and the resulting aggrega-
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tion risk is managed by a more explicit mechanism to prevent any one user getting

their hands on too much data.

There is surprisingly little difference in the protection requirements of medical data

and intelligence data, or, for that matter, the files of lawyers, investment bankers, or

advertising agents. Some will be the target of more capable motivated opponents, and

will need stronger protection mechanisms; but strength of mechanisms should never be

confused with functionality. In all these cases, the underlying threat model, of careless

or dishonest insiders, is the same.

In fact, the fundamental policy decision is whether or not to centralize. Can you

cope better with lots of little traitors or with one big traitor? Medics, lawyers, and other

professionals prefer the former, while spies seem to prefer the drama of the latter.

8.3 Inference Control

Access control in medical record systems is hard enough in hospitals and other organi-

zations that care for patients directly. It is much harder to assure patient privacy in sec-

ondary applications such as databases for research, cost control, and clinical audit. This

is one respect in which doctors have a harder time protecting their data than lawyers;

lawyers can lock up their confidential client files and never let any outsider see them at

all, while doctors are under all sorts of pressures to share data with third parties.

8.3.1 Basic Problems of Inference Control in Medicine

The standard way of protecting such information is to remove patients’ names and ad-

dresses from their records, and thus make them anonymous. But this is rarely suffi-

cient. If a database allows detailed enough queries, then individuals can still be

identified, and this is especially so if information about different clinical episodes can

be linked. For example, if I am trying to find out whether a politician born on the June

2, 1946, and treated for a broken collar bone after a college football game on the May

8, 1967, had since been treated for drug or alcohol problems, and I could make an en-

quiry on those two dates, then I could very probably pull out a single medical record

from a national database. Even if the date of birth is replaced by a year of birth, I am

still likely to be able to compromise patient privacy if the records are detailed or if re-

cords of different individuals can be linked. For example, a query such as “show me

the records of all women aged 36 with daughters aged 14 and 16, such that the mother

and exactly one daughter have psoriasis” is also likely to narrow down the search to

one family out of millions. And, complex queries with lots of conditions are precisely

the kind that researchers want to make.

For this reason, the U.S. Healthcare Financing Administration (HCFA), which is re-

sponsible for paying doctors and hospitals for treatments provided under the Medicare

program, maintains three sets of records. There are complete records, used for billing.

There are beneficiary-encrypted records, with only patients’ names and social security

numbers obscured. These records are still considered personal data (as they still have

dates of birth, postal codes and so on) and so are only usable by trusted researchers.

Finally there are public-access records which have been stripped of identifiers down to

the level at which patients are identified only in general terms such as ‘a white female
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aged 70–74 living in Vermont.’ Nonetheless, researchers have found that many pa-

tients can still be identified by cross-correlating the public access records with com-

mercial databases, and following complaints by privacy advocates, a recent report from

the General Accounting Office criticized HCFA for lax security [333].

Many other countries have healthcare monitoring systems that use similar technolo-

gies. New Zealand has a national database of encrypted-beneficiary medical records,

with access restricted to a small number of specially cleared medical statisticians. No

query is answered with respect to fewer than six records [584]. Germany has very strict

privacy laws, and the fall of the Berlin Wall forced the former East German cancer

registries to install protection mechanisms rapidly [118]. In other countries, protection

has been less adequate. Britain’s National Health Service started out with strict guide-

lines but then built a number of centralized databases that make personal health infor-

mation widely available within government, and that have led to confrontation with

doctors [32]. Similar systems in Switzerland were replaced at the insistence of local

privacy regulators [685]. The most controversial of all has been a genetic database in

Iceland, which I’ll discuss shortly.

De-identifying personal information is important in many other fields. Under the ru-

bric of privacy enhancing technology (PET), it is being promoted actively by regula-

tors in Europe and Canada as a general privacy mechanism (along with smartcards,

encryption, and a few other tools). But, as the medical examples show, there can be

serious tension between the desire of researchers for detailed data, and the right of pa-

tients (or other data subjects) to privacy. It is important to understand what can, and

what cannot, be achieved with this technology.

8.3.2 Other Applications of Inference Control

The inference control problem was first seriously studied in the context of census in-

formation. A census collects a vast amount of sensitive data about individuals, then

makes statistical summaries of it available by geographical (and governmental) units

such as regions, districts, and wards. This information is used not just in the general

formulation of policy, but also in determining electoral districts and the levels of gov-

ernment funding, for public services for many years. The census problem is somewhat

simpler than the medical record problem, as the data are rather restricted and in a stan-

dard format (age, sex, race, income, number of children, highest educational attain-

ment, and so on).

There are two broad approaches, depending on whether the data are de-identified be-

fore or during processing—or equivalently whether the software that will process the

data is untrusted or trusted.

An example of the first kind of processing comes from the treatment of U.S. census

data until the 1960s. The procedure was that one record in a thousand was made avail-

able on tape—minus names, exact addresses, and other sensitive data. Noise was also

added to the data to prevent people with some broader knowledge (such as of the sala-

ries paid by the employer in a company town) from tracing individuals. In addition to

the sample records, local averages were given for people selected by various attributes;

and records with extreme values (such as very high incomes) were suppressed.
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The reason for this might not be immediately obvious. But consider a wealthy family

living in a small village. Their income might make a significant difference to the per

capita village income, and thus be deduced on the assumption that the per capita in-

come of the other villagers is no different from that in nearby villages. Hence the pol-

icy of excluding extreme values before averaging.

In the second type of processing, identifiable data are retained in a database, and

privacy protection comes from controls on the kind of queries that may be made. Early

attempts at this were not very successful, and various attacks were proposed on the

processing used at that time by the U.S. census. The question was whether it was pos-

sible to construct a number of inquiries about samples containing a target individual,

and work back to obtain supposedly confidential information about that individual.

If our census system allows a wide range of statistical queries, such as “tell me the

number of households headed by a man earning between $50,000 and $55,000,” “tell

me the proportion of households headed by a man aged 40–45 years earning between

$50,000 and $55,000,” “tell me the proportion of households headed by a man earning

between $50,000 and $55,000 whose children have grown up and left home,” and so

on, then an attacker can quickly home in on an individual. Such queries, in which we

add additional circumstantial information to defeat averaging and other controls, are

known as trackers. They are usually easy to construct.

A problem related to inference is that an opponent who gets hold of a number of un-

classified files might deduce sensitive information from them. For example, a New

Zealand journalist deduced the identities of many officers in GCSB (that country’s

equivalent of the NSA) by examining lists of service personnel and looking for patterns

of postings over time [368]. Intelligence officers’ cover postings might also be blown

if an opponent gets hold of the internal phone book for the unit where the officer is

supposed to be posted, and doesn’t find his name there. The army list might be public,

and the phone book ‘Restricted’, but the fact that a given officer is involved in intelli-

gence work might be ‘Secret’. Combining low-level sources to draw a high-level con-

clusion is known as an aggregation attack. It is clearly related to (but not the same as)

the increased risk to personal information that arises when databases are aggregated

together, thus making more context available to the attacker, and making tracker and

other attacks easier. The techniques that can be used to counter aggregation threats are

similar to those used for general inference attacks on databases, although there are

some particularly difficult problems where we have a multilevel security policy, and

the inference or aggregation threats have the potential to subvert it.

8.3.3 The Theory of Inference Control

A theory of inference control was developed by Dorothy Denning and others in late

1970s and early 1980s, largely in response to problems of census bureaux [234]. The

developers of many modern privacy systems are unaware of this work, and repeat

many of the mistakes of the 1960s. (Inference control is not the only problem in com-

puter security where this happens.) The following is an overview of the most important

ideas.
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A characteristic formula is the expression (in some database query language) that

selects a set, known as the query set, of records. An example might be “all female em-

ployees of the computer laboratory at the grade of professor.” The smallest query sets,

obtained by the logical AND of all the attributes (or their negations), are known as

elementary sets or cells. The statistics corresponding to query sets may be sensitive

statistics if they meet criteria which I will discuss below (such as the set size being too

small). The objective of inference control is to prevent the disclosure of sensitive sta-

tistics.

If we let D be the set of statistics that are disclosed, and P the set of sensitive statis-

tics that must be protected, then we need D Õ P¢ for privacy, where P¢ is the comple-

ment of P. If D = P’, then the protection is said to be precise. Protection that is not

precise will usually carry some cost in terms of the range of queries that the database

can answer, and thus its usefulness to its owner.

8.3.3.1 Query Set Size Control

The obvious protection mechanism is simply to specify a minimum query size. As

mentioned, New Zealand’s National Health Information System databases will reject

statistical queries whose answers would be based on fewer than six patients’ records.

But this is not enough in itself. An obvious tracker attack is to make an enquiry on six

patients’ records, then on those records plus the target’s. Rather than reduce the effec-

tiveness of the database by building in more restrictive query controls, the designers

opted to restrict access to a small number of specially cleared medical statisticians.

Even so, one extra control is needed, and is often forgotten. We must prevent the

attacker from querying all but one of the records in the database. In general, if there are

N records, query set size control with a threshold of t means that between t and N – t of

them must be the subject of a query for it to be allowed.

8.3.3.2 Trackers

Probably the most important attacks on statistical databases come from trackers. There

are many simple examples. In our laboratory, only one of the full professors is female,

so we can find out her salary with only two queries: “average salary professors?” and

“average salary male professors?”

This is an example of an individual tracker. There are also general trackers, sets of

formulae that will enable any sensitive statistic to be revealed. A surprising discovery

made about trackers in the late 1970s was that, provided the minimum query set size n

is less than a quarter of the total number of statistics N, and there are no further re-

strictions on the type of queries that are allowed, we can find formulae specifying sets

with more than 2n and fewer than N – 2n statistics, and these provide general trackers.

Thus, tracker attacks are easy, unless we place severe restrictions on the query set size

or control the allowed queries in some other way.

8.3.3.3 More Sophisticated Query Controls

There are a number of alternatives to simple query set size control. The U.S. census,

for example, uses the “n-respondent, k%-dominance rule”: it will not release a statistic
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of which k% or more is contributed by n or fewer values. Other techniques include, as

mentioned, suppressing data with extreme values. A census bureau may deal with high-

net-worth individuals in national statistics, but not in the local figures, while some

medical databases do the same for less common diseases. For example, a U.K. pre-

scribing statistics system suppresses sales of the AIDS drug AZT from local statistics.

8.3.3.4 Cell Suppression

The next question is how to deal with the side effects of suppressing certain statistics.

Suppose, for example, that a university wants to release average grades for various

combinations of courses, so that people can check that the grading is fair across

courses. Suppose now that the table in Figure 8.4, contains the number of students

studying two science subjects, one as their major subject and one as their minor sub-

ject.

Next suppose that our minimum query set size is 3 (if we set it at 2, then either of

the two students who studied geology with chemistry could trivially work out the

other’s grade); then we cannot release the average for geology with chemistry. But if

the average for chemistry is known, then this can easily be reconstructed from the av-

erages for biology with chemistry and physics with chemistry. Therefore, we have to

suppress at least one other average in the chemistry row; and for similar reasons we

need to suppress one in the geology column. But if we suppress geology with biology

and physics with chemistry, then we’d also better suppress physics with biology to

prevent these values being worked out in turn. The remaining table is shown in Figure

8.5.

Figure 8.4 Table containing data before cell suppression.

Figure 8.5 Table after cell suppression.

This process is called complementary cell suppression. If there are further attributes

in the database schema—for example, if figures are also broken down by race and sex,

to show compliance with anti-discrimination laws—then even more information may
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be lost. Where a database scheme contains m-tuples, blanking a single cell generally

means suppressing 2
m

 – 1 other cells, arranged in a hypercube with the sensitive statis-

tic at one vertex. Clearly, even precise protection can rapidly make the database unus-

able. (where a database is not homogeneous, things are even worse: there can be many

pivot points—cells that prevent large numbers of queries having answers.)

Sometimes complementary cell suppression can be avoided, as when large incomes

(or rare diseases) are tabulated nationally and excluded from local figures, but it is of-

ten necessary when we are publishing microstatistics, as in the preceding tables of

exam grades. Where the database is open for online queries, we can get much the same

effect by implied queries control, whereby we allow a query on m attribute values only

if all of the 2
m

-implied query sets, given by setting the m attributes to true or false,

have at least k records.

8.3.3.5 Maximum Order Control and the Lattice Model

The next thing we might try to make it harder to construct trackers is to limit the type

of inquiries that can be made. Maximum order control limits the number of attributes

that any query can have. However, to be effective, the limit may have to be severe.

One study found that of 1,000 medical records, three attributes were safe; with four

attributes, one individual record could be found; and with 10 attributes, most records

could be isolated. A more thorough approach (where it is feasible) is to reject queries

that would partition the sample population into too many sets.

We saw how lattices can be used in compartmented security to define a partial order

to control permitted information flows between compartments with combinations of

codewords. They can also be used in aslightly different way to systematize query con-

trols in some databases. If we have, for example, three attributes A, B, and C (say, area

of residence, birth year, and medical condition), we may find that, while inquiries on

any one of these attributes are nonsensitive, as are inquiries on A and B and on B and

C, the combination of A and C might be sensitive. It follows, that an inquiry on all

three would not be permissible either. Thus, the lattice divides naturally into a top half

of prohibited queries and a bottom half of allowable queries, as shown in Figure 8.6.

Figure 8.6 Table lattice for a database with three attributes.
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8.3.3.6 Audit-Based Control

As mentioned, some people try to get round the limits imposed by static query control

by keeping track of who accessed what. Known as query overlap control, this involves

rejecting any query from a user that, combined with what the user knows already,

would disclose a sensitive statistic. This may sound perfect in theory, but in practice it

suffers from two usually unsurmountable drawbacks. First, the complexity of the proc-

essing increases over time, and often exponentially. Second, it’s extremely hard to be

sure that your users aren’t in collusion, or that one user hasn’t registered under two

different names. Even if your users are all honest and distinct persons today, it’s al-

ways possible that one of them will take over another, or that two of them get taken

over by a predator, tomorrow.

8.3.3.7 Randomization

The cell suppression example shows that if various kinds of query control are the only

protection mechanism used in a statistical database, they can often have an unaccept-

able performance penalty. So query control is often used in conjunction with various

kinds of randomization, which are designed to degrade the signal-to-noise ratio from

the attacker’s point of view while impairing that of the legitimate user as little as pos-

sible.

The simplest such technique is perturbation, or adding noise with zero mean and a

known variance to the data. One way of doing this is to round, or truncate, the data by

some deterministic rule; another is to swap some records. Perturbation is often not as

effective as one would like, as it tends to damage the legitimate user’s results precisely

when the sample set sizes are small, and leave them intact when the sample sets are

large (where we might have been able to use simple query controls anyway). There is

also the worry that suitable averaging techniques might be used to eliminate some of

the added noise.

Often, a better randomization technique is to use random sample queries. This is an-

other of the methods used by census bureaux. The idea is to make all the query sets the

same size, selecting them at random from the available relevant statistics. Thus all the

released data are computed from small samples rather than from the whole database. If

this random selection is done using a pseudorandom number generator keyed to the

input query, then the results will have the virtue of repeatability. Random sample que-

ries are a natural protection mechanism for large medical databases, where the correla-

tions being investigated are often such that a sample of a few hundred is sufficient. For

example, when investigating the correlation between a given disease and some aspect

of lifestyle, the correlation must be strong before doctors will advise patients to make

radical changes to their way of life, which might have undesirable side effects. If a

teaching hospital has records on five million patients, and five thousand have the dis-

ease being investigated, then a randomly selected sample of two hundred sufferers

might be all the researcher could use.

This doesn’t work so well where the disease is rare, or where for other reasons there

is only a small number of relevant statistics. A possible strategy here is randomized

response, where we randomly restrict the data we collect (the subjects’ responses). For

example, if the three variables under investigation are obesity, smoking, and AIDS, we
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might ask each subject with HIV infection to record whether they smoke or whether

they are overweight, but not both. Of course, this can limit the value of the data.

Figure 8.7 Sample of de-identified drug-prescribing data.

8.3.4 Limitations of Generic Approaches

As with any protection technology, statistical security can only be evaluated in a par-

ticular environment and against a particular threat model. Whether it is adequate or not

depends to an even greater extent than usual on the details of the application.

An instructive example is a system used for analyzing trends in drug prescribing.

Here, prescriptions are collected (minus patient names) from pharmacies. A further

stage of de-identification removes the doctors’ identities; the information is then sold

to drug company marketing departments. The system has to protect the privacy of

doctors as well as of patients (the last thing a busy family doctor wants is to be pes-

tered by a drug rep for prescribing a competitor’s brands).

One problem with an early prototype of this system was that it merely replaced the

names of doctors in a cell of four or five practices with Doctor A, Doctor B, and so on,

as in Figure 8.7. We realized that an alert drug rep could identify doctors from pre-

scribing patterns, by noticing, for example, “Well, Doctor B must be Susan Jones be-

cause she went skiing in the third week in January, and look at the fall-off in

prescriptions here. And Doctor C is probably her partner Mervyn Smith who would

have been covering for her.” The fix was to replace absolute numbers of prescriptions

with the percentage of each doctor’s prescribing that went to each particular drug, and

to randomly perturb the timing by shifting the figures backward or forward a few

weeks [530].

In general, contextual knowledge is extremely hard to quantify, and is quite likely to

grow over time. Latanya Sweeney has shown that even the HCFA’s “public-use” files

can often be re-identified by cross-correlating them with commercial databases [744].

(Such data detective work is an important part of assessing the level of protection that

an actual statistical database gives, just as we only have confidence in cryptographic

algorithms that have withstood extensive analysis by capable motivated opponents.)

And even without cross-correlation, there may be contextual information available in-

ternally. Users of medical research databases are often doctors who have normal access

to parts of the patient record databases from which the statistical data are drawn.

8.3.4.1 Active Attacks

Active attacks are particularly powerful. These are where users have the ability to in-

sert or delete records into the database. A user might add records to create a group that
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contains the target’s record, plus those of a number of nonexistent subjects created by

himself. One (imperfect) countermeasure is to add or delete new records in batches.

Taking this to an extreme gives partitioning, whereby records are added in groups and

any query must be answered with respect to all of them or none. However, this is once

more equivalent to publishing tables of microstatistics.

Active attacks are not limited to data, but can also target metadata. A nice example,

due to Whit Diffie, is the chosen drug attack. Suppose a drug company has access

through a statistical system to the amounts of money spent on behalf of various groups

of patients, and wants to find out which patients are receiving which drug, in order to

direct its marketing better (there was a scandal in Quebec about just such an inference

attack). A powerful trick is to set the drug prices in such a way as to make the resulting

equations easy to solve.

A prominent case at the moment involves a new medical research database in Ice-

land, which comprises three linked databases: one with the nation’s medical records,

one with the genealogy of the whole population, and one with genetic data acquired

from sequencing. The rationale is that since Iceland’s population is largely descended

from a few founding families that settled there about a thousand years ago, there is

much less genie variance than in the general human population, and so genes for he-

reditary illnesses should be much easier to find.

The privacy problem in the Icelandic database is much more acute than in the gen-

eral case. For example, by linking medical records to genealogies, which are in any

case public (genealogy is a common Icelandic hobby), patients can be identified by

such factors as the number of their uncles, aunts, great-uncles, great-aunts and so

on—in effect, by the shape of their family trees. There was much debate about whether

the design could even theoretically meet legal privacy requirements [33], and European

privacy officials expressed grave concern about the possible consequences for

Europe’s system of privacy laws [217]. However, the Icelandic government pressed

ahead with it anyway over the strong objections of local doctors. The result was that

11% of the population opted out of the system, including a majority of medical practi-

tioners.

8.3.5 The Value of Imperfect Protection

So doing de-identification right is hard, and the issues can be politically fraught. But it

is often worthwhile to make some attempt, even if the protection you can provide is

imperfect.

Some kinds of security mechanism may be worse than useless if they can be com-

promised. Weak encryption is a good example. The main problem facing the world’s

signals intelligence agencies is how to filter out interesting nuggets from the mass of

international phone, fax, email, and other traffic. A principal who helpfully encrypts

his important traffic makes this part of his an opponent’s job easier. If the encryption

used is breakable (or one of the end systems can be hacked), then the net result is

worse than if the traffic had been sent in clear.

Statistical security is not generally like this. The main threat to databases of personal

information is often mission creep. Once an organization has access to data that are

potentially valuable, then all sorts of ways of exploiting that value will be developed.

Some of these are likely to be highly objectionable; a topical U.S. example is the resale
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of medical records to banks for use in filtering loan applications. However, even an

imperfect de-identification system may destroy the value of medical data to a bank’s

loan department. If only five percent of the patients can be identified, and then only

with effort, the bank may decide that it’s simpler to tell loan applicants to take out their

own insurance, and let the insurance companies send out medical questionnaires if they

wish. So de-identification can help, even if the main effect is prophylaxis against fu-

ture harm rather than treatment of existing defects.

As well as harming privacy, mission creep can have safety implications. In at least

one European country, diabetic registers—databases designed to monitor the quality of

diabetes care—are abused to provide a rudimentary means of electronic communica-

tion between family doctors and hospital diabetologists, who are frustrated at not hav-

ing email. But as the diabetes registers were never designed as communications

systems, they lack the safety and other mechanisms that they should have if they are to

be used for this purpose. Even the most rudimentary form of de-identification would

have prevented this abuse.

So in statistical security, the question of whether one should let the best be the en-

emy of the good can require a finer judgment call than elsewhere.

8.4 The Residual Problem

The two previous sections may have convinced you that the problem of managing

medical record privacy in the context of immediate care (such as in a hospital) is rea-

sonably straightforward, while in the context of secondary databases (such as for re-

search, audit, and cost control) there are statistical security techniques that, with care,

can solve much of the problem. Somewhat similar techniques are used to manage in-

telligence information in military organizations and for highly sensitive commercial

data such as details of forthcoming mergers and acquisitions in an investment bank. In

all cases, the underlying concept is that the really secret material is restricted to a com-

partment of a small number of identified individuals, and less secret versions of the

data are manufactured for wider use. This involves not just suppressing the names of

the patients, spies, or target companies, but also controlling any contextual and other

information by which they might be re-identified.

But making such systems work well in real life is much harder than it looks. First,

determining the sensitivity level of information is fiendishly difficult, and many initial

expectations turn out to be wrong. You might expect, for example, that HIV status

would be the most sensitive medical data there is; yet many HIV sufferers are quite

open about their status. You might also expect that people would rather entrust sensi-

tive personal health information to a healthcare professional such as a doctor or phar-

macist rather than to a marketing database; yet many women are so sensitive about

purchasing feminine hygiene products that, rather than going into a pharmacy and

buying them for cash, they prefer to use an automatic check-out facility in a supermar-

ket, even if this means they have to use their store card and credit card, so that the pur-

chase is linked to their name and stays on the marketing database forever. The actual

embarrassment of being seen with a packet of tampons is immediate, and outweighs

the potential future embarrassment of being sent discount coupons for baby wear six

months after the menopause.
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Second, it is extraordinarily difficult to exclude single points of failure, no matter

how hard you try to build watertight compartments. The CIA’s Soviet assets were

compromised by Rick Ames, who, as a senior man in counterintelligence, had access to

too many compartments. The KGB’s overseas operations were similarly compromised

by Vassily Mitrokhin, an officer who had become disillusioned with communism after

1968, yet was sent to work in the archives while waiting for his pension [51].

In medicine, many of the really hard problems lie in the systems that process medi-

cal claims for payment. When a patient is treated, and a request for payment is sent to

the insurer, it has not just full details of the illness, the treatment, and the cost, but also

the patient’s name, insurance number, and other details such as date of birth. There

have been proposals for payment to be effected using anonymous credit cards [117],

but as far as I am aware, none of them has been fielded. Insurers want to know which

patients, and which doctors, are the most expensive. This holds whether the insurer is a

private insurance company (or employer) or a government-owned health authority,

such as HCFA or Britain’s National Health Service. And once an insurer possesses

large quantities of personal health information, it becomes very reluctant to delete it in

case it might be useful or valuable in the future.

In the United States, the retention of copies of medical records by insurers, employ-

ers, and others is now widely seen as a serious problem. Writers from such widely dif-

ferent political viewpoints as the communitarian Amitai Etzioni [277] and the

libertarian Simson Garfinkel [330] agree on this point, if on little else. Public concern

spurred Congress to pass the Health Insurance Portability and Accountability Act (HI-

PAA), which empowered the Department of Health and Human Services (DHHS) to

regulate the security of health data. The debate now is over how the regulations are to

be implemented. If the private medical insurance sector were brought up to the stan-

dards of HCFA, this would probably be a good thing for most patients. But given the

sums involved, one can anticipate a lot of foot-dragging and litigation. Even so, the act

only enables the DHHS to regulate health plans, healthcare clearinghouses, and

healthcare providers, leaving many organizations that process medical information

(such as lawyers, employers, and universities) outside its scope.

What lessons can be drawn from other countries?

As we noted above, Britain’s system has been a source of conflict with doctors and

with patients’ associations. The Swiss system, which was initially similar to Britain’s,

has now been de-identified much more thoroughly at the insistence of privacy regula-

tors. In Germany, the richer people use private insurers (who are bound by tight data

protection laws), while the poor use state health insurers, which are run by doctors, so

non-doctors don’t have access to records. The most radical solution is in Japan, where

cost control is done by regulating fees: doctors are discouraged from performing ex-

pensive procedures, such as heart transplants, by pricing them below cost. This mecha-

nism doesn’t involve large-scale access to personal health information, and is much

more effective than the case-by-case cost control practiced in most other countries.

Healthcare takes up some 3 percent of GNP in Japan, versus 7 to 8 percent for the typi-

cal developed country, and 15 percent for America. Oh, and Japanese live longer than

Europeans, who live longer than Americans. A variant of the Japanese solution was

adopted in Oregon in February 1994 and proved popular with Oregonians, but was re-

sisted fiercely by health industry lobbyists as “rationing.”
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To sum up, the problem of health record privacy is fundamentally a political one.

Whether large quantities of medical records ever accumulate in one database depends

on how the health care system is organized, and whether these are destroyed—or at

least properly de-identified—after payment has been processed is a matter of regula-

tion, not primarily of technology. In such debates, one role of the security engineer is

to see to it that policymakers understand the likely consequences of their actions.

Other privacy problems also tend to have a serious political entanglement. Bank

customer privacy can be tied up with the bank’s internal politics; often the best privacy

protection comes from branch managers’ reluctance to let other branches learn about

their customers. Access to criminal records and intelligence depends on how law en-

forcement agencies decide to share data with each other, and the choices they make

internally about whether access to highly sensitive information about sources and

methods should be decentralized (risking occasional losses), or centralized (bringing

lower-probability but higher-cost exposure to a traitor at head office).

8.5 Summary

In this chapter, we looked at the problem of assuring the privacy of medical records.

This is representative of a number of information security problems, ranging from the

protection of national intelligence data through professional practice in general to the

protection of census data.

It turns out that with medical records there is an easy problem, a harder problem,

and a really hard problem.

The easy problem is setting up systems of access controls so that access to a par-

ticular record is limited to a sensible number of staff. Such systems can be designed

largely by automating existing working practices. The harder problem is statistical se-

curity: how one designs databases of medical records (or census returns) so as to allow

researchers to make statistical enquiries without compromising individuals’ privacy.

The hardest problem is how to manage the interface between the two, and in the spe-

cific case of medicine, how to prevent the spread of payment information. The only

realistic solution for this lies in regulation.

Research Problems

In the near future, a lot of medical treatment may involve genetic information. Your

medical records may involve personal health information about your parents, siblings,

cousins, and so on. How can the BMA model be extended to deal with medical records

that relate to multiple individuals?

Are there any ways of linking access control policies for privacy with statistical se-

curity with (perhaps) digital cash for payment? Can there be such a thing as seamless

privacy where everything fits neatly together?
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What other ways of writing privacy policies are there? For example, are there useful

ways to combine BMA and Chinese Wall? Are there any technical or semi-technical

ways of aligning the data subject’s interest with others?

Further Reading

The literature on compartmented mode security is somewhat scattered: most of the

public domain papers are in the proceedings of the NCSC/NISSC and AISSAC confer-

ences cited in detail at the end of Chapter 7. Standard textbooks such as Amoroso [15]

and Gollmann [344] cover the basics of the lattice and Chinese Wall models.

For the BMA model, see the policy document itself—the Blue Book [23], the shorter

version at [24], and the proceedings of the conference on the policy [29]. See also the

papers on the pilot system at Hastings [231, 232]. For more on Japanese healthcare, see

[159]. For a National Research Council study of medical privacy issues in the United

States, see [581]; there is also an HHS report on the use of de-identified data in re-

search at [511].

For inference control, Denning’s book [234] is the classic reference, and there’s an

update at [238]. A more modern textbook on database security is the one by Castano, et

al. [172] whose chapter on statistical security is a useful update on Denning and whose

other chapters also cover some related multilevel security and intrusion detection is-

sues.
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CHAPTER

9

Banking and Bookkeeping

Computers are not (yet?) capable of being reasonable

any more than is a Second Lieutenant.

—CASEY SCHAUFLER

Against stupidity, the Gods themselves contend in vain.

—J.C. FRIEDRICH VON SCHILLER

9.1 Introduction

Banking systems include the back-end bookkeeping systems that record customers’

account details and transaction processing systems such as cash machine networks and

high-value interbank money transfer systems that feed them with data. They are im-

portant for a number of reasons.

First, bookkeeping was for many years the main business of the computer industry,

and banking was its most intensive area of application. Personal applications such as

Netscape and Powerpoint might now run on more machines, but accounting is still the

critical application for the average business. So the protection of bookkeeping systems

is of great practical importance. It also gives us a well-understood model of protection

in which confidentiality plays almost no role, but where the integrity of records (and

their immutability once made) is of paramount importance.

Second, transaction processing systems—whether for small debits such as $50 cash

machine withdrawals or multimillion-dollar wire transfers—were the applications that

launched commercial cryptography. Banking applications drove the development not

just of encryption algorithms and protocols, but also of the supporting technologies,

such as tamper-resistant cryptographic processors. These processors provide an im-

portant and interesting example of a trusted computing base that is quite different from
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the hardened operating systems discussed in the context of multilevel security. Many

instructive mistakes were first made (or at least publicly documented) in the area of

commercial cryptography. The problem of how to interface crypto with access control

was studied by financial cryptographers before any others in the open research com-

munity.

Third, an understanding of basic electronic banking technology is a prerequisite for

tackling the more advanced problems of electronic commerce in an intelligent way. In

fact, many dot-coms fall down badly on basic bookkeeping, which is easy to overlook

in the rush to raise money and build a Web site.

Finally, banking systems provide another example of multilateral security, but aimed

at authenticity rather than confidentiality. A banking system should prevent customers

from cheating each other or the bank; it should prevent bank employees from cheating

the bank or its customers; and the evidence it provides should be sufficiently strong

that none of these principals can get away with falsely accusing another principal of

cheating.

9.1.1 The Origins of Bookkeeping

Figure 9.1 Clay envelope and its content of tokens from Susa, Iran, ca. 3300 BC (courtesy

Denise Schmandt-Besserat and The Louvre Museum).

Bookkeeping appears to have started in the Neolithic Middle East in about 8500 BC,

just after the invention of agriculture [678]. When people started to store and trade the

food they had produced, they needed a way to keep track of which village member had

put how much in the communal warehouse. To start with, each unit of food (sheep,

wheat, oil, . . .) was represented by a clay token, or bulla, which was placed inside a
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clay envelope and sealed by rolling it with the pattern of the warehouse keeper (see

Figure 9.1). When the farmer wanted to get his food back, the seal was broken by the

keeper in the presence of a witness. (This is may be the oldest known security proto-

col.) By about 3000 BC, this had led to the invention of writing [609]; after another

thousand years, we find equivalents of promissory notes, bills of lading, and so on. At

about the same time, metal ingots started to be used as an intermediate commodity,

often sealed inside a bulla by an assayer. In 700 BC, Lydia’s King Croesus started

stamping the metal directly, and thus invented coins [625]; by the Athens of Pericles,

there were a number of wealthy individuals in business as bankers [338].

The next significant innovation dates to the time of the Crusades. As the Dark Ages

came to a close and trade started to spread, some businesses became too large for a

single family to manage. The earliest of the recognizably modern banks date to this

period; by having branches in a number of cities, they could finance trade efficiently.

But as the economy grew, it was necessary to hire managers from outside, and the

owner’s family could not supervise them closely. This brought with it an increased risk

of fraud, and the mechanism that evolved to control it was double-entry bookkeeping.

This appears to have been invented sometime in the 1300s, though the first book on it

did not appear until 1494, after the invention of the printing press [222].

9.1.2 Double-entry Bookkeeping

The idea behind double-entry bookkeeping is, like most hugely influential ideas, ex-

tremely simple. Each transaction is posted to two separate books, as a credit in one and

a debit in the other. For example, when a firm sells a customer $100 of goods on credit,

it posts a $100 credit on the Sales account, and a $100 debit on the Receivables ac-

count. When the customer pays the money, it will credit the Receivables account

(thereby reducing the asset of money receivable) and credit the Cash account. (The

principle taught in accountancy school is ‘debit the receiver, credit the giver’.) At the

end of the day, the books should balance, that is, add up to zero; the assets and the li-

abilities should be equal. (Any profit the firm has made is a liability to the sharehold-

ers.) In all but the smallest firms, the books will be kept by different clerks, and have

to balance at the end of every month (at banks, every day). By suitable design of the

ledger system, we can see to it that each shop, or branch, can be balanced separately.

Thus most frauds will need the collusion of two or more members of staff; and this

principle of split responsibility, also known as dual control, is complemented by audit.

Many computer systems are used for bookkeeping tasks, and implement variations

on the double-entry theme. However, the control is often illusory. The double-entry

features may be implemented only in the user interface, while the underlying file for-

mats have no integrity controls. And even if the ledgers are kept on the same system,

someone with root access—or with physical access and a debugging tool—may be able

to change two or more records so that the balancing controls are bypassed. It may also

be possible to evade the balancing controls in various ways; staff may notice bugs in

the software and take advantage of them.

So how can we organize and formalize our protection goals?
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9.2 How Bank Computer Systems Work

Banks were among the first large organizations to use computers for bookkeeping.

They began to do so in the late 1950s and early 1960s, with applications such as check

processing, and once they found that even the slow and expensive computers of that

era were much cheaper than armies of clerks, they proceeded to automate most of the

rest of their operations during the 1960s and 1970s.

A typical banking system has a number of data structures. There is an account mas-

ter file, which contains each customer’s current balance together with previous trans-

actions for a period of perhaps 90 days; a number of ledgers, which track cash and

other assets on their way through the system; various journals, which hold transactions

that have been received from teller stations, cash machines, check sorters, and so on,

but not yet entered in the ledgers; and an audit trail that records which staff member

did what and when.

The processing software that acts on these data structures will include a suite of

overnight batch-processing programs, which apply the transactions from the journals to

the various ledgers and the account master file. The online processing will include a

number of modules that post transactions to the relevant combinations of ledgers. For

example, when a customer pays $100 into a savings account, the teller will make a

transaction that records a credit to the customer’s savings account ledger of $100,

while debiting the same amount to the cash ledger recording the amount of money in

the drawer. The fact that all the ledgers should always add up to zero provides an im-

portant check; if the bank (or one of its branches) is ever out of balance, an alarm will

go off and people will start looking for the cause.

The invariant provided by the ledger system is checked daily during the overnight

batch run; this means that a programmer who wants to add to his own account balance

will have to take the money from some other account, rather than just create it out of

thin air by tweaking the account master file. Just as in a traditional business one has

different ledgers managed by different clerks, so in a banking data processing shop

there are different programmers in charge of them. In addition, all code is subjected to

scrutiny by an internal auditor and to testing by a separate test department. Once the

code has been approved, it will be run on a production machine that does not have a

development environment, but only approved object code and data.

9.2.1 The Clark-Wilson Security Policy Model

Although such systems have been in the field since the 1960s, a formal model of their

security policy was only introduced in 1987, by David Clark and David Wilson (the

former was a computer scientist, and the latter an accountant) [187]. In their model,

some data items are constrained so that they can be acted on only by a certain set of

transformation procedures.

More formally, there are special procedures whereby data can be input—turned from

an unconstrained data item, or UDI, into a constrained data item, or CDI; integrity

verification procedures (IVPs) to check the validity of any CDI (e.g., that the books

balance); and transformation procedures (TPs), which may be thought of in the bank-

ing case as transactions that preserve balance. In the general formulation, they maintain

the integrity of CDIs; they also write enough information to an append-only CDI (the
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audit trail) for transactions to be reconstructed. Access control is by means of triples

(subject, TP, CDI), which are so structured that a shared control policy is enforced. In

the formulation in Amoroso [15]:

1. The system will have an IVP for validating the integrity of any CDI.

2. The application of a TP to any CDI must maintain its integrity.

3. A CDI can only be changed by a TP.

4. Subjects can only initiate certain TPs on certain CDIs.

5. Triples must enforce an appropriate separation of duty policy on subjects.

6. Certain special TPs on UDIs can produce CDIs as output.

7. Each application of a TP must cause enough information to reconstruct it to

be written to a special append-only CDI.

8. The system must authenticate subjects attempting to initiate a TP.

9. The system must let only special subjects (i.e., security officers) make

changes to authorization-related lists.

A number of things bear saying about Clark-Wilson.

First, unlike Bell-LaPadula, Clark-Wilson involves maintaining state. Quite apart

from the audit trail, this is usually necessary for dual control as you have to keep track

of which transactions have been partially approved—such as those approved by only

one manager when two are needed. If dual control is implemented using access control

mechanisms, it typically means holding partially approved transactions in a special

journal file. This then means that some of the user state is actually security state, which

in turn makes the trusted computing base harder to define. If it is implemented using

crypto instead, such as by having managers attach digital signatures to transactions of

which they approve, there can be problems managing all the partially approved trans-

actions so that they get to a second approver in time.

Second, the model doesn’t do everything. It captures the idea that state transitions

should preserve an invariant, such as balance, but not that state transitions should be

correct. Incorrect transitions, such as paying into the wrong bank account, are still al-

lowed.

Third, Clark-Wilson ducks the hardest question, namely: how do we control the risks

from dishonest staff? Rule 5 says that “an appropriate separation of duty policy” must

be supported, but nothing about what this means.

9.2.2 Separation of Duties

There are basically two kinds of separation of duty policy: dual control and functional

separation.

In dual control, two or more different staff members must act together to authorize a

transaction. The classic military example is in nuclear command systems, which may

require two or three officers to turn their keys simultaneously in consoles that are too

far apart for a single person to operate. (I discuss nuclear matters further in Chapter 11,

“Nuclear Command and Control.”) The classic civilian example is when a bank issues

a letter of guarantee, which will typically undertake to carry the losses should a loan

made by another bank go sour. If a single manager could issue such an instrument, then
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an accomplice could plunder the guaranteed loan account at the other bank, and the

alarm might not be raised for months. I discuss this further in Section 9.3.2.

With functional separation of duties, two or more different staff members act on a

transaction at different points in its path. The classic example is corporate purchasing.

A manager makes a purchase decision and tells the purchasing department; a clerk

there writes a purchase order; the store clerk records the arrival of goods; an invoice

arrives at accounts; the accounts clerk correlates it with the purchase order and the

stores receipt, and cuts a check; the accounts manager signs the check.

However, it doesn’t stop there. The manager now gets a debit on her monthly state-

ment for that internal account; her boss reviews the accounts to make sure the divi-

sion’s profit targets are likely to be met; the internal audit department can descend at

any time to audit the division’s books; and when the external auditors come in once a

year, they will check the books of a randomly selected sample of departments. Finally,

when frauds are discovered, the company’s lawyers may make vigorous efforts to get

the money back.

The model can be described as prevent-detect-recover. The level of reliance placed

on each of these three legs will depend on the application. Where detection may be

delayed for months or years, and recovery may therefore be very difficult—as with

bogus bank guarantees—it is prudent to put extra effort into prevention, using tech-

niques such as dual control. Where prevention is difficult to enforce, it is essential that

detection be fast enough, and recovery vigorous enough, to provide a deterrent effect.

The classic example here is that bank tellers can quite easily take cash, so you need to

count the money every day and catch any shortfall by close of business.

Bookkeeping and management control systems are not only one of the earliest secu-

rity systems, they also have given rise to much of management science and civil law.

They are entwined with a company’s business processes, and exist in its cultural con-

text. In Swiss banks, two managers’ signatures appear on almost everything, while

Americans are much more relaxed. In most countries’ banks, staff get background

checks, can be moved randomly from one task to another, and are required to take

holidays at least once a year. But this would be excessive in the typical university de-

partment where the opportunities for fraud are much less.

Designing a good bookkeeping system is hard because it’s such an interdisciplinary

problem. The financial controllers, the personnel department, the lawyers, the auditors,

and the systems people all come at the problem from different directions, offer partial

solutions, fail to understand each other’s control objectives, and things fall down the

hole in the middle. Human factors are very often neglected, and systems end up being

vulnerable to helpful subordinates or authoritarian managers who can cause dual con-

trol to fail. It’s important not just to match the controls to the culture, but also to moti-

vate people to use them. For example, in the better-run banks, management controls are

marketed to staff as a means of protecting them against blackmail and kidnapping.

Security researchers have so far focused on the small part of the problem, which

pertains to creating dual control (or in general, where there are more than two princi-

pals, shared control) systems. Even this is not at all easy. For example, rule 9 in Clark-

Wilson says that security officers can change access rights, so what’s to stop a security

officer creating logons for two managers and using them to send all the bank’s money

to Switzerland?
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One possible answer is to use cryptography, and split the relevant signing key be-

tween two or more principals. In an NT network, the obvious way to manage things is

to put users in separately administered domains. With a traditional banking system,

using the mainframe operating system MVS, we can separate duties between the sys-

tem administrator (sysadmin) and the auditor; the former can do anything he wishes,

except find out which of his activities the latter is monitoring [95]. But in real life, dual

control is hard to do end to end because there are many system interfaces that provide

single points of failure; and, in any case, split-responsibility systems administration is

tedious.

The practical answer, then, is that most bank sysadmins could do just this type of

fraud. Some have tried—where they fall down is that the back-office balancing con-

trols set off the alarm after a day or two, and money laundering controls stop them

from getting away with very much. I discuss this further in Section 9.3.2. The point to

bear in mind here is that serial controls in the prevent-detect-recover model are usually

more important than shared control. They depend ultimately on some persistent state in

the system, and are in tension with programmers’ desire to keep things simple by

making transactions atomic.

There are also tranquility issues. For example, could an accountant, knowing that he

was due to be promoted to manager tomorrow, end up doing both authorizations on a

large transfer? A technical fix for this might involve a Chinese Wall mechanism sup-

porting a primitive “X may do Y but not Z” (“a manager can confirm a payment only if

her name doesn’t appear on it as the creator”). In this way, we would end up with a

number of exclusion rules involving individuals, groups, and object labels; once the

number of rules became large (as it will in a real bank) we would need a systematic

way of examining this rule set and verifying that it didn’t have any loopholes.

In the medium term, banking security policy—just like medical security pol-

icy—may end up finding its most convenient expression using role-based access con-

trol; platforms such as Win2K may be heading in this direction. This offers the

potential for managing separation of duty policies that involve both parallel elements,

such as dual control, and serial elements, such as functional separation along a trans-

action’s path.

A final remark on dual control is that it’s often inadequate for transactions involving

more than one organization, because of the difficulties of dispute resolution: “My two

managers say the money was sent!” “But my two say it wasn’t!”

9.2.3 What Goes Wrong

Theft can take a variety of forms, from the purely opportunist to clever insider frauds;

but regardless of size most thefts from the average company are due to insiders. There

are many surveys. A recent one, by accountants Ernst and Young, reports that 82 per-

cent of the worst frauds in 1999–2000 were committed by employees; nearly half of

the perpetrators had been there over five years, and a third of them were managers

[697].

Typical computer crime cases include:

• A bank had a system of suspense accounts, which would be used temporarily if

one of the parties to a transaction could not be identified (such as when an ac-

count number was entered wrongly on a funds transfer). This was a work-
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around added to the dual control system to deal with transactions that got lost

or otherwise couldn’t be balanced immediately. As it was a potential vulner-

ability, the bank had a rule that suspense accounts would be investigated if

they were not cleared within three days. One of the clerks exploited this by

setting up a scheme whereby she would post a debit to a suspense account and

an equal credit to her boyfriend’s account; after three days, she would raise

another debit to pay off the first. In almost two years, she netted hundreds of

thousands of dollars. (The bank negligently ignored a regulatory requirement

that all staff take at least 10 consecutive days’ vacation no more than 15

months from the last such vacation.) In the end, she was caught when she

could no longer keep track of the growing mountain of bogus transactions.

• A clerk at the Inner London Education Authority wanted to visit relatives in
Australia, and to get some money, she created a fictitious school, complete
with staff whose salaries were paid into her own bank account. It was discov-
ered only by accident when someone noticed that different records gave the
authority different numbers of schools.

• A bank clerk in Hastings, England, noticed that the branch computer system

did not audit address changes. He picked a customer who had a lot of money

in her account and got a statement only once a year; he then changed her ad-

dress to his, issued a new ATM card and personal identification number (PIN),

and changed her address back to its original value. In total, he stole £8,600

from her account. When she complained, she was not believed: the bank

maintained that its computer systems were infallible, and so the withdrawals

must have been her fault. The matter was cleared up only when the clerk got

an attack of conscience and started stuffing the cash in brown envelopes

through the branch’s letter box at night. The branch manager finally realized

that something was seriously wrong.

All the really large frauds—the cases over a billion dollars—have involved lax in-

ternal controls. The collapse of Barings Bank is a good example; there, managers failed

to control rogue trader Nick Leeson, as they were blinded by greed for the bonuses his

apparent trading profits earned them. The same holds true for other big financial sector

frauds, such as the Equity Funding scandal, in which an insurance company’s man-

agement created thousands of fake people on their computer system, insured them, and

sold the policies on to reinsurers; and frauds in other sectors such as Robert Maxwell’s

looting of the Daily Mirror newspaper pension funds in Britain. (For a collection of

computer crime case histories, see Parker [602].) Either the victim’s top managers

were grossly negligent, as in the case of Barings, or were the perpetrators, as with Eq-

uity Funding and Maxwell. As a result, a number of standards have been put forward

by the accountancy profession, by stock markets, and by banking regulators, about how

bookkeeping and internal control systems should be designed. In the United States, for

example, there is the Committee of Sponsoring Organizations (COSO), a group of U.S.

accounting and auditing bodies [196]. I’ll return to COSO and explore how to go about

designing an internal control system in Chapter 22, “Management Issues,” Section

22.4.1.2.

But changing technology also has a habit of eroding controls, which therefore need

constant attention and maintenance. For example, thanks to new systems for high-

speed processing of bank checks, banks in California will no longer honor requests by
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depositors that checks have two signatures. Even when a check has printed on it “Two

Signatures Required,” banks will honor that check with only one signature [651]. This

might seem to be a problem for the customer’s security rather than the bank’s, but bank

checks can also be at risk and if something goes wrong even with a merchant transac-

tion, the bank might still get sued. The vulnerability of shared control to technical at-

tacks continues to grow. Most major accounting packages do not use double-entry

bookkeeping internally, but rather create an appearance of it at the presentation layer;

and the current trend appears to be toward event databases in which all transactions in

an accounting period are accumulated, with reports being generated directly as re-

quired. New control strategies may be needed. One possible technical approach is to

maintain separate logs of all original events (purchase orders, invoices, payments, etc.)

and have programs that constantly cross-check. People-based measures are also highly

advisable. Accounts software should empower line managers so that they can monitor

their departments’ income, expenditure and commitments. Making the technical and

managerial controls overlap, so that they cover each others’ weaknesses, is the goal;

unfortunately, the common outcome is that the technical controls merely duplicate the

managerial ones, resulting in common failure modes that fraudsters can exploit.

The lessons to be learned include the following.

• It’s not always obvious which transactions are security-sensitive.

• It’s hard to maintain a working security system in a changing environment.

• If you rely on customer complaints to alert you to fraud, you had better listen
to them.

• There will always be people in positions of relative trust who can get away
with a scam—for a while.

• No security policy will ever be completely rigid; there will always have to be
workarounds for people to cope with real life, and some of these workarounds
will create vulnerabilities.

• It’s often hard to tell at first sight whether an exception is due to fraud or to

error. So the lower the transaction error rate, the better.

There will always be residual risks. Managing these remains one of the hardest and

most neglected of jobs. It requires not just technical measures, such as involving

knowledgeable industry experts, auditors, and insurance people in the detailed design,

and iterating the design once some loss history is available. It also means training

managers, auditors, and others to detect problems and react to them appropriately. I’ll

revisit this topic in Chapter 22.

The banking industry has gone a long way along this learning curve. The general

experience of banks in the English-speaking world is that some 1 percent of staff are

fired each year. The typical offense is minor embezzlement, incurring a loss of a few

thousand dollars. No one has found an effective way of predicting which staff will go

bad; previously loyal staff can be thrown off the rails by shocks such as divorce, or

may over time develop a gambling or alcohol habit.
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9.3 Wholesale Payment Systems

Systems for transferring money electronically were one of the first applications of the

telegraph when it was introduced in the middle of the nineteenth century; and I ex-

plained in Chapter 5, “Cryptography,” Section 5.2.4 how the system of test keys was

developed to compute authentication codes on the messages manually. By the early

1970s, bankers started to realize that a better system was needed:

• The cryptographic vulnerability of the system became apparent.

• Although the test key tables were kept in the safe, it was at least theoretically
possible for a bank employee to memorize one of the simpler schemes. With
the more complex schemes, even an employee working under close supervi-
sion could mentally compute the test on an unauthorized message, while
overtly computing the test on an authorized one.

• The schemes didn’t support dual control. Although tests were computed by
one staff member and checked by another, this doubled the risk rather than
halving it. (There are ways to do dual control with manual authenticators, and
these had been developed extensively for use in the control of nuclear weap-
ons—I discuss them in Chapter 11, Section 11.4—but this technology was still
classified at the time.)

• The major concern was cost and efficiency. There seemed little point in having

the bank’s computer print out a transaction in the telex room, having a test

computed manually, composing a telex to the other bank, checking the test,

and then entering it into the other bank’s computer. Surely the payments could

flow directly from one bank’s computer to another?

Clearly, a fresh design was needed.

9.3.1 SWIFT

The Society for Worldwide Interbank Financial Telecommunications (SWIFT) was set

up in the 1970s by a consortium of banks to provide a more secure and efficient means

of sending payment instructions between member banks. It can be thought of as an

email system with built-in encryption, authentication, and nonrepudiation services.

The SWIFT design constraints are interesting. The banks did not wish to trust

SWIFT, in the sense of enabling some combination of dishonest employees there to

forge transactions. The authenticity mechanisms had to be independent of the confi-

dentiality mechanisms, since at the time a number of countries (such as France) for-

bade the civilian use of cryptography for confidentiality. The nonrepudiation functions

had to be provided without the use of digital signatures, as these hadn’t been invented

yet. Finally, the banks had to be able to enforce Clark-Wilson type controls over inter-

bank transactions. (Clark-Wilson also hadn’t been invented yet, but its compo-

nents—dual control, balancing, audit, and so on—were well enough established.)

The SWIFT design is summarized in Figure 9.2. Authenticity of messages was as-

sured by computing a message authentication code (MAC) at the sending bank and

checking it at the receiving bank. Formerly, the keys for this MAC were managed end-

to-end: whenever a bank set up a relationship overseas, the senior manager who nego-

tiated it would exchange keys with her opposite number, whether in a face-to-face
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meeting or afterward by post to each other’s private addresses. There would typically

be two key components to minimize the risk of compromise, with one sent in each di-

rection (on the grounds that even if a bank manager’s mail is stolen from her mailbox

by a criminal at one end, it’s not likely to happen at the other end as well). The key

would not be enabled until both banks confirmed that it had been safely received and

installed.

Figure 9.2 Architecture of SWIFT.

This way, SWIFT had no part in the message authentication. As long as the authen-

tication algorithm SWIFT chose was sound, none of their staff could forge a transac-

tion. (The authentication algorithm used is supposed to be a trade secret; but because

banks like their security mechanisms to be international standards, a natural place to

look might be the algorithm described in ISO 8731 [657].) In this way, they got the

worst of all possible worlds: the algorithm was fielded without the benefit of public

analysis but got it later once it was expensive to change. (An attack was found on the

ISO 8731 message authentication algorithm and published in [621], but the number of

messages required to break it is too large for a practical attack on a typical system that

is used prudently.)

Although SWIFT itself was largely outside the trust perimeter for message authenti-

cation, it did provide a nonrepudiation service. Banks in each country sent their mes-

sages to a regional general processor (RGP), which logged them and forwarded them

to SWIFT, which also logged them and sent them on to the recipient bank via the RGP

in its country, which also logged them. The RGPs were generally run by different fa-

cilities management firms. Thus, a bank (or a crooked bank employee) wishing to dis-

honestly repudiate a done transaction—or claim that one had been done when it

hadn’t—would have to subvert not just SWIFT itself, but also two independent local

contractors (in order to alter their log entries). Logs can be a powerful evidential re-

source, and are much easier for judges to understand than cryptography.

Confidentiality depended on line encryption devices between the banks and the RGP

node, and between these nodes and the main SWIFT processing sites. Key management

was straightforward. Keys were hand-carried in EEPROM cartridges between the de-

vices at either end of a leased line. In countries where confidentiality was illegal, these

devices could be omitted without impairing the authenticity and nonrepudiation

mechanisms.
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Dual control was provided either by the use of specialized terminals (in small banks)

or by mainframe software packages that could be integrated with a bank’s main pro-

duction system. The usual method of operation is to have three separate staff to do a

SWIFT transaction: one to enter it, one to check it, and one to authorize it. (As the

checker can modify any aspect of the message, this really gives only dual control, not

triple control; and the programmers who maintain the interface can always attack the

system there). Reconciliation was provided by checking transactions against daily

statements received electronically from correspondent banks. This meant that someone

who managed to get a bogus message into the system would sound an alarm within two

or three days.

9.3.2 What Goes Wrong

SWIFT I ran for 20 years without a single report of external fraud. In the mid-1990s, it

was enhanced by the addition of public key mechanisms. MAC keys are now shared

between correspondent banks using public key cryptography, and the MACs them-

selves may be further protected by a digital signature. The key management mecha-

nisms have been ensconced as ISO standard 11166, which in turn has been used in

other systems (such as CREST, which is used by banks and stockbrokers to register

and transfer U.K. stocks and shares). There has been some debate over the security of

this architecture [47, 657]: Quite apart from the centralization of trust brought about by

the adoption of public key cryptography—in that the central certification authority can

falsely certify a key as belonging to a bank when it doesn’t—CREST (at least) adopted

public keys that are too short (512 bits). At least one RSA public key of this length has

been factored surreptitiously by a group of students.

However, the main practical attacks on such systems have not involved the payment

system mechanisms themselves. The typical attack comes from a bank programmer

inserting a bogus message into the processing queue. It usually fails because he does

not understand the other controls in the system or the procedural controls surrounding

large transfers. For example, banks typically keep mutual overdraft limits of perhaps a

million dollars, so transfers of larger amounts need the prior involvement of the foreign

exchange dealers; there’s the daily back-office reconciliation; money-laundering laws

require staff to report large cash withdrawals; and anyone who opens a bank account,

receives a large incoming wire transfer, then starts frantically moving money out again

will need a very convincing excuse. Consequently, the programmer who inserts a bo-

gus transaction into the system usually gets arrested when he turns up to collect the

cash.

Other possible technical attacks—such as inserting Trojan software into the PCs

used by bank managers to initiate transactions, wiretapping the link from the branch to

the bank mainframe, subverting the authentication protocol used by bank managers to

log on, and even inserting a bogus transaction in the branch LAN to appear on the rele-

vant printer—would also run up against these controls.

In fact, most large-scale bank frauds that “worked” have not used technical attacks

but exploited procedural vulnerabilities, such as the following:

• The classic example is a letter of guarantee. It is common enough for a com-

pany in one country to guarantee a loan to a company in another. This can be

set up as a SWIFT message or even a paper letter. But as no cash changes
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hands at the time, the balancing controls are inoperative. If a forged guarantee

is accepted as genuine, the “beneficiary” can take his time borrowing money

from the accepting bank, laundering it, and disappearing. Only when the vic-

tim bank realizes that the loan has gone sour, and tries to call in the guarantee,

is the forgery discovered.

• An interesting fraud of a slightly different type took place in 1986 between
London and Johannesburg. At that time, the South African government oper-
ated two exchange rates, and in one bank the manager responsible for deciding
which rate applied to each transaction conspired with a rich man in London.
They sent money out to Johannesburg at an exchange rate of seven Rand to the
Pound, and back again the following day at four. After two weeks of this, the
authorities became suspicious, and the police came round. On seeing them in
the dealing room, the manager fled without stopping to collect his jacket,
drove over the border to Swaziland, and flew via Nairobi to London. There, he
boasted to the press about how he had defrauded the wicked apartheid system.
As Britain has no exchange control, exchange control fraud isn’t an offense, so
he couldn’t be extradited. The conspirators got away with millions, and the
bank couldn’t even sue them.

• Perhaps the best-known funds transfer fraud occurred in 1979 when Stanley

Rifkin, a computer consultant, embezzled over $10 million from Security Pa-

cific National Bank. He circumvented the money-laundering controls by

agreeing to buy a large shipment of diamonds from a Russian government

agency in Switzerland. He got the transfer into the system by observing an

authorization code used internally when dictating transfers to the wire transfer

department, and simply used it over the telephone (a classic example of dual

control breakdown at a system interface). He even gave himself extra time to

escape by doing the deal just before a U.S. bank holiday. Where he went

wrong was in not planning what to do after he collected the stones. If he had

hidden them in Europe, gone back to the United States, and helped investigate

the fraud, he might well have got away with it; as it was, he ended up on the

run and got caught.

The moral is that we must always be alert to things which defeat separation-of-duty

controls by introducing a single point of failure. Even if we can solve the technical

problems of systems administration, interfaces, and so on, there’s still the business

system analysis problem of what we control—quite often, critical transactions aren’t

obvious to a casual inspection.

9.4 Automatic Teller Machines

Another reason that dual control—although necessary—is not sufficient, emerges from

the study of “phantom withdrawals”—complaints of unauthorized cash withdrawals

from automatic teller machines (ATMs).

ATMs, also known as cash machines, have been one of the most influential techno-

logical innovations of the twentieth century. Quite apart from their social and eco-

nomic impact, they are just as important to the security engineer both as a source of

technology and as a case study.
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ATMs were the first large-scale retail transaction processing systems. They have

been around since 1968; the world installed base is now about 500,000 machines. The

technology developed for them is now also used in terminals for electronic funds

transfer at the point of sale (EFTPOS, or just POS) in shops. Modern block ciphers

were first used on a large scale in ATM networks, to generate and verify PINs in se-

cure hardware devices located within the ATMs and at bank computer centers. This

technology, including block ciphers, tamper-resistant hardware, and the supporting

protocols, ended up being used in many other applications, from postal franking ma-

chines to lottery ticket terminals. ATMs were the “killer app” that got modern com-

mercial cryptology off the ground.

9.4.1 ATM Basics

Many ATMs operate using some variant of a system developed by IBM for its 3614

series cash machines in the mid-1970s. This uses a secret key, called the PIN key, to

encrypt the account number, then decimalize it and truncate it. The result of this op-

eration is called the natural PIN; an offset can be added to it to give the PIN the cus-

tomer must enter. The offset has no real cryptographic function; it just enables

customers to choose their own PIN. An example of the process is shown in Figure 9.3.

Dual control is implemented in this system using tamper-resistant hardware. A

cryptographic processor, often called a security module, is kept in the bank’s central

computer room. It will perform a number of defined operations on customer PINs and

on related keys in such a way that:

• Operations on the clear values of customer PINs, and on the keys or other ma-

terial needed to compute them or used to protect them, are all done in tamper-

resistant hardware and the clear values are never made available to any single

member of the bank’s staff.

• Thus, for example, the cards and PINs are sent to the customer via separate
channels. The cards are personalized in a facility with embossing and mag-
strip printing machinery; the PIN mailers are printed in a separate facility
containing a printer attached to a security module.

• A terminal master key is supplied to each ATM in the form of two printed
components, which are carried to the branch by two separate officials, input at
the ATM keyboard, and combined to form the key. Similar procedures are
used to set up keys between banks and network switches such as VISA.

• If ATMs are to perform PIN verification, the PIN key is encrypted under the
terminal master key, then sent to the ATM.

• If the PIN verification is to be done centrally over the network, the PIN is en-
crypted under a key that is set up using the terminal master key, and sent from
the ATM to the security module for checking.

• If the bank’s ATMs are to be networked with other banks’, then one uses

transactions that will take an encrypted PIN from one source (such as en-

crypted under an ATM key), decrypt it, and re-encrypt it for its destination

(such as using a key shared with VISA). This PIN translation function is done

entirely within the hardware security module, so that clear values of PINs are

never available to the bank’s programmers.
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Figure 9.3 IBM method for generating bank card PINs.

During the 1980s and 1990s, the hardware security modules became more and more

complex, as ever more functionality got added. An example of a leading product in

2000 is the IBM 4758, this also has the virtue of having its documentation available

publicly online for study (see [397] for the command set, and [718] for the architecture

and hardware design). I’ll discuss this in Chapter 14, “Physical Tamper Resistance.”

But extending the dual control security policy from a single bank to tens of thou-

sands of banks worldwide, as modern ATM networks do, proved not to be completely

straightforward:

• When people started building ATM networks in the mid-1980s, many banks

used software encryption rather than hardware security modules to support the

machines. So in theory, any bank’s programmers might get access to the PINs

of any other bank’s customers. The remedy was to push through standards for

security module use. In many countries (such as the United States), these stan-

dards were largely ignored; but even where they were respected, some banks

continued using software for transactions involving their own customers. So

some keys (such as those used to communicate with ATMs) had to be avail-

able in software, too, and knowledge of these keys could be used to compro-

mise the PINs of other banks’ customers. Consequently, the protection given

by the hardware TCB was rarely complete.

• It is not feasible for 10,000 banks to share keys in pairs, so each bank connects
to a switch provided by an organization such as VISA or Cirrus, and the secu-
rity modules in these switches translate the traffic. The switches also do ac-
counting, and enable banks to settle their accounts for each day’s transactions
with all the other banks in the system, by means of a single electronic debit or
credit. The switch is highly trusted; if something goes wrong, the conse-
quences could be severe. In one case, there turned out to be not just security
problems but also dishonest staff. The switch manager ended up a fugitive
from justice, and the bill for remediation was in the millions.

• Corners are cut to reduce the cost of dealing with huge transaction volumes.

For example, it is common for authentication of authorization responses to be

turned off. The effect is that anyone with access to the network can cause a

given ATM to accept any card presented to it, simply by replaying a positive

authorization response. Network managers claim that should a fraud ever start,

the authentication can always be turned back on. This might seem reasonable;

attacks involving manipulated authorization responses are very rare. But such

shortcuts—even when reasonable on grounds of risk and cost—mean that a
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bank that claims, in response to a customer dispute, that its ATM network can-

not possibly be attacked, and so the transaction must be the customer’s fault, is

not telling the truth. What’s more, turning on the message authentication codes

suddenly in response to a fraud could be difficult. Some banks’ implementa-

tions might not support them properly or at all, and performance degradation

might result unless more encryption devices are installed rapidly. One is re-

minded of the saying that ‘optimization is the process of taking something

which works, and replacing it by something which doesn’t quite but is

cheaper’.

There are many other ways in which ATM networks can be attacked in theory. For

example, they mostly use single-key DES encryption, even for top-level keys, and DES

can now be broken by exhaustive keysearch. However, one of the interesting things

about these systems is that they have now been around long enough, and have been

attacked enough by both insiders and outsiders, to give us a lot of data points on how

such systems fail in practice.

9.4.2 What Goes Wrong

ATM fraud is an interesting study, as the ATM system is mature, with huge volumes

and a wide diversity of operators. An extensive survey can be found in [19], and fur-

ther material in [20]. Here, I’ll summarize the more important and interesting points.

The engineers who designed ATM security systems in the 1970s and 1980s (of

whom I was one) assumed that criminals would be relatively sophisticated, fairly well

informed about the system design, and rational in their choice of attack methods. In

addition to worrying about the many banks that were slow to buy security modules,

and about the implementation loopholes such as omitting authentication codes on

authorization responses, we agonized over whether the encryption algorithms were

strong enough, and whether the tamper-resistant boxes were resistant enough. We were

afraid that a maintenance engineer could disable the tamper sensing circuitry on one

visit, and extract the keys on the next. We worried whether the random-number gen-

erators used to manufacture keys were random enough. And a very serious concern was

that we just couldn’t enforce dual control properly. Bank managers considered it be-

neath their dignity to touch a keyboard, so rather than entering the ATM master key

components themselves after a maintenance visit, most of them would just give both

key components to the ATM engineer. We believed that sooner or later a repairman

would get his hands on a bank’s PIN key, forge cards in industrial quantities, close

down the whole system, and wreck public confidence in electronic banking.

The bulk of the actual phantom withdrawals, however, have one of the following

three simple causes:

• Simple processing errors account for a lot of disputes. With U.S. customers

making something like 5 billion ATM withdrawals a year, even a system that

makes only one error per 100,000 transactions will give rise to 50,000 disputes

a year. In practice, the error rate seems to lie somewhere between 1 in 10,000

and 1 in 100,000. One source of errors we tracked down was that a large

bank’s ATMs would send a transaction again if the network went down before

a confirmation message was received from the mainframe; periodically, the
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mainframe itself crashed, and “forgot” about open transactions. We also found

customers whose accounts were debited with other customers’ transactions,

and other customers who were never debited at all for their card transactions.

(We used to call these cards “directors’ cards,” and joked that they were issued

to bank directors.)

• Thefts from the mail are also huge. They are reckoned to account for 30 per-
cent of all U.K. payment card losses, but most banks’ postal control proce-
dures are dismal. For example, in February 1992, I asked my bank for an
increased card limit: the bank sent not one, but two, cards and PINs through
the post. These cards arrived only a few days after intruders had got hold of
our apartment block’s mail and torn it up looking for valuables. It turned out
that this bank did not have the systems to deliver a card by registered post. (I’d
asked them to send the card to the branch for me to pick up, but someone at
the branch had simply readdressed the envelope to me.) Since then, many
banks have found that better postal controls are the one way they can make
enough of a dent in their fraud rates to affect their bottom line.

• Frauds by bank staff appear to be the third major cause of phantoms. I men-

tioned the Hastings case in Section 9.2.3; there are many others. For example,

in Paisley, Scotland, an ATM repairman installed a portable computer inside

an ATM to record customer card and PIN data, then went on a spending spree

with forged cards. In London, England, a bank stupidly used the same crypto-

graphic keys in its live and test systems; maintenance staff found out that they

could work out customer PINs using their test equipment, and started offering

this as a service to local criminals at £50 a card. Such frauds are particularly

common in countries such as Britain, where banks had for many years a policy

of denying that their cash machines could possibly make an error. Bank staff

knew that customer complaints would be stonewalled rather than investigated.

These failures are all very much simpler and more straightforward than the ones we

engineers had worried about. In fact, the only fraud we had anticipated, and that hap-

pened to any great extent, came from the practice (common in the 1980s) of letting

ATMs process transactions while the network was down or the central mainframe was

offline. Though this was convenient—it meant 24-hour service—criminals, especially

in Italy and England, learned to open bank accounts, duplicate the cards, then use them

to withdraw money simultaneously from a large number of ATMs overnight when the

network was down [494]. Such frauds led most banks to make ATM operation online-

only by the mid-1990s.

However, there were numerous frauds that happened in quite unexpected ways. We

already mentioned the Utrecht case in Section 2.8, where a tap on a garage point-of-

sale terminal was used to harvest card and PIN data; and the “encryption replacement”

trick by which banks that just encrypted the customer PIN and wrote it on the customer

card enabled crooks to change the account number on their own card to somebody

else’s. There were many more.

• A favorite modus operandi was for villains to stand in ATM queues, observe

customers’ PINs, pick up the discarded ATM tickets, copy the account num-

bers from the tickets to blank cards, and use these to loot the customers’ ac-

counts. This trick was first reported in New York in the mid-1980s; it was still

working in the San Francisco Bay Area in the mid-1990s. Yet there are many
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simple countermeasures, such as incorporating extra data on the mag strip, or

just not printing the full account number on the ticket.

• One bank’s systems had this feature: when a telephone card was entered at an
ATM, it believed that the previous card had been inserted again. Crooks stood
in line, observed customers’ PINs, and helped themselves. This seems to have
been an obscure programming error involving the card reader’s error handler;
one can’t expect all such errors to be found during testing.

• One make of ATM would output 10 banknotes from the lowest-denomination
nonempty cash drawer whenever a certain 14-digit sequence was entered at the
keyboard. One bank printed this sequence in its branch manual, and three
years later there was a sudden spate of losses. These went on until all the
banks using the machine put in a software patch to disable the transaction.

• One small institution issued the same PIN to all its customers, as a result of a
simple programming error.

• Several banks thought up check-digit schemes to enable PINs to be checked by
offline ATMs and point-of-sale devices without these devices having a full en-
cryption capability. For example, customers of one British bank would get a
credit card PIN with digit 1 plus digit 4 equal to digit 2 plus digit 3, and a
debit card PIN with 1 plus 3 equals 2 plus 4. This meant that crooks could use
stolen cards in offline devices by entering a PIN such as 4455.

• Some banks show a complete disregard for prudent procedure. In August 1993,
my wife went into a branch of our bank with a witness and said that she’d for-
gotten her PIN. The teller helpfully printed her a new PIN mailer from a
printer attached to a PC behind the counter. There were no visible dual con-
trols. Worse, this was not the branch where our account is kept. Nobody knew
her and the only identification she offered was our bank card and her check-
book. When procedural controls are so lax that anyone can walk in off the
street and get a PIN for a random customer account, no amount of encryption
technology will do much good. (The bank in question has since fallen victim
to a takeover.)

• A rapidly growing modus operandi is to use false terminals to collect customer

card and PIN data. Attacks of this kind were first reported from the United

States in 1988; there, crooks built a vending machine that would accept any

card and PIN, and dispense a packet of cigarettes. They put their invention in a

shopping mall, and harvested PINs and magnetic strip data by modem. In

1993, two villains installed a bogus ATM in the Buckland Hills Mall in Con-

necticut [421, 590]. They had managed to get a proper ATM and a software

development kit for it—all bought on credit. Unfortunately for them, they de-

cided to use the forged cards in New York, where cash machines have hidden

video cameras; they ended up getting long stretches in Club Fed. The largest

and most recent case to date took place in 1999 in Canada. This involved doc-

tored point-of-sale terminals, and led to the arrest of dozens of alleged Eastern

European organized-crime figures in the Toronto area and elsewhere [54, 91].
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In conclusion, the main thing we did wrong when designing ATM security systems

in the early to mid-1980s was to worry about criminals being clever; we should rather

have worried about our customers—the banks’ system designers, implementers, and

testers—being stupid.

Crypto is usually only part of a very much larger system. It gets a lot of attention

because it is mathematically interesting; but as correspondingly little attention is paid

to the “boring” bits such as training, usability, standards, and audit, it’s rare that the

bad guys have to break the crypto to compromise a system. It’s also worth bearing in

mind that there are so many users for large systems, such as ATM networks, that we

must expect the chance discovery and exploitation of accidental vulnerabilities that

were simply too obscure to be caught in testing.

9.4.3 Practical Implications

In some countries (including the United States), the banks have to carry the risks asso-

ciated with new technology. Following a legal precedent, in which a bank customer’s

word that she had not made a withdrawal was found to outweigh the banks’ experts’

word that she must have done so [427], the U.S. Federal Reserve passed Regulation E,

which requires banks to refund all disputed transactions unless they can prove fraud by

the customer [276]. This has led to some minor abuse—misrepresentations by custom-

ers are estimated to cost the average U.S. bank about $15,000 a year—but this is an

acceptable cost (especially as losses from vandalism are typically three times as much)

[813].

In other countries—such as Britain and Norway—the banks got away for many years

with claiming that their ATM systems were infallible. Phantom withdrawals, they

maintained, could not possibly occur, and a customer who complained of one must be

mistaken or lying. This position was finally demolished (in the Britain at least) when

significant numbers of criminals were jailed for ATM fraud, and the problem couldn’t

plausibly be denied any more. (A number of these cases are described in [19, 20].) Un-

til that happened, however, there were some rather unpleasant incidents that got banks

a lot of bad publicity. Perhaps the worst was the Munden case.

John Munden was one of our local police constables, based in Bottisham, Cam-

bridgeshire; his beat included the village of Lode where I lived at the time. He came

home from holiday in September 1992 to find his bank account empty. He asked for a

statement, found six unexpected withdrawals for a total of £460 (then about $700), and

complained. His bank responded by having him prosecuted for attempting to obtain

money by deception. It came out during the trial that the bank’s system had been im-

plemented and managed in a ramshackle way; the disputed transactions had not been

properly investigated; and all sorts of wild claims were made by the bank, such as that

its ATM system couldn’t suffer from bugs as its software was written in Assembler.

Nonetheless, it was basically the constable’s word against the bank’s. He was con-

victed in February 1994 and fired from the police force.

This miscarriage of justice was overturned on appeal, and in an interesting way. Just

before the appeal was due to be heard, the prosecution served up a fat report from the

bank’s auditors claiming that the system was secure. The defense demanded equal ac-

cess to the bank’s systems for its own expert. The bank refused, and the court therefore

disallowed all the bank’s computer evidence—including its bank statements. The ap-



Chapter 9: banking and Bookkeeping

204

peal succeeded, and Munden got reinstated. But this was only in July 1996—he’d spent

the better part of four years in limbo, and his family had suffered terrible stress. Had

the incident happened in California, he could have won enormous punitive damages, a

point bankers should ponder as their systems become global and their customers can be

anywhere.

The lesson to be drawn from such cases is that dual control is not enough. If a sys-

tem is to provide evidence, it must be able to withstand examination by hostile experts.

In effect, the bank in the Munden case had used the wrong security policy. What it

really needed wasn’t dual control, but nonrepudiation: the ability for the principals in a

transaction to prove afterward what happened. This could have been provided by in-

stalling ATM cameras; although these were available (and are used in some U.S.

states), they were not being used in Britain.

The issue of nonrepudiation arises in a number of other applications. Often, the right

question to ask is not about the mechanism (cameras, biometrics, digital signatures, . .

.) but about the motive. Why should a U.K. bank have spent money on ATM cameras

that would have undermined its infallibility policy? (One English bank did install ATM

cameras during the spate of phantom withdrawals, but took them out again under pres-

sure from the other banks.) And why for that matter should people shopping on the Net

use digital signatures, if these will just make it harder to deny a transaction when

things go wrong? We will revisit this issue again and again in later chapters.

9.5 Summary

Banking systems are interesting in a number of ways.

Bookkeeping applications give us a mature example of systems whose security is

oriented toward authenticity and accountability rather than confidentiality. Their pro-

tection goal is to prevent and detect frauds being committed by dishonest insiders. The

Clark-Wilson security policy provides a model of how they operate. It can be summa-

rized as:

All transactions must preserve an invariant of the system, namely that the books must

balance (so a negative entry in one ledger must be balanced by a positive entry in

another one); some transactions must be performed by two or more staff members; and

records of transactions must not be destroyed after they are committed.

This was based on time-honored bookkeeping procedures, and led the research

community to consider systems other than variants of Bell-LaPadula.

But manual bookkeeping systems use more than just dual control. Although some

systems do need transactions to be authorized in parallel by two or more staff, a sepa-

ration of duty policy more often works in series, in that different people do different

things to each transaction as it passes through the system. Designing bookkeeping sys-

tems that do this effectively is a major problem which is often neglected and which

involves input from many disciplines. Another common requirement is nonrepudia-

tion—that principals should be able to generate, retain, and use evidence about the

relevant actions of other principals.
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The other major banking application, remote payment, is increasingly critical to e-

commerce. In fact, wire transfers of money go back to the middle of the Victorian era.

Because there is an obvious motive to attack these systems, and villains who steal large

amounts and get caught are generally prosecuted, payment systems are a valuable

source of information about what goes wrong. Their loss history teaches us the impor-

tance of minimizing the background error rate, preventing procedural attacks that de-

feat technical controls (such as thefts of ATM cards from the mail), and having

adequate controls to deter and detect internal fraud.

Payment systems have also played a significant role in the development and appli-

cation of cryptology. One innovation was the idea that cryptography could be used to

confine a critical part of the application to a trusted computing base consisting of tam-

per-resistant processors—an approach since used in many other applications.

Research Problems

Designing transaction sets for bookkeeping applications is still pre-scientific; we could

do with tools to help us do it in a more systematic, less error-prone way. Accountants,

lawyers, financial market regulators, and system engineers all seem to feel that this is

someone else’s responsibility. This is a striking opportunity to do multidisciplinary

research that might actually be useful.

At an even more basic level, we don’t even fully understand stateful access control

systems, such as Clark-Wilson and Chinese Wall. To what extent does one do more

than the other on the separation-of-duty front? How should dual control systems be

designed anyway? How much of the authorization logic can we abstract out of appli-

cation code into middleware? Can we separate policy and implementation to make en-

terprise-wide policies easier to administer?

There are some useful distinctions, such as policy versus mechanism versus man-

agement, push versus pull, and specification versus runtime controls. There are some

prototype engines for enforcing an arbitrary policy—such as HP’s authorization server

product [772] and AT&T’s Policymaker [115]. Developing such engines to deal with

the full generality of possible security policies is still an open problem.

As for robustness of cryptographic systems, the usability of security mechanisms,

and assurance generally, these are huge topics that are still only partially mapped. Ro-

bustness and assurance are partially understood, but usability is still a very gray area.

There are many more mathematicians active in security research than applied psy-

chologists, and it shows.

Further Reading

I don’t know of a comprehensive book on banking computer systems, although there

are many papers on specific payment systems available from the Bank for International

Settlements [72]. When it comes to developing robust management controls and busi-

ness processes that limit the amount of damage that any one staff member can do, there

is a striking lack of hard material (especially given the need that new e-businesses have

for such systems). There was one academic conference in 1997 [416]; but the business
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books that touch on these issues all seem to focus on financial management and on the

soft aspects of management control such as “tone at the top.” I’ll revisit this in Chapter

22.

For the specifics of financial transaction processing systems, the cited articles [19,

20] provide a basic introduction. More comprehensive, if somewhat dated, is [221],

while [336] describes the CIRRUS network as of the mid-’80s. The most informative

public domain source—though somewhat heavy going—is probably the huge online

manuals for the equipment in question, such as the IBM 4758 and CCA [397].
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CHAPTER

10

Monitoring Systems

For if a man watch too long, it is odds he will fall asleepe.

—FRANCIS BACON

10.1 Introduction

A significant number of secure systems are concerned with monitoring the environ-

ment. The most obvious example is the burglar alarm. Then there are meters for meas-

uring consumption of utilities such as gas and electricity. At the top end of the scale,

there are systems used to verify nuclear nonproliferation treaties, where a number of

sensors (seismometers, closed-circuit TV, and so on) are emplaced in a state’s nuclear

facilities by the International Atomic Energy Authority (IAEA) to create an immediate,

indelible, and remote log of all movements of fissile substances. There are also vehicle

systems, such as missile telemetry, taximeters, and tachographs (devices used in

Europe to record the speed and working hours of truck and bus drivers).

These have a number of interesting features in common. For example, to defeat a

burglar alarm it is sufficient to make it stop working, or—in many cases—to persuade

its operators that it has become unreliable. This raises the spectre of denial of service

attacks, which are increasingly important yet often difficult to deal with.

Just as we have seen military messaging systems designed to enforce confidentiality,

and bookkeeping systems whose goal is to preserve record authenticity, monitoring

applications give us the classic example of systems designed to be dependably avail-

able. If there is a burglar in my bank vault, then I do not care very much who else finds

out (so I’m not worried about confidentiality) or who it was who told me (so authen-

ticity isn’t a major concern); but I do care very much that an attempt to tell me is not

thwarted.

An alarm in a bank vault is very well protected from tampering (at least by outsid-

ers), so it provides the simplest case study. We are largely concerned with attacks on

communications (though sensor defeats are also a worry). But many other monitoring

systems are very exposed physically. Utility meters are usually on the premises of the
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consumer, who has a motive to cause them to make incorrect readings. Much the same

goes with taximeters: the taxi driver (or owner) may want the meter to read more miles

or more minutes than were actually worked. With tachographs, it’s the reverse. The

truck driver usually wants to drive above the speed limit, or work dangerously long

hours, so both types of attack are found. The driver can either cause the tachograph to

fail, or to make false readings of time and distance. These devices, too, are very ex-

posed to tampering. In both metering and monitoring systems (and especially with nu-

clear verification) we are also concerned with evidence. An opponent could get an

advantage not just by manipulating communications (such as by replaying old mes-

sages) but by falsely claiming that someone else had done so.

Monitoring systems are also important because they have quite a lot in common with

systems designed to enforce the copyright of software and other digital media, which I

will discuss in a later chapter. They also provide a gentle introduction to the wider

problem of service denial attacks, which dominate the business of electronic warfare,

and are starting to be of grave concern to electronic commerce.

10.2 Alarms

Alarms are used to deal with much more than burglary. Their applications range from

monitoring freezer temperatures in supermarkets (to stop staff “accidentally” switching

off freezer cabinets in the hope of being given spoiling food to take home) right

through to improvised explosive devices that are booby-trapped to deter the bomb dis-

posal squad. However, it’s convenient to discuss them in the context of burglary and of

protecting rooms where computer equipment is kept.

Standards and requirements for alarms vary between countries and between different

types of risk. Normally, you will use a local specialist firm for this kind of work; but as

a security engineer, you must be aware of the issues. Alarms often affect larger system

designs in my own professional practice, this has ranged from the alarms built into

automatic teller machines through the evaluation of the security of the communications

used by an alarm system for large risks such as wholesale jewelers, to continually

staffed systems such as those used to protect bank computer rooms.

It’s easier to teach someone with an electrical engineering/computer science back-

ground the basics of physical security than the other way round. Therefore, interactions

between physical and logical protection will be up to the systems person to deal with.

You are also likely to be asked for your opinion on your client’s installations—which

will often have been designed and installed by local contractors who may have estab-

lished links with your clients but rather narrow horizons as far as system issues are

concerned.

10.2.1 Threat Model

An important design consideration is the level of skill, equipment, and determination

that the attacker might have. Movies such as Entrapment might be good entertainment,

but they don’t give a realistic view of the world of theft. In the absence of an “interna-

tional standard burglar,” the nearest I know to a working classification is one devel-

oped by a U.S. Army expert [74].
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• Derek is a 19-year-old addict. He’s looking for a low-risk opportunity to steal

something such as a video recorder to fund his next fix.

• Charlie is a 40-year-old inadequate with seven convictions for burglary. He
has spent seventeen of the last twenty-five years in prison. Although not very
intelligent, he is cunning and experienced; he has picked up a lot of “lore”
during his spells “inside.” He steals from small shops and prosperous-looking
suburban houses, taking whatever he thinks he can sell to local fences.

• Bruno is a “gentleman criminal.” His business is mostly stealing art. As a
cover, he runs a small art gallery. He has a (forged) university degree in art
history on the wall, and one conviction for robbery eighteen years ago. After
two years in jail, he changed his name and moved to a different part of the
country. He has done occasional “black bag” jobs for intelligence agencies,
who know his past. He’d like to get into computer crime, but the most he has
done so far is to strip $100,000 worth of memory chips from a university’s
PCs back in the mid-1990s, when there was a memory famine.

• Abdurrahman heads a cell of a dozen militants, most with military training.

They have infantry weapons and explosives, with PhD-grade technical support

provided by a disreputable country. Abdurrahman was third in a class of 280 at

the military academy of that country, but was not promoted because he’s from

the wrong ethnic group. He thinks of himself as a good man rather than a bad

man. His mission is to steal plutonium.

So Derek is unskilled; Charlie is skilled; Bruno is highly skilled, and may have the

help of an unskilled insider such as a cleaner; while Abdurrahman is not only highly

skilled but has substantial resources. He may even have the help of a technician or

other skilled insider who has been suborned.

The sociologists are interested in Derek, the criminologists in Charlie, and the mili-

tary in Abdurrahman; our concern is mainly with Bruno. He isn’t the highest available

grade of “civilian criminal” (that distinction probably goes to the bent bankers and

lawyers who launder money for drug gangs, whom I’ll get to later). But in countries

without a terrorism problem, the physical defenses of computer rooms tend to be de-

signed with someone like Bruno in mind. (Whether this is rational, or an overplay, will

depend on the kind of business your client is in.)

The common view of Bruno is that he organizes cunning attacks on alarm systems,

having spent days poring over the building plans in the local town hall. You probably

read about this kind of crime several times a year in the papers.

HOW TO STEAL A PAINTING (1)

A Picasso is stolen from a gallery, with supposedly state-of-the-art alarm systems, by a thief

who removed a dozen roofing tiles and lowered himself down a rope so as not to activate the

pressure mats under the carpet. He grabbed the painting, climbed back out without touching the

floor, and probably sold the thing for a quarter of a million dollars to a wealthy cocaine dealer.

The press loves this kind of stuff, and it does happen from time to time. Reality is

both simpler and stranger.
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10.2.2 How Not to Protect a Painting

A common mistake when designing alarm systems is to be captivated by the latest sen-

sor technology. There’s a lot of impressive stuff on the market, such as a fiber optic

cable that you can loop around protected objects and that will sense if the cable is

stretched or relaxed by less than a thousandth of a millimeter. The naive art gallery

owner will buy a few feet of this magic cable, glue it to the back of the Picasso and

connect it to an alarm company.

HOW TO STEAL’A PAINTING (2)

Bruno’s attack is to visit as a tourist and hide in a broom cupboard. At one in the morning, he

emerges, snatches the painting and heads for the fire exit. Off goes the alarm, but so what in

less than a minute, Bruno is on his motorcycle. By the time the cops arrive 12 minutes later, he

has vanished.

This sort of theft is much more likely than a bosun’s chair through the roof. It’s of-

ten easy because alarms are rarely integrated well with building entry controls. Many

designers don’t realize that where they can’t positively account for all the people who

enter the premises during the day, it may be prudent to take some precautions against

the “stay-behind” villain—even if this means only an inspection tour after the gallery

has closed. Serious physical security means serious controls on people. In fact, the first

recorded use of the RSA cryptosystem—in 1978—was not to encrypt communications

but to provide digital signatures on credentials used by staff to get past the entry bar-

rier to a plutonium reactor at Idaho Falls. The credentials contained data such as body

weight and hand geometry [701, 705]. But I continue to be amazed by the ease with

which building entry controls are defeated at most secure sites I visit—whether by

mildly technical means, such as sitting on somebody else’s shoulders to go through an

entry booth, or by helpful people holding the door open.

Moreover, the alarm response process often hasn’t been thought through carefully.

(The Titanic effect of over-reliance on the latest gee-whiz technology often blinds peo-

ple to common sense.) As we’ll see shortly, this leads to still simpler attacks on most

systems.

So we mustn’t think of the alarm mechanism in isolation. A physical security system

has a number of elements:

Deter – detect – alarm – delay – respond

The emphasis will vary from one application to another. If our opponent is Derek or

Charlie, we will be concerned primarily with deterrence. At the sort of targets Abdur-

rahman is interested in, an attack will almost certainly be detected; the main problem is

to delay him long enough for the Marines to arrive. Bruno is the most interesting case

as we won’t have the military budget to spend on keeping him out, and there are many

more premises whose defenders worry about Bruno than about Abdurrahman. De-

pending on the circumstances, they might have a problem with detection, and also with

the response.
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10.2.3 Sensor Defeats

Burglar alarms use a wide range of sensors, including

• Vibration detectors, to sense fence disturbance, footsteps, breaking glass, or

other attacks on buildings or perimeters

• Switches on doors and windows

• Passive infrared devices to detect body heat

• Motion detectors that use ultrasonics or microwave

• Invisible barriers of microwave or infrared beams

• Pressure pads under the carpet, which in extreme cases may extend to instru-
menting the entire floor with pressure transducers under each tile

• Video cameras, perhaps with movement detectors, to alarm automatically or to
provide a live video feed to a monitoring center

• Movement sensors on equipment, ranging from simple tie-down cables

through seismometers to loops of optical fiber.

Most of these sensors can be circumvented one way or another. Fence-disturbance

sensors can be defeated by vaulting the fence; motion sensors by moving very slowly;

door and window switches by breaking through a wall. Designing a good combination

of sensors comes down to skill and experience (with the latter not always guaranteeing

the former).

The main problem is limiting the number of false alarms. Ultrasonics don’t perform

well near moving air such as central heating inlets, while vibration detectors can be

rendered useless by traffic. Severe weather, such as lightning, will trigger most sys-

tems, and a hurricane can increase the number of calls per day on a town’s police force

from dozens to thousands. In some places, even normal weather can make protection

difficult. Protecting a site where the intruder might be able to ski over your sensors

(and even over your fence) is an interesting challenge for the security engineer. (For an

instructive worked example of the design of intruder detection systems for a nuclear

power station in a snow zone see [74]).

But regardless of whether you’re in Alaska or Arizona, the principal dilemma is that

the closer you get to the object being protected, the more tightly you can control the

environment, and so the lower the achievable false alarm rate. Conversely, at the pe-

rimeter, it’s hard to keep the false alarm rate down. But to delay an intruder long

enough for the guards to get there, the outer perimeter is exactly where you need reli-

able sensors.

HOW TO STEAL A PAINTING (3)

Bruno’s next attack is to wait for a dark and stormy night. He sets off the alarm somehow, taking

care not to get caught on CCTV or otherwise leave any hard evidence that the alarm was a real

one. He retreats few hundred yards and hides in the bushes. The guards come out and find

nothing. He waits half an hour and sets off the alarm again. This time the guards don’t bother,

and in he goes.
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False alarms—whether induced deliberately or not—are the bane of the industry.

They provide a direct denial-of-service attack on the alarm response force. Experience

from the world of electronic warfare is that a false alarm rate of greater than about 15%

degrades the performance of radar operators; and most intruder alarm response forces

are operating well above this threshold. Deliberately induced false alarms are espe-

cially effective against sites that don’t have round-the-clock guards. Many police

forces have a policy that, after a certain number of false alarms from a given site (typi-

cally two to five in a year), they will no longer send a squad car there until the alarm

company, or another keyholder, has been there to check.

In addition to service denial issues, false alarms degrade systems in other ways. The

rate at which they are caused by environmental stimuli, such as weather conditions and

traffic noise, limits the sensitivity of the sensors that can usefully be deployed. Also,

the very success of the alarm industry has greatly increased the total number of alarms,

and thus decreased police tolerance of false alarms. So many people install remote

video surveillance, so the customer’s premises can be inspected by the alarm com-

pany’s dispatcher. Many police forces prioritize alarms confirmed by such means

[417].

But even online video links are not a panacea. The attacker can disable the lighting,

start a fire, or set off alarms in other buildings nearby. The failure of a telephone ex-

change, as a result of a flood or hurricane, may well lead to opportunistic looting.

After environmental constraints such as traffic and weather, Bruno’s next ally is

time. Vegetation grows into the path of sensor beams; fences become slack, and the

vibration sensors don’t work so well; and the criminal community learns new tricks.

Meanwhile, the sentries become complacent.

For this reason, sites with a serious physical protection requirement typically have

several concentric perimeters. The outer fence keeps out drunks, wildlife, and other

low-grade intruders; next there may be level grass with buried sensors, then an inner

fence with an infrared barrier, and finally a building of sufficiently massive construc-

tion to delay the bad guys until the cavalry gets there. (The international regulations

laid down by the IAEA for sites that hold more than 15g of plutonium are an instruc-

tive read [409].)

At most sites, this kind of protection isn’t possible; it is too expensive. And even if

you have loads of money, you may be in a city such as Hong Kong where real estate’s

in really short supply, and like it or not, your bank computer room will just be a floor

of an office building that you’ll have to protect as best you can.

In any case, the combination of sensors and physical barriers you select and install

are still less than half the story.

10.2.4 Feature Interactions

Intruder alarms and barriers interact in a number of ways with other services. The most

obvious of these is electricity. A power cut will leave many sites dark and unprotected,

so a serious alarm installation needs batteries or other backup power supplies. A less

obvious interaction is with fire alarms and firefighting.
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HOW TO STEAL A PAINTING (4)

Bruno again visits the gallery as a tourist and leaves a smoke grenade on a timer. This goes off

at one in the morning and sets off the fire alarm, which in turn causes the burglar alarm to ig-

nore signals from its passive infrared sensors. (If it doesn’t, the alarm dispatcher will probably

ignore them anyway as he concentrates on getting the fire trucks to the scene). Bruno smashes

his way in through a fire exit and grabs the Picasso. He’ll probably manage to escape in the

general chaos, but if he doesn’t, he has a cunning plan: to claim he was a public-spirited by-

stander who saw the fire and risked his life to save the town’s priceless cultural heritage. The

police might not believe him, but they’ll have a hard time prosecuting him.

The interaction between fire and intrusion works in a number of ways. Some fire

precautions can be used only if there are effective barriers to keep out innocent intrud-

ers. Many computer rooms have automatic fire extinguishers, and since fears over

global warming made Halon unavailable, this means carbon dioxide flooding. A CO2

dump is lethal to untrained personnel. Getting out of a room on the air you have in

your lungs is much harder than it looks when visiblity drops to a few inches and you

are disoriented by the terrible shrieking noise of the dump. A malfunctioning intruder

alarm that let a drunk into your computer room, where he lit up a cigarette and was

promptly executed by your fire extinguisher, might raise a few chuckles among the

anti-smoking militants but is unlikely to make your lawyers very happy.

In any case, the most severe feature interactions are between alarm and communica-

tion systems.

10.2.5 Attacks on Communications

A sophisticated attacker is at least as likely to attack the communications as the sen-

sors. Sometimes, this will mean the cabling between the sensors and the alarm con-

troller.

HOW TO STEAL A PAINTING (5)

Bruno goes into an art gallery and, while the staff are distracted, he cuts the wire from a window

switch. He goes back that evening and helps himself.

It’s also quite possible that one of your staff, or a cleaner, will be bribed, seduced, or

otherwise coerced into creating a vulnerability (especially if you’re dealing with Ab-

durrahman rather than Bruno). So frequent operational testing is a good idea, along

with sensor overlap, means to detect equipment substitution (such as seals), strict con-

figuration management, and tamper-resistant cabling. (Serious sites insist that alarm

maintenance and testing be done by two people rather than one.)

The old-fashioned way of protecting the communications between the alarm sensors

and the controller was physical: lay multiple wires to each sensor and bury them in

concrete, or use armored gas-pressurized cables. The more modern way is to encrypt
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the communications. An example is Argus, a system originally developed for nuclear

labs, which uses DES encryption to protect sensor links [303].

But the more typical attack on communications is to go for the link between the

alarm controller and the security company that provides or organizes the response

force.

HOW TO STEAL A PAINTING (6)

Bruno calls his rival gallery claiming to be from the security company that handles its alarms. He

says that he’s updating his computers and he needs the serial number on their alarm controller

unit. An office junior helpfully gives it to him, not realizing that the serial number on the box is

also the cryptographic key that secures the communications. Bruno buys an identical controller

for $200 and, after spending half an hour learning how to use an EEPROM programmer, he has a

functionally identical unit, which he splices into his rival’s phone line. This continues to report

“all’s well” even when it isn’t.

Substituting bogus alarm equipment, or using a computer that mimics it, is known as

spoofing. There have been many reports of ‘black boxes’ that spoof the older or less

well-designed alarm controllers. In one case, thieves made off with $1.5 million in jade

statuary and gold jewelry imported from China, a theft which drove the importer into

bankruptcy. The alarm system protecting its warehouse in Hackensack, New Jersey,

was cut off. Normally, that would have triggered an alarm at a security company, but

the burglars had attached a homemade electronic device to an external cable to ensure

a continuous “all’s well” signal [371].

With modern systems, either the alarm controller in the vault sends a cryptographic

pseudorandom sequence to the alarm company, which will assume the worst if it’s in-

terrupted, or the alarm company sends the controller periodic random challenges,

which are encrypted and returned, just as with IFF.

However, the design is often faulty, having been done by engineers with no training

in security protocols. The cryptographic algorithm may be primitive, or its key may be

too short (whether because of incompetence or export regulations). It may well be pos-

sible for Bruno to record the pseudorandom sequence and replay it slightly more

slowly, so that by early Monday morning he might have accumulated five minutes of

“slack” to cover a lightning raid.

An even more frequent cause of failure is the gross design blunder. One typical ex-

ample is having a dial-up modem port that allows remote maintenance, with a default

password that many users never change; another is making the crypto key equal to the

device serial number. Besides being vulnerable to social engineering, the serial number

often appears in the purchase order, invoice, and other paperwork, which lots of people

get to see. (In general, it’s a good idea to buy your alarm controller for cash. This also

makes it less likely that you’ll get one that’s been “spiked.” But big firms often have

difficulty doing this.)

By now you’ve probably decided not to go into the art gallery business. But I’ve

saved the best for last. Here is the most powerful attack on burglar alarm systems. It’s

a variant on 3, but rather than targeting the sensors, it goes for the communications.
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HOW TO STEAL A PAINTING (7)

Bruno cuts the telephone line to his rival’s gallery, then hides a few hundred yards away in the

bushes. He counts the number of blue uniforms that arrive, and the number that depart. If the

two numbers are equal, then it’s a fair guess the custodian has said, ‘Oh bother, we’ll fix it in the

morning,’ or words to that effect. Bruno now knows he has several hours to work.

This is more or less the standard way to attack a bank vault, and it has also been

used on computer installations. The modus operandi can vary, from simply reversing a

truck into the phone company’s curbside junction box to more sophisticated attempts

to cause multiple simultaneous alarms in different premises and thus swamp the local

police force. (This is why it’s so much more powerful than just rattling the fence.)

In one case, thieves in New Jersey cut three main telephone cables, knocking out

phones and alarm apparatus in three police stations and thousands of homes and busi-

nesses in the Hackensack Meadowlands. They used this opportunity to steal Lucien

Piccard wristwatches from the American distributor, with a value of $2.1 million

wholesale and perhaps $8 million retail [371]. In another, an Oklahoma deputy sherriff

cut the phone lines to 50,000 homes in Tulsa before burgling a narcotics warehouse

[762]. In a third, a villain set off a bomb at the telephone exchange in Holborn, Lon-

don, interrupting service to dozens of shops in the Hatton Garden jewelry quarter.

Blanket service denial attacks of this kind, which saturate the response force’s capac-

ity, are the burglarious equivalent of a nuclear strike.

In the future as computers and communications converge these attacks might not in-

volve explosives but a software-based distributed denial-of-service attack on network

facilities. Rather than causing all the alarms to go off in a neighborhood (which could

be protected to some extent by swamping it with police), it might be possible to set off

several thousand random alarms all over New York, creating an effect similar to that of

a hurricane or a power outage, but at a time convenient for the crooks.

An angle that seriously concerns insurers is that phone company staff might be

bribed to create false alarms. Insurance companies would prefer it if alarm communi-

cations consisted of anonymous packets, which most of the phone company’s staff

could not relate to any particular alarm. This would make targeted service denial at-

tacks harder. But phone companies—which carry most of the alarm signal traf-

fic—prefer to concentrate it in exchanges, which makes targeted service denial attacks

easier. (These tensions are discussed in [586].)

For these reasons, the rule in the London insurance market (which does most of the

world’s major reinsurance business) is that alarm controllers in places insured for over

£20 million must have two independent means of communication. One option is a

leased line and a packet radio service. Another is a radio system with two antennas,

each of which will send an alarm if the other is tampered with.
1
 In the nuclear world,

IAEA regulations stipulate that sites containing more than 500 g of plutonium or 2 Kg

                                                            

1 I used to wonder, back in the days when I was a banker, whether two bad men who practiced a
bit could cut both cables simultaneously. I concluded that the threat wasn’t worth worrying about
for bank branches with a mere $100,000 or so in the vault. Our large cash processing centers
were staffed 24/7, so the threat model there focused on dishonest insiders, hostage taking, and
so on.
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of U-235 must have their alarm control center and response force on the premises

[409].

Finally, although physical security isn’t a main topic of this book, it’s worth noting

that many physical security incidents arise from angry people coming into the work-

place—whether spouses, former employees, or customers. Alarm systems should be

able to cope with incidents that occur during the day as well as at night.

10.2.6 Lessons Learned

You might be wondering why a book that’s essentially about security in computer

systems should spend several pages describing burglar alarm systems. There are many

reasons.

• Dealing with service denial attacks is the hardest part of many secure system

designs. And, as the bad guys come to understand system-level vulnerabilities,

it’s also often the most important. Intruder alarms give us one of the largest

available bodies of applicable knowledge and experience.

• The lesson that one must look at the overall system—from intrusion through
detection, alarm, delay and response—is widely applicable, yet increasingly
hard to follow in general-purpose distributed systems.

• The observation that the outermost perimeter defenses are the ones that we’d
most like to rely on, but also those on which the least reliance can be placed, is
also quite general.

• The trade-off between the missed alarm rate and the false alarm rate is a per-
vasive problem in security engineering.

• There are some subtleties though where we can learn from the alarm business.
For example, some U.S. airport X-ray machines use false alarm insertion to
ensure that alarm systems and personnel stay effective: they insert an image of
a gun or bomb about once per shift. Staff are graded continually on their error
rates.

• Failure to understand the threat model—designing for Charlie and hoping to
keep out Bruno—causes many real-life failures. It’s necessary to know what
actually goes wrong, not just what crime writers think goes wrong.

• And, finally, we can’t just leave the technical aspects of a security engineering

project to specialist subcontractors, as critical stuff will always fall between

the cracks.

In addition to these system-level lessons, there are a number of other applications

where the experience of the burglar alarm industry is relevant. I already mentioned

improvised explosive devices; in a later chapter, I’ll discuss tamper-resistant proces-

sors that are designed to detect attempts to dismantle them and destroy all their crypto-

graphic key material by way of an alarm response.
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10.3 Prepayment Meters

Our next case study comes from prepayment metering. In many systems, the user pays

in one place for a token—whether a magic number, or a cardboard ticket with a mag-

netic strip, or even a rechargeable token such as a smartcard—and uses this stored

value in some other place.

Examples include postal franking machines, the stored value cards that operate

photocopiers in libraries, lift passes at ski resorts, and washing machine tokens in uni-

versity residence halls. Many transport tickets are similar—especially if the terminals

that validate the tickets are mounted on buses or trains, and so are not usually online.

The main protection goal in these systems is to prevent the stored value tokens being

duplicated or forged en masse. Duplicating a single subway ticket is not too hard, and

repeating a magic number a second time is trivial. This can be made irrelevant if we

make all the tokens unique and log their use at both ends. But things get more compli-

cated when the device that accepts the token does not have a channel of communica-

tion back to the ticket issuer; in this case, all the replay and forgery detection must be

done offline, on a terminal that is often vulnerable to physical attack. So if we simply

enciphered all our tokens using a universal master key, we might expect that a villain

would extract this key from a stolen terminal, then set up as a token vendor in compe-

tition with us.

There are also attacks on the server end of things. One neat attack on a vending card

system used in the staff cafeteria of one of our local supermarkets exploited the fact

that when a card was recharged, the vending machine first read the old amount, then

asked for money, and then wrote the amended amount. The attack was to insert a card

with some money in it, say, £49, on top of a blank card. The top card would then be

removed and a £1 coin inserted in the machine, which would duly write £50 to the

blank card. This left the perpetrator with two cards, with a total value of £99. This kind

of attack was supposed to be prevented by two levers that extended to grip the card in

the machine. However, by cutting the corners off the top card, this precaution could

easily be defeated (see Figure 10.1) [479]. This attack is interesting because no amount

of encryption of the card contents would make any difference. Although it could, in

theory, be stopped by keeping logs at both ends, the design would not be trivial.

But we mustn’t get carried away with neat tricks like this, or we risk getting so in-

volved with even more clever countermeasures that we fall prey to the Titanic effect

again by ignoring the system-level issues. In most ticketing systems, petty fraud is

easy. A free rider can jump the barrier at a subway station; an electricity meter can

have a bypass switch wired across it; while barcoded ski lift passes, parking lot tickets,

and the like can be forged with a scanner and printer. The goal is to prevent fraud be-

coming systematic. Petty fraud should be at least slightly inconvenient and—more im-

portantly—there should be more serious mechanisms to prevent anyone forging tickets

on a large enough scale to develop a black market that could affect your client’s busi-

ness.

The example I’ll discuss in detail is the prepayment electricity meter. I chose this

because I was lucky enough to consult on a project to electrify more than 2.5 million

households in South Africa (a central election pledge made by Nelson Mandela when
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he took power). (This work is described in some detail in [39].) Most of the lessons

learned apply directly to other ticketing systems.

Figure 10.1 Superposing two payment cards.

10.3.1 Utility Metering

In a number of European countries, householders who can’t get credit (because they

are on welfare, have court judgments against them, or whatever) buy gas and electricity

services using prepayment meters. In the old days, they were coin-operated, but the

costs of coin collection led vendors to develop token-based meters instead. The cus-

tomer goes to a shop and buys a token, which may be a smartcard, a disposable card-

board ticket with a magnetic strip, or even just a magic number. A magic number is

often the most convenient, as no special vending apparatus is required: a ticket can be

dispensed at a supermarket checkout, or even over the phone. U.S. readers may be used

to replenishing a postal meter by phoning a call center and buying a magic number

with a credit card: the magic number replenishes the meter. This is exactly the same

kind of system as a prepayment utility meter.

The token should be thought of as a string of bits containing one or more instruc-

tions, encrypted using a key unique to the meter, which decodes them and acts on

them. Most tokens read something like, “meter 12345, dispense 50 kWh of electricity!”

but some have maintenance functions, too (see Figure 10.2). The idea is that the meter

will dispense the purchased amount and then interrupt the supply.

The manufacture of these meters has become big business. Britain has about a mil-

lion electricity meters using two proprietary schemes, and some six hundred thousand

gas meters using smartcards. Prepaid electricity meters have been installed in a number

of other countries, including Brazil, India, Namibia, and the Ivory Coast. Growth in the

Third World is strong because the customers may not even have addresses, let alone

credit ratings. This was the case in South Africa: prepayment metering was the only
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way the government could meet its election pledge to electrify millions of homes

quickly. In the developed world, the main impetus for metering is reducing adminis-

trative costs. Electric utilities find that billing systems can devour 20 percent of retail

customer revenue in urban areas, while prepayment systems typically cost under 10

percent.

Figure 10.2 A prepayment electricity meter (courtesy of Schlumberger).

10.3.2 How the System Works

The security requirements for a prepayment meter system seem fairly straightforward.

Tokens should not be easy to forge, and genuine tokens should not work in the wrong

meter, or in the right meter twice. Tokens should either be tamper-resistant (which is

expensive) or unique (which can be done fairly easily using serial numbers and cryp-

tography). But it has taken a surprising amount of field experience to develop the idea

into a robust system.

The meter needs a cryptographic key to authenticate its instructions from the vend-

ing station. The typical system has a vend key, KV, which acts as the master key for a

neighborhood, and derives the device key when needed by encrypting the meter ID

under the vend key:

KID = {ID}KV
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This is the same key diversification technique described for parking lot access de-

vices in Chapter 2. Diversifying the vend key KV to a group of meter keys KID, pro-

vides a very simple solution where all the tokens are bought locally. It’s often less

straightforward than this. In South Africa, many people commute long distances from

townships or homelands to their places of work, so are never at home during business

hours and prefer to buy tickets where they work. So they can register at an out-of-area

vending station, where there is a security protocol to send their meter key to this

vending station from the vending station that “owns” the meter. Sales data then get

passed in the opposite direction for balancing and settlement. These mechanisms are

very much like those developed for ATM networks.

Statistical balancing is used to detect what are euphemistically known as non-

technical losses, that is, theft of power through meter tampering or unauthorized direct

connections to mains cables. The mechanism is to compare the readings on a feeder

meter, which might supply 30 houses, with token sales to those houses. This turns out

to be harder than it looks. Customers hoard tickets, meter readers lie about the date

when they read the meter, and many other things go wrong. Vending statistics are also

used in conventional balancing systems, like those discussed in Chapter 9.

The vending machines themselves maintain a credit balance. They rely on tamper-

resistant security processors to keep the vendor from extracting vend keys and foreign

meter keys, or interfering with the credit balance. The balance is decremented with

each sale, and only credited again when cash is banked with the local operating com-

pany. This company in turn has to account to the next level up in the distribution net-

work, and so on. Here we have an example of an accounting system partially enforced

by a value counter at the point of sale, rather than just by ledger data kept on servers in

a vault. Subversion of value counters can, in theory, be picked up by statistical and

balancing checks at higher layers. This distribution of security state is something we

may see a lot more of; for example, it’s the model used by the Mondex electronic purse

scheme promoted by Mastercard.

So what can go wrong?

10.3.3 What Goes Wrong

Service denial remains an important issue. As there is no return channel from the meter

to the vending station, the only evidence of how much electricity has been sold resides

in the vending equipment itself. The agents who operate the vending machines are

typically small shopkeepers or other township entrepreneurs who have little capital and

so are allowed to sell electricity on credit. In some cases, agents just dumped their

equipment, then claimed that it got stolen. This is manageable with small agents, but

when an organization such as a local government is allowed to sell large amounts of

electricity through multiple outlets, there is definitely an exposure. A lot of the com-

plexity was needed to deal with untrustworthy (and mutually mistrustful) principals.

As with burglar alarms, environmental robustness is critical. Apart from the huge

range of temperatures (as variable in South Africa as in the continental United States)

many areas have severe thunderstorms—the meter is in effect a microprocessor with a

3-kilometer lightning conductor attached.
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When meters were destroyed by lightning, the customers complained and got credit

for the value they said was still unused. So their next step was to poke live mains wires

into the meter to emulate the effects of the lightning. It turned out that one make of

meter would give unlimited credit if a particular part of the circuitry (which lay under

the token slot) was destroyed. Thus, service denial attacks worked well enough to be-

come popular. (They could become a serious problem if banks field offline electronic

purse smartcards that don’t do full balancing, but rely instead on value counters plus

statistical balancing. When a customer complains that a card has stopped working, all

the bank can do is either refund the amount the customer claims was on the card, or tell

him or her to get lost.)

It was to get worse. The most expensive security failure in the program came when

kids in Soweto observed that when there was a brown-out—a fall in voltage from 220

to 180 volts—a particular make of meter went to maximum credit. Soon kids were

throwing steel chains over the 11 KV feeders and crediting all the meters in the neigh-

borhood. This was the fault of a simple bug in the meter ROM, which wasn’t picked up

because brownout testing hadn’t been specified. In fact, developed country environ-

mental standards were inadequate and had to be rewritten. The effect on the business

was that 100,000 meters had to be pulled out and re-ROMmed; the responsible com-

pany almost went bust.

There were numerous other bugs. One make of meter didn’t vend a specified quan-

tity of electricity, rather so much worth of electricity at such-and-such a rate. It turned

out that the tariff could be set to a tiny amount by vending staff, so that it would oper-

ate almost forever. Another make allowed refunds, but a copy of the refunded token

could still be used (blacklisting the serial numbers of refunded tokens in subsequent

token commands is hard, as tokens are hoarded and used out of order). Another meter

remembered the last token serial number entered, and by alternately entering duplicates

of two tokens, it could be charged up indefinitely.

As with cash machines, the real security breaches resulted from bugs and blunders,

which could be quite obscure, but were discovered by accident and exploited in quite

opportunistic ways. These exploits were sometimes on a large scale, costing millions to

fix.

Other lessons learned were the following.

• Prepayment may be cheap as long as you control the marketing channel, but

when you try to make it even cheaper by selling prepayment tokens through

third parties (such as banks and supermarkets) it can rapidly become expen-

sive, complicated, and risky. This is largely because of the security engineer-

ing problems created by mutual mistrust between the various organizations

involved.

• Changes to a business process can be very expensive if they affect the security
infrastructure. For example, the requirement to sell meter tokens other than at
local shops, to support commuters, was not anticipated and was costly to im-
plement.

• Recycle technology if possible, as it’s likely to have fewer bugs than some-
thing designed on a blank sheet of paper. Much of what we needed for pre-
payment metering was borrowed from the world of cash machines.

• Use multiple experts. One expert alone can not usually span all the issues, and
even the best will miss things.
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• No matter what is done, small mistakes with large consequences will still

creep in. So you absolutely need prolonged field testing. This is where many

errors and impracticalities will first make themselves known.

Meters are a good case study for ticketing. Transport ticketing, theater ticketing, and

even sports ticketing may be larger applications, but I don’t know of any publicly

available studies of their failure modes. In many cases, the end systems—such as the

meters or turnstiles—are fairly soft, so our main concern is to prevent large-scale

fraud. This means paying a lot of attention to the intermediate servers such as vending

machines, and hardening them to ensure they will resist manipulation and tampering.

One still does what one economically can to prevent people developing efficient sys-

tematic attacks on the end systems that are too hard to detect.

We’ll now look at a class of applications where there are severe and prolonged at-

tacks on end systems, which must therefore be made much more tamper-resistant than

electricity meters. The threat model includes sensor manipulation, service denial, ac-

counting fiddles, procedural defeats, and the corruption of operating staff. This exem-

plary field of study is vehicle monitoring systems.

10.4 Taximeters, Tachographs, and Truck Speed Lim-
iters

A number of systems are used to monitor and control vehicles. The most familiar is

probably the odometer in your car. When buying a used car you’ll be worried whether

the car has been clocked, that is, had its indicated mileage reduced. As odometers be-

come digital, clocking is becoming a type of computer fraud; a conviction has already

been reported [170].

The next most familiar may be the taximeter. A taxi driver has an incentive to ma-

nipulate the meter to show more miles travelled (or minutes waited), if he can get away

with it. There are various other kinds of “black box” used to record the movement of

vehicles, from aircraft through fishing vessels to armored bank trucks, and their op-

erators have differing levels of motive for tampering with them. Starting in 1990, for

example, General Motors equipped 6 million vehicles with black boxes to record crash

data. This could be a bonanza for trial lawyers; there are also privacy aspects, as the

existence of the boxes only became public in 1999 [768]. (I’ll discuss these issues in

Chapter 21.)

The case study we’re going to use here is the tachograph. A driver falling asleep at

the wheel is the cause of several times more accidents than drunkenness (20 percent

versus 3 percent of accidents in Britain, for example). An accidents involving a truck is

more likely to lead to fatal injuries because of the truck’s mass. So most countries

regulate truck drivers’ working hours. While these laws are enforced in the United

States using weigh stations, countries in Europe use devices called tachographs, which

record a 24-hour history of the vehicle’s speed on a circular waxed paper chart (see

Figure 10.3).

The chart is loaded into the tachograph, which is part of the vehicle’s speedome-

ter/odometer unit. It turns slowly on a turntable inside the instrument; there are three

styli which record, the speed (the outside trace), whether the driver was working or

resting (the middle trace), and the distance travelled (the inner trace—each tick being
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10 km). With some exceptions, which needn’t concern us here, it is an offense to drive

a truck in Europe unless you have a tachograph chart installed, and have written on it

your starting time and location. You must also keep several days’ charts with you to

establish that you’ve complied with the relevant driving hours regulations (typically

8.5 hours per day, with rules for rest breaks per day and rest days per week). Some ta-

chographs have extra needles to record some environmental variable: examples include

the flashing lights of emergency vehicles, the temperature of refrigerated trucks, and

whether the doors of armored trucks are open or closed. (It is for such applications that

tachographs are most widely used in North America.)

Figure 10.3 A tachograph chart.

European law also restricts trucks to 100 km/h (62 mph) on freeways and less on

other roads. This is enforced not just by police speed traps and the tachograph record,

but directly by a speed limiter which is also driven by the tachograph. Tachograph

charts are also used to investigate other offenses, such as unlicensed toxic waste

dumping, and by fleet operators to detect fuel theft. Clearly, there are plenty reasons

why a truck driver might want to fiddle his tachograph.
2

                                                            

2 It’s a general principle in security engineering that one shouldn’t aggregate targets. Thus,
NATO rules prohibit money or other valuables being carried in a container for classified informa-
tion—you don’t want someone who set out to steal your regiment’s payroll also getting away with
your spy satellite photographs. Forcing a truck driver to defeat his or her tachograph to circum-
vent the speed limiter, and vice versa, was a serious design error—but one that’s now too en-
trenched to change easily.
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The EU is in the process of moving from paper-based to smartcard-based systems,

which makes the issue highly topical. As with any security engineering task, we first

need to know what actually goes wrong. Most of what I have to say applies equally

well to taximeters and other monitoring devices. While the truck driver wants his vehi-

cle to appear to have gone less distance, the taxi driver wants the opposite. This has

little effect on the actual tampering techniques.

10.4.1 What Goes Wrong

According to a 1998 survey of 1,060 convictions of drivers and operators [31], the of-

fenses were distributed as follows.

10.4.1.1 How Most Tachograh Manipulation Is Done

About 70% of offenses that result in conviction do not involve tampering but exploit

procedural weaknesses. For example, a company with premises in Dundee and South-

ampton should have four drivers to operate one vehicle per day in each direction, as the

distance is about 500 miles and the journey takes about 10 hours—which is illegal for a

single driver to do every day. The standard fiddle is to have two drivers who meet at an

intermediate point such as Penrith, change trucks, and insert new paper charts into the

tachographs. The driver who had come from Southampton now returns home with the

vehicle from Dundee. When stopped and asked for his charts, he shows the current

chart from Penrith to Southampton, the previous day’s for Southampton to Penrith, the

day before’s for Penrith to Southampton, and so on. In this way the driver can give the

false impression that he spent every other night in Penrith, and was thus legal. This

(widespread) practice, of swapping vehicles halfway through the working day, is called

ghosting. It’s even harder to detect in mainland Europe, where a driver might be oper-

ating out of a depot in France on Monday, in Belgium on Tuesday, and in Holland on

Wednesday.

Simpler frauds include setting the clock wrongly; pretending that a hitchhiker is a

relief driver; and recording the start point as a village with a very common name—such

as Milton in England or La Hoya in Spain. If stopped, the driver can claim he started

from a nearby Milton or La Hoya. (The chart in Figure 10.3 shows several violations of

this type. For example, the start point is listed as “B’HAM” which could be Birming-

ham or Buckingham, and the clock was wound back from 14.30 to 14.00, as can be

seen from the overlapping traces.)

Such tricks often involve collusion between the driver and the operator. When the

operator is ordered to produce charts and supporting documents such as pay records,

weigh station slips and ferry tickets, his office may well conveniently burn down. (It’s

remarkable how many truck companies operate out of small cheap wooden sheds that

are located at a safe distance from the trucks in their yard.)

10.4.1.2 Tampering with the Supply

The next largest category of fraud, amounting to about 20% of the total, involves tam-

pering with the supply to the tachograph instrument, including interference with the

power and impulse supply, cables, and seals.
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When old-fashioned tachographs used a rotating wire cable—as did the speedome-

ters in cars up until the early 1980s—it was hard to fiddle with. For example, if you

jammed the truck’s odometer it was quite likely that you’d shear off the cable. Elec-

tronic tachographs have made fiddling much easier. They get their input from a sensor

in the gearbox, which sends electrical impulses as the prop shaft rotates. A common

attack is to unscrew the sensor about a tenth of an inch. This causes the impulses to

cease, as if the vehicle were stationary. To prevent this, sensors are fixed in place with

a wire and lead seal. Fitters are bribed to wrap the wire anticlockwise rather than

clockwise, which causes it to loosen rather than break when the sensor is unscrewed.

The fact that seals are issued to workshops rather than to individual fitters complicates

prosecution.

Most of the fiddles are much simpler still. Drivers short out the cable or replace the

tachograph fuse with a blown one. (One manufacturer tried to stop this trick by putting

the truck’s antilock braking system on the same fuse. Many drivers preferred to get

home sooner than to drive a safe vehicle.) Again, there is evidence of a power supply

interruption on the chart in Figure 10.3: around 11 A.M., there are several places where

the speed indicated in the outside trace goes suddenly from zero to over 100 km/h.

These indicate power interruptions, except where there’s also a discontinuity in the

distance trace. There, the unit was open.

10.4.1.3 Tampering with the Instrument

The third category of fraud is tampering with the tachograph unit itself. This amounts

for some 6% of offenses, but is in decline with modern equipment, because tampering

with digital communications is so much easier than tampering with a rotating wire ca-

ble used to be. The typical offense in this category is miscalibration, usually done in

cahoots with the fitter, but sometimes by the driver defeating the seal on the device.

10.4.1.4 High-Tech Attacks

The state of the tampering art is the equipment in Figure 10.4. The plastic cylinder on

the left of the photo is marked “Voltage Regulator—Made in Japan,” and is certainly

not a voltage regulator. (It actually appears to be made in Italy.) It is spliced into the

tachograph cable and controlled by the driver using the remote control key fob. A first

press causes the indicated speed to drop by 10%, a second press causes a drop of 20%,

a third press causes it to fall to 0, and a fourth causes the device to return to proper op-

eration.

This kind of device amounts for under 1% of convictions, but its use is believed to

be much more widespread. It’s extremely hard to find as it can be hidden at many dif-

ferent places in the truck’s cable harness. Police officers who stop a speeding truck

equipped with such a device, and can’t find it, have difficulty getting a conviction: the

sealed and apparently correctly calibrated tachograph contradicts the evidence from

their radar or camera. The next step in the arms race is the use by the police of elec-

tronic warfare techniques to detect and neutralize these “interruptors”—after that, no

doubt, the bad guys will start using cryptography to secure the communications from

the key fob.
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10.4.2 Countermeasures

The countermeasures taken against tachograph manipulation vary by country. In Brit-

ain, trucks are stopped at the roadside for random checks by vehicle inspectors; par-

ticularly suspect trucks may be shadowed across the country. In the Netherlands,

enforcement focuses on inspectors descending on a trucking company and going

through their delivery documents, drivers’ timesheets, fuel records, and the like. In

Italy, data from the toll booths on the freeways are used to prosecute drivers who’ve

averaged more than the speed limit (this is why you can often see trucks parked just in

front of Italian toll booths). But such measures are only partially effective, and drivers

can arbitrage between the differing control regimes. For example, a truck driver oper-

ating between France and Holland can keep his documents at a depot in France where

the Dutch inspectors can’t get at them.

Figure 10.4 A tachograph with an interruptor controlled by the driver using a radio key fob

(courtesy of Hampshire Constabulary, England).

10.4.2.1 Tachosmart

So the European Union is taking an initiative to design a unified electronic tachograph

system, called Tachosmart, which will replace the existing paper-based charts with

smartcards. Each driver will have a “driver card” that will, in effect, be the truck

driver’s license and contain a record of his driving hours over the last 28 days. Each

vehicle will have a vehicle unit with a year’s history. Special types of smartcard will

be used by mechanics to calibrate devices, and by law enforcement officers to read

them out at the roadside.

The most substantial objection to the move to smartcards is that it’s not clear how it

will help combat the procedural frauds that make up 70% of the current total. Indeed,
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our pair of drivers ghosting between Dundee and Southampton will have their lives

made even easier. It will take maybe ten years—the lifetime of a truck—to change over

to the new system; in the meantime, they can run one truck with an old chart system

and the other with the new card system. Each driver will now have one chart and one

card, with five hours a day on each, rather than two charts which they might acciden-

tally mix up when stopped.

10.4.2.2 System Level Problems

The response to this problem varies by country. Germany wants an infrastructure of

fleet management systems that will accept digital tachograph data, digitized versions of

the analogue data from the existing paper charts, fuel data, delivery data, and even pay-

roll—and reconcile them all to provide not just management information for the

trucking company but surveillance data for the police. The idea, as with some mid-

1990s proposals for the regulation of cryptography, is that large companies would be

trusted to run their own fleet management systems, while small ones would have to use

a licensed bureau

Britain doesn’t have as large a share of the existing bureau business as Germany

does, so British proposals have included integrating tachograph systems either with

GPS location sensors in the trucks or with an existing system of automatic number

plate readers. (This was first deployed around London to make IRA bombing attacks

harder and has now been extended nationwide to detect car tax evaders.)

However, disagreements about privacy issues and about national economic interests

have prevented any EU-wide standardization. It’s going to be up to individual coun-

tries whether they require truck companies to download and analyze the data from their

trucks.

Even if everyone does this, it won’t be a panacea, because of arbitrage. At present,

the German police are much more vigorous at enforcing drivers’ hours regulations than

their Italian counterparts. So an Italian driver who normally doesn’t bother to put a

chart in his machine will do so while driving over the Alps. Meanwhile, the driver of

the German truck going the other way takes his chart out. The net effect is that all

drivers in a given country are subject to the same level of law enforcement. But if the

driving data get regularly uploaded from the Italian driver’s card and kept on a PC at a

truck company in Rome, then they’ll be subject to Italian levels of enforcement (or

even less if the Italian police decide they don’t care about accidents in Germany). It’s

easy to see that this will cause downward pressure on enforcement.

10.4.2.3 Other Problems

The move from analogue devices to digital isn’t always an improvement. In addition to

the lower tamper-resistance of electronic versus mechanical signalling, and the system-

level problem that the location of the security state can’t be tackled in a uniform way,

there are several other interesting problems with tachographs being digital.

First, the loss of detailed, redundant data on the tachograph chart will make en-

forcement harder. At present, experienced vehicle inspectors have a “feel” for when a

chart isn’t right; but once the analogue trace is replaced by a binary signal, which says

either that the driver complied with the regulations or that he didn’t, they have little

else to go on (especially if the truck company’s HQ with the supporting paperwork is



228

in another jurisdiction). The new digital system is less likely to degrade gracefully un-

der attack than its analogue predecessor.

Second, there will be new kinds of service denial attacks (as well as the traditional

ones involving gearbox sensors, fuses, and so on). A truck driver can easily destroy his

smartcard by feeding it with mains electricity; and under the regulations, he will be

allowed to drive for 15 days while waiting for a replacement. As static electricity de-

stroys maybe 1 percent of cards a year anyway, it would be hard to prosecute drivers

for doing this. Similar card-destruction attacks have been perpetrated on bank smart-

card systems in France and elsewhere, to force systems back into less robust fallback

modes of operation.

Third, some of the cards in the system (notably the workshop and calibration cards

used to set up the instruments) are very powerful. They can be used to erase evidence

of wrongdoing and to restore a tachograph to a virgin state. A black market in them is

likely, and they may become valuable enough for it to be worth someone’s while to

forge them. As a result of this problem, plus some other technical concerns, the Ta-

chosmart system is being redesigned to use public key cryptography rather than univer-

sal master secrets in the cards and vehicle units.

A particularly difficult problem turns out to be key management. This is a general

problem with security systems involving vehicles—not just tachographs and similar

devices such as taximeters, but even such simple devices as car-door locks and the PIN

codes used to protect car radios against theft. If the garage must always be able to

override the security mechanisms, and a third of garage mechanics have criminal re-

cords, then what sort of secure system do you think you can build?

10.4.2.4 The Resurrecting Duckling

A recent EU directive stated that, in order to frustrate the use of interruptors of the

kind shown in Figure 10.4, all digital tachographs had to encrypt the pulse train from

the gearbox sensor to the vehicle unit. As both of these devices contain a microcon-

troller, and the data rate is fairly low, this shouldn’t in theory have been a problem. But

how on earth could we distribute the keys? If we just set up a hotline that garages

could call, it is likely to be abused. There’s a long history of fitters conspiring with

truck drivers to defeat the system, and of garage staff abusing helplines to get unlock-

ing data for stolen cars, and PIN codes for stolen car radios.

One solution is given by the resurrecting duckling security policy model. This is

named after the fact that a duckling emerging from its egg will recognize as its mother

the first moving object it sees that makes a sound; this is called imprinting. Similarly, a

“newborn” vehicle unit, just removed from the shrink wrap, will recognize as its owner

the first gearbox sensor that sends it a secret key. The sensor does this on power-up. As

soon as this key is received, the vehicle unit is no longer a newborn, and will stay

faithful to the gearbox sensor for the rest of its ‘life’. If the sensor fails, and has to be

replaced, there is a procedure whereby the vehicle unit can be ‘killed’ and resurrected

as a newborn, whereupon it can imprint on the new sensor. Each act of resurrection is

indelibly logged in the vehicle unit to make abuse harder.

The resurrecting duckling model of key management was originally developed to

deal with the secure imprinting of a digital thermometer or other piece of medical

equipment to a doctor’s PDA or a bedside monitor. It can also be used to imprint con-
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sumer electronics to a remote control in such a way as to make it more difficult for a

thief who steals the device, but not the controller, to make use of it [731].

Another possible application is weapons security. Many of the police officers who

are shot dead on duty are killed with their own guns, so there is now a lot of interest in

safety mechanisms. One approach is to design the gun to fire only when within a foot

or so of a signet ring that the officer wears. The problem is managing the relationship

between rings and guns, and a possible solution is to let the gun imprint on any ring,

but after a delay of a minute or so. This is not a big deal for police officers signing the

gun out of the armory, but is a problem for the crook who snatches it. (One may as-

sume that if a policeman can’t either overpower the crook or run for it within a minute,

then he’s a goner in any case.) Such mechanisms might also mitigate the effects of

battlefield capture of military weapons, for which passwords are often unacceptable

[106].

10.5 Summary

Many security systems are concerned one way or another with monitoring some aspect

of the environment. They range from ordinary domestic burglar alarms through utility

meters to taximeters, tachographs, and even a number of systems critically concerned

with nuclear safety.

The protection of these systems is most often more concerned with preventing at-

tacks that involve denial of service, such as swamping communications, overwhelming

sensors with noise, or doing other things which, directly or indirectly, decrease the

amount of trust that the system owners place in it. Service denial attacks may be aug-

mented, or complemented, with various kinds of data manipulation. Key management

can be an issue, especially in low-cost widely distributed systems where a central key

management facility can’t be justified or trustworthy field personnel don’t exist. Sys-

tems may have to deal with numerous mutually suspicious parties, and must often be

implemented on the cheapest possible microcontrollers. Finally, many of them are rou-

tinely in the hands of the enemy.

I’ve illustrated the problems of this exacting environment with three case studies—

burglar alarms, utility meters, and vehicle tachographs—which may be instructive now

that denial of service attacks on the Internet such as SYN floods and DDoS have be-

come a major issue.

Research Problems

We don’t yet have a really general set of tools to manage keys in embedded systems.

Although the mechanisms (and products) developed for automatic teller machine net-

works can be (and are) adapted, much of the design work has to be redone; the result

often has security vulnerabilities (I’ll discuss this in Chapter 14, which deals with the

special processors used for this purpose).

Although we have some industry standards (such as CANBUS, which is used for

communications between vehicle systems), we don’t have any top-level standards for

ways in which cryptography and other mechanisms, such as anonymity and balancing,
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can be built into a range of monitoring and ticketing systems. Such standards could

save a lot of engineers a lot of effort.

Further Reading

The best all-round reference I know of on alarm systems is [74]; the system issues

are discussed succinctly in [586]. Resources for specific countries are often available

through trade societies, such as the American Society for Industrial Security [14], and

through the local insurance industry; many countries have a not-for-profit body such as

Underwriters’ Laboratories [756] in the United States, and schemes to certify products,

installations, or both. Research papers on the latest sensor technologies appear at the

IEEE Carnahan conferences [399].

Prepayment electricity meters are described in [39], and a rather similar applica-

tion— postal metering machines—in [753]. Tachographs, including the Tachosmart

project, are written up in [31]. Finally, the systems used to monitor compliance with

nuclear arms control treaties are discussed in [702].
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CHAPTER

11

Nuclear Command and Control

In Germany and Turkey they viewed scenes that were particularly

 distressing. On the runway stood a German (or Turkish)

 quick-reaction alert airplane loaded with nuclear weapons and with

 a foreign pilot in the cockpit. The airplane was ready to take off at

 the earliest warning, and the nuclear weapons were fully

 operational. The only evidence of U.S. control was a lonely

 18-year-old sentry armed with a carbine and standing on the tarmac.

 When the sentry at the German airfield was asked how he intended

 to maintain control of the nuclear weapons should the pilot suddenly

 decide to scramble (either through personal caprice or through an

 order from the German command circumventing U.S. command), the

 sentry replied that he would shoot the pilot; Agnew directed him to

 shoot the bomb.

—JEROME WIESNER, PRESIDENTIAL SCIENCE ADVISOR, REPORTING TO
PRESIDENT KENNEDY ON NUCLEAR COMMAND AND CONTROL AFTER THE

CUBAN CRISIS

11.1 Introduction

The uniquely catasrophic harm that could result from the unauthorized use of a nuclear

weapon, or from the proliferation of nuclear technology to unsuitable states or substate

groups, has led the United States (and other nuclear states) to spend colossal amounts

of money protecting not just nuclear warheads but also the supporting infrastructure,

industry, and materials.

Quite a lot of nuclear security know-how has been published. In fact, there are se-

vere limits on how much could be kept secret, even if this was thought desirable. Many

countries are capable of producing nuclear weapons, but have decided not to (Japan,

Australia, Switzerland, . . .) and so maintain controls on nuclear materials in a civilian
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context. There are also international nonproliferation agreements, such as the Conven-

tion on the Physical Protection of Nuclear Material [409], enforced by the International

Atomic Energy Agency (IAEA).

Eleven tons of plutonium are produced annually by civil reactors. So ways have to

be found to guard the stuff, and these have to inspire international confidence—not just

between governments but from an increasingly sceptical public.

A vast range of security technology has spun off from the nuclear program. The U.S.

Department of Energy weapons laboratories—Sandia, Lawrence Livermore, and Los

Alamos—have worked, with almost unlimited budgets, for two generations to make

nuclear weapons and materials as safe as can be achieved. We’ve already seen some of

their more pedestrian spin-offs, from the discovery that passwords of more than twelve

digits were not usable under battlefield conditions to high-end burglar alarm systems.

The trick of wrapping an optical fiber around the devices to be protected and using in-

terference effects to detect a change in length of less than a micron is another of theirs.

It was designed to loop around the warheads in an armory and alarm without fail if any

of them are moved.

In later chapters, we’ll see still more technology of nuclear origin. For example, iris

recognition—the most accurate system known for biometric identification of individu-

als—was developed using U.S. Department of Energy funds with a view to controlling

entry to the plutonium store; and much of the expertise in tamper-resistance and tam-

per-sensing technology originally evolved to prevent the abuse of stolen weapons or

control devices.

In this chapter, I describe the environment in which these technologies were devel-

oped, and some of the tricks that might find applications—or pose threats—elsewhere.

As I’m not an insider, I’ve assembled this chapter from public sources, and so may

have missed important points (a proofreader with the relevant clearance and experience

assures me that the material is indeed “accurate but incomplete”). Nevertheless, even

from the available material, there are useful lessons to be learned.

11.2 The Kennedy Memorandum

Following the Cuban missile crisis, the U.S. government became concerned that a

world war could start by accident. Hundreds of U.S. nuclear weapons were kept in al-

lied countries such as Greece and Turkey, which were not particularly stable and occa-

sionally fought with each other. These weapons were protected only by token U.S.

custodial forces; there was no physical reason why the weapons couldn’t be seized in

time of crisis. There was also some concern about possible unauthorized use of nuclear

weapons by U.S. commanders; for example, if a local commander under pressure felt

that, “If only they knew in Washington how bad things were here, they would let us

use the bomb.” These worries were confirmed by three emergency studies carried out

by presidential science adviser Jerome Wiesner. (The passage quoted at the beginning

of this chapter can be found in [734].)

President Kennedy’s response was National Security Action Memo number 160.

This ordered that America’s 7,000 nuclear weapons then in other countries should be

got under positive control, or got out [705].
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The Department of Energy was already working on safety devices for nuclear weap-

ons. The basic principle was that one or more unique aspects of the environment had to

be sensed before the weapon would arm. For example, missile warheads and some

free-fall bombs had to experience zero gravity, while artillery shells had to experience

an acceleration of thousands of G. There was one exception: atomic demolition muni-

tions. These are designed to be taken to their targets by ground troops and detonated

using time fuses. There appears to be no scope for a unique environmental sensor to

prevent their accidental or malicious detonation.

The solution then under development was a secret arming code, which activated a

solenoid safe lock buried deep in the plutonium pit at the heart of the weapon. The

main engineering problem was maintenance. When the lock was exposed—for exam-

ple, to replace the power supply—the code might become known. Clearly, it was not

acceptable to have the same code in every weapon. Group codes had to be used—firing

codes shared by only a small batch of warheads.

Following the Kennedy memo, it was proposed that all nuclear bombs should be

protected using code locks, and that there should be a “universal unlock” action mes-

sage that only the president or his legal successors could send. The problem was to find

a way to translate this code securely to a large number of individual firing codes, each

of which enabled a small batch of weapons. The problem became worse in the 1960s

and 1970s, when the doctrine changed from massive retaliation to “measured re-

sponse.” Instead of arming all nuclear weapons or none, the president now had to be

able to arm selected batches (such as “all nuclear artillery in Germany”).

11.3 Unconditionally Secure Authentication Codes

This requirement led to the development of a theory of one-time authentication codes.

These are similar in concept to the test keys invented to protect telegraphic money

transfers, in that a keyed transformation is applied to the message to yield a short

authentication code, also known as an authenticator or tag. As the keys are only used

once, authentication codes can be made unconditionally secure. They do for authenti-

cation what the one-time pad does for confidentiality.

Recall from Chapter 5, “Cryptography,” that while the perfect security provided by

the one-time pad is independent of the computational resources available to the at-

tacker, a computationally secure system could be broken by some known computation,

and depends on this being infeasible.

There are differences, though, between authentication codes and the one-time pad.

As the authentication code is of finite length, it’s always possible for the opponent to

guess it; and the probability of a successful guess might be different depending on

whether the opponent is trying to guess a valid message from scratch (impersonation)

or to modify an existing valid message to get another one (substitution).

An example should make this clear. Let’s assume that a commander has agreed to an

authentication scheme with a subordinate under which an instruction is to be encoded

as a three-digit number from 000 to 999. The instruction may have two values: “Attack

Russia” and “Attack China.” One of these will be encoded as an even number, and the

other by an odd number; which is which will be part of the secret key. The authenticity

of the message will be vouched for by making its remainder, when divided by 337,

equal to a secret number that is the second part of the key.
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Now suppose the key is that:

• “Attack Russia” codes to even numbers, and “Attack China” to odd.

• An authentic message is one that has the remainder 12 when divided by 337.

Therefore, “Attack Russia” is 686 (or 12) and “Attack China” is 349.

An enemy who has taken over the communications channel between the commander

and the subordinate, and who knows the scheme but not the key, has a probability of

only 1 in 337 of successfully impersonating the commander. However, once he sees a

valid message (say, 12 for “Attack Russia”), then he can easily change it to the other

by adding 337. Then (provided he understood what it meant), he can send the missiles

to the other country. Thus, the probability of a successful substitution attack in this

case is 1.

As with computationally secure authentication, the unconditional variety can pro-

vide message secrecy or not: it might work like a block cipher, or like a MAC on a

plaintext message. Similarly, it can use an arbitrator or not. One might even want mul-

tiple arbitrators, so that they don’t have to be trusted individually. If the first arbitrator

wrongfully finds against the cheated party, then his victim should be able to denounce

him.

Schemes may combine unconditional with computational security. For example, an

unconditional code without secrecy could have computationally secure secrecy added

simply by enciphering the message and the authenticator using a conventional cipher

system.

Authentication is, in some sense, the dual of coding. In the latter, given an incorrect

message, we want to find the nearest correct message efficiently; in the former, we

want finding a correct message to be impossible unless you’ve seen it already or are

authorized to construct it. And just as the designer of an error-correcting code wants

the shortest length of code for a given error recovery capability, so the designer of an

authentication code wants to minimize the key length required to achieve a given

bound on the deception probabilities.

The authentication terminology used in civil and military applications is slightly dif-

ferent [703]. More importantly, the threat models are different. Soldiers are, in general,

more concerned about enemies than traitors and are not so worried about nonrepudia-

tion (except when enforcing treaties with other countries, which might later repudiate a

message claiming that the key had been leaked by a “defector”). In business, the ma-

jority of frauds are carried out by insiders, so shared control systems are the main issue

when designing authentication mechanisms.

11.4 Shared Control Schemes

The nuclear command and control business became even more complex with the con-

cern, from the late 1970s, that a Soviet decapitation strike against the U.S. national

command authority (i.e., the President and his lawful successors in office) might leave

the arsenal intact but useless. There was also concern that, past a certain threshold of

readiness, it wasn’t sensible to assume that communications between authority and

field commanders could be maintained, because of the possible effects of electromag-

netic pulse and other attacks on communications. The solution was found in another

branch of cryptomathematics known as secret sharing, whose development it helped to
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inspire. The idea is that, in time of tension, a backup control system will be activated,

whereby combinations of office holders or field commanders can jointly allow a

weapon to be armed. Otherwise, the problems of maintaining detailed central control of

a large number of weapons would likely become insoluble.

There is a simple and obvious way to do shared control: just give half of the authen-

tication key to each of two people. This has the drawback that we need twice the length

of key, assuming that the original security parameter must apply even if one of them is

suborned. A better approach is to give each of them a number and have the two num-

bers add up to the key. This is how keys for automatic teller machines are managed.

However, this still may not be enough in command applications, as no one can be

sure that the personnel operating the equipment will consent, without discussion or

query, to unleash Armageddon.

A more general approach was invented independently by Blakley and Shamir in

1979 [111, 692]. Their basic idea is illustrated in Figure 11.1. Suppose the rule Britain

wants to enforce, if the Prime Minister is assassinated, is that a weapon can be armed

by any two cabinet ministers, or by any three generals, or by a cabinet minister and two

generals. Let the point C on the z axis be the unlock code that has to be supplied to the

weapon. We now draw a line at random through C, and give each cabinet minister a

random point on the line. Now any two of them can together work out the coordinates

of the line and find the point C where it meets the z axis. Similarly, we embed the line

in a random plane and give each general a random point on the plane. Now any three

generals, or two generals plus a minister, can reconstruct the plane and thence the fir-

ing code C.

Figure 11.1 Shared control using geometry.
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By generalizing this simple construction to geometries of n dimensions, or to gen-

eral algebraic structures rather than lines and planes, this technique enables weapons,

commanders, and options to be linked with a complexity limited only by the available

bandwidth. (An introduction to secret sharing can be found in [738], and a more de-

tailed exposition in [704].) Secret sharing also inspired the development of threshold

signature schemes, which I described in Chapter 5, and can be used in products that

enforce a rule such as, “Any two vice presidents of the company may sign a check.”

As with authentication codes, there is a difference between civil and military views

of shared secrets. In the typical military application, two-out-of-n control is used; n

must be large enough that at least two of the keyholders will be ready and able to do

the job, despite combat losses. Many details need attention. For example, the death of a

commander shouldn’t enable his deputy to use both halves of the key. So they typically

have to be used simultaneously at consoles several yards apart.

In many civilian applications, however, many insiders may conspire to break a sys-

tem. The classic example is pay-TV, where a pirate may buy several dozen subscriber

cards and reverse engineer them for their secrets. Obviously, the pay-TV operator

wants a system that’s robust against multiple compromised subscribers.

11.5 Tamper Resistance and PALs

In modern weapons, the solenoid safe locks have been superseded by prescribed action

links, more recently renamed permissive action links (either way, PALs), which are

used to protect most U.S. nuclear devices. (A summary of the open source information

about PALs can be found in [92].) PAL development started in about 1961, but de-

ployment was slow. Even 20 years later, about half the U.S. nuclear warheads in

Europe still used the four-digit code locks. As more complex arming options were in-

troduced, the codes increased in length from 4 to 6 and finally to 12 digits. Devices

started to have multiple codes, with separate “enable” and “authorize” commands, and

the capability to change codes in the field (presumably to recover from false alarms).

The PAL system is supplemented by various coded switch systems and operational

procedures; and in the case of weapons such as atomic demolition munitions, which are

not complex enough for the PAL to be made inaccessible in the core of the device, the

weapon is also stored in tamper-sensing containers called PAPS (for prescribed action

protective system). Other mechanisms used to prevent accidental detonation include the

deliberate weakening of critical parts of the detonator system, so that they will fail if

exposed to certain abnormal environments.

Whatever combination of systems is used, there are penalty mechanisms to deny a

thief the ability to obtain a nuclear yield from a stolen weapon. These mechanisms vary

from one weapon type to another, but include gas bottles to deform the pit and hydride

the plutonium in it; shaped charges to destroy components, such as neutron generators

and the tritium boost; and asymmetric detonation that results in plutonium dispersal

rather than yield. It is always a priority to destroy the code. It is assumed that a rene-

gade government prepared to deploy “terrorists” to steal a shipment of bombs would be

prepared to sacrifice some of the bombs (and some technical personnel) to obtain a

single serviceable weapon.
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To perform authorized maintenance, the tamper protection must be disabled, and this

requires a separate unlock code. The devices that hold the various unlock codes—for

servicing and firing—are themselves protected in similar ways to the weapons.

The protection goal is summarized in [734]:

It is currently believed that even someone who gained possession of such a weapon,

had a set of drawings, and enjoyed the technical capability of one of the national

laboratories would be unable to successfully cause a detonation without knowing the

code.

Meeting such an ambitious goal requires a very substantial effort. There are several

examples of the level of care needed:

• after tests showed that 1 mm chip fragments survived the protective detonation

of a control device carried aboard airborne command posts, the software was

rewritten so that all key material was stored as two separate components,

which were kept at addresses more than 1 mm apart on the chip surface;

• the “football,” the command device carried around behind the president, is

said to be as thick as it is out of fear that shaped charges might be used to dis-

able its protective mechanisms. (This may or may not be an urban myth.)

Shaped charges can generate a plasma jet with a velocity of 8000 m/s, which

could, in theory, be used to disable tamper-sensing circuitry. So some distance

may be needed to give the alarm circuit enough time to zeroize the code mem-

ory.

This care must extend to many details of implementation and operation. The weap-

ons-testing process includes not just independent verification and validation, but hos-

tile “black hat” penetration attempts by competing laboratories or agencies. Even then,

all practical measures are taken to prevent access by possible opponents. The devices

(both munition and control) are defended in depth by armed forces; there are frequent

zeronotice challenge inspections; and staff may be made to retake the relevant exami-

nations at any time of the day or night.

I discuss tamper resistance in much more detail in a later chapter, as it’s becoming

rather widely used in applications from pay-TV to bank cards. However, tamper resis-

tance, secret sharing, and one-time authenticators aren’t the only technologies to have

benefitted from the nuclear industry’s interest. There are more subtle system lessons

too.

11.6 Treaty Verification

A variety of verification systems are used to monitor compliance with nonproliferation

treaties. For example, the IAEA and the U.S. Nuclear Regulatory Commission (NRC)

monitor fissile materials in licensed civilian power reactors and other facilities.

An interesting example comes from the tamper-resistant seismic sensor devices de-

signed to monitor the Comprehensive Test Ban Treaty [701]. The goal was to emplace

sufficiently sensitive sensors in each signatory’s test sites so that any violation of the

treaty (such as by testing too large a device) could be detected with high probability.

The tamper sensing here is fairly straightforward: the seismic sensors are fitted in a

steel tube and inserted into a drill hole that is backfilled with concrete. The whole as-
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sembly is so solid that the seismometers themselves can be relied upon to detect tam-

pering events with a fairly high probability. This physical protection is reinforced by

random challenge inspections.

The authentication process becomes somewhat more complex because one has to

make an assumption of pervasive deceit. Because of the lack of a third party trusted by

both sides, and because the quantity of seismic data being transmitted is of the order of

10
8
 bits per day, a digital signature scheme (RSA) was used instead of one-time

authentication tags. But this is only part of the answer. One party might, for example,

disavow a signed message by saying that the official responsible for generating the key

had defected, and so the signature was forged. So keys must be generated within the

seismic package itself once it has been sealed by both sides. Also, if one side builds the

equipment, the other will suspect it of having hidden functionality. Several protocols

were proposed of the cut-and-choose variety, whereby one party would produce sev-

eral devices of which the other party would dismantle a sample for inspection. A num-

ber of these issues have since resurfaced in electronic commerce. (Many e-commerce

system builders should have paid more attention to the lessons in [701].)

11.7 What Goes Wrong

Despite the huge amounts of money invested in developing high-tech protection

mechanisms, nuclear control and safety systems appear to suffer from the same kind of

design bugs, implementation blunders, and careless operations as any others.

Recently, Britain’s main waste reprocessing plant at Sellafield, which handles pluto-

nium in multiple-ton quantities, has been plagued with a series of scandals. Waste

documentation has been forged; radiation leaks have been covered up; workers altered

entry passes so they could bring their cars into restricted areas; and there have been

reports of sabotage. The nuclear police force only managed to clear up 17 out of 158

thefts, and 3 out of 20 cases of criminal damage [495]. It now looks as if the facility

will be closed following loss of confidence by customers. The situation in the former

Soviet Union appears to be very much worse. A recent survey of nuclear safekeeping

describes how dilapidated security mechanisms have become in the decade following

the collapse of the USSR, with fissile materials occasionally appearing on the black

market and whistleblowers being prosecuted [401].

There are also a number of problems relating to the reliability of communications

and other systems under attack. How can communication between the president and

many sites around the world be assured? I’ll discuss these problems in Chapter 16,

“Electronic and Information Warfare.”

There have also been a number of interesting high-tech security failures. One exam-

ple is a possible attack, which led to the development of a new branch of crypto-

mathematics—the study of subliminal channels—which is relevant to later discussions

on copyright marking and steganography.
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The story of the invention of subliminal channels is told in [707]. During the Carter

administration, the United States proposed a deal with the Soviet Union under which

each side would cooperate with the other to verify the number of intercontinental bal-

listic missiles. At the same time, in order to protect U.S. Minuteman missiles against a

possible Soviet first strike, it was proposed that 100 missiles be moved randomly

around a field of 1,000 silos by giant trucks, which were designed so that observers

couldn’t determine whether they were moving a missile or not. The Soviets would have

had to destroy all 1,000 silos to make a successful first strike; and in the context of the

proposed arms controls this was thought impractical.

This raised the interesting problem of how to assure the Soviets that there were at

most 100 missiles in the silo field, but without letting them find out which silos were

occupied. The proposed solution was that the silos would have a Russian sensor pack-

age that would detect the presence or absence of a missile, sign this single bit of infor-

mation, and send it via a U.S. monitoring facility to Moscow. The sensors would be

packaged and randomly shuffled by the Americans before emplacement, so that the

Russians could not correlate “full” or “empty” signals with particular silos. The catch

was that only this single bit of information could be sent; if the Russians could smug-

gle any more information into the message, they could quickly locate the full silos—as

it would take only 10 bits of address information to specify a single silo in the field.

(There were many other security requirements to prevent either side cheating, or

falsely accusing the other of cheating: for more details, see [706].)

To understand how subliminal channels work, consider the Digital Signature Algo-

rithm described in Chapter 5. The systemwide values are a prime number p, a 160-bit

prime number q dividing p–1, and a generator g of a subgroup of F*p of order q. The

signature on the message M is r, s where r = (g
k
 (modulo p)) (modulo q), and k is a

random session key. The mapping from k to r is fairly random, so a signer who wishes

to hide 10 bits of information in this signature for covert transmission to an accomplice

can first agree how the bits will be hidden (such as “bits 72–81”) and, second, try out

one value of k after another until the resulting value r has the desired value in the

agreed place.

This could have caused a disastrous failure of the security protocol, as there had

been an agreement that the monitoring messages would be authenticated first with a

Russian scheme, using Russian equipment, then by an American scheme using Ameri-

can equipment. Had the Russians specified a signature scheme like DSA, they could

have leaked the location of the occupied silos and acquired the capability to make a

first strike against the Minuteman force.

In the end, the “missile shell game,” as it had become known in the popular press,

wasn’t used. The cooling of relations following the 1980 election put things on hold.

Eventually, with the Medium Range Ballistic Missile Treaty, statistical methods were

used. The Russians could say, “We’d like to look at the following 20 silos,” and they

would be uncapped for their satellites to take a look. Since the end of the Cold War,

inspections have become much more intimate with inspection flights in manned air-

craft carrying observers from both sides, rather than satellites.

Still, the discovery of subliminal channels was significant. Ways in which they

might be abused include putting HIV status, or the fact of a felony conviction, into a

next-generation digital identity card. Where this is unacceptable, and the card issuer

isn’t sufficiently trusted not to do it, the remedy is to use a completely deterministic

signature scheme such as RSA instead of one that uses a random session key like DSA.
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11.8 Secrecy or Openness?

Finally, the nuclear industry provides a nice case history of secrecy. In the 1930s,

physicists from many countries had freely shared the scientific ideas that led to the de-

velopment of the bomb; but after the “atomic spies” (Fuchs, the Rosenbergs, and oth-

ers) had leaked the designs of the Hiroshima and Nagasaki devices to the Soviet Union,

things swung to the other extreme. The United States adopted a policy that atomic

knowledge was born classified. That meant that if you were within U.S. jurisdiction

and had an idea relevant to nuclear weapons, you had to keep it secret regardless of

whether you held a security clearance or even worked in the nuclear industry. This was

clearly in tension with the Constitution. Things have greatly relaxed since then, as the

protection issues were thought through in detail.

“We’ve a database in New Mexico that records the physical and chemical properties

of plutonium at very high temperatures and pressures,” a former head of U.S. nuclear

security once told me. “At what level should I classify that? Who’s going to steal it,

and will it do them any good? The Russians, they’ve got that data for themselves. The

Israelis can figure it out. Gaddafi? What the hell will he do with it?”

As issues like this got worked though, a surprising amount of the technology has

been declassified and sometimes published, at least in outline. Starting from early

publication at scientific conferences of results on authentication codes and subliminal

channels in the early 1980s, the benefits of public design review have been found to

outweigh the possible advantage to an opponent of knowing broadly the system in use.

Many implementation details are kept secret, though; information that could facili-

tate sabotage, such as which of a facility’s 50 buildings contains the alarm response

force, gets marked unclassified controlled nuclear information (UCNI), adding yet an-

other layer of complexity to the security policy model. There are also numerous nitty-

gritty issues, such as who is authorized to shoot whom (on the same side) and under

what circumstances.

Still, the big picture is open (or so we’re assured); and even before the recent classi-

fication reviews, command and control technologies were explicitly offered to other

states, including hostile ones like the former Soviet Union. Again, the benefits of re-

ducing the likelihood of an accidental war were considered to outweigh the possible

benefits of secrecy. This is a modern reincarnation of Kerckhoffs’ doctrine, first put

forward in the nineteenth century, that the security of a system should depend on its

key, not on its design remaining obscure [454].

11.9 Summary

The command and control of nuclear weapons, and subsidiary activities—from pro-

tecting the integrity of the national command system through physical security of nu-

clear facilities to monitoring international arms control treaties—has made a

disproportionate contribution to the development of security technology.

The quite rational decision that the relevant assets had to be protected almost re-

gardless of the cost drove the development of a lot of mathematics and science that has

found application elsewhere. The particular examples given in this chapter are authen-
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tication codes, shared control schemes, and subliminal channels. We also started to

discuss tamper-resistant devices, about which I’ll have more to say later.

Research Problem

Find interesting applications for technologies developed in this area, such as authenti-

cation codes.

Further Reading

Simmons was a pioneer of authentication codes, shared control schemes, and sublimi-

nal channels. His book [703] remains the best reference for most of the technical mate-

rial discussed in this chapter. A more concise introduction to both authentication and

secret sharing can be found in [738].

One of the best open sources for public information on nuclear weapons is the Fed-

eration of American Scientists [286]. The rationale for the recent declassification of

many nuclear arms technologies is presented in detail on their website [286]. Declassi-

fication issues are discussed in [812], and the publicly available material on PALs has

been assembled by Steve Bellovin [92].

Control failures in nuclear installations are documented in a range of places. The

problems with Russian installations are discussed in [401]; U.S. nuclear safety is over-

seen by the Nuclear Regulatory Commission [593]; and shortcomings with U.K. in-

stallations are documented in the quarterly reports posted by the Health and Safety

Executive [375].
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CHAPTER

12

Security Printing and Seals

A seal is only as good as the man in whose briefcase it’s carried.

—KAREN SPÄRCK JONES

12.1 Introduction

Many computer systems rely to some extent on secure printing, packaging, and seals to

guarantee important aspects of their protection.

• Many software products get some protection against forgery, using tricks such

as holographic stickers that are supposed to tear when removed from the pack-

age. They can raise the costs of large-scale forgery; on the individual scale, a

careful implementation can help with trusted distribution, that is, assuring the

user that the product hasn’t been tampered with since leaving the factory.

• We discussed how monitoring systems, such as taximeters, often use seals to
make it harder for users to tamper with input. No matter how sophisticated the
cryptography, a defeat for the seals can be a defeat for the system.

• Many security tokens, such as smartcards, are difficult to make truly tamper-

proof. It’s often feasible for the opponent to dismantle the device and probe

out the content. The realistic goal for such a system may be tamper evidence,

rather than tamper proofness: if someone dismantles their smartcard and gets

the keys out, that person should not be able to reassemble it into something

that will pass close examination. Security printing can be the key technology

here. If a bank smartcard really is tamper-evident, then the bank might tell its

customers that disputes will be entertained only if they can produce the card

intact. (Banks might not get away with this, though, because consumer protec-

tion lawyers will demand that they deal fairly with honest customers who lose

their cards or have them stolen).
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Quite apart from these direct applications of printing and sealing technology in

computer systems, the ease with which modern color scanners and printers can be used

to make passable forgeries has opened up another front. Banknote printers are now

promoting digital protection techniques [109]. These include invisible copyright marks

that enable forgeries to be detected or even set off alarms in image-processing software

[357]. The digital world and the world of “funny inks” are growing rapidly closer to-

gether.

12.2 History

Seals have a long and interesting history. In the chapter on banking systems, I ex-

plained that bookkeeping systems had their origin in the clay tablets, or bullae, used by

neolithic warehouse keepers in Mesopotamia as receipts for produce. Over 5000 years

ago, the bulla system was adapted to resolve disputes by having the warehouse keeper

bake the bulla in a clay envelope with his mark on it.

In classical times and in ancient China, seals were commonly used to authenticate

documents. They were used in Europe until a few hundred years ago for letters. Even

after signatures had taken over as the principal authentication mechanism, seals lin-

gered on as a secondary mechanism until the nineteenth century. Letters were not

placed in envelopes, but folded over several times and sealed using hot wax and a sig-

net ring.

Seals are still the preferred authentication mechanism for important documents in

China, Japan, and Korea. Elsewhere, traces of their former importance survive in com-

pany seals and notaries’ seals, which are affixed to important documents, and the na-

tional seals that some countries’ heads of state apply to archival copies of legislation.

However, by the middle of the last century, their use with documents had become

less important in the West than their use to authenticate packaging. The move from

loose goods to packaged goods, and the growing importance of brands, created not just

the potential for greater quality control but also the vulnerability that bad people might

tamper with products. The United States suffered an epidemic of tampering incidents,

particularly of soft drinks and medical products, leading to a peak of 235 reported

cases in 1993 [445]. This helped push many manufacturers towards making products

tamper-evident.

The ease with which software can be copied, coupled with consumer resistance to

technical copy-protection mechanisms from the mid-1980s, drove software companies

to rely increasingly on packaging to deter counterfeiters. That was just part of a much

larger market in preventing the forgery of high-value, branded goods, ranging from

perfume and cigarettes through aircraft spares to pharmaceuticals.

In short, huge amounts of money have been poured into seals and other kinds of se-

cure packaging. Unfortunately, most seals are still fairly easy to defeat.

The typical seal consists of a substrate with security printing, which is then glued or

tied around the object being sealed, so we must look first at security printing. If the

whole seal can be forged easily, then no amount of glue or string is going to help.
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12.3 Security Printing

The introduction of paper money into Europe by Napoleon in the early 1800s, and of

other valuable documents such as bearer securities and passports, kicked off a battle

between security printers and counterfeiters that exhibits many of the characteristics of

a coevolution of predators and prey. Photography (1839) helped the attackers, then

color printing and steel etching (1850s) the defenders. In recent years, the color copier

and the cheap scanner have been countered by holograms and other optically variable

devices. Sometimes, the same people are involved on both sides, as when a govern-

ment’s intelligence services try to forge another government’s passports (and in some

cases, even its currency, as both sides did in World War II).

On occasion, the banknote designers succumb to the Titanic effect, of believing too

much in the latest technology, and place too much faith in some particular trick. An

example comes from the forgery of British banknotes in the 1990s. These notes have a

window thread—a metal strip through the paper about 1 mm wide that comes to the

paper surface every 8 mm. When you look at the note in reflected light, it appears to

have a dotted metallic line running across it, but when you hold it up and view it

through transmitted light, the metal strip is dark and solid. Duplicating this was

thought to be hard, but a criminal gang came up with a beautiful hack. They used a

cheap hot-stamping process to lay down a metal strip on the surface of the paper, then

printed a pattern of solid bars over it using white ink to leave the expected metal pat-

tern visible. At their trial, they were found to have forged tens of millions of pounds’

worth of notes over a period of several years [299]. (There may also have been a com-

placency issue here, as European banks tend to believe that forgers will go for the U.S.

notes, which have only three colors.)

12.3.1 Threat Model

As always, we have to evaluate a protection technology in the context of a model of the

threats. Broadly speaking, the threat can be from a properly funded organization (such

as a government trying to forge another nation’s banknotes), from a medium-sized or-

ganization (such as a criminal gang forging several million dollars a month, or a dis-

tributor forging labels on vintage wines) to amateurs using equipment they have at

home or in the office.

In the banknote business, the big growth area in the last years of the twentieth cen-

tury was in amateur forgery. Knowledge had spread in the printing trade of how to

manufacture high-quality forgeries of many banknotes, which one might have thought

would increase the level of professional forgery. But the spread of high-quality color

scanners and printers has put temptation in the way of many people who would never

have dreamed of getting into forgery in the days when it required messy wet inks. In

the past, amateurs were thought a minor nuisance, but since about 1997 or 1998, they

have accounted for most of the forgeries detected in the United States (it varies from

one country to another; most U.K. forgers use traditional litho printing, while in Spain,

as in the United States, the inkjet printer has taken over [393]). Amateur forgers are

hard to combat as there are many of them; they mostly work on such a small scale that

their product takes a long time to come to the attention of authority, and they are less

likely to have criminal records. The notes they produce are often not good enough to

pass a bank teller, but are uttered in places such as dark and noisy nightclubs.
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The industry distinguishes three different levels of inspection that a forged banknote

or document may or may not pass [765].

A primary or first-level inspection is one performed by an untrained, inexperienced per-

son, such as a member of the public or a new cashier at a store. Very often, the pri-

mary inspector has no motivation, or even a negative motivation. If he gets a

banknote that feels slightly dodgy, he may try to pass it on without looking at it

closely enough to have to decide between becoming an accomplice or going to the

hassle of reporting it.

A secondary or second-level inspection is one performed in the field by a competent and

motivated person, such as an experienced bank teller in the case of banknotes or a

trained manufacturer’s inspector in the case of product labels. This person may have

some special equipment such as an ultraviolet lamp, a pen with a chemical reagent, or

even a scanner and a PC. However, the equipment will be limited in both cost and

bulk, and will be completely understood by serious counterfeiters.

A tertiary or third-level inspection is one performed at the laboratory of the manufac-

turer or the note-issuing bank. The experts who designed the security printing (and

perhaps even the underlying industrial processes) will be on hand, with substantial

equipment and support.

The executive summary of the state of the security printing art is that getting a

counterfeit past a primary inspection is usually easy, whereas getting it past tertiary

inspection is usually impossible if the product and the inspection process have been

competently designed. Thus, secondary inspection is the battleground (except in a few

applications such as banknote printing, where attention is now being paid to the pri-

mary level); and the main limits on what sort of counterfeits can be detected by the

inspector in the field have to do with the bulk and the cost of the equipment needed.

12.3.2 Security Printing Techniques

Traditional security documents utilize a number of printing processes, including:

• Intaglio, a process where an engraved pattern is used to press the ink on to the

paper with great force, leaving a raised ink impression with high definition.

This is often used for scroll work on banknotes and passports.

• Letterpress in which the ink is rolled on raised type which is then pressed on
to the page, leaving a depression. The numbers on banknotes are usually
printed this way, often with numbers of different sizes and using different inks
to prevent off-the-shelf numbering equipment being used.

• Special printing presses, called Simultan presses, which transfer all the inks,
for both front and back, to the paper simultaneously. This means that the
printing on front and back can be accurately aligned; patterns can be printed
partly on the front and partly on the back so that they match up perfectly when
the note is held up to the light (see-through register). Reproducing this is be-
lieved too hard for cheap color printing equipment. The Simultan presses also
have special ducting to make ink colors vary along the line (rainbowing).
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• Rubber stamps which are used to endorse documents, or to seal photographs to
them.

• Embossing and laminates which are also used to seal photographs, and on
bank cards to push up the cost of forgery. Embossing can be physical, or re-
quire laser engraving techniques to burn a photo into an ID card.

• Watermarks which are an example of putting protection features in the paper.

They are more translucent areas inserted into the paper by varying its thick-

ness when it is manufactured. There are many other special properties in use,

such as fluorescent threads. An extreme example is the Australian $10 note,

which is printed on plastic and has a see-through window.

More modern techniques include:

• Optically variable inks, such as the patches on Canadian $20 bills that change

color from green to gold depending on the viewing angle.

• Inks with magnetic or photoacoustic properties.

• Printing features visible only with special equipment, such as the microprint-
ing on U.S. bills, which requires a magnifying glass to see, and printing in ul-
traviolet, infrared, or magnetic inks (the last of these being used in the black
printing on U.S. bills).

• Metal threads and foils, from simple iridescent features to foil color copying to
foils with optically variable effects such as holograms and kinegrams, as found
on British £20 and £50 notes. Holograms are typically produced optically, and
look like a solid object behind the film, while kinegrams are produced by
computer and may show a number of startlingly different views from slightly
different angles.

• Screen traps such as details too faint to scan properly, and alias band struc-
tures which contain detail at the correct size to form interference effects with
the dot separation of common scanners and copiers.

• Digital copyright marks which may vary from images hidden by microprinting
their Fourier transforms directly, to spread spectrum signals that will be rec-
ognized by a color copier, scanner, or printer, and cause it to stop.

• Unique stock, such as paper that has had magnetic fibers randomly spread

through it during manufacture so that each sheet has a characteristic pattern

that can be digitally signed and printed on the document using some kind of

barcode.

For the design of the new U.S. $100 bill, see [566]; and for a study of counterfeit

banknotes, with an analysis of which features provide what evidence, see [766]. In

general, banknotes’ genuineness cannot readily be confirmed by the inspection of a

single security feature. Many of the older techniques, and some of the newer, can be

mimicked in ways that will pass primary inspection. The tactile effects of intaglio and

letterpress printing wear off, so crumpling and dirtying the forged note is standard

practice, and skilled banknote forgers mimic watermarks with faint gray printing

(though watermarks remain surprisingly effective against amateurs). Holograms and

kinegrams can be vulnerable to people using electrochemical techniques to make me-

chanical copies; or villains may originate their own master copies from scratch.
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When a hologram of Shakespeare was introduced on U.K. check guarantee cards in

1988, I visited the factory as the representative of a bank and was told proudly that, as

the industry had demanded a second source of supply, they had given a spare set of

plates to a large security printing firm—and this competitor of theirs had been quite

unable to manufacture acceptable foils. (The Shakespeare foil was the first commer-

cially used diffraction hologram to be in full color and to move as the viewing angle

changed). Surely a device that couldn’t be forged, even by a major security printing

company with access to genuine printing plates, must give total protection? But when I

visited Singapore seven years later, I bought a similar (but larger) hologram of Shake-

speare in the flea market. This was clearly a boast by the maker that he could forge

U.K. bank cards if he wished to. By then, a police expert estimated that there were

more than 100 forgers in China with the skill to produce passable holograms [591].

The technology constantly moves on; and the kind of progress that aids the villain

can come from such unexpected directions that technology controls have little effect.

For example, ion beam workstations—machines that can be used to create the masters

for kinegrams—cost many millions of dollars in the mid-1990s, but have turned out to

be so useful in metallurgical lab work that sales have shot up, prices have plummeted,

and there are now many bureaus that rent out machine time for a few hundred dollars

an hour. So it is imprudent to rely on a single protection technology. Even if one de-

fense is completely defeated (such as if it becomes easy to make mechanical copies of

metal foils), you have at least one completely different trick to fall back on (such as

optically variable ink).

But designing a security document is much harder than this. There are complex

trade-offs between protection, aesthetics and robustness, and it is coming to be realized

that, for many years, designers had their focus on preventing forgeries passing secon-

dary or tertiary inspection (the technological focus), rather than on the more common

primary inspection (the business focus). Much time was spent handwringing about the

difficulty of training people to examine documents properly, while not enough atten-

tion was paid to studying how the typical user of a product such as a banknote actually

decides subconsciously whether it’s acceptable. This defect is now receiving serious

attention.

The lessons drawn so far are [765]:

• Security features should convey a message relevant to the product. So it’s

better to use iridescent ink to print the denomination of a banknote than some

obscure feature of it.

• They should obviously belong where they are, so that they become embedded
in the user’s cognitive model of the object.

• Their effects should be obvious, distinct and intelligible.

• They should not have existing competitors that can provide a basis for imita-
tions.

• They should be standardized.
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This work deserves much wider attention, as the banknote community is one of the

few subdisciplines of the trade to have devoted a lot of thought to security usability.

(We’ll see later in Chapter 23 that one of the main failings of current evaluation

schemes for security products is that usability gets ignored.) When it comes to docu-

ments other than banknotes, such as passports, there are also issues relating to political

environment of the country and the mores of the society in which they will be used

[546].

Usability also matters during second-line inspection, but here the issues are more

subtle, focusing on the process that the inspector has to follow to distinguish genuine

from fake.

With banknotes, the theory is that you design a note with perhaps 20 features that

are not advertised to the public. A number of features are made known to secondary

inspectors such as bank staff. In due course, these become known to the forgers. As

time goes on, more and more features are revealed. Eventually, when they are all ex-

posed, the note is withdrawn from circulation and replaced. This may become harder as

the emphasis switches from manual to automatic verification. A thief who steals a

vending machine, dismantles it, and reads out the software, gains a complete descrip-

tion of the checks currently in use. Having once spent several weeks or months doing

this, he will find it much easier the second time around. So when the central bank tells

manufacturers the secret polynomial for the second-level digital watermark (or what-

ever), and this gets fielded, he can steal another machine and get the new data within

days. So failures can be more sudden and complete than with manual systems, and the

cycle of discovery could turn more quickly than in the past.

With product packaging, the typical business model is that samples of forgeries are

found and taken to the laboratory, where the scientists find some way in which they are

different—such as because the hologram is not quite right. Kits are then produced for

field inspectors to go out and track down the source. If these kits are bulky and expen-

sive, fewer of them can be fielded. If there are many different forgery detection devices

from different companies, then it is hard to persuade customs officers to use any of

them. Ideas such as printing individual microscopic ultraviolet barcodes on plastic

product shrinkwrap often fail because of the cost of the microscope, laptop, and online

connection needed to do the verification. As with banknotes, you can get a much more

robust system with multiple features, but this pushes the cost and bulk of the reading

device up still further. There is now a substantial research effort aimed at developing

unique marks, such as special chemical coatings containing proteins or even DNA

molecules, which encode hidden serial numbers and which might enable one type of

verification equipment to check many different products.

With financial instruments, and especially checks, alteration is a much bigger prob-

lem than copying or forgery from scratch. In numerous scams, villains got genuine

checks from businesses by tricks such as by prepaying deposits or making reservations

in cash, then cancelling the order. The victim duly sends out a check, which is altered

to a much larger amount, often using readily available domestic solvents. The standard

counter-measure is background printing using inks that discolor and run in the pres-

ence of solvents. But the protection isn’t complete because of tricks for removing laser

printer toner (and even simple things like typewriter correction ribbon). One enter-

prising villain even presented his victims with pens that had been specially selected to

have easily removable ink [5].
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While the security literature says a lot about debit card fraud (as the encryption sys-

tems that ATMs use are interesting to techies), and a little about credit card fraud (as

there’s a lot of talk about credit card fraud on the Net), very little has been written

about check fraud. Yet check fraud is many times greater in value than credit card

fraud, and debit cards are almost insignificant by comparison with either. Although

check fraud is critically important, the research community considers it to be boring.

The practical problem for the banks is the huge volume of checks processed daily.

This makes scrutiny impossible except for very large amounts—and the sums stolen by

small-time check fiddlers may be low by the standards of the victim organization (say,

in the thousands to tens of thousands of dollars). In the Far East, where people use a

personal chop or signature stamp to sign checks instead of a manuscript signature, low-

cost automatic checking is possible [395]. However, with handwritten signatures,

automated verification with acceptable error rates is still beyond the state of the art; I’ll

discuss this in Section 13.2. In some countries, such as Germany, check frauds have

been largely suppressed by businesses making most payments using bank transfers

rather than checks (even for small customer refunds). Making such a change involves

overcoming huge cultural inertia, but perhaps the lower costs of online payments (cents

rather than tens of cents) will persuade business in most countries to make the switch

eventually.

Alterations are also a big problem for the typical bank’s credit card department. It is

much simpler to alter the magnetic strip on a card than to re-originate the hologram. In

fact, during the early 1980s, the system was to verify a card’s magnetic strip data using

an online terminal, then collect the actual transaction using a zip-zap machine. The

effect was that the authorization was done against the card number on the strip, while

the transaction was booked against the card number on the embossing. So villains

would take stolen cards and reencode them with the account details of cardholders with

high credit limits—captured, for example, from waste carbons in the bins outside fancy

restaurants—and use these to authorize transactions which would then be billed to the

stolen card’s account. The bank would then repudiate the transaction, as the authoriza-

tion code didn’t match the recorded account number. So banks started fighting with

their corporate customers over liability, and the system was changed so that drafts were

captured electronically from the magnetic strip.

Of course, alterations aren’t just a banking problem. Most fake travel documents are

altered rather than counterfeited from scratch: names are changed, photographs are re-

placed, or pages are added and removed.

Finally, one promising technology is the use of optically readable digital signatures

instead of traditional serial numbers. These can bind printed matter either to the un-

derlying substrate or to information about enclosed materials. When I introduced digi-

tal signatures in Section 5.3.5, I mentioned that the United States and some other

countries were introducing a new postal meter system that prints out stamps, known as

indicia, with contain 2-D barcodes. These contain the amount of postage, the sender,

and recipient post codes, the serial number of the postal meter, and the date. Although,

in theory, a stamp could be pulled off one envelope and put on another—or just photo-

copied—this arrangement is enough to stop the kind of frauds of greatest concern to

the U.S. Postal Service, which involve junk mailers bribing postal employees to intro-

duce large sacks of mail into the system [753]. A sample of the indicia being intro-

duced is reproduced in Figure 12.1.
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Figure 12.1 The new format for U.S. postal meters (courtesy of Symbol Technologies).

12.4 Packaging and Seals

This brings us to the added problems of packaging and seals.

Not all seals work by gluing a substrate with security printing to the object being

sealed. I mentioned the wire and lead seals used to prevent tampering with truck speed

sensors, and there are many products following the same general philosophy but using

different materials, such as plastic straps, which are supposed to be easy to tighten but

hard to loosen without cutting. I also mentioned the special chemical coatings, micro-

scopic barcodes, and other tricks used to make products or product batches traceable.

However, most of the seals in use work by applying some kind of security printing to a

substrate, then gluing this to the material to be protected.

12.4.1 Substrate Properties

Some systems add random variability to the substrate material. Recall the trick of

loading paper with magnetic fibers; there are also watermark magnetics, in which a

random high-coercivity signal is embedded in a card strip that can subsequently be

read and written using standard low-coercivity equipment without the unique random

pattern being disturbed. Watermark magnetics are used in bank cards in Sweden, in

telephone cards in Korea, and in entry control cards in some of the buildings in my

university.

A similar idea is used in arms control. Many materials have surfaces that are unique,

or that can be made so by eroding them with a small explosive charge. This makes it

easy to identify capital equipment such as heavy artillery, where identifying each gun

barrel is enough to prevent either side from cheating. The surface pattern of the gun

barrel is measured using laser speckle techniques, and either recorded in a log or at-

tached to the device as a machine-readable digital signature [703].
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Similar techniques are being developed for postal systems. An alignment grid is

printed on an envelope, and a small microscope is used to observe the paper fibers

there. A paper fibre pattern is extracted and recorded in the postal franking mark,

which is digitally signed. This has the potential to enable sheets of ordinary paper to

become recognizably unique, like the special fiber-loaded papers just mentioned, only

much more cheaply.

12.4.2 The Problems of Glue

However, many seals do work by gluing security-printed matter on to the target object.

This raises the question of how the beautiful piece of iridescent printed art can be at-

tached to a crude physical object in a way that is difficult to remove. The usual answer

is to use a glue that is stronger than the seal substrate itself, so that the seal will tear or

at least deform noticeably if pulled away.

However, in most products, the implementation is rather poor. Many seals are vul-

nerable to direct removal using only hand tools and a little patience. You can experi-

ment with this by taking a sharp knife to the next few letters that arrive in self-seal

envelopes. Many of these envelopes are supposed to tear, rather than peel open; the

flap may have a few vertical slots cut into it for this purpose. But this hoped-for tamper

evidence usually assumes that people will open them by pulling the envelope flap back

carelessly from the body. By raising the flap slightly and working the knife back and

forth, it is often possible to cut the glue without damaging the flap, and thus open the

envelope without leaving suspicious marks. (Some glues should be softened first using

a hairdryer, or made more fragile by freezing.) The result may be an envelope that

looks slightly crumpled on careful examination, but crumples can be ironed out. This

attack usually works against a primary inspection, probably fails a tertiary inspection,

and may well pass secondary inspection: crumples happen in the post anyway.

Many of the seals on the market can be defeated using similarly simple techniques.

For example, there is a colored adhesive tape that, when ripped off, leaves behind a

warning such as “Danger” or “Do not use.” The colored layer is sandwiched between

two layers of glue, and the bottom of these is stronger where the color is supposed to

remain behind if the seal is tampered with. But the tape behaves in this way only if it is

pulled from above. By cutting from the side, one can remove it intact and reuse it

[479].

12.5 Systemic Vulnerabilities

We turn now from the specific threats against particular printing tricks, glues, and

markets to the system-level threats, of which there are many.

A possibly useful example is in Figure 12.2. At our local swimming pool, congestion

is managed by issuing swimmers with wristbands during busy periods. A different

color is issued every twenty minutes or so, and from time to time all people with bands

of a certain color are asked to leave. The band is made of waxed paper. At the end it

has a printed pattern and serial number on one side and glue on the other; the paper is

crosscut with the result that it is destroyed if you tear it off carelessly. (It’s very similar

to the luggage seals used at some airports.)
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The simplest attack is to phone up the supplier; boxes of 100 wristbands cost about

$8. If you don’t want to spend money, you can use each band once, then ease it off

gently by pulling it alternately from different directions, giving the result shown in the

photo. The printing is crumpled, though intact; the damage isn’t such as to be visible

by a poolside attendant, and could have been caused by careless application. The point

is that the damage done to the seal by fixing it twice, carefully, is not easily distin-

guishable from the effects of a naive user fixing it once. (An even more powerful at-

tack is to not remove the backing tape from the seal at all, but use some other

means—a safety pin, or your own glue—to fix it.)

Figure 12.2 A wristband seal from our local swimming pool.

Despite this, the wristband seal is perfectly fit for purpose. There is little incentive

to cheat: people in such intensive training that they swim for two hours at a stretch use

the pool when it’s not congested. They also buy a season ticket, so they can go out at

any time to get a band of the current color. But it illustrates many of the things that can

go wrong. The customer is the enemy; it’s the customer who applies the seal; the ef-

fects of seal re-use are indistinguishable from those of random failure; unused seals

can be bought in the marketplace; counterfeit seals could also be manufactured at little

cost; and effective inspection is infeasible. (And yet this swimming pool seal is still

harder to defeat than many sealing products sold for high-value industrial applica-

tions.)

12.5.1 Peculiarities of the Threat Model

We’ve seen systems where your customer is your enemy, as in banking. In military

systems, the enemy could be a single disloyal soldier, or the other side’s special forces

trying to sabotage your equipment. In nuclear monitoring systems it can be the host

government trying to divert fissile materials from a licensed civilian reactor.
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But some of the most difficult sealing tasks arise in commerce. Their difficulty

arises from the fact that it is the enemy who will apply the seal. A typical application is

where a company subcontracts the manufacture of some of its products, and is afraid

that the contractor will produce more of the goods than agreed. Overproduction is the

main source by value of counterfeit goods worldwide; the perpetrators have access to

the authorized manufacturing process and raw materials, and gray markets provide

natural distribution channels. Even detecting such frauds—let alone proving them in

court—can be hard.

A typical solution for high-value goods, such as cosmetics, may involve buying

packaging materials from a number of different companies, whose identities are kept

secret from the firm operating the final assembly plant. Some of these materials may

have serial numbers embedded in various ways (such as by laser engraving in bottle

glass or by printing on cellophane using inks visible only under UV light). There may

be an online service whereby the manufacturer’s field agents can verify the serial num-

bers of samples purchased randomly in shops; or there might be a digital signature on

the packaging that links all the various serial numbers together for offline checking.

There are limits on what seals can achieve in isolation. Sometimes the brand owner

himself is the villain, as when a vineyard falsely labels as vintage an extra thousand

cases of wine that were actually made from bought-in blended grapes. So bottles of

South African wine all carry a government-regulated seal with a unique serial number;

here, the seal doesn’t prove the fraud, but makes it harder for a dishonest vintner to

evade the other controls such as inspection and audit. So sealing mechanisms usually

must be designed with the audit, testing, and inspection process in mind.

Inspection can be trickier than one would think. The distributor who has bought

counterfeit goods on the gray market, believing them to be genuine, may set out to de-

ceive the inspectors without any criminal intent. Where gray markets are an issue, in-

spectors should expect to see only authorized products in distributors’ stockrooms,

while products bought from “Fred” will be pushed out rapidly to the customers. Also,

the distributor may be completely in the dark; it could be his staff who are peddling the

counterfeits. In a recent high-profile case, staff at a major airline bought counterfeit

perfumes, watches, and the like in the Far East, sold them in-flight to customers, and

trousered the proceeds. The stocks in the airline’s warehouses (and in the duty-free

carts after the planes had landed) were all completely genuine. So it is usually essential

to have agents go out and make sample purchases, and the sealing mechanisms must

support this.

12.5.2 Staff Diligence

Whether the seal adheres properly to the object being sealed may also depend on the

honesty of low-level staff. I mentioned in Section 10.4.1.2 how in truck speed limiter

systems, the gearbox sensor is secured in place using a piece of wire on which the cali-

brating garage crimps a lead disc in place with sealing tongs. The defeat is to bribe the

garage mechanic to wrap the wire the wrong way, so that when the sensor is unscrewed

the wire will loosen, instead of tightening and breaking the seal. There is absolutely no

need to go to amateur sculptor classes to learn to take a cast of the seal and forge a pair

of sealing tongs out of bronze (unless you want to save on bribes, or to frame the ga-

rage).
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The people who apply seals may be careless as well as corrupt. In the last few years,

some airports have taken to applying tape seals to passengers’ checked bags after X-

raying them using a machine near check-in queue. On about half of the occasions this

has been done to my baggage, the tape has been poorly fixed: it didn’t cross the fas-

tener between the suitcase and the lid, or it came off at one end, or the case had several

compartments big enough to hold a bomb but only one of their fasteners was sealed.

Carelessness and corruption interact. If enough of the staff applying a seal are careless,

then if I bribe one of them the defect doesn’t of itself prove dishonesty.

12.5.3 The Effect of Random Failure

There are similar effects when seals break for completely innocent reasons. For exam-

ple, speed limiter seals often break when a truck engine is steam-cleaned, so a driver

will not be prosecuted for tampering if a broken seal is all the evidence the traffic po-

liceman can find. (Truck drivers know this.)

There are other consequences, too. For example, after opening a too-well-sealed en-

velope, a villain can close it again with a sticker saying ‘Opened by customs’ or ‘Burst

in transit—sealed by the Post Office’. He could even just tape it shut and scrawl ‘de-

livered to wrong address try again’ on the front.

The consequences of such failures and attacks have to be thought through carefully.

If the goal is to prevent large-scale forgery of a product, occasional breakages may not

matter, but if it is to support prosecutions, spontaneous seal failure can be a serious

problem. In extreme cases, placing too much trust in the robustness of a seal might

lead to a miscarriage of justice, and completely undermine the sealing product’s evi-

dential (and thus commercial) value.

12.5.4 Materials Control

Another common vulnerability is that supplies of sealing materials are uncontrolled.

Corporate seals are a nice example. In Britain, these typically consist of two metal em-

bossing plates that are inserted into special pliers. There are several suppliers who

manufacture the plates, and a lawyer who has ordered hundreds of them tells me that

no check was ever made. Although it might be slightly risky to order a seal for “Micro-

soft Corporation,” it should be easy to have a seal made for almost any less-well-

known target—just write a letter that looks like it came from a law firm.

Or consider the plastic envelopes used by some courier companies, which are de-

signed to stretch and tear when opened. This is a promising technology, but as long as

the company’s regular customers have supplies of envelopes lying around (and they

can also be obtained at the depot) it may not deter an attacker from tampering with a

package either before, or after, its trip through the courier’s network.

It has for some time been an “urban myth” that the police and security services can-

not open envelopes tracelessly if the flaps have been reinforced with sticky tape that

has been burnished down by rubbing it with a thumbnail (I recently received some pa-

perwork from a bank that had been sealed in just this way). This is not entirely believ-

able [814] —even if no police lab has invented a magic solvent for sellotape glue, the

nineteenth century Tsarist police already used forked sticks to wind up letters inside a

sealed envelope so that they could be pulled out, read, and then put back [428].
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Even if sellotape were guaranteed to leave a visible mark on an envelope, one would

have to assume that the police’s envelope-steaming department has no stock of compa-

rable envelopes, and that the recipient would be observant enough to spot a forged en-

velope. Given the ease with which an envelope with a company logo can be scanned

and then duplicated using desktop publishing equipment, these assumptions are fairly

ambitious. In any case, the arrival of high-quality desktop color printers has caused a

lot of organizations to stop using preprinted stationery for all their letters. This makes

the forger’s job much easier.

12.5.5 Not Protecting the Right Things

I mentioned how credit cards were vulnerable in the late 1980s: the authorization ter-

minals read the magnetic strip, while the payment draft capture equipment used the

embossing; Crooks who changed the mag strip but not the embossing defeated the

system.

There are also attacks involving partial alterations. For example, as the hologram on

a credit card covers only the last four digits, the attacker could always change the other

twelve. When the algorithm the bank used to generate credit card numbers was known,

this involved only flattening, reprinting, and re-embossing the rest of the card, which

could be done with cheap equipment.

Such attacks are now rare, because villains now realize that very few shop staff

check that the account number printed on the slip is the same as that embossed on the

card. So the account number on the strip need bear no resemblance at all to the num-

bers embossed on the face. In effect, all the hologram says is, “This was once a valid

card.”

Finally, food and drug producers often protect products against tampering by using

shrinkwrap or blister packaging, which (if well designed) can be moderately difficult

to forge well enough to withstand close inspection. However when selecting protective

measures one has to be very clear about the threat model—is it counterfeiting, altera-

tion, duplication, simulation, diversion, dilution, substitution, or something else [615]?

If the threat model is a psychotic with a syringe full of poison, then simple blister or

shrink-wrap packaging is not quite enough. What’s really needed is a tamper-sensing

membrane, which will react visibly and irreversibly to even a tiny penetration. (Such

membranes exist but are still too expensive for consumer products. I’ll discuss one of

them in the chapter on tamper resistance.)

12.5.6 The Cost and Nature of Inspection

There are many stories in the industry of villains replacing the hologram on a bank

card with something else—say a rabbit instead of a dove—whereupon the response of

shopkeepers is just to say: “Oh, look, they changed the hologram!” This isn’t a criti-

cism of holograms; the issue is much deeper, involving applied psychology and public

education. Bankers worry when new notes are being introduced—the few weeks before

everyone is familiar with the new notes can be a bonanza for forgers. (This is one of

the big worries with the planned introduction of the new Euro currency notes.)
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A related problem is the huge variety of passports, driver’s licenses, letterheads,

corporate seals, and variations in packaging. Without samples of genuine articles for

comparison, inspection is more or less limited to the primary level, so forgery is easy.

Even though bank clerks have books with pictures of foreign banknotes, and immigra-

tion officers similarly have pictures of foreign passports, there is often only a small

amount of information on security features; and in any case the absence of real physi-

cal samples means that the tactile aspects of the product go unexamined.

As already mentioned, the limiting factor with many technologies is the cost of sec-

ond-line inspection in the field. If detecting a forged bottle of perfume requires equip-

ment costing $5,000 (e.g., a laptop with a scanner, a UV lamp, and a special

microscope), then this may be viable for an exclusive perfume sold only through a few

upmarket stores, but is less likely to be viable for medium-value products and is very

unlikely to be distributed to all customs posts and market inspectors worldwide.

The ideal remains a seal that can be checked by the public or by staff with minimal

training. Firms that take forgery seriously, such as large software companies, are

starting to adopt many of the techniques pioneered by banknote printers. But high-

value product packages are harder to protect than banknotes. Familiarity is important:

people get a “feel” for things they handle frequently, such as local money, but are

much less likely to notice something wrong with a package they see only rarely, such

as a car part or a medicine bottle. Humans are very vulnerable when they see some-

thing for the first or only time—such as the packaging on the latest version of a com-

puter operating system.

12.6 Evaluation Methodology

This section offers a systematic way to evaluate a seal product for a given application.

Rather than just asking, “Can you remove the seal in ways other than the obvious

one?” we need to follow it from design and field test through manufacture, application,

use, checking, destruction, and finally retirement from service. Here are some of the

questions that should be asked:

• Has anybody who really knows what they’re doing tried hard to defeat the

system? And what’s a defeat anyway—tampering, forgery, alteration, destruc-

tion of evidential value, or a “PR” attack on your commercial credibility?

• What is the reputation of the team that designed it—did they have a history of
successfully defeating opponents’ products?

• How long has the system been in the field, and how likely is it that technologi-
cal progress will make a defeat significantly easier?

• How widely available are the sealing materials—who else can buy, forge, or
steal supplies?

• Will the person who applies the seal be careless or corrupt?
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• Does the way the seal will be used protect the right part (or enough) of the
product?

• What are the quality issues? What about the effects of dirt, noise, vibration,
cleaning, and manufacturing defects? Will the product have to survive
weather, fuel splashes, being carried next to the skin, or being dropped in a
glass of beer? Is it supposed to respond visibly if such a thing happens? How
often will there be random seal failures, and what effect will they have?

• If a seal is forged, who’s supposed to spot this? If it’s the public, then how
often will they see genuine seals? Has the vendor done experiments, that pass
muster by the standards of applied psychology, to establish the likely false ac-
cept and false reject rates? If it’s your inspectors in the field, how much will
their equipment and training cost?

• Are there any evidential issues? If you’re going to end up in court, are there
experts other than your own (or the vendor’s) on whom the other side can
rely? If the answer is no, then is this a good thing or a bad thing? Why should
the jury believe you, the system’s inventor, rather than the sweet little old lady
in the dock? Will the judge let her off on fair trial grounds—because rebutting
your technical claims would be an impossible burden of proof for her to dis-
charge? (This is exactly what happened in Judd vs. Citibank, the case that set-
tled U.S. law on phantom withdrawals from cash machines [427].)

• Once the product is used, how will the seals be disposed of? Are you worried

that someone might recover a few old seals from the trash?

When considering whether the people who apply and check the seals will perform

their tasks faithfully and effectively, it is important to analyze motive, opportunity,

skills, audit, and accountability. Be particularly cautious where the seal is applied by

the enemy (as in the case of contract manufacture) or by someone open to corruption

(such as the garage mechanic eager to win the truck company’s business). Finally,

think through the likely consequences of seal failure and inspection error rates, not just

from the point of view of the client company and its opponents, but also from the

points of view of innocent system users and of legal evidence.

Of course, this whole-lifecycle assurance process should also be applied to computer

systems in general. I’ll talk about that some more in Part 3.

12.7 Summary

Most commercially available sealing products are relatively easy to defeat, particularly

where seal inspection is performed casually by untrained personnel. Sealing has to be

evaluated over the lifetime of the product, from manufacture through materials control,

application, verification, and eventual destruction; hostile testing is highly advisable in

critical applications. Seals often depend on security printing, about which broadly

similar comments may be made.
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Research Problems

A lot of money is currently being spent on research and product development in this

area. The problem appears to be that much of it isn’t being spent effectively, or that

third-rate products continue to dominate the market because of low cost and user igno-

rance. An important contribution could be a better evaluation methodology for seals,

and for security printing in general. More results on how specific techniques and prod-

ucts can be defeated might also be useful in undermining suppliers’ complacency.

Further Reading

The definitive textbook on security printing is van Renesse [765], which goes into not

just the technical tricks, such as holograms and kinegrams, but how they work in a va-

riety of applications from banknote printing through passports to packaging. This is

very important background reading.

I don’t know of a definitive textbook on seals. Most products are proprietary, and

depend for their success on criminals’ ignorance—which is one of the shakiest founda-

tions I know of. One of the most systematic efforts to overcome this ignorance can be

found in a series of publications by the seal vulnerability assessment team at Los Ala-

mos National Laboratory (e.g., [422]).
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CHAPTER

13

Biometrics

And the Gileadites took the passages of Jordan before the

 Ephraimites: and it was so, that when those Ephraimites which were

 escaped said. Let me go over; that the men of Gilead said unto him,

 Art thou an Ephraimite? If he said, Nay; Then said they unto him, Say

 now Shibboleth: and he said Sibboleth: for he could not frame to

 pronounce it right. Then they took him, and slew him at the passages

 of the Jordan: and there fell at that time of the Ephraimites forty and

 two thousand.

—JUDGES 12:5–6

13.1 Introduction

The above quotation may be the first recorded military use of a security protocol in

which the authentication relies on a property of the human being—in this case his ac-

cent. (There had been less formal uses before this, as when Isaac tried to identify Esau

by his bodily hair, but got deceived by Jacob; or indeed when people recognized each

other by their faces, which I’ll discuss later.)

Biometrics identify people by measuring some aspect of individual anatomy or

physiology (such as your hand geometry or fingerprint), some deeply ingrained skill,

or other behavioral characteristic (such as your handwritten signature), or something

that is a combination of the two (such as your voice).

Over the last quarter century or so, people have developed a large number of biomet-

ric devices; this rapidly growing market is now worth about $50 million a year [414].

Earlier I mentioned the use of hand geometry to identify staff at a nuclear reactor in the

late 1970s. But the best established biometric techniques predate the computer age al-

together—namely the use of handwritten signatures, facial features, and fingerprints.

We will look at these first, then go on to the fancier, more high-tech techniques.
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13.2 Handwritten Signatures

Handwritten signatures had been used in classical China, but carved personal seals

were considered to be higher status, and are still used for serious transactions in China,

Japan, and Korea to this day. Europe was the other way around: seals had been used in

medieval times, but as writing spread after the Renaissance, people increasingly just

wrote their names to signify assent to business and other documents. Over time, the

signature became accepted as the standard way of doing this in the West. Every day,

billions of dollars’ worth of contracts are concluded by handwritten signatures on

documents, and how these can be replaced by electronic signatures is a hot policy and

technology issue.

How secure are handwritten signatures?

The probability that a forged signature will be accepted as genuine mainly depends

on the amount of care taken when examining it. Many bank card transactions in stores

are accepted without even a glance at the specimen signature on the card—so much so

that many Americans do not even bother to sign their credit cards. (This can cause

problems when traveling in more punctilious countries such as Germany or Switzer-

land.) But even diligent signature checking doesn’t reduce the risk of fraud to zero. An

experiment showed that 105 professional document examiners, who each did 144 pair-

wise comparisons, misattributed 6.5% of documents. Meanwhile, a control group of 34

untrained people of the same educational level got it wrong 38.3% of the time [431],

and the nonprofessionals’ performance couldn’t be improved by giving them monetary

incentives [432]. Errors made by professionals are a subject of continuing discussion in

the industry, but are thought to reflect the examiner’s assumptions and preconceptions

[81]. As the participants in these tests were given reasonable handwriting samples

rather than just a signature, it seems fair to assume that the results for verifying signa-

tures on checks or credit card vouchers would be significantly worse.

So handwritten signatures are surrounded by a number of conventions and special

rules which vary from one country to another. For example, to buy a house in England

using money borrowed from a bank of which you’re not an established customer, the

procedure is to go to a lawyer’s office with a document such as a passport, sign the

property transfer and loan contract, and get the contract countersigned by the lawyer.

The requirement for government-issued photo-ID is imposed by the mortgage lender to

keep its insurers happy, while the requirement that a purchase of real estate be in writ-

ing was imposed by the government some centuries ago in order to collect stamp duty

on property transactions. Other types of document (such as expert testimony) may have

to be notarized in particular ways. Many curious anomalies go back to the nineteenth

century, and the invention of the typewriter. Some countries require that machine-

written contracts be initialed on each page, while some don’t; and these differences

have sometimes persisted for over a century. Clashes in conventions still cause serious

problems. In one case, a real estate transaction in Spain was held to be invalid because

the deal had been concluded by fax, and a U.K. company went bust as a result.

In most of the English-speaking world, however, most documents do not need to be

authenticated by special measures. The essence of a signature is the intent of the

signer, so an illiterate’s “X” on a document is just as valid as a monarch’s flourish. In

fact, a plaintext name at the bottom of an email message also has just as much legal

force [810], except where there are specific regulations requiring the transaction to be

in writing. There may be thousands of such in each jurisdiction. Meanwhile, it’s actu-
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ally very rare for signatures to be disputed in court cases, as the context generally

makes it clear who did what. So we have a very weak biometric mechanism that works

quite well in practice—except that it’s choked by procedural rules that vary by country

and by application.

Sorting out this mess, and imposing reasonably uniform rules for electronic docu-

ments, is a subject of much international activity. A summary of the issues can be

found in [811], with an analysis by country in [68]; and I’ll discuss some of the issues

further in Part 3. For now, note that the form of a signature, the ease with which it can

be forged, and whether it has legal validity in a given context, are largely independent

questions.

There is one application, though, where effective automatic recognition of hand-

written signatures could be very valuable. This is check clearing.

In a bank’s check processing center, it is typical practice that you only verify signa-

tures on checks over a certain amount—perhaps $1,000, perhaps $10,000, perhaps a

percentage of the last three months’ movement on the account. The signature verifica-

tion is done by an operator who sees, simultaneously presented on-screen, the check

image and the customer’s reference signature.

Verifying checks for small amounts is not economic unless it can be automated, so a

number of researchers have worked on systems to compare handwritten signatures

automatically. This turns out to be a very difficult image-processing task because of

the variability between one genuine signature and another. A much easier option is to

use a signature tablet. This is a sensor surface on which the user does a signature; it

records not just the shape of the curve but also its dynamics (the velocity of the hand,

where the pen was lifted off the paper, and so on). Tablets are used to identify users in

some high-value applications, including securities dealing.

Like alarm systems, most biometric systems have a trade-off between false accept

and false reject rates, often referred to in the banking industry as the fraud and insult

rates, and in the biometric literature as type 1 and type 2 errors. Many systems can be

tuned to favor one over the other. The equal error rate is when the system is tuned so

that the probabilities of false accept and false reject are equal. For common signature

recognition systems, the equal error rate is about 1%. This is not fatal in an operation

such as a bank dealing room. If one of the dealers tries to log on one morning and his

PC rejects his signature, he can just try again. If there is a persistent failure, he can call

the system administrator and have the machine reset. However, it is a show-stopper in

a retail store. If one transaction in a hundred fails, the aggravation to customers would

be unacceptable. So U.K. banks set a target for biometrics of a fraud rate of 1% and an

insult rate of 0.01%, which is beyond the current state of the art in signature verifica-

tion [317].

What can be done to bridge the gap? An interesting experiment was conducted by

the University of Kent, England, to cut fraud by welfare claimants who were drawing

their benefits at a post office near Southampton. The novel feature of this system is

that it was used to screen signatures and to support human decisions, rather than to

take decisions itself. So instead of being tuned for a low insult rate, with a corre-

spondingly high fraud rate, it had fraud and insult rates approximately equal. When a

signature was rejected, this merely told the staff to look more closely, and to ask for a

driver’s license or other photo ID. With 8,500 samples taken from 343 customers,

98.2% were verified correctly at the first attempt, rising to 99.15% after three attempts.

The experiment was judged to be a success [282]. However, this rate was achieved by
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excluding goats—a term used by the biometric community for people whose templates

don’t classify well. With them included, the false reject rate was 6.9% [283].

In general, biometric mechanisms tend to be much more robust in attended opera-

tions, where they assist a guard rather than replacing him. The false alarm rate may

then actually help by keeping the guard alert.

13.3 Face Recognition

Recognizing people by their facial features is the oldest identification mechanism of

all, going back at least to our early primate ancestors. Biologists believe that a signifi-

cant part of our cognitive function evolved to provide efficient ways of recognizing

other people’s facial features and expressions [646]. For example, we are extremely

good at detecting whether another person is looking at us or not. In theory, humans’

ability to identify people by their faces appears to be very much better than any auto-

matic system produced to date.

The human ability to recognize faces is also important to the security engineer be-

cause of the widespread reliance placed on photo IDs. Drivers’ licenses, passports, and

other kinds of identity card are not only used directly to control entry to computer

rooms, but also bootstrap most other systems. The issue of a password, or a smartcard,

or the registration of a user for a biometric system using some other technique such as

iris recognition, is often the end point of a process which was started by that person

presenting photo ID when applying for a job, opening a bank account, or whatever.

But even if people are good at recognizing friends in the flesh, how good are they at

identifying strangers by photo ID?

The simple answer is that they’re not. Psychologists at the University of Westmin-

ster conducted a fascinating experiment with the help of a supermarket chain and a

bank [450]. They recruited 44 students and issued each of them with four credit cards

each with a different photograph on it, as follows.

• One of the photos was a “good, good” one. It was genuine and recent.

• The second was a “bad, good one.” It was genuine but a bit old; the student
now had different clothing, hairstyle, or whatever. In other words, it was typi-
cal of the photo that most people have on their photo ID.

• The third was a “good, bad one.” From a pile of a hundred or so random pho-
tographs of different people, investigators chose the one that most looked like
the subject. In other words, it was typical of the match that criminals could get
if they had a stack of stolen cards.

• The fourth was a “bad, bad” one. It was chosen at random except that it had

the same sex and race as the subject. In other words, it was typical of the

match that really lazy, careless criminals would get.

The experiment was conducted in a supermarket after normal business hours, but

with experienced cashiers on duty who were aware of the purpose of the experiment.

Each student made several trips past the checkout using different cards. It transpired

that none of the checkout staff could tell the difference between “good, bad” photos

and “bad, good” photos. In fact, some of them could not even tell the difference be-

tween “good, good” and “bad, bad.” As this experiment was done under optimum con-

ditions—with experienced staff, plenty of time, and no threat of embarrassment or
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violence if a card was rejected—real-life performance can be expected to be worse. (In

fact, many stores do not pass on to their checkout staff the reward offered by credit

card companies for capturing stolen cards, so even the basic motivation may be ab-

sent.)

The response of the banking industry to this experiment was ambivalent. At least

two banks that had experimented with photos on credit cards had experienced a sub-

stantial drop in fraud—to less than one percent of the expected amount in the case of

one Scottish bank [67]. The overall conclusion was that the benefit to be had from

photo ID is essentially its deterrent effect [293].

The extreme difficulty of getting people to use their facial recognition skills effec-

tively is one of the reasons for trying to automate the process. Attempts go back to the

nineteenth century, when Galton devised a series of spring-loaded “mechanical selec-

tors for facial measurements [328]. But automated face recognition actually subsumes

a number of separate problems. In identity verification, the subject looks straight at the

camera under controlled lighting conditions, and their face is compared with the one on

file. A related but harder problem is found in forensics, where we may be trying to es-

tablish whether a suspect’s face fits a low-quality recording on a security video. The

hardest of all is surveillance, where the goal may be to scan a moving crowd of people

at an airport and try to pick out anyone who is on a list of perhaps a few hundred

known suspects.

Even picking out faces from an image of a crowd is a nontrivial computational task

[502]. A recent empirical study of the robustness of different facial feature extraction

methods found that, given reasonable variations in lighting, viewpoint, and expression,

no method was sufficient by itself, and error rates were up to 20% [10]. Systems that

use a combination of techniques can get the error rate down, but not to the 1% or less

which is possible with many other biometrics [556, 818].

In short, the technology still does not work very well, when viewed solely in terms

of error rates. However, from the system viewpoint, it can work very well indeed. In

1998, the London borough of Newham placed video cameras prominently in the high

street and ran a PR campaign about how their new computer system constantly scanned

the faces in the crowd for several hundred known local criminals. They managed to get

a significant reduction in burglary, shoplifting, and street crime. The system even wor-

ries civil libertarians—despite the fact that it appears to work primarily by deterrence

[739]. Of course, as time passes and technology improves, both the potential and the

worries may increase.

13.4 Fingerprints

Fingerprints are important. By 1998, fingerprint recognition products accounted for

78% of the total sales of biometric technology. These products look at the friction

ridges that cover the fingertips and classify patterns of minutiae, such as branches and

end points of the ridges. Some also look at the pores in the skin of the ridges. A techni-

cal description of the leading automatic fingerprint identification systems can be found

in [496].
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The use of fingerprints to identify people was discovered independently a number of

times. Mark Twain mentioned thumbprints in 1883, in Life on the Mississippi, where

he claims to have learned about them from an old Frenchman who had been a prison-

keeper. Long before that, they were accepted in a seventh-century Chinese legal code

as an alternative to a seal or a signature; and they were required by an eighth-century

Japanese code when an illiterate man wished to divorce his wife. They were mentioned

in work by Malpighi in Italy in the seventeenth century; and used in 1691 by 225 citi-

zens of Londonderry in Ireland to sign a petition asking for reparations following the

siege of the city by King William.

The first modern systematic use appears to have been in India during the midnine-

teenth century, when William Herschel (grandson of the astronomer) was a colonial

official in Hooghly. He used fingerprints to stop impersonation of pensioners who had

died, and to prevent rich criminals paying poor people to serve their jail sentences for

them. Henry Faulds, a medical missionary in Japan, discovered them independently in

the 1870s and brought them to the attention of Darwin, who in turn motivated Galton

to work out a scheme for classifying their patterns. His classification, of loops, whorls,

arches, and tents, is still in use today.

According to the English-language version of history, fingerprints passed into main-

stream police use in 1900, when a former police chief from Bengal, Edward Henry,

became Commissioner of the Metropolitan Police in London.
1
 Henry’s contribution

was to develop Galton’s classification into an indexing system known as binning. By

assigning one bit to whether or not each of a suspect’s 10 fingers had a whorl—a type

of circular pattern—he divided the fingerprint files into 1,024 bins. In this way, it was

possible to reduce the number of records that have to be searched by orders of magni-

tude.

Fingerprints are now used by the world’s police forces for essentially two different

purposes. In the United States, their main use is in identification. FBI files are used to

check out arrested suspects to determine whether they’re currently wanted by other law

enforcement agencies. They are also used to screen job applicants; for example, anyone

wanting a U.S. government clearance at Secret or above must have an FBI fingerprint

check. They are also used in crime scene forensics. In Europe, where people carry

identity cards and identity is thus more readily established, forensics provide the main

application.

Fingerprints found at a crime scene are matched against database records. Prints that

match to more than a certain level are taken as hard evidence that a suspect visited the

crime scene, and are often enough to secure a conviction on their own. In some coun-

tries, fingerprints are required from all citizens and all resident foreigners.

To cut the costs of manual fingerprint matching, a number of automated systems

have been developed. Algorithms suitable for the image-processing step are surveyed

in [522], and there is a tutorial plus a description of an IBM system in [415]. While

some of these systems simply replace the previous manual classification and matching

                                                            

1 In the Spanish version, they were first used in Argentina where they secured a murder convic-
tion in 1892; while Cuba, which set up its fingerprint bureau in 1907, beat the United States,
whose first conviction was in Illinois in 1911. The Croation version notes that the Argentinian
system was developed by one Juan Vucetich, who had emigrated from Dalmatia. The German
version refers to Professor Purkinje of Breslau, who wrote about fingerprints in 1828. Breslau is
now Wroclaw in Poland, so the Poles have a story too. Indians point to the bureau established in
Calcutta in 1898. Success truly has many fathers!
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process, or aim to improve on it [779], others use fingerprint reading devices to

authenticate people in real time for applications such as building entry control and

benefit payment [258]. They are also used in banking systems in countries such as In-

dia and Saudi Arabia, where the use of ink fingerprints was already common thanks to

the large proportion of people who are without formal education.

They have not really taken off in banking systems in North America or Europe be-

cause of the association with crime, though a few U.S. banks do ask for fingerprints if

you cash a check there and are not a customer. They find this cuts check fraud by about

a half. Some have gone as far as fingerprinting new customers, and found that cus-

tomer resistance is less than expected, especially if they use scanners rather than ink

and paper [314]. Again, the effect is largely deterrent: matching a single print against

the whole FBI database is much harder than typical crime scene work, where the sus-

pects are the hundred or so locally active burglars. Nonetheless, there have been moves

to ban the use of fingerprints in U.S. banking as a violation of privacy.

So how good is fingerprint recognition? The error rate in forensic applications can

be very low, the limitation being the size and quality of the image taken from the crime

scene. It varies from one country to another, depending on police procedures. Britain

traditionally required that fingerprints match in 16 points (corresponding minutiae),

and a U.K. police expert estimated that this will only happen by chance somewhere

between one in four billion and one in ten billion matches [485]. Greece accepts 10

matching minutiae, Turkey 8; the United States has no set limit (it certifies examiners

instead). This means that in the United States, matches can be found with poorer qual-

ity prints, but they can be open to doubt. In Britain, fingerprint evidence went for al-

most a century without a successful challenge; in the United States, challenges do

succeed from time to time, and disputes between rival experts are not unknown.

A recent case has upset the traditional U.K. complacency [538]. Shirley McKie, a

Scottish policewoman, was prosecuted on the basis of a fingerprint match on the re-

quired 16 points, verified by four examiners of the Scottish Criminal Records Office.

The defense called two American examiners who presented testimony that it is not an

identification.

McKie was acquitted and, as no indication was made as to whether the jury con-

curred with the foreign experts or merely considered their testimony as negating the

Scottish experts, the Scottish Criminal Records Office asserted for over a year that this

was a valid identification. But by June 2000, the matter had gone as far as the Scottish

Parliament, and the justice minister himself had to climb down. The problem appears

to have been that if they accepted that the fingerprint was not Shirley’s, they might

also have to release one David Asbury who had been convicted of murder in that case.

His fingerprint identification is now also being questioned by experts and an appeal on

his behalf is underway [334].

Four comments are in order here.

• Even if the probability of a false match on 16 points is one in ten billion

(10
–10

) as claimed by the police, once many prints are compared against each

other, probability theory starts to bite. A system that worked well in the old

days, whereby a crime scene print would be compared manually with the re-

cords of 57 known local burglars, breaks down once thousands of prints are

compared every year with an online database of millions. It was inevitable

that, sooner or later, enough matches would have been done to find a 16-point

mismatch. Indeed, as most people on the fingerprint database are petty crimi-
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nals who will not be able to muster the kind of resolute defense that McKie

did, I wouldn’t be surprised if there had already been other wrongful convic-

tions.

Figure 13.1 Crime scene print.

• As Figure 13.1 should make clear, fingerprint impressions are often very
“noisy,” being obscured by dirt, so mistakes are quite possible. The skill (and
prejudices) of the examiner enter into the equation in a much more significant
way than a naive jury might think. The errors caused by noise can manifest
themselves at more than one level. For example, binning error rates are be-
lieved to cause a false reject rate of several percent [154].

• The belief that any security mechanism is infallible generates the complacency
and carelessness needed to undermine its proper use. No consideration appears
to have been given to increasing the number of points required from 16 to, say,
20, with the introduction of computer matching. Sixteen was tradition, the
system was infallible, and there was certainly no reason to make public funds
available for defendants to hire their own experts. In fact, as all the U.K. ex-
perts are policemen or former policemen, there are no independent experts
available for hire.

• A belief of infallibility ensures that the consequences of the eventual failure

will be severe. As with the Munden case described in Section 9.4.3, which

helped torpedo claims about cash machine security, an assumption that a secu-

rity mechanism is infallible causes procedures, cultural assumptions, and even

laws to spring up which ensure that its eventual failure will be denied for as

long as possible, and may have disastrous effects for the individuals involved.
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Figure 13.2 Inked print.

However, even when we do have a correct match (with 20, or 24, or however many

points), its implications are not entirely obvious. It is possible for fingerprints to be

transferred using adhesive tape, or for molds to be made—even without the knowledge

of the target—using techniques originally devised for police use. So it is possible that

the suspect whose print is found at the crime scene was framed by another criminal (or

by the police—most fingerprint fabrication cases involve law enforcement personnel

rather than other suspects [110]). Of course, even if the villain wasn’t framed, he can

always claim that he was and the jury might believe him.

Moving now to automated identification, the better systems have an equal error rate

which seems to be somewhat below 1%. Although in theory the false accept probabil-

ity can be made arbitrarily small, in practice false accepts happen because of features

incorporated to reduce the false reject rate—such as allowance for distortion and flexi-

bility in feature selection [650].

Fingerprint damage can also impair recognition. When I was a kid, I slashed my fin-

ger while cutting an apple, and this left a scar about half an inch long on my left mid-

dle finger. When I presented this finger to the system used in 1989 by the FBI for

building entry control, my scar crashed the scanner. (It was registered and worked OK

with the successor system from the same company when I tried again 10 years later.)

But even where scars don’t cause gross system malfunctions, they still increase the

error rate. A number of people, such as manual workers and pipe smokers, damage

their fingerprints frequently; and both the young and the old have faint prints [171].

Automated systems also have problems with amputees, people with birth defects such

as extra fingers, and the (rare) people born without conventional fingerprint patterns at

all [485].

Perhaps the most important aspect of fingerprint systems is not their error rate, as

measured under laboratory conditions, but their deterrent effect.
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This is particularly pronounced in welfare payment systems. Even though the fin-

gerprint readers used to authenticate welfare claimants have an error rate as much as

5% [163], they have turned out to be such an effective way of reducing the welfare

rolls that they are being adopted in one place after another [553].

13.5 Iris Codes

We turn now from the very traditional ways of identifying people to the modern and

innovative. Recognizing people by the patterns in the irises of their eyes is far and

away the technique with the best error rates of automated systems when measured un-

der lab conditions. It appears to be the most secure possible way of controlling entry to

premises such as plutonium stores.

As far as is known, every human iris is measurably unique. It is fairly easy to detect

in a video picture, does not wear out, and is isolated from the external environment by

the cornea (which in turn has its own cleaning mechanism). The iris pattern contains a

large amount of randomness, and appears to have many times the number of degrees of

freedom of a fingerprint. It is formed between the third and eighth month of gestation,

and (like the fingerprint pattern) is phenotypic in that there appears to be limited ge-

netic influence; the mechanisms that form it appear to be chaotic. So the patterns are

different even for identical twins (and for the two eyes of a single individual), and they

appear to be stable throughout life.

A signal processing technique (Gabor filters) has been found which extracts the in-

formation from an image of the iris into a 256-byte iris code. This involves a circular

wavelet transform taken at a number of concentric rings between the pupil and the out-

side of the iris (Figure 13.3), and has the beautiful property that two codes computed

from the same iris will typically match in 90% of their bits [218]. This is much simpler

than in fingerprint scanners where orienting and classifying the minutiae is a hard task.

The speed and accuracy of iris coding has led to a number of commercial iris recogni-

tion products [794]. Iris codes provide the lowest false accept rates of any known veri-

fication system—zero, in tests conducted by the U.S. Department of Energy. The equal

error rate has been shown to be better than one in a million, and if one is prepared to

tolerate a false reject rate of one in ten thousand, then the theoretical false accept rate

would be less than one in a trillion.

The main practical problem facing deployment of iris scanning in the field is getting

the picture without being too intrusive. The iris is small (less than half an inch) and an

image including several hundred pixels of iris is needed. A cooperative subject can

place his eye within a few inches of a video camera, and the best standard equipment

will work up to a distance of two or three feet. Cooperation can be assumed with entry

control to computer rooms, but it is less acceptable in general retail applications, as

some people find being so close to a camera uncomfortable. There’s no technical rea-

son why a camera could not acquire the iris from a distance of several feet given auto-

matic facial feature recognition, pan and zoom—it would just cost a bit more—but that

brings Orwellian overtones of automatic recognition of individuals passing in a crowd.

(In Europe, data protection law would be a potential show-stopper.) Secondary prob-

lems include blinking, eyelashes obscuring the eye, and sunglasses.

Possible attacks on iris recognition systems include—in unattended operation at

least—a simple photograph of the target’s iris. This may not be a problem in entry
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control to supervised premises, but if everyone starts to use iris codes to authenticate

bank card transactions, then your code will become known to many organizations. As

iris codes can be compared rapidly (just exclusive-or them together and count the

number of zero bits), they may start to assume the properties of names, rather than be-

ing passwords (as in current systems). So it might be possible to use your iris code to

link together your dealings with different organizations.

Figure 13.3 An iris with iris code (courtesy John Daugman).

A possible solution to the impersonation problem is to design terminals that measure

hippus—a natural fluctuation in the diameter of the pupil which happens at about 0.5

Hz. But even this isn’t infallible. One might try, for example, to print the target’s iris

patterns on contact lenses (though existing vanity contact lens printing techniques are

so coarse-grained that they are detectable).

Despite the difficulties, iris codes remain a very strong contender as they can, in the

correct circumstances, provide much greater certainty than any other method that the

individual in question is the same as the one who was initially registered on the sys-

tem. They can meet the goal of automatic recognition with zero false acceptances.

13.6 Voice Recognition

Voice recognition—also known as speaker recognition—is the problem of identifying

a speaker from a short utterance. While speech recognition systems are concerned with

transcribing speech and need to ignore speech idiosyncrasies, voice recognition sys-

tems need to amplify and classify them. There are many subproblems, such as whether

the recognition is text-dependent or not, whether the environment is noisy, whether

operation must be real time, and whether one needs only to verify speakers or to rec-

ognize them from a large set.
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In forensic phonology, the objective is, usually, to match a recorded telephone con-

versation, such as a bomb threat, to speech samples from a number of suspects. Typical

techniques involve filtering and extracting features from the spectrum; for more details

see [461]. A more straightforward biometric authentication objective is to verify a

claim to identity in some telephone systems. These range from telephone banking to

the identification of military personnel, with over a dozen systems on the market.

Campbell describes a system that can be used with the U.S. government STU-III en-

crypting telephone, and that achieves an equal error rate of about 1% [161]; and the

NSA maintains a standard corpus of test data for evaluating speaker recognition sys-

tems [414].

There are some interesting attacks on these systems, quite apart from the possibility

that a villain might somehow manage to train himself to imitate your voice in a manner

that the equipment finds acceptable. In [324] there is a brief description of a system

fielded in US EP-3 aircraft which breaks up intercepted messages from enemy aircraft

and ground controllers into quarter second segments that are then cut and pasted to

provide new, deceptive messages. This is primitive compared with what can now be

done with digital signal processing. Some informed observers expect that within a few

years, there will be products available which support real-time voice and image for-

gery. Crude voice morphing systems already exist, and enable female victims of tele-

phone sex pests to answer the phone with a male sounding voice. Better ones will

enable call centers to have the same ‘person’ always greet you when you phone. With

that sort of commercial pressure driving the technology, it’s only a matter of time be-

fore remote biometrics become very much harder.

13.7 Other Systems

A number of other biometric technologies have been proposed. For a survey of the

market, see [553]. Some, such as those based on facial thermograms (maps of the sur-

face temperature of the face, derived from infrared images), the shape of the ear, gait,

lip prints, and the patterns of veins in the hand, don’t seem to have been marketed as

products. Other technologies may provide interesting biometrics in the future. For ex-

ample, the huge investment in developing digital noses for quality control in the food

and drink industries may lead to a “digital doggie,” which recognizes its master by

scent.

Others biometric techniques, such as typing patterns, were used in products in the

1980s but don’t appear to have been successful (typing patterns, also known as key-

stroke dynamics, had a famous precursor in the wartime technique of identifying wire-

less telegraphy operators by their fist, the way in which they used a Morse key).

Still others, such as hand geometry, have useful niche markets. In addition to its use

since the 1970s in nuclear premises entry control, hand geometry is now used at air-

ports by the U.S. Immigration and Naturalization Service to provide a “fast track” for

frequent flyers. It is fairly robust, with an equal error rate under lab conditions of

0.1–0.2%. (In fact, hand geometry derives from anthropometrics, a system of identi-

fying criminals by skeletal measurements, which was introduced in Paris in 1882 by

Alphonse Bertillon, but replaced by fingerprints a generation later.)



273

One other biometric deserves passing mention—the use of DNA typing. This has

become a valuable tool for crime-scene forensics and for determining parenthood in

child support cases, but is too slow for applications such as building entry control.

Being genotypic rather than phenotypic, its accuracy is also limited by the incidence of

monozygotic twins—about one white person in 120 has an identical twin. There’s also

a privacy problem, in that it should soon be possible to reconstruct a large amount of

information about an individual from their DNA sample. For a survey of forensic DNA

analysis techniques, and suggestions of how to make national DNA databases consis-

tent with European data protection law, see [680].

13.8 What Goes Wrong

As with other aspects of security, we find the usual crop of failures due to bugs, blun-

ders, and complacency. The main problem faced by DNA typing, for example, was an

initially high rate of false positives, due to careless laboratory procedure. This not only

scared off some police forces, which had sent in samples from different volunteers and

got back false matches, but also led to disputed court cases and alleged miscarriages of

justice.

Biometrics are like many other protection mechanisms (alarms, seals, tamper-

sensing enclosures, ...) in that environmental conditions can cause havoc. Noise, dirt,

vibration, and unreliable lighting conditions all take their toll. Some systems, like

speaker recognition, are vulnerable to alcohol intake and stress. Changes in environ-

mental assumptions, such as from closed to open systems, from small systems to large

ones, from attended to standalone, from cooperative to recalcitrant subjects, and from

verification to identification—can all undermine a system’s viability.

There are a number of more specific and interesting attacks on various biometric

systems.

• There have been some attacks on the methods used to index biometric data.

The classic one is the helpful villain who gives an inexperienced policeman his

fingerprints in the wrong order, so that instead of the hand being indexed un-

der the Henry system as ‘01101’ it becomes perhaps ‘01011’, so his record

isn’t found and he gets the lighter sentence due a first offender [485].

• Forensic biometrics often don’t tell as much as one might assume. Apart from
the possibility that a fingerprint or DNA sample might have been planted by
the police, it may just be old. The age of a fingerprint can’t be determined di-
rectly, and prints on areas with public access say little. A print on a bank door
says much less than a print in a robbed vault. So in premises vulnerable to
robbery, cleaning procedures may be critical for evidence. If a suspect’s prints
are found on a bank counter, and she claims to have gone there three days pre-
viously, she may be convicted by evidence that the branch counter is polished
every evening. Putting this in system terms, freshness is often a critical issue,
and some quite unexpected things can find themselves inside the “trusted
computing base.”
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• Another aspect of freshness is that most biometric systems can, at least in the-
ory, be attacked using suitable recordings. We mentioned direct attacks on
voice recognition, attacks on iris scanners by photos on a contact lens, and
molds of fingerprints. Even simpler still, in countries where fingerprints are
used to pay pensions, there are persistent tales of “Granny’s finger in the
pickle jar” being the most valuable property she bequeathed to her family.
This reinforces the lesson that unattended operation of biometric authentica-
tion devices is tricky.

• Certain systems—notably handwriting systems—are vulnerable to collusion.
Villains can voluntarily degrade handwriting ability. By giving several slightly
different childish sample signatures, they can force the machine to accept a
lower threshold than usual. The kind of attack to expect is that Alice opens a
bank account and her accomplice Betty withdraws money from it; Alice then
complains of theft and produces a watertight alibi. As with alarm and shared
control systems, commercial users have to worry about colluding employees or
customers, while the military threat model is usually just the single disloyal
soldier.

• Commercial system builders must also worry about false repudiation—such as
whether a user who practices enough can generate two signatures that pass for
identical on the signature tablet, even if they are visually quite different.

• The statistics are often not understood by system designers, and the birthday
theorem is particularly poorly appreciated. With 10,000 biometrics in a data-
base, for example, there are about 50,000,000 pairs. So even with a false ac-
cept rate of only one in a million, the likelihood of there being at least one
false match will rise above one-half as soon as there are somewhat over a
thousand people (in fact, 1,609 people) enrolled. So identification is a tougher
task than verification [219]. The practical consequence is that a system de-
signed for authentication may fail when you try to rely on it for evidence. A
good way to explain to judges, and other non-technical people, why the system
error rate differs from the single sample error rate is that there is “one chance
to get it right, but N chances to get it wrong.” For a good discussion of error
rates see [154].

• Another aspect of statistics comes into play when designers assume that by
combining biometrics they can get a lower error rate. The curious and perhaps
counter-intuitive result is that a combination will typically result in improving
either the false accept or the false reject rate, while making the other worse.
One way to look at this is that if you install two different burglar alarm sys-
tems at your home, then the probability that they will be simultaneously de-
feated goes down while the number of false alarms goes up. In some cases,
such as when a very good biometric is combined with a very imprecise one,
the effect can be worse overall [219].

• Most biometrics are not as accurate for all people, and some of the population

can’t be identified as reliably as the rest (or even at all). The elderly, and man-

ual workers, often have damaged or abraded fingerprints. People with dark-

colored eyes and large pupils give poorer iris codes. Disabled people, with no

fingers or no eyes, risk exclusion if such systems become widespread. Illiter-

ates who make an “X” are more at risk from signature forgery.
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Biometric engineers sometimes refer to such subjects dismissively as goats,
but this is blind to political reality. A biometric system that is (or is seen to be)
socially regressive—in that it puts the disabled, the poor, the old, and ethnic
minorities at greater risk of impersonation—may meet with principled resis-
tance. In fact, a biometric system might be defeated by legal challenges on a
number of grounds [626]. It may also be vulnerable to villains who are (or
pretend to be) disabled. Fallback modes of operation will have to be provided;
if these are less secure, then forcing their use may yield an attack, and if they
are at least as secure, then why use biometrics at all?

• Finally, Christian fundamentalists are uneasy about biometric technology.

They find written of the Antichrist in Revelation 13:16-17: “And he causes all,

both small and great, rich and poor, free and slave, to receive a mark on their

right hand or on their foreheads, and that no one may buy or sell except one

who has the mark or the name of the beast, or the number of his name.” So

biometrics can arouse political opposition on the right as well as the left.

So there are some non-trivial problems to be overcome before biometrics will be

ready for mass-market use, in the way that magnetic strip cards are used at present. But

despite the cost and the error rates, they have proved their worth in a number of appli-

cations, most notably where their deterrent effect is useful.

13.9 Summary

Biometric measures of one kind or another have been used to identify people since an-

cient times, with handwritten signatures, facial features, and fingerprints being the tra-

ditional methods. Systems have been built that automate the task of recognition, using

these methods and newer ones, such as hand geometry, voiceprints, and iris patterns.

These systems have different strengths and weaknesses. In automatic operation, most

have error rates of the order of 1% (though iris recognition is better, hand geometry

slightly better, and face recognition worse). There is always a trade-off between the

false accept rate (the fraud rate) and the false reject rate (the insult rate). The statistics

of error rates are deceptively difficult.

If any biometric becomes very widely used, there is increased risk of forgery in un-

attended operation: voice synthesizers, photographs of irises, fingerprint molds, and

even good old-fashioned forged signatures must all be thought of in system design.

These do not rule out the use of biometrics, as traditional methods such as handwritten

signatures are usable in practice despite very high error rates. Biometrics are usually

more powerful in attended operation, where, with good system design, the relative

strengths and weaknesses of the human guard and the machine recognition system may

complement one another. Finally, many biometric systems achieve most or all of their

result by deterring criminals rather than being effective at identifying them.
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Research Problems

Potentially profitable research problems relate to the design, or improvement, of bio-

metric systems. Is it possible to build a system—other than iris scanning—that will

meet the banks’ goal of a 1% fraud rate and a 0.01% insult rate? Is it possible to build

a static signature verification system that has a good enough error rate (say 1%) for it

to be used for screening images of checks? Are there any completely new biometrics

that might be useful in some circumstances?

One I thought up while writing this chapter, in a conversation with William Clocksin

and Alan Blackwell, was instrumenting a car so as to identify a driver by the way in

which he or she operated the gears and the clutch. This might be hooked in to a high-

end car alarm system of the kind that, if your car appears to be stolen, phones a GPS

fix to a control center which then calls you to check. We haven’t patented this; if you

can make it work, all we ask is an acknowledgment—and some thought about how to

prevent insurance companies (and governments) demanding access to the data!

Further Reading

The history of fingerprints is good reading. The standard reference is Lambourne

[485], while Block has a good collection of U.S. case histories [120]. In addition to the

references cited for facial and handwriting recognition in the text, there’s an IBM ex-

perimental system described at [433] and a survey of the literature at [181]. The stan-

dard work on iris codes is Daugman [218]. For voice recognition, there is a tutorial in

[161] which focuses on speaker identification while for the forensic aspects, see Kle-

vans and Rodman [461]. A special issue of the Proceedings of the IEEE on biometric

systems—volume 85 no 9 (September 1997) provides a very useful snapshot of the

state of the technical art. Finally, for technical detail on a range of systems, there is a

book by Anil Jain, Ruud Bolle, and Sharath Pankanti which contains chapters on a

number of biometric system written by their designers [414].
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CHAPTER

14

Physical Tamper Resistance

It is relatively easy to build an encryption system that is secure if it

 is working as intended and is used correctly but it is still very hard to

 build a system that does not compromise its security in situations in

 which it is either misused or one or more of its sub-components fails

 (or is ‘encouraged’ to misbehave) ... this is now the only area where

 the closed world is still a long way ahead of the open world and the

 many failures we see in commercial cryptographic systems provide

 some evidence for this.

—BRIAN GLADMAN

14.1 Introduction

The techniques discussed in the previous few chapters—physical protection involving

barriers, sensors, and alarms—are often used to protect critical information processing

resources:

• A bank’s main servers will typically be kept in a guarded computer room.

• The seismic sensor packages used to detect unlawful nuclear tests may be at
the bottom of a borehole several hundred feet deep which is backfilled with
concrete.

• A hole-in-the-wall automatic teller machine is in effect a PC in a one-ton safe

with a number of fancy peripherals. These include not just banknote dispensers

but also temperature sensors to detect attempts to cut into the device, and ac-

celerometers to detect if it’s moved. An alarm should cause the immediate era-

sure of all crypto key material in the device.

But often it’s inconvenient to use a massive construction, and this has spawned a

market for portable tamper-resistant processors. These range from smartcards, which

typically perform a limited set of operations in support of an application such as pay-
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TV; through tamper-resistant cryptoprocessors, which are fitted into the servers that

manage PINs in cash machine networks; to elaborate high-end devices used in military

command and control.

I should note that there is some similarity between tamper-resistant devices and rep-

licated devices. If a service is implemented as a number of different servers in different

sites that perform transactions simultaneously and vote on the result, then it may be

possible to provide a high level of integrity protection against many types of attack.

The secret sharing schemes I discussed in Section 11.4 can also provide confidentiality

for key material. But tamper-resistant devices can at least in theory provide confidenti-

ality for the data too. This is one respect in which the principle that many things can be

done either with mathematics or with metal, breaks down.

14.2 History

The use of tamper resistance in cryptography goes back for centuries [428]. Naval

code-books have been weighted so they could be thrown overboard and sink in the

event of imminent capture; to this day, the dispatch boxes used by British government

ministers’ aides to carry state papers are lead-lined so they will sink. Codes and, more

recently, the keys for wartime cipher machines have been printed in water-soluble ink;

Russian one-time pads were printed on cellulose nitrate, so that they would burn furi-

ously if lit; and one U.S. wartime cipher machine came with self-destruct thermite

charges so it could be destroyed quickly if need be.

But such mechanisms depended on the vigilance of the operator, and key material

was often captured in surprise attacks. So attempts were made to automate the process.

Early electronic devices, as well as some mechanical ciphers, were built so that open-

ing the case erased the key settings.

Following a number of cases in which cipher staff sold key material to the other

side—such as the notorious Walker family in the United States—engineers paid more

attention to the question of how to protect keys in transit as well as in the terminal

equipment itself. The goal was ‘to reduce the street value of key material to zero’, and

this can be achieved either by tamper resistant devices from which the key cannot be

extracted, or tamper evident ones from which key extraction would be obvious.

Paper keys were once carried in “tattle-tale containers,” designed to show evidence

of tampering. When electronic key distribution came along, a typical solution was the

“fill gun,” a portable device that would dispense crypto keys in a controlled way.

Nowadays, this function is usually performed using a small security processor such as

a smartcard. Control protocols range from a limit on the number of times a key can be

dispensed, to mechanisms that use public key cryptography to ensure that keys are

loaded only into authorized equipment. The control of key material also acquired

broader purposes. In both the United States and Britain, it was centralized and used to

enforce the use of properly approved computer and communications products. Live key

material would only be supplied to a system once it had been properly accredited.

Once initial keys have been loaded, further keys may be distributed using various

kinds of authentication and key agreement protocols. I already talked about many of

the basic tools, such as key diversification, in Chapter 2, “Protocols,” and I’ll have

more to say on protocols later in this chapter. Let’s first look at the physical defenses

against tampering.
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14.3 High-End Physically Secure Processors

An example worth studying is the IBM 4758 (Figure 14.1). This is important for two

reasons. First, it is the only commercially available processor to have been successfully

evaluated (at the time of writing) to the highest level of tamper resistance (FIPS 140-1

level 4) [576] set by the U.S. government. Second, there is extensive literature about it

available in the public domain, including the history of its design evolution, its protec-

tion mechanisms, and the transaction set it supports [718, 795, 796].

The evolution that led to this product is briefly as follows. From the earliest days of

computing, computers were protected physically because of their high value. However,

the spread of multi-user operating systems in the 1960s, and the regularity with which

bugs were found in their protection mechanisms, meant that large numbers of people

might potentially have access to the data being processed. With particularly sensitive

data—such as long-term cryptographic keys and the personal identification numbers

(PINs) used by bank customers to identify themselves to cash machines—it was real-

ized that the level of protection available from commercial operating systems was

likely to remain insufficient.

Figure 14.1 The IBM 4758 cryptoprocessor (courtesy of Steve Weingart).
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Figure 14.2 The 4758 partially opened, showing (from top left downward) the circuitry, alu-

minium electromagnetic shielding, tamper-sensing mesh and potting material (courtesy of

Frank Stajano).

This led to the development of standalone security modules of which the first to be

commercially successful were the IBM 3848 and the VISA security module. Both of

these were microcomputers encased in robust metal enclosures, with encryption hard-

ware and special key memory, which was static RAM designed to be zeroized when the

enclosure was opened (Figure 14.2). This was accomplished by wiring the power sup-

ply to the key memory through a number of lid switches. The device operator would

then have to reload the key material.

How to Hack a Cryptoprocessor (1)

The obvious attack on such a device is for the operator to steal the keys. In early

banking security modules, the master keys were kept in PROMs which were loaded

into a special socket in the device, to be read during initialization, or as strings of

numbers that were typed in at a console. The PROMs could easily be pocketed, taken

home and read out using hobbyist equipment. Cleartext paper keys were even easier to

steal.

The fix was shared control—to have two or three PROMs with master keys, and

make the device master keys the exclusive-or of all the components. These devices can

then be kept in different safes. (With the virtue of hindsight, the use of exclusive-or for

this purpose was an error, and a hash function should have been used instead. I’ll ex-

plain why shortly.)

However, this procedure is somewhat tedious, and may well degrade as it becomes

routine. In theory, when a device is maintained, its custodians should open the lid to

erase the live keys, let the maintenance engineer load test keys, and then re-load live

keys afterwards. But the managers with custodial responsibility will often give the

PROMs to the engineer rather than bothering with them. I’ve even come across cases

of the master keys for an automatic teller machine being kept in the correspondence

file in a bank branch, where any of the staff could look them up. Thus, the goal was to
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minimize the number of times that a reload would be necessary, such as for mainte-

nance or following a power failure. So security modules typically have batteries to

back up the mains power supply (at least to the key memory). This meant that in prac-

tice, the custodians had to load the keys only when the device was first installed, and

after occasional maintenance visits subsequently.

It has been debated whether frequent or infrequent key loading is best. If key load-

ing is very infrequent, the responsible personnel will likely never have performed the

task before, and may either delegate it out of ignorance or be hoodwinked by a more

technically astute member of staff into doing it in an insecure way (see [19] for a case

history of this). The modern trend is toward devices that generate keys (or have them

loaded) in a secure facility after manufacture but before distribution. Such keys may be

kept on smartcards and used to bootstrap the keying of more substantial devices.

How to Hack a Cryptoprocessor (2)

Early devices were vulnerable to attackers cutting through the casing, and to mainte-

nance engineers who could disable the lid switches on one visit and extract the keys on

the next. Second-generation devices dealt with the easier of these problems, namely

physical attack, by adding more sensors such as photocells and tilt switches. These

may be enough for a device kept in a secure area to which access is controlled. But the

hard problem is to prevent attacks by the maintenance staff.

The strategy adopted by many of the better products is to separate all the compo-

nents that can be serviced (such as batteries) from the core of the device (such as the

tamper sensors, crypto, processor, key memory, and alarm circuitry). The core is then

“potted” in a solid block of a hard, opaque substance such as epoxy. The idea is that

any physical attack will be “obvious” in that it involves an action such as cutting or

drilling, which can be detected by the guard who accompanies the maintenance techni-

cian into the bank computer room.

How to Hack a Cryptoprocessor (3)

However, if a competent person can get unsupervised access to the device for even a

short period of time (or if the guard has not been properly trained), then potting the

device core is inadequate. For example, it is often possible to scrape away the potting

with a knife, and drop the probe from a logic analyzer on to one of the bus lines in the

core. Most common cryptographic algorithms, such as RSA and DES, have the prop-

erty that an attacker who can monitor any bitplane during the computation can recover

the key [370]. So an attacker who can get a probe anywhere into the device while it is

operating can likely extract secret key material.

So the high-end products have a tamper-sensing barrier whose penetration triggers

destruction of the secrets inside. An early example appeared in IBM’s mABYSS system

in the mid-1980s. This used loops of 40-gauge nichrome wire, which were wound

loosely around the device as it was embedded in epoxy, then connected to a sensing

circuit [795]. Bulk removal techniques such as milling, etching, and laser ablation

break the wire, which erases the keys.
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But the wire-in-epoxy technique can be vulnerable to slow erosion using sand

blasting; when the sensing wires become visible at the surface of the potting, shunts

can be connected around them. So the next major product from IBM, the 4753, used a

metal shield combined with a membrane printed with a pattern of conductive ink and

surrounded by a more durable material of similar chemistry. The idea was that any at-

tack would break the membrane with high probability.

How to Hack a Cryptoprocessor (4)

The next class of methods an attacker can try involve the exploitation of memory re-

manence, the fact that many kinds of computer memory retain some trace of data that

have been stored there. Sometimes, all that is necessary is that the same data were

stored for a long time. An attacker might bribe the garbage truck operator to obtain a

bank’s discarded security modules: as reported in [44], once a certain security module

had been operated for some years using the same master keys, the values of these keys

were burned in to the device’s static RAM. On power-up, about 90% of the relevant

bits would assume the values of the corresponding keybits, which was more than

enough to recover the keys.

Memory remanence affects not just static and dynamic RAM, but other storage me-

dia as well. For example, the heads of a disk drive change alignment over time, so that

it may be impossible to completely overwrite data that were first written some time

ago. The relevant engineering and physics issues are discussed in [362]. The NSA has

published guidelines (the Forest Green Book) on preventing remanence attacks [243].

The better third-generation devices have RAM savers, which function in much the

same way as screen savers; they move data around the RAM to prevent it being burned

in anywhere.

How to Hack a Cryptoprocessor (5)

A further problem is that computer memory can be frozen by low temperatures. By the

1980s it was realized that below about –20°C, static RAM contents can persist for

some time—seconds to minutes—after power is removed. Data remanence gets stead-

ily longer at lower temperatures. So an attacker might freeze a device, remove the

power, cut through the tamper sensing barrier, extract the RAM chips containing the

keys and power them up again in a test rig. RAM contents can also be burned in by

ionizing radiation. (For the memory chips of the 1980s, this required a fairly serious

industrial X-ray machine; but as far as I’m aware, no-one has tested the current, much

smaller, memory chip designs.)

So the better devices have temperature and radiation alarms. These can be difficult

to implement properly, as modern RAM chips exhibit a wide variety of memory rema-

nence behaviors, with the worst of them keeping data for several seconds even at room

temperature [712]. (This shows the dangers of relying on a property of some compo-

nent to whose manufacturer the control of this property is unimportant.) Some military

devices use protective detonation; there are memory chips potted in steel cans with a

thermite charge precisely calculated to destroy the chip without causing gas release

from the can.

How to Hack a Cryptoprocessor (6)

The next set of attacks on cryptographic hardware involve either monitoring the RF

and other electromagnetic signals emitted by the device, or even injecting signals into

it and measuring their externally visible effects. This technique, which is variously
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known as Tempest or power analysis, is such a large subject that I devote the next

chapter to it. As far as the 4758 is concerned, the strategy is to have solid aluminium

shielding, and to low-pass-filter the power supply to block the egress of any signals at

the frequencies used internally for computation.

The 4758 also has an improved tamper-sensing membrane, in which four overlap-

ping zig-zag conducting patterns are doped into a urethane sheet, which in turn is pot-

ted in a chemically similar substance so that an attacker cutting into the device has

difficulty even detecting the conductive path, let alone connecting to it. This potting

surrounds the metal shielding which in turn contains the cryptographic core (see Figure

14.2). The design is described more detail in [718].

I don’t know how to attack the hardware of the 4758. IBM declined to sell us sam-

ples for attack, but we did come up with a number of ideas after scrutinizing one, such

as:

How to Hack a Cryptoprocessor (7)

Here are some speculative ideas about how to break into a 4758.

• The straightforward approach would be to devise some way to erode the pro-

tective potting, detect mesh lines, and connect shunts around them. Probably

the first thing I’d try is a magnetic force microscope.

• One could invent a means of drilling holes eight millimeters long and only 0.1
millimeters wide (that is, much less than the mesh line diameter). This isn’t
feasible with current mechanical drills, which are limited to an aspect ratio of
15 or so, and the same holds for laser ablation and ion milling. However I
speculate that some combination of nanotechnology and ideas from the oil in-
dustry might make such a drill possible eventually. Then one could drill right
through the protective mesh with a fair probability of not breaking the circuit.

• Having dismantled a few instances of the device and understood the operation

of its hardware, the attacker might use shaped explosive charges to send

plasma jets of the kind discussed in Section 11.5 into the device to destroy the

tamper-sensing and memory zeroization circuitry before they have time to re-

act.

The success of such attacks is uncertain, and they are likely to remain beyond the re-

sources of the average villain for some time.

When I shipped the first draft of this book in September 2000, I wrote at this point:

“So by far the most likely attacks on 4758 based systems involve the exploitation of

logical rather than physical flaws.” By the time I edited this paragraph at the proof

stage, this had come true in spades. Most users of the 4758 use an application called

CCA which is described in [388] and contains many features that make it difficult to

use properly. Having been suspicious of the complexity of this instruction set, I passed

the manual to a new research student, Mike Bond, and asked him if he could find any

vulnerabilities. By the middle of November, he had found a number of problems, in-

cluding a protocol-level attack that enables a capable opponent to extract all the inter-

esting keys from the device. We’ll discuss this attack below.

Finally, it should be mentioned that the main constraints on the design and manu-

facture of security processors are remarkably similar to those encountered with more

general alarms. There is a trade-off between the false alarm rate and the missed alarm

rate, and thus between security and robustness. Security processors often need to be

handled with care; if they self-destruct at temperatures of -20°C, they cannot be dis-
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tributed through normal computer industry channels, where goods are often subjected

to –40°C in winter. Vibration, power transients, and electromagnetic interference can

also be a problem with some designs. Military equipment makers have a particularly

tough problem. For example, if exposing the crypto processor of a military tactical ra-

dio to radiation causes it to self-destruct, then hardening the device sufficiently might

make it too heavy to carry.

14.4 Evaluation

A few comments about the evaluation of tamper-resistant devices are in order before

we go on to discuss cheaper devices.

The IBM paper that describes the design of the 4758’s predecessor, the 4753 [4],

proposed the following classification scheme for attackers:

1. Class 1 attackers—‘clever outsiders’—are often very intelligent but may have

insufficient knowledge of the system. They may have access to only moder-

ately sophisticated equipment. They often try to take advantage of an existing

weakness in the system, rather than try to create one.

2. Class 2 attackers—‘knowledgeable insiders’—have substantial specialized

technical education and experience. They have varying degrees of under-

standing of parts of the system but potential access to most of it. They often

have highly sophisticated tools and instruments for analysis.

3.  Class 3 attackers—‘funded organizations’—are able to assemble teams of

specialists with related and complementary skills backed by great funding re-

sources. They are capable of in-depth analysis of the system, designing so-

phisticated attacks, and using the most advanced analysis tools. They may use

class 2 adversaries as part of the attack team.

Within this scheme, the 4753 was aimed at blocking knowledgeable insiders, while

its successor, the 4758, is aimed at (and certified for) blocking funded organizations.

The FIPS certification scheme is operated by laboratories licensed by the U.S. gov-

ernment and set out in the FIPS 140-1 standard. This sets out four levels of protection,

with level 4 being the highest (currently, the 4758 is the only device certified at this

level). There is a large gap between level 4 and the next one down, level 3, where only

potting is required; this means that attacks which exploiting electromagnetic leakage,

memory remanence, drilling, sandblasting, and so on may still be possible. I have han-

dled a level 3 certified device from which I could scrape off the potting with my Swiss

army knife! So while FIPS 140-1 level 3 devices can be (and have been) defeated by

class 1 attackers in the IBM sense, the next step up—FIPS 140-1 level 4—is expected

to keep out an IBM class 3 opponent. There is no FIPS level corresponding to a de-

fense against IBM’s class 2.

The original paper on levels of evaluation, written by IBM engineers, had proposed

six levels [796]: the FIPS standard adopted the first three of these as its levels 1–3, and

the proposed level 6 as its level 4. The gap, commonly referred to as “level 3.5,” is

where many of the better commercial systems are aimed. Such equipment certainly

attempts to keep out the class 1 attack community, while making life hard for class 2,

and expensive for class 3.
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That said, I am not convinced that the IBM classification is correct. I know of one

large funded organization that bought chip-testing equipment, tried to break into a

smartcard, and failed; they concluded that smartcards were completely tamper-proof.

However, as we shall see shortly, many smartcards have been broken by level 1 attack-

ers. The persistence and cunning of the attacker is far more important than the number

of people on his employer’s payroll.

14.5 Medium-Security Processors

Good examples of level 3.5 products are the iButton and 5002 security processors from

Dallas Semiconductor, and the Capstone chip used to protect U.S. military communi-

cations up to Secret. While the 4758 costs $2000, these products cost of the order of

$10–20. Yet mounting an attack on them is far from trivial.

14.5.1 The iButton

Figure 14.3 iButton internals (courtesy of Dallas Semiconductor Inc.).

The iButton from Dallas Semiconductor is designed to be a minimal, self-contained

cryptographic processor. It has an 8051 microcontroller with a modular exponentiation

circuit, static RAM for keys and software, a clock, and tamper sensors. These are en-

cased in a steel can with a lithium battery, which can maintain keys in the RAM for a

design life of 10 years (see Figure 14.3). It is small enough to be worn in a signet ring

or carried as a key fob. An early application was as an access token for the “Electronic

Red Box”, a secure laptop system designed for use by U.K. government ministers. To

access secret documents, the minister had to press his signet ring into a reader at the

side of the laptop. (One of the design criteria had been: “Ministers shall not have to use
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passwords.”) Other applications include the Istanbul mass transit system, parking me-

ters in Argentina, and the electronic stamps for the U.S. Postal Service that I men-

tioned in the previous chapter [753]. The device is now being equipped with a Java

interpreter, and marketed as the Java ring, a tamper-resistant device that users can pro-

gram for their own applications.

How might an iButton be attacked? The most obvious difference from the 4758 is

the lack of a tamper-sensing barrier. So one might try drilling in through the side, then

either probe the device in operation or disable the tamper-sensing circuitry. Because

the iButton has lid switches to detect the can being opened, and its processor is

mounted upside-down on the circuit board (with a mesh in the top metal layer of the

chip), this is unlikely to be a trivial exercise. It might well involve building custom jigs

and tools. In short, it’s a tempting target for the next bright graduate student who wants

to win their spurs as a hardware hacker.

14.5.2 The Dallas 5002

Another medium-grade security device from Dallas is the DS5002 microcontroller,

which is widely used in devices such as point-of-sale terminals, where it holds the keys

used to encrypt customer PINs.

The ingenious idea behind this device is bus encryption. The chip has added hard-

ware that encrypts memory addresses and contents on the fly as data are loaded and

stored. This means that the device can operate with external memory, and is not limited

to the small amount of RAM that can be fitted into a low-cost tamper-sensing package.

Each device has a unique master key, which is generated at random when it is powered

up. The software is then loaded through the serial port, encrypted, and written to exter-

nal memory. The device is then ready for use. Power must be maintained constantly, or

the internal register that holds the master key will lose it; this also happens if a physi-

cal tampering event is sensed (like the iButton, the DS5002 has a tamper-sensing mesh

built into the top metal layer of the chip).

An early version of this processor (1995) fell victim to an ingenious protocol level

attack by Markus Kuhn, the cipher instruction search attack [477]. The idea is that

some of the processor’s instructions have a visible external effect such as I/O. In par-

ticular, one instruction causes the next byte in memory to be output to the device’s par-

allel port. The trick is to intercept the bus between the processor and memory using a

test clip, and feed in all possible 8-bit instruction bytes at some point in the instruction

stream. One of them should decrypt to the parallel output instruction, and output the

plaintext version of the next “encrypted memory” byte. By varying this byte, a table

could be built up of corresponding plaintext and ciphertext. After using this technique

to learn the encryption function for a sequence of seven or eight bytes, the attacker

could encipher and execute a short program to dump the entire memory contents.

The full details are a bit more intricate. Dallas has since fixed the problem, but it is a

good example of the completely unexpected things that go wrong when trying to im-

plement a clever new security concept for the first time.
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14.5.3 The Capstone/Clipper Chip

In 1993, the security world was convulsed when the U.S. government introduced the

Clipper chip as the replacement for DES. Clipper, also known as the Escrowed En-

cryption Standard (EES), was a tamper-resistant chip that implemented the Skipjack

block cipher in a protocol designed to allow the U.S. government to decrypt any traffic

encrypted using Clipper. The idea was that when a user supplied Clipper with a string

of data and a key with which to encrypt it, the chip returned not just the ciphertext but

also a Law Enforcement Access Field, or LEAF, which contained the user-supplied key

encrypted under a key embedded in the device and known to the government. To pre-

vent people cheating and sending along the wrong LEAF with a message, the LEAF

had a cryptographic checksum computed with a “family key,” shared by all interoper-

able Clipper chips. This functionality was continued into the next-generation chips,

called Capstone, which incorporate ARM processors to do public key encryption and

digital signature operations.

Almost as soon as Capstone chips hit the market, a vulnerability was found in the

LEAF mechanism [113]. The cryptographic checksum used to bind the LEAF to the

message was only 16 bits long, making it possible to feed random message keys into

the device until one with a given LEAF was found, thus enabling a message to be sent

with a LEAF that would remain impenetrable to the government. The Clipper initiative

was abandoned and replaced with other policies aimed at controlling the “prolifera-

tion” of cryptography. Nevertheless, Capstone quietly entered government service and

is now widely used in the Fortezza card, a PCMCIA card used in PCs to encrypt data at

levels up to Secret. The Skipjack block cipher, which was initially classified, has since

been placed in the public domain [577].

Of greater interest here are the tamper protection mechanisms used, as they are per-

haps the most sophisticated in any single-chip tamper resistant device, and were

claimed at the time to be sufficient to withstand a “very sophisticated, well-funded ad-

versary” [578]. Although the NSA claimed that the Clipper chip would be unclassified

and exportable, I’ve not been able to get hold of one for dismantling, despite repeated

attempts.

Its successor is the QuickLogic military FPGA, designed to enable its users to con-

ceal proprietary algorithms from their customers; it is advertised as being “virtually

impossible to reverse-engineer.” Like Clipper, it uses vialink read-only memory

(VROM), in which bits are set by blowing antifuses between the metal 1 and metal 2

layers on the chip. A programming pulse at a sufficiently high voltage is used to melt a

conducting path through the polysilicon that separates the two metal layers. Further

details and micrographs can be found in the data book [347].

There are basically three approaches to reverse engineering an antifuse FPGA.

• The first is to determine the presence of blown antifuses using optical or elec-

tron microscopy, having first removed the top metal layer of the chip. This can

be extremely tedious; even if the bits are read out correctly, a lot more work

remains to figure out what they mean.

• A smarter approach is to abuse the programming circuit. This sends a pulse to
the fuse and stops it once the resistance drops, which means that the metal has
melted and established contact; if the pulse isn’t stopped, the metal might va-
porize and go open-circuit again. Thus, circuits for detecting whether a fuse is
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open or short must be provided; and if they aren’t sufficiently disabled after
programming, they can be used to read the device out.

• The fastest approach, which is particularly easy when the cryptographic algo-

rithm being executed is known, is to drop microprobes directly on to the gate

array and look at the signals. Suitable analysis techniques, such as those de-

scribed in Section 15.4, should quickly yield the key. Signals can also be col-

lected using electromagnetic or electro-optic sensors, voltage contrast

microscopy and a growing number of other chip-testing techniques. Even

where the algorithm isn’t known initially, it may be faster to reconstruct it

from observing on-chip signals than from doing a full circuit reconstruction.

This technology isn’t infallible, but used intelligently it certainly appears to have

some potential.

14.6 Smartcards and Microcontrollers

The most common secure processors nowadays are smartcards and similar self-

contained security processors. These cost maybe a dollar each in bulk, and are being

deployed in environments such as telephone cards, pay-TV subscriber cards, hotel door

locks, and even (in some countries) bank cards.

In such applications, the opponent can often obtain many sample devices and take

them away to probe at their leisure. As a result, many attacks on them have been de-

veloped.

Although they are now being marketed as the “new” security solution, smartcards

actually go back a long way, with the early patents (which date from the late 1960s

through mid-1970s) having long since expired [247]. For a history of the development

of smartcards, see [358]. For many years, they were mostly used in France, where

much of the original development work was done with government support. In the late

1980s and early 1990s, they started to be used on a large scale outside France, princi-

pally as the subscriber identity modules (SIMs) in GSM mobile phones and as sub-

scriber cards for pay-TV stations.

A smartcard is a self-contained microcontroller, with a microprocessor, memory and

a serial interface integrated on to a single chip that is packaged in a plastic card.

Smartcards used in banking and in the older mobile phones use a standard-size bank

card, while in the newer, smaller mobile phones, a much smaller size is used. Smart-

card chips are also packaged in other ways. For example, most U.K. prepayment elec-

tricity meters use them packaged in a plastic key, as do Nagravision pay-TV set-top

boxes. In the STU-III secure telephones used in the U.S. government, each user has a

crypto ignition key, which is also packaged to look and feel like a physical key.

The single most widespread application that uses smartcards is the GSM mobile

phone system, a digital standard used in some U.S. networks and in almost all coun-

tries outside the United States. The telephone handsets are commodity items, and are

personalized for each user by means of a SIM, a smartcard which contains not just your

personal phone book, call history and so on, but also a cryptographic key with which

you authenticate yourself to the network.
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The strategy of using a cheap smartcard to provide the authentication and other secu-

rity functions of a more expensive consumer electronic device has a number of advan-

tages. The expensive device can be manufactured in bulk, with each unit being exactly

the same; while the smartcard, which provides subscriber-level control, can be replaced

relatively quickly and cheaply in the event of a successful attack. This has led many

pay-TV operators to adopt smartcards. The satellite TV dish and decoder become

commodity consumer durables, while each subscriber gets a personalized smartcard

containing the key material needed to decrypt the channels to which they have sub-

scribed.

Chipcards are also used in a range of other applications, from hotel keys to public

payphones—though in such applications it’s common for the card to contain no micro-

processor but just some EEPROM memory to store a counter or certificate, and some

logic to perform a simple authentication protocol.

Devices such as prepayment electricity meters are typically built around a micro-

controller that performs the same kind of functions as a smartcard but has less sophis-

ticated protection. Typically, this consists of setting a single “memory protection” bit

that prevents the EEPROM contents being read out easily by an attacker. There have

been many design defects in particular products; for example, a computer authentica-

tion token called iKey had a master password that was hashed using MD5 and stored

on an EEPROM external to the processor, enabling a user to overwrite it with the hash

of a known password and assume complete control of the device [459].

Many other low-cost security products are based on some kind of microcontroller (or

dedicated logic that performs an authentication protocol of some kind). An increasing

number are contactless, and function as radio frequency identifiers that provide theft

protection or just “smart labels” for a wide range of products. As for more systemic

vulnerabilities, the attacks on smartcards also tend to work on microcontroller-based

devices, so I won’t treat them separately from this point on. For more details of attacks

specific to microcontrollers, see [43].

14.6.1 Architecture

The typical smartcard consists of a single die of up to 25 square millimeters of silicon,

containing an 8-bit microprocessor (such as an 8051 or 6805), although some of the

newer devices are starting to appear with a 32-bit processor such as the ARM. It also

has serial I/O circuitry and a hierarchy of three classes of memory: ROM to hold the

program and immutable data; EEPROM to hold customer-specific data, such as the

registered user’s name and account number as well as crypto keys, value counters and

the like; and RAM registers to hold transient data during computation.

The memory is very limited by the standards of normal computers. A typical card on

sale in 2000 might have 16 Kbytes of ROM, 16 Kbytes of EEPROM and 256 bytes of

RAM. The bus is not available outside the device; the only connections supplied are

for power, reset, a clock, and a serial port. The physical, electrical, and low-level logi-

cal connections, together with a file-system-like access protocol, are specified in ISO

7816.
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14.6.2 Security Evolution

When I first heard a sales pitch from a smartcard vendor—in 1986, when I was work-

ing as a banker—I asked how come the device was secure. I was assured that because

the machinery needed to make the card cost $20 million, just as for making banknotes,

the system must be secure. I didn’t believe this, but didn’t then have the time or the

tools to prove the claim wrong. I later learned from industry executives that none of

their customers were prepared to pay for serious security until about 1995, so until then

they relied on the small size of the devices, the obscurity of their design, and the rela-

tive unavailability of chip-testing tools.

The application that changed all this was satellite TV. Operators broadcast their sig-

nals over a large footprint—such as all of Europe—and gave subscribers smartcards

that would compute the keys needed to decipher the channels they’d paid for. Since the

operators had usually only purchased the rights to the movies for one or two countries,

they couldn’t sell the subscriber cards elsewhere. This created a black market in pay-

TV cards, into which forged cards could be sold. Another major factor was that Star

Trek, which people in Europe had been picking up from U.K. satellite broadcasts for

years, was suddenly encrypted in 1993. This motivated a lot of keen young computer

science and engineering students to look for vulnerabilities.

Since then, major financial frauds have been carried out with cloned cards. The first

to be reported involved a smartcard used to give Portuguese farmers rebates on fuel.

The villain conspired with petrol stations that registered other fuel sales to the bogus

cards in return for a share of the proceeds. The fraud, which took place in Febru-

ary–March 1995, is reported to have netted about thirty million dollars [557].

How to Hack a Smartcard (1)

The earliest hacks targeted the protocols in which the cards were used. For example,

some early pay-TV systems gave each customer a card with access to all channels, then

sent messages over the air to cancel those channels to which the customer hadn’t sub-

scribed after an introductory period. This allowed an attack whereby a device was in-

serted between the smartcard and the decoder to intercept and discard any messages

addressed to the card. Subscribers could then cancel their subscription without the

vendor being able to cancel their service.

The same kind of attack was launched on the German phone card system. A hacker

called Urmel tipped off Deutsche Telekom that it was possible to make phone cards

that gave unlimited free calls. He had discovered this by putting a laptop between a

card and a phone to analyze the traffic. Telekom’s experts refused to believe him, so he

exploited his knowledge by selling handmade chipcards in brothels and in hostels for

asylum seekers [726]. Such low-cost attacks were particularly distressing to the phone

companies, as the main reason for moving to smartcards was to cut the cost of having

to validate cheaper tokens online [78]. I’ll discuss these protocol failures further in the

chapter on copyright enforcement systems. There has also been a fairly full range of

standard computer attacks, such as stack overwriting by sending too long a string of

parameters. In the following, I concentrate on the attacks that are peculiar to smart-

cards.
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How to Hack a Smartcard (2)

Smartcards use an external power supply, and store security state such as crypto keys

and value counters in EEPROM, so an attacker could freeze the EEPROM contents by

removing the programming voltage, VPP. Early smartcards received VPP on a dedicated

connection from the host interface. This led to very simple attacks: by covering the VPP

contact with sticky tape, cardholders could prevent cancellation signals from affecting

their card. The same trick could be used with some payphone chipcards; a card with

tape over the appropriate contact had “infinite units.”

The fix was to generate VPP internally from the supply voltage VCC using a voltage

multiplier circuit. However, this isn’t entirely foolproof as this circuit can be destroyed

by an attacker. So a prudent programmer, having (for example) decremented the retry

counter after a user enters an incorrect PIN, will read it back and check it. She will also

check that memory writing actually works each time the card is reset, as otherwise the

bad guy who has shot away the voltage multiplier can just repeatedly reset the card and

try every possible PIN, one after another.

How to Hack a Smartcard (3)

Another early attack was to slow down the card’s execution, or even single-step it

through a transaction by repeatedly resetting it and clocking it n times, then n + 1

times, and so on. In one card, it was possible to read out RAM contents with a suitable

transaction after reset, as working memory wasn’t zeroized. With many cards, it was

possible to read the voltages on the chip surface using an electron microscope. (The

low-cost scanning electron microscopes generally available in universities can’t do

voltage contrast microscopy at more than a few tens of kilohertz, hence the need to

slow down the execution.)

Now many smartcard processors have a circuit to detect low clock frequency, which

will either freeze or reset the card. But, as with burglar alarms, there is a trade-off be-

tween the false alarm rate and the missed alarm rate. This leads to many of the alarm

features provided by smartcard chip makers simply not being used by the OEMs or

application developers. For example, with cheap card readers, there can be wild fluc-

tuations in clock frequency when a card is powered up, causing so many false alarms

that some developers do not use the feature. Clearly, low clock frequency detectors

need careful design.

How to Hack a Smartcard (4)

Once pay-TV operators had fixed most of the simple attacks, pirates turned to attacks

using physical probing (see Figure 14.4). Most smartcards have no protection against

physical tampering beyond the microscopic scale of the circuit, a thin glass passivation

layer on the surface of the chip, and potting, which is typically some kind of epoxy.

Techniques for depackaging chips are well known, and discussed in detail in standard

works on semiconductor testing, such as [80]. In most cases, a few milliliters of fum-

ing nitric acid are all that’s required to dissolve the epoxy; the passivation layer is then

removed where required for probing.

Probing stations consist of microscopes with micromanipulators attached for land-

ing fine probes on the surface of the chip. They are widely used in the semiconductor

manufacturing industry for manual testing of production-line samples, and can be ob-

tained second-hand for under $10,000. They may have specialized accessories, such as

a laser to shoot holes in the chip’s passivation layer (see Figure 14.5).
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Figure 14.4 Low-cost probing station.

The usual target of a probing attack is the processor’s bus. If the bus traffic can be

recorded, this gives a trace of the program’s operation with both code and data. If the

attacker is lucky, the card designer will have computed a checksum on memory imme-

diately after reset (a recommended defense industry practice), and this operation will

immediately give him a complete listing of the card memory contents. So the attacker

will identify the bus, and expose the bus lines for probing.

The first defense used by the pay-TV card industry against attacks of this kind was

to endow each card with multiple keys and/or algorithms, and arrange things so that

only those in current use would appear on the processor bus. Whenever pirate cards

appeared on the market, a command would be issued over the air to cause the legiti-

mate card population to activate new keys or algorithms from a previously unused area

of memory. In this way, the pirates’ customers would suffer a loss of service until the

probing attack could be repeated and either new pirate cards, or updates to the existing

ones, could somehow be distributed.
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Figure 14.5 The data bus of an ST16 smartcard prepared for probing by excavating eight

trenches through the passivation layer with laser shots (photo courtesy Oliver Kömmerling).

The defeat for this strategy was Oliver Kömmerling’s memory linearization attack,

whereby the analyst damages the chip’s instruction decoder in such a way that instruc-

tions which change the program address other than by incrementing it—such as jumps

and calls—become inoperable [470]. One way to do this is to drop a grounded micro-

probe needle on the control line to the instruction latch, so that whatever instruction

happens to be there on power-up is executed repeatedly. The memory contents can now

be read off the bus. In fact, once some of the device’s ROM and EEPROM are under-

stood, the attacker can skip over unwanted instructions and cause the device to execute

only instructions of his choice. So with a single probing needle, he can get the card to

execute arbitrary code, and in theory could get it to output its secret key material on

the serial port. But probing the memory contents off the bus is usually more conven-

ient.

In practice, there are often several places in the instruction decoder where a

grounded needle will have the effect of preventing programmed changes in the control

flow. So even if the processor isn’t fully understood, memory linearization can often

be achieved by trial and error. Some of the more modern processors have traps that

prevent memory linearization, such as hardware access control matrices which prevent

particular areas of memory being read unless some specific sequence of commands is

presented. But such circuits can often be defeated by shooting away carefully chosen

gates using a laser or an ion beam.
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Some cards could be attacked through their test circuitry. A typical smartcard chip

has a self-test routine in ROM that is executed in the factory and allows-all the mem-

ory contents to be read and verified. After this has been done, a polysilicon fuse is

blown in the chip to stop an attacker using the same facility. All that the attacker had to

do was to find the fuse and repair it—which could involve as little as bridging it with

two probing needles [130]. Then, in some cases, the entire memory contents could be

read out over the serial port. A more careful design might put the test circuitry on the

part of the silicon that is sawn away when the wafer is diced into individual chips.

How to Hack a Smartcard (6)

The next thing the pay-TV card industry tried was to incorporate hardware crypto-

graphic processors, to force attackers to reconstruct hardware circuits rather than sim-

ply clone software, and to force them to use more expensive processors in their pirate

cards. In the first such implementation, the crypto processor was a separate chip pack-

aged into the card. This design had an interesting protocol failure: it would always

work out the key needed to decrypt the current video stream, then pass it to the CPU,

which would decide whether or not to release it to the outside world. Hackers broke

this system by developing a way to tap into the wiring between the two chips.

More modern implementations have the crypto hardware built into the CPU itself.

Where this consists of just a few thousand gates, it is feasible for an attacker to recon-

struct the circuit manually from micrographs of the chip. But with larger gate counts

and deep submicron processes, a successful attack may require automatic layout recon-

struction: successively etching away the layers of the chip, taking electron micro-

graphs, and using image processing software to reconstruct a 3-D map of the chip, or at

least identify its component cells [121]. However, assembling all the equipment, writ-

ing the software, and integrating the systems involves significant effort and expense.

A much simpler, and common, attack is for pirates to ask one of the dozen or so ex-

isting commercial reverse-engineering labs to reconstruct the relevant area of the chip.

Such labs get much of their business from analyzing commercial integrated circuits on

behalf of the chip maker’s competitors, looking for possible patent infringements. They

are used to operating in conditions of some secrecy, and it doesn’t seem to be too diffi-

cult for a pirate to sneak in a sample that is targeted for piracy rather than litigation.

How to Hack a Smartcard (7)

The next defense that the card industry thought up was to furnish the chip with protec-

tive surface mesh, implemented in a top metal layer as a serpentine pattern of ground,

power and sensor lines. The idea was that any break or short in the pattern would be

sensed as soon as the chip was powered up, thereby triggering a self-destruct mecha-

nism.

I mentioned such meshes in connection with the Dallas processors; after the usual

initial crop of implementation blunders, they have proved to be an effective way of

pushing up the cost of an attack. The appropriate tool to defeat them is the Focused Ion

Beam Workstation (FIB). This is a device similar to a scanning electron microscope,

but it uses a beam of ions instead of electrons. By varying the beam current, it is possi-

ble to use it as a microscope or as a milling machine. By introducing a suitable gas,

which is broken down by the ion beam, it is possible to lay down either conductors or

insulators with a precision of a few tens of nanometers.
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FIBs are such extremely useful devices in all sorts of applications—from semicon-

ductor testing through metallurgy and forensics to nanotechnology—that they are rap-

idly becoming widely available, and their prices are tumbling. Many universities and

industrial labs now have one. FIB time can also be rented from a number of agencies

for a few hundred dollars an hour.

Given a FIB, it is straightforward to attack a sensor mesh that is not powered up.

One simply drills a hole through the mesh to the metal line that carries the desired sig-

nal, fills it up with insulator, drills another hole through the center of the insulator, fills

it with metal, and plates a contact on top—typically, a platinum L or X a few microns

wide, which is easy to contact with a needle from the probing station (see Figure 14.6).

Defeating a sensor mesh that is continually powered up is much harder, but the nec-

essary tools are starting to emerge from the labs of the chip-testing industry. For ex-

ample, there are techniques to mill through the back side of a chip with a suitably

equipped FIB, and make contact directly to the electronics without disturbing the sen-

sor mesh at all.

Figure 14.6 The protective mesh of an ST16 smartcard with a FIB cross for probing the bus

line visible underneath (photo courtesy Oliver Kömmerling).

Many other defensive techniques can force the attacker to do more work. Some chips

are said to be packaged in much thicker glass than in a normal passivation layer. The

idea is that the obvious ways of removing this (such as applying hydrofluoric acid) are

likely to damage the chip. However, optoelectronic techniques developed in the past

few years enable an attacker to read out a voltage directly using a laser [11]. Other

chips have protective coatings of substances such as silicon carbide or boron nitride.

(Chips with protective coatings are on display at the NSA Museum at Fort Meade,



Chapter 14: Physical Tamper Resistance

296

Maryland). Such coatings can force the FIB operator to go slowly, rather than damage

the chip through a build-up of electrical charge. However, protective layers in smart-

card chip packaging are, like much else in the security industry, often a matter of mar-

keting rather than engineering. The one chip that our team has dismantled recently and

whose vendors claimed to have such a layer, turned out to have no special protection at

all.

14.6.3 The State of the Art

At the time of writing, I know of no technology, or combination of technologies, that

can make a smartcard resistant to penetration by a skilled and determined attacker.

Some industry experts even believe that absolute protection in chip-sized packages will

remain infeasible, because it’s not economic to fabricate devices that you can’t test.

Despite this, smartcards are certainly a lot harder to copy than magnetic stripe cards,

and there is room for them to be made harder still. The latest cards have up to three

layers of defensive mesh; registers that use dynamic logic, making it impossible to just

shoot away a low clock frequency detector, then single-step the chip; circuits that in-

sert dummy instructions from time to time so that if you probe the bus lines one after

another, you may have to do a lot of work to align the traces you get; 32-bit processors,

which make trace alignment even harder; proprietary instruction sets; and a whole host

of other tricks. But as industry insiders say, ‘the man with the ion beam will always get

in’.

So what sort of strategies are available to you if you are designing a system that de-

pends on smartcards?

14.6.3.1 Defense in Depth

The first, used by pay-TV companies, is defense in depth. Smartcards may combine a

whole menagerie of the tricks described above, and even obscure proprietary encryp-

tion algorithms. Normally, using home-brewed encryption schemes is a bad thing:

Kerckhoffs’ principle almost always wins in the end, and a bad scheme, once pub-

lished, can be fatal. Defense in depth of pay-TV provides an interesting exception. The

goal is to minimize, insofar as possible, the likelihood of a shortcut probing attack, and

to force the attacker to go to the trouble of reverse engineering substantially the whole

system.

It’s prudent to assume that even an amateur will be able to drop a probe on to a

number of signal lines in the device. If it is performing a known cryptographic protocol

with well-understood algorithms, then unless there’s an effective mechanism to intro-

duce lots of dummy instructions, a trace from a single bus line is likely to give away

the key [370]. Using a proprietary (and complicated) encryption algorithm can force

the attacker to do a more complete analysis and delay him for a few weeks or months.

This can make a huge difference to the economics of piracy in an industry such as pay-

TV where cards are replaced about once a year. (Of course it’s even more essential

with a proprietary design to have it evaluated thoroughly by competent experts—and

for the experts to analyze not just the abstract cryptographic strength of the algorithm,

but how easily it can be reconstructed from observable signals.)

Technical measures on their own are not enough, though. Over the last few years of

the twentieth century, the pay-TV industry managed to reduce piracy losses from over

5% of revenue to an almost negligible proportion. More complex smartcards played a
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role, but much of the improvement came from legal action against pirates, and from

making technical and legal measures work together efficiently. I’ll discuss this further

in Chapter 20, when we explore the world of copyright.

14.6.3.2 Tamper Resistance versus Tamper Evidence

It can often be very useful to draw a careful distinction between devices that are tam-

per-resistant and those that are merely tamper-evident. Even if the former can’t yet be

produced for mass markets, it is more or less within our grasp to make smartcards

against which the only attacks are invasive, such as probing, and therefore leave physi-

cal evidence behind. (This is still harder than it looks—in the next chapter we’ll dis-

cuss noninvasive attacks.)

For example, in a banking application where smartcards are used to manufacture and

verify electronic checks, the bank might have a rule that disputes will be considered

only if customers can produce their smartcard undamaged. This is not quite as simple

as it seems, as smartcards can always be damaged by accident. Maybe 1% of smart-

cards issued to the public will be destroyed every year by material failures or static

electricity; consumer laws in many countries may prevent banks from disregarding

claims when that happens. Once again, the legal and engineering aspects of the prob-

lem interact. Nonetheless, cards that are tamper-evident (as well as being fairly diffi-

cult to probe) can be a useful part of a risk management strategy.

14.6.3.3 Stop Loss

Whether one goes for the defense-in-depth approach or the tamper-evident approach

will depend on the extent to which one can limit the losses that result from a single

card being successfully probed.

In early pay-TV systems, the system architecture forced all customer cards to con-

tain the same master secret. Once this secret became known, pirate cards could be

manufactured at will, and the card base had to be replaced. The pay-TV systems cur-

rently being deployed for digital broadcasting use crypto protocols in which cards have

different keys, so that cloned cards can be revoked. I’ll describe these protocols in

Section 20.2.4.5.

In other systems, such as the banking card application described in Section 2.7.1,

there are limits on the amount that can be spent using a stolen or forged card, set by a

system of merchant floor limits, random online authorizations, lists of hot cards and so

on. Here, a tamper-evident card may be a perfectly adequate solution. Even a card

that’s relatively easy to forge may be viable, as it’s still harder to forge than the mag-

netic stripe card it replaces.
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14.7 What Goes Wrong

There are failure modes of systems involving tamper-resistant processors that are more

or less independent of whether the device is low or high end. Many failures occurred

because the device was exposed to more capable attackers than its designers antici-

pated: it just never seems to have occurred to the designers of early chip cards that bad

people might have access to semiconductor test equipment. Many more occur because

people protect the wrong things, or protect the right things in the wrong way; a survey

of flaws found by a commercial evaluation laboratory showed that most of them were

at the interfaces between physical, logical, and organizational measures [131].

14.7.1 Protecting the Wrong Things: Architectural Errors

A good example of misuse of the technology is the drive to have smartcards adopted as

the preferred device for digital signatures. Some government initiatives give enhanced

legal validity to signatures made using an approved smartcard. While this may be a

Full Employment Act for the card industry, it makes little sense technically.

None of the devices described in the preceding sections has a really trustworthy user

interface. Some of the bank security modules have a physical lock (or two) on the front

to ensure that only the person with the metal key can perform certain privileged trans-

actions. But whether you use a $2,000 4758 or a $2 smartcard to do digital signatures,

you still trust the PC that drives them. If it shows you a text reading “Please pay ama-

zon.com $37.99 for a copy of Anderson’s Security Engineering,” while the message it

actually sends for signature is “Please remortgage my house at 13 Acacia Avenue and

pay the proceeds to Mafia Real Estate Inc.,” then the tamper resistance has not bought

you much.

It may even make your situation worse, as you will have a harder time repudiating

the transaction. Information policy experts have pointed out that the proposed approach

to digital signatures is likely to undermine the very consumer protection laws that give

people confidence when conducting business electronically over the Net [124]. What

customers really need is a secure PC—or at least a firewall to shield their PC from the

worst of the external threats, such as malicious code. That is a separate engineering

problem, and has little to do with hardware security. In fact, researchers are coming to

realize that a palmtop computer may be a much better platform for digital signature

applications; whatever its vulnerability to probing, customers can at least see what

they’re signing and protect the device using common sense [69].

An example of more appropriate use of hardware protection technology comes from

the prepayment electricity metering system, discussed in Chapter 11. There, the func-

tion of tamper resistance was to limit the loss if one of the vending machines that sold

meter tokens was stolen. By keeping the keys needed to encrypt the tokens in a secure

processor, which also contained a value counter, it was possible to enforce a credit

limit on each vendor. Had someone managed to drill into the device, he would have

been able to defeat the value counter, extract the crypto keys for the individual meters,

and thus sell unlimited numbers of tokens to the meters in the vending area. But this

would not have destroyed the whole metering system, just forced the rekeying of a few

thousand meters.
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14.7.2 Protecting the Wrong Things: Security-by-Obscurity
and Evaluation Errors

Many of the smartcard systems that have been broken, in ways that resulted in real

frauds, appear to have become vulnerable because their operators did not fully under-

stand the technology and its limitations. This is hardly surprising; until recently, no

published information was readily available on how smartcards could be attacked. The

industry also sought to keep all serious technical information about its products secret.

To this day, one has to sign a nondisclosure agreement to get proper software devel-

opment tools for smartcards. (There are Java cards, Basic cards, and so on, but these

use interpreted languages to shield the developer from the hardware and don’t support

users who want to run their own machine code on the device).

In fact, the security target used for evaluating smartcards under the Common Criteria

focuses on maintaining obscurity of the design. Chip masks must be secret, staff must

be vetted, developers must sign nondisclosure agreements—there are many require-

ments that push up industry’s costs. Obscurity is also a common requirement for export

approval, and there remains a suspicion that it covers up deliberately inserted vulner-

abilities. For example, a card my colleagues tested would always produce the same

value when instructed to generate a private/public keypair, and output the public part.

Obscurity certainly does little for the customer in most smartcard applications. Al-

most none of the actual attacks on fielded smartcard systems used inside information.

Most of them started out with a probing attack on a card bought at retail.

Better protection targets were published by VISA, which specify extensive penetra-

tion testing [777]. However, as no existing products can pass such a test, the industry

took the route of protecting what it could rather than what it should. I’ll return to this

subject to discuss the underlying economics and politics in Section 23.3.3.1.

14.7.3 Protecting Things Wrongly: Protocol Failure

As elsewhere in security engineering, one of the most pervasive kinds of failure at the

technical level is the use of inappropriate protocols. A device such as the 4758 comes

with a transaction set of several hundred “verbs,” or combinations of cryptographic

operations that can be carried out on data passed to the device. Further verbs can be

defined by the application developer. How can one be sure that some combination of

these verbs won’t enable a user to do something that breaks the security policy?

From about 1981 until 1991, there was a protocol attack that worked against many

of the security modules used by banks to manage ATM networks. As the working life

of a security module is about seven years, the defective devices should all have retired

by the time this book appears (but they completely destroy the claim made by many

banks in the course of phantom withdrawal litigation in the early 1990s that “nothing

could possibly go wrong”).

The security modules provided by VISA and VISA-compatible vendors such as Ra-

cal had a transaction to generate a key component and print out its clear value on an

attached security printer.
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They also returned its value to the calling program, encrypted under a master key

KM which was kept in the tamper-resistant hardware:

     VSM Æ printer: KMTi

VSM Æ host: {KMTi}KM

and another that combined two of the components to produce a terminal key:

Host Æ VSM: {KMT1}KM, {KMT2}KM

     VSM Æ host: {KMT1 ⊕ KMT2}KM

The idea was that, to generate a terminal key for the first time, you’d use the first of

these transactions twice, followed by the second. Then you’d have KMT = KMT1 ⊕

KMT2. However, there is nothing to stop the programmer taking any old encrypted key

and supplying it twice in the second transaction, resulting in a known terminal key (the

key of all zeroes, as the key is exclusive-or’ed with itself):

Host Æ VSM: {KMT1}KM, {KMT1}KM

     VSM Æ host: {KMT1 ⊕ KMT1}KM

The module also has a transaction that will take two keys, encrypted under the mas-

ter key and return one encrypted with the other

Host Æ VSM: {KMT1}KM, {KMT2}KM

     VSM Æ host: {KMT1}KMT2

(This is intended to allow the terminal master key in a cash machine to be replaced, or

a PIN key to be sent to a cash machine encrypted under the terminal master key, to

support offline PIN verification.)

The attack is now simple, and devastating. Having a zero key, encrypted under KM,

we can translate the PIN key (and everything else of interest) from being encrypted

under KM to being encrypted under the zero key. Thus, the physical protection that was

promised to customers was a phantasm: a programmer could extract any key of interest

with only two unprivileged instructions.

This is interesting from the scientific point of view, because the security policy en-

forced by the VSM is a kind of kludge between a multilevel policy (“PINs are Secret

and must not leak to any process with a lower classification”) and a shared control

policy (“no single member of bank staff should be able to work out a customer PIN”).

It’s also interesting from the public policy viewpoint, as it was known to the equipment

vendors at the time of the Munden case described in Section 9.4.3. But the vendors

didn’t own up to it, despite the fact that its existence would have directly undermined

the prosecution testimony in a highly publicized miscarriage-of-justice case. This

should be remembered whenever one of the parties in a court case relies on vendor as-

surances about a system’s capabilities.

The fix adopted was to remove the offending instruction. This means that dual con-

trol key management now involves a trusted process at the host, which will have access

to key material. (This has always been the case with the ATM support application,

CCA, supplied for the 4758.) A better fix would have been to compute terminal keys
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using a hash function, such as KMT = SHA1(KMT1,KMT2), but this would not have

been backward-compatible. With hindsight, the choice of a combining function with

arithmetic properties meant that all the protocols subsequently developed on this foun-

dation should have been checked for ways in which these properties could misbehave.

In other words, the choice of combining function raised the complexity of transaction

set verification.

This brings us to the attack found on the 4758 by Mike Bond. This enables any key

to be extracted from the device with only a modest keysearch. The vulnerability is that

the two-key, triple-DES encryption used internally by the 4758 can have its key pairs

cut and spliced. Given a known pair of keys, KA and KB, and a target pair of keys KC

and KD, one can compare the results of encryption under the spliced keys (KC,KB) and

(KA,KD) with a brute-force search of all possibilities, thus breaking the target keys one

component at a time. This reduces the cost of an attack from the 2
112

 of a standard tri-

ple-DES keysearch to the more tractable 2
56

 of single-DES. There is also a time-

memory tradeoff available; for example, with 2
16

 trial keys it is possible to break the

4758 with an effort of about 2
40

 test encryptions. For full details, see [125].

Let’s step back for a minute and consider the implications. IBM spent over a decade

evolving a highly strategic product, that is used by many banks to protect zillions of

dollars’ worth of transactions. The US government certified it as the most secure

crypto processor available to civilian purchasers, and kept it export-controlled. IBM

further protected it by refusing to sell us a sample. Yet a typical Cambridge graduate

student broke it within six weeks by studying the manuals available from IBM’s Web

site.

Verifying the correctness of the transaction set of a cryptographic processor is a

hard, and as yet unsolved, problem. Verifying an individual protocol is difficult

enough, and the research community spent much the 1990s learning how to do it. Yet a

protocol might consist of perhaps two to five messages, while a cryptoprocessor might

have from dozens to hundreds of verbs. Many protocols fail because their goals are not

made sufficiently explicit; yet cryptoprocessors are sold as general-purpose machines,

and may be used to enforce a very wide range of security policies. We don’t yet really

know how to formalize security policies, let alone track them back to crypto primi-

tives. Checking that there isn’t some obscure sequence of transactions that breaks your

security policy is hard enough; when your policy isn’t even precisely stated, it looks

impossible.

14.7.4 Function Creep

I’ve given numerous examples of how function creep, and changes in environmental

conditions in general, have broken many secure systems by undermining their design

assumptions. The flexibility of some modern cryptographic processors makes this a

particular problem.

Function creep can also interact with physical tamper-resistance directly, and is par-

ticularly pernicious in smartcard applications. It is easy to move subtly from a system

in which smartcards act much like magnetic strip cards and perform transactions on

underlying bank accounts that are cleared every night, to a system in which they act

like wallets and can transfer value to each other. In the former, cards can have different

keys shared only with the bank, and so the compromise of a single card need mean no

more than the cloning of a credit card does in the magnetic strip world. In the latter,

each card has a key that enables it to transfer money to any other card, and the con-
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straints of centralized accounting are relaxed. A relatively low-risk environment sud-

denly becomes a relatively high-risk one.

Another way a low-risk environment can become a high-risk one is when multiple

applications are put on the same card. If a device that was previously just a health in-

surance card or a welfare claimants’ card suddenly starts to double as a national iden-

tity card, then it may attract a much higher grade of attacker. If large numbers of

different organizations can run their own applications on the card—which is the stated

purpose of Java cards—then the chosen protocol attack described in Chapter 2 be-

comes a particularly dangerous threat. A bad man may design an application specifi-

cally to attack yours.

14.8 What Should Be Protected?

With many technologies—including the steam engine, telephone, and computer—the

original proposed use of the device was not that which eventually took off in the mar-

ket. (Consider the size of the market today for pumping water out of coal mines; read-

ing text to telegraph operators rather than sending it through a pneumatic tube; and

working out artillery range tables.)

The currently fashionable sales pitch for smartcards is that they will be the advanced

electronic signature devices envisaged in EU electronic commerce regulations—that is,

devices that people will use to sign legal documents and that will be sufficiently de-

pendable that the existence of such a signature can be taken as proof that the owner of

the device signed it. Quite apart from the obvious legal objections (that it shifts the

burden of proof from the party relying on the signature to the device owner, and that

devices can always be stolen), there is, as I mentioned earlier, the technical problem

that the user doesn’t know what the smartcard is signing; and if the PC software, that

supplies the matter to be signed, is guaranteed to be bug-free and free from viruses,

then what value does the smartcard add?

The industry has been trying for much of the 1990s to sell the idea of a multifunc-

tion card, which would replace many of the plastic cards and metal keys that the aver-

age person carries with them. The application that makes this finally happen may be

putting bank transaction processing into mobile phones. As mobile phones have slots

for precisely one smartcard, a bank would have to rent space on the card from the

phone network operator. We shall see.

So what value can tamper-resistant devices actually add?

First, they can control information processing by linking it to a single physical to-

ken. A pay-TV subscriber card can be bought and sold in a gray market, but as long as

it isn’t copied, the station operator isn’t too concerned. Another example comes from a

Dallas product used in quality control in the food industry: it is physically sealed into a

food shipment to provide a reliable log of temperature history. Yet another is the use of

crypto to enforce evaluation standards in government networks: if you only get key

material once your system has been inspected and accredited, then it’s inconvenient to

connect an unlicensed system of any size to the classified government network.

Second, tamper-resistant devices can give assurance that data are destroyed at a

definite and verifiable time. The anti-trust case against Microsoft has highlighted the

damage that can be done by the seizure under subpoena of email archives; many corpo-

rations would like to enforce a policy that every email be destroyed after a fixed time,
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unless either the sender or the recipient takes positive action to preserve it. At my uni-

versity, for example, we destroy exam scripts and examiners’ working notes after four

months. If we held on to them for too long, we would have to give the students access

under data protection law, but if we destroyed them too soon, we could prejudice an

appeal. Once everything is electronic, implementing such a policy will be complicated

by all the system backups we keep. A solution is to encrypt archives with keys kept in

a device that is programmed to erase them at the right time.

Third, these devices can reduce the need to trust human operators. As I remarked,

their main purpose in some government systems was “reducing the street value of key

material to zero”. A crypto ignition key for a STU-III should allow a thief only to mas-

querade as the rightful owner, and only if he has access to an actual STU-III telephone,

and only as long as neither the key nor the phone have been reported stolen. The same

general considerations applied in ATM networks: no bank wanted to make its own

customers’ security depend on the trustworthiness of the staff of another bank.

Fourth, tamper-resistant devices can be used to control value counters, as with the

prepayment electricity discussed in Section 14.7.1. These typically use devices such as

the DS5002 or the iButton to hold both the vend keys for local meters and a credit

counter. Even if the device is stolen, the total value of electricity tokens it can vend is

limited.

This seems to be a special case of a more general application, in which some part of

a central server’s processing is delegated to a device in the field. But the most compel-

ling examples I can think of concern value. Note that a guarded corporate data-

processing center is also a tamper-resistant processor; applications of this type can of-

ten be spotted by the fact that they could also be implemented centrally if a completely

reliable network existed. For example, if all electricity meters and vend stations were

online, then prepayment metering could be done using straightforward authenticated

messaging. Note, too, that delegation also occurs between corporate data processing

centers, as when banks use hot-card lists to authenticate card transactions on other

banks. Here, tamper-resistant devices may be used to provide extra assurance (though

often logging mechanisms are sufficient where the continued solvency of the principals

can be relied on).

This is an incomplete list. But what these applications have in common is that a se-

curity property can be provided independently of the trustworthiness of the surround-

ing computer environment. In other words, be careful when using tamper-resistant

devices to try to offset the lack of a trustworthy user interface. This doesn’t mean that

no value at all can be added where the interface is problematic. For example, the tam-

per-resistant crypto modules used in ATM networks cannot prevent small-scale theft

using bogus ATMs; but they can prevent large-scale PIN compromise if used properly.

In general, tamper-resistant devices are often a useful component, but only very rarely

provide a fully engineered solution.

Finally, it is worth noting that tamper-resistance provides little protection against le-

gal attack. If you rely on it to keep algorithms proprietary, your competitors can bring

a patent infringement suit (however frivolous) simply to force disclosure of your de-

sign. This actually happens!
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14.9 Summary

Tamper-resistant devices and systems have a long history, and predate the development

of electronic computing. Computers can be protected against physical tampering in a

number of ways, such as by keeping them locked up in a guarded room. There are also

several cheaper and more portable options.

This chapter looked at a number of them, from devices costing thousands of dollars

that are certified by the U.S. government to resist all currently known attacks, down to

smartcards that can be penetrated by an attacker with a few thousand dollars’ worth of

equipment with a few weeks’ work. I discussed a number of applications, and a num-

ber of failures. Very often, the failures are not the fault of the hardware barriers or

alarms themselves, but a result of using the technology in an inappropriate way.

Research Problems

There are basically three strands of research in tamper-resistant processor design. The

first concerns itself with making faster, better, cheaper processors: how can the protec-

tion offered by a high-end device be brought to products with midrange prices and

sizes, and how can midrange protection can be brought to smartcards? The second con-

cerns itself with pushing forward the state of the attack art. How can the latest chip-

testing technologies be used to make faster, better, cheaper attacks?

The third strand concerns itself with the logical aspects of protection. Even assum-

ing that you can put a perfectly impenetrable barrier around a processor—imagine, for

example, a processor in orbit around Mars—how do you design the transaction set (and

the surrounding application) so that it can do useful work, with a high level of assur-

ance that some simple attack won’t be found?

Further Reading

For the early history of crypto, including things like weighted code books and water-

soluble inks, the source is, of course, Kahn [428]. The IBM and Dallas products men-

tioned have extensive documentation available online [397]; the U.S. FIPS documents

are also online [576]. For an introduction to chip card technology, see [632]; and for

the gory details of tampering attacks on chip cards, see [43, 44, 470]. Noninvasive at-

tacks on security processors, such as power analysis, are discussed in the next chapter.
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CHAPTER

15

Emission Security

The hum of either army stilly sounds,

 That the fixed sentinels almost receive

 The secret whispers of each other’s watch;

 Fire answers fire, and through their paly flames

 Each battle sees the other’s umbered face.

—WILLIAM SHAKESPEARE, KING HENRY V, ACT IV

15.1 Introduction

Emission security, or Emsec, refers to preventing a system being attacked using com-

promising emanations, namely conducted or radiated electromagnetic signals. It has

many aspects. Military organizations are greatly concerned with Tempest defenses,

which prevent the stray RF emitted by computers and other electronic equipment from

being picked up by an opponent and used to reconstruct the data being processed. The

smartcard industry has been greatly exercised by power analysis, in which a computa-

tion being performed by a smartcard—such as a digital signature—is observed by

measuring the current drawn by the CPU and the measurements used to reconstruct the

key. These threats are closely related, and have a number of common countermeasures.

People often underestimate the importance of Emsec. However, it seems that the

world’s military organizations spent as much on it as on cryptography during the last

quarter of the twentieth century. In the commercial world, the uptake of smartcards

was materially set back in the last few years of that century by the realization that all

the smartcards then on the market were extremely vulnerable to simple attacks, which

required the attacker only to trick the customer into using a specially adapted terminal

that would analyze the current it drew during a small number of transactions. These

attacks did not involve penetrating the card (at least, once the research needed to de-

sign the attack had been carried out), and thus might leave no trace. Once fielded, they
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were very much cheaper than probing attacks, and potentially allowed large-scale card-

cloning attacks against an unsuspecting cardholder population.

Electromagnetic eavesdropping attacks have been demonstrated against other com-

mercial systems, including automatic teller machines. There has also been much

speculation about disruptive electromagnetic attacks, whereby, for example, a terrorist

group uses a high-energy microwave source to destroy the computers in a target orga-

nization without killing people. (I’ll discuss these in more detail in the chapter on

electronic warfare.)

Both active and passive Emsec measures are closely related to preventing random

system disruption happening as a result of problems with electromagnetic compatibil-

ity (EMC) and radio frequency interference (RFI). If you fly regularly, you’ve no

doubt heard the captain say something like, “All electronic devices must be switched

off now, and not switched on again until I turn off the seat belt sign 10 minutes after

takeoff.” This problem is worsening as everything becomes electronic and clock fre-

quencies go up. And how do you do as the captain says when more and more devices

are designed to be “always on,”—so that the off switch only turns off the green tell-tale

light?

As more and more everyday devices get hooked up to wireless networks, and as

processor speeds head into the gigahertz range, all these problems—RFI/EMC, Emsec

and various electronic warfare threats—are set to get worse.

15.2 History

“Crosstalk” between telephone wires was a problem known to the pioneers of teleph-

ony in the nineteenth century, with their two-wire circuits stacked on tiers of crosstrees

on supporting poles. One way of dealing with it was to use “transpositions,” whereby

the wires were crossed over at intervals to make the circuit a twisted pair. This problem

appears to have first come to the attention of the military during the British Army ex-

pedition to the Nile and Suakin in 1884–1885 [569].

The first appearance of compromising emanations in warfare seems to date to 1914.

Field telephone wires were laid to connect the troops with their headquarters, and these

often ran for miles, parallel to enemy trenches that were only a few hundred yards

away. These wires used a single-core insulated cable and earth return in order to halve

the weight and bulk of the cable. It was soon discovered that earth leakage caused a lot

of crosstalk, including messages from the enemy side. Listening posts were quickly

established and protective measures were introduced, including the use of twisted-pair

cable. By 1915, valve amplifiers had extended the earth-leakage listening range to 100

yards for telephony and 300 yards for Morse code. It was found that the tangle of

abandoned telegraph wire in no-man’s land provided such a good communications

channel, and leaked so much traffic to the Germans, that clearing it away become a

task for which lives were spent. By 1916, earth-return circuits had been abolished

within 3,000 yards of the front. When the United States joined the war, the techniques

were passed on. More information can be found in [542, 569].

During the World War II, radio engineering saw advances in radar, passive direction

finding, and low-probability-of-intercept techniques, which I’ll discuss in the next

chapter. By the 1960s, the stray RF leaking from the local oscillator signals in domes-

tic television sets was being targeted by direction-finding equipment in “TV detector
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vans,” in Britain, where TV owners must pay an annual license fee that is supposed to

support public broadcast services. Its use has since expanded to satellite and cable TV

operators, who use detector vans to find pirate decoders. Some people in the computer

security community were also aware that information could leak from cross-coupling

and stray RF (see, for example, [259, 791]).

The intelligence community also started to exploit RF effects. In 1960, the British

prime minister ordered surveillance on the French embassy in the course of negotia-

tions about joining the European Economic Community. Scientists from his domestic

intelligence agency, MI5, noticed that the enciphered traffic from the embassy carried

a faint secondary signal, and constructed equipment to recover it. It turned out to be the

plaintext, which somehow leaked through the cipher machine [814]. This is more

common than one might suppose; there has been more than one case of a cipher ma-

chine broadcasting in clear on radio frequencies, though often there is reason to suspect

that the vendor’s government was aware of this.

During the 1970s, emission security became a highly classified topic and vanished

from the open literature. It came back to public attention in 1985 when Wim van Eck, a

Dutch researcher, published an article describing how he had managed to reconstruct

the picture on a VDU at a distance [259]. The revelation that Tempest attacks were not

just feasible, but could be mounted with simple equipment that could be built at home,

sent a shudder through the computer security industry.

Published research in emission security and related topics took off in the second half

of the 1990s. In 1996, Markus Kuhn and I observed in [43] that many smartcards could

be broken by inserting transients, or glitches, in their power or clock lines (this attack

wasn’t discovered by us, but by pay-TV hackers). Paul Kocher also showed that many

common implementations of cryptosystems could be broken by making precise meas-

urements of the time taken [466]. In 1998, Kuhn and I published a paper showing that

many of the compromising emanations from a PC could be made better, or worse, by

appropriate software measures [478]. In 1998–9, Kocher showed that crypto keys used

in smartcards could be recovered by appropriate processing of precise measurements of

the current drawn by the card—which we’ll discuss in detail in Section 15.4.1.2 below

[467]. In 2000, David Samyde and Jean-Jacques Quisquater demonstrated that similar

attacks could be carried out by bringing small electromagnetic field sensors close to

the card’s surface [668].

15.3 Technical Surveillance and Countermeasures

Before getting carried away with high-tech toys such as Tempest monitoring receivers,

we need to stop and think about bugs. The simplest and most widespread attacks that

use the electromagnetic spectrum are not those that exploit some unintended design

feature of innocuous equipment, but those in which a custom-designed device is intro-

duced by the attacker.

No matter how well it is protected by encryption and access controls while in transit

or storage, most highly confidential information originally comes into being either as

speech or as keystrokes on a PC. If it can be captured by the opponent at this stage,

then no subsequent protective measures are likely to help very much.
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An extraordinary range of bugs is available on the market:

• At the low end, a few tens of dollars will buy a simple radio microphone,

which you can stick under a table when visiting the target. Battery life is the

main constraint on these devices. They typically have a range of only a few

hundred yards, and a lifetime of a few days or weeks.

• At the next step up are devices that draw their power from the mains, a tele-
phone cable or some other external electricity supply. This means that they can
last indefinitely once positioned. Some are simple microphones, which can be
installed quickly in cable ducting by an adversary who can get a few minutes
alone in a room. Others are inserted from a neighboring building or apartment
by drilling most of the way through a wall or floor. Still others, used by the
U.K. police in recent gangland surveillance cases, look like electrical adaptors,
but actually contain a microphone, a radio transmitter, and a TV camera. Oth-
ers monitor data—for example, there is a Trojan computer keyboard with bug-
ging hardware contained in the cable connector.

• Many modern bugs use off-the-shelf mobile radio technology. They can be
seen as slightly modified cellphone handsets which go off-hook silently when
called.

• One exotic device, on show at the NSA Museum in Fort Meade, was presented
to the U.S. ambassador in Moscow in 1946 by a class of schoolchildren. It was
a wooden replica of the Great Seal of the United States, and the ambassador
hung it on the wall of the office in his residence. In 1952, it was discovered to
contain a resonant cavity that acted as a microphone when illuminated by mi-
crowaves from outside the building, and retransmitted the conversations that
took place in the office. Right up to the end of the Cold War, embassies in
Moscow were regularly irradiated with microwaves, so presumably variants of
the technique continued to be used.

• Laser microphones work by shining a laser beam at a reflective or partially
reflective surface, such as a window pane, in the room where the target con-
versation is taking place. The sound waves modulate the reflected light, which
can be picked up and decoded at a distance.

• High-end devices used today by governments, which can cost upward of

$10,000, use low-probability-of-intercept radio techniques such as frequency

hopping and burst transmission. They can also be turned on and off remotely.

These features can make them much harder to find.

A number of countermeasures can give a fair amount of protection against such at-

tacks.

• The nonlinear junction detector is a device that can find hidden electronic

equipment at close range. It works because the transistors, diodes, and other

nonlinear junctions in electronic equipment have the effect of rectifying inci-

dent radio frequency signals. The device broadcasts a weak radio signal, and

listens for harmonics of this signal. It can detect unshielded electronics at a

range of a few feet. However, if the bug has been planted in or near existing

electronic equipment, then the nonlinear junction detector is not much help.

There are also expensive bugs designed not to re-radiate at all. An interesting

variant was invented by the investigative journalist Duncan Campbell in the

early 1970s, to detect telephone taps: the amplifier used at that time by the se-
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curity services re-radiated harmonics down the line. Following a raid on his

house, the plans for this device were seized; it was then “invented” in a gov-

ernment laboratory, and credited to a government scientist.

• A number of surveillance receivers are on the market. The better ones sweep
the radio spectrum from about 10 KHz to 3 GHz every few tens of seconds,
and look for signals that can’t be explained as broadcast, police, air traffic
control and so on. (Above 3 GHz, signals are so attenuated by building materi-
als, and device antennas can be so directional, that general spectrum search is
no longer as effective as nonlinear junction detectors and physical searching.)
Contrary to popular belief, some low-probability-of-intercept techniques do
not give complete protection. Direct sequence spread spectrum can be spotted
from its power spectrum, and frequency hoppers will typically be observed at
different frequencies on successive sweeps. Burst transmission does better.
But the effectiveness of surveillance receivers is increasingly limited by the
availability of bugs that use the same frequencies and protocols as legitimate
mobile or cordless phones. Security-conscious organizations can always try to
forbid the use of mobiles, but this tends not to last long outside the military.
For example, Britain’s parliament forbade mobiles until 1997, but the rule was
overturned when the government changed.

• Breaking the line of sight, such as by planting trees around your laboratory,
can be effective against laser microphones. But it is often impractical. It can
be cheaper to have a shielded internal room for particularly sensitive meetings;
and there are vendors who sell prefabricated rooms with acoustic and electro-
magnetic shielding for just this purpose.

• Some facilities at military organizations are placed in completely shielded

buildings, or underground, so that even if bugs are introduced their signals

can’t be heard outside [55]. This is very expensive, and in many cases imprac-

tical. A second-best option is to ensure that devices such as wire-line micro-

phones aren’t installed in the building when it’s constructed, that there are

frequent sweeps, and that untrusted visitors (and contractors such as cleaning

staff) are kept out of the most sensitive areas. But this is harder than it looks.

A new U.S. embassy building in Moscow had to be abandoned after large

numbers of microphones were found in the structure; and it was recently re-

ported that Britain’s counterintelligence service had to tear down and rebuild a

large part of a new headquarters building, at a cost of about $50 million, after

an employee of one of the building contractors was found to have past asso-

ciations with the Provisional IRA.

The traditional tension here is between technological defenses, which can be very ef-

fective but very expensive, and procedural controls, which are cheap but tedious.
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All that said, technological developments are steadily making life easier for the bug-

ger and harder for the defense. As more and more devices acquire intelligence and

short-range radio or infrared communications—as “things that think” become “things

that chatter”—there is greater scope for attacks involving equipment that’s already in

place rather than stuff that has to emplaced for the purpose. For example:

• The risks associated with telephones are much higher than many people would

like to believe. More and more people use cordless phones for convenience,

and forget that they’re easy to eavesdrop. Phones can be doctored so that

they’ll go off-hook under remote control; some digital (ISDN) phones have a

facility built into them that allows this (it’s said that some repressive countries

make this feature a condition of import licensing). Also, some makes of PBX

can be reprogrammed to support this kind of surveillance.

• The typical laptop computer has a microphone that can be switched on under
software control, and is increasingly likely to have a radio LAN connection.
An attacker might infect the device with a virus that listens to conversations in
the room, compresses them, encrypts them, and emails them back to its crea-
tor.

• The NSA banned Furby toys in its buildings, as the Furby remembers (and

randomly repeats) things said in its presence.

But there are many more ways in which existing electronic equipment can be ex-

ploited by an adversary.

15.4 Passive Attacks

We’ll first consider passive attacks, that is, attacks in which the opponent makes use of

whatever electromagnetic signals are presented to him without any effort on her part to

create. Broadly speaking, there are two categories. The signal can either be conducted

over some kind of circuit (such as a power line or phone line) or it may be radiated as

radio frequency energy. These two types of threat are referred to by the military as

Hijack and Tempest, respectively. They are not mutually exclusive; RF threats often

have a conducted component. For example, radio signals emitted by a computer can be

picked up by the mains power circuits and conducted into neighboring buildings. Still,

it’s a reasonable working classification most of the time.

15.4.1 Leakage through Power and Signal Cables

Since the nineteenth century, engineers have been aware that high-frequency signals

leak everywhere, and that careful measures are needed to stop them causing problems;

as noted, the leakage has been exploited for military purposes since in 1914. Con-

ducted leakage of information can be largely suppressed by careful design, with power

supplies and signal cables suitably filtered and suppressed. This makes up a significant

part of the cost difference between otherwise comparable military and civilian elec-

tronics.
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15.4.1.1 Red/Black Separation

Red equipment (carrying confidential data such as plaintext) has to be isolated by fil-

ters and shields from black equipment (which can send signals directly to the outside

world). Equipment with both red and black connections, such as cipher machines, is

particularly difficult to get right. It’s made more expensive by the fact that the stan-

dards for emission security, such as the NACSIM 5100A that specifies the test re-

quirements for Tempest-protected equipment, and its NATO equivalent AMSG 720B,

are classified [660].

So properly shielded equipment tends to be available only in small quantities, and

made specifically for defense markets. This makes it extremely expensive. And the

costs don’t stop there. The operations room at an air base can have thousands of cables

leading from it; filtering them all, and imposing strict enough configuration manage-

ment to preserve red/black separation, can cost millions.

15.4.1.2 Power Analysis

Often, people aren’t aware of the need to filter signals until an exploit is found. A re-

cent, and very important, example comes from the discovery of power attacks on

smartcards. As a smartcard is usually a single silicon chip in a very thin carrier, there is

little scope for filtering the power supply using chokes, capacitors and so on. The

power supply may also be under the control of the enemy. If you use your bank smart-

card to make a purchase in a Mafia-owned store, then the terminal might have extra

electronics built into it to cheat you.

By the early 1990s, it appears to have been known to pay-TV hackers and to some

government agencies that a lot of information could be gathered about the computa-

tions being performed in a smartcard simply by measuring the current it drew from its

power supply. This attack, known as power analysis or rail noise analysis, may in-

volve as little as inserting a 10 W resistor in the ground line and connecting a digital

storage oscilloscope across it to observe fluctuations in the current drawn by the de-

vice. An example of the resulting power trace can be seen in Figure 15.1.

Different instructions have quite different power-consumption profiles, and, as you

can see in the figure, the power consumption also depends on the data being processed.

The main data-dependent contribution in many circumstances is from the bus driver

transistors, which are quite large (see the top of Figure 14.5). Depending on the design,

the current may vary by several hundred microamps over a period of several hundred

nanoseconds for each bit of the bus whose state is changed [547]. Thus, the Hamming

weight of the difference between each data byte and the preceding byte on the bus (the

transition count) is available to an attacker. In some devices, the Hamming weight of

each data byte is available, too [549]. EEPROM reads and writes can give even more

substantial signals.

The effect of this leakage is that an attacker who understands how a cipher is im-

plemented (for example, as a result of probing out the card software and disassembling

it) can obtain significant information about the card’s secrets and, in many cases, de-

duce the value of the key in use. It is particularly significant because it is a noninvasive

attack, and can be carried out by suitably modified terminal equipment on a smartcard

carried by an unsuspecting customer. This means that once the attacker has taken the

trouble to dismantle a card, understand its contents, and design the attack, a very large

number of cards may be compromised at little marginal cost.
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Figure 15.1 Superimposed power consumption traces of a Siemens SLE44 smartcard,

showing data dependency (courtesy of Andy Santoso). The upper half of the screen shows

the clock signal; the lower shows the power consumption.

The threat posed to smartcards by power analysis was brought forcefully to the in-

dustry’s attention in 1998 with the development by Paul Kocher of a specific signal-

processing technique to extract the key bits used in a block cipher, such as DES, from a

collection of power curves, without knowing the implementation details of the card

software. This technique, differential power analysis, works as follows [467].

The attacker first collects a number of curves (typically several hundred) by per-

forming known transactions with the target card—transactions for which the encryp-

tion algorithm and either the plaintext or the ciphertext is known. She then guesses

some of the internal state of the cipher. In the case of DES, each round of the cipher

has eight table look-ups in which six bits of the current input is exclusive-or’ed with

six bits of key material, and then used to look up a four-bit output from an S-box. So if

it’s the ciphertext to which the attacker has access, she will guess the six input bits to

an S-box in the last round. The power curves are then sorted into two sets based on this

guess and synchronized. Average curves are then computed and compared. The differ-

ence between the two average curves is called a differential trace.

The process is repeated for each of the 64 possible six-bit inputs to the target S-box.

It is generally found that the correct input value—which separates the power curves

into two sets each with a different S-box output value—will result in a differential

trace with a noticeable peak. Wrong guesses of input values, however, generally result

in randomly sorted curves and thus in a differential trace that looks like random noise.
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In this way, the six keybits which go to the S-box in question can be found, followed

by the others used in the last round of the cipher. In the case of DES, this gives 48 of

the 56 keybits, and the remainder can be found trivially by exhaustive search. If the

cipher has many more keybits, then the attacker can unroll it a round at a time.

The effect is that, even if a card could be constructed that resisted probing attacks, it

is likely to be vulnerable unless specific power analysis defenses are built in. (In fact,

all smartcards on the market in 1998 were claimed to be vulnerable [467].) Further-

more, even attackers without access to probing equipment could mount attacks cheaply

and quickly.

This discovery was widely publicized, and held up the deployment of smartcards

while people worked on defenses. In some cases, protocol-level defenses are possible;

one can design protocols that update the key with every few encryptions, and thus pre-

vent the attacker getting enough data (some point-of-sale terminals are designed this

way). But most existing protocols are too well entrenched to be changed radically. An-

other idea was to insert randomness into the way the cryptography was done. For ex-

ample, at each round of DES, one might look up the eight S-boxes in a random order.

However, all this achieves is that instead of one large spike in the differential trace,

one gets eight spikes each with an eighth the amplitude; the attacker only has to collect

some more power curves.

The defenses now being fielded against power analysis are hardware-based. One of

the common cards has hardware that inserts a dummy operation about every 64 ma-

chine instructions; another has an internal clock that is only loosely coupled to the ex-

ternal one and that changes frequency about every 64 cycles. Neither of these is

foolproof, as an attacker might use signal-processing techniques to realign the power

curves for averaging. The next generation of cards may use more robust defenses, such

as potting capacitors with the smartcard chip to enable the supply voltage to be prop-

erly decoupled, or using silicon design techniques such as dual-rail encoding where the

current drawn is independent of the data being processed. Yet another approach is to

use self-timed logic, which uses no clock. At the time of writing, this is an area of ac-

tive research.

15.4.2 Leakage through RF Signals

When I first learned to program in 1972 at the Glasgow Schools’ Computer Centre, we

had an early IBM machine with a 1.5 MHz clock. A radio tuned to this frequency in

the machine room would emit a loud whistle, which varied depending on the data being

processed. Similar phenomena were noted by many people, some of whom used the

noise as a debugging aid. A school colleague of mine had a better idea: he wrote a set

of subroutines of different lengths such that by calling them in sequence, the computer

could be made to play a tune. We didn’t think of the security implications at the time.

Moving now to more modern equipment, all VDUs emit a weak TV signal—a VHF

or UHF radio signal, modulated with a distorted version of the image currently being

displayed—unless they have been carefully designed not to. The video signal is avail-

able at a number of places in the equipment, notably in the beam current that is modu-

lated with it. This signal contains many harmonics of the dot rate, some of which

radiate better than others because cables and other components resonate at their wave-

length. Given a suitable broadband receiver, these emissions can be picked up and re-

constituted as video. The design of suitable equipment is discussed in [259, 478].

Contrary to popular belief, LCD displays are also generally easy for the eavesdropper.
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Other researchers quickly established the possibility of remote snooping on every-

thing from fax machines through shielded RS-232 cables to Ethernet [719, 230]. A few

companies sprang up to sell “jammers,” but these are hard to implement properly [60],

as they can interfere with TV and other services. Military Tempest-shielded equipment

remained unavailable to the commercial sector. In any case, it is usually a generation

out of date and five times as expensive as off-the-shelf PCs. The view taken in the

banking industry was, “Well, we don’t do it to our competitors, so they probably don’t

do it to us; and we don’t know where to get effective countermeasures anyway, so put

it in the ‘too hard’ file.” This view got shaken somewhat in the late 1990s when Hans-

Georg Wolf demonstrated a Tempest attack that could recover card and PIN data from

a cash machine at a distance of eight meters [239]. However, Tempest precautions re-

main a rarity in commerce and in nondefense-sector industry.
1

Meanwhile, with the end of the Cold War, military budgets were cut, and often there

was no alternative to using commercial off-the-shelf equipment; there was no longer

the money to develop systems exclusively for government use. Government organiza-

tions in NATO countries have switched to a zone model of Emsec protection, whereby

the most sensitive equipment is kept in the rooms furthest from the facility perimeter,

and shielding is reserved for the most sensitive systems (such as national intelligence)

or where the threat is highest (such as in overseas embassies). Nonetheless, the bill for

Tempest protection in NATO government agencies comes to over a billion dollars a

year.

A lower-cost protection technology, called Soft Tempest, has emerged and been de-

ployed in some commercial products (such as the email encryption package PGP)

[478]. Soft Tempest uses software techniques to filter, mask, or render incomprehensi-

ble the information bearing electromagnetic emanations from a computer system.

Markus Kuhn and I discovered that most of the information bearing RF energy from

a VDU was concentrated in the top of the spectrum, so filtering out this component is a

logical first step. We removed the top 30% of the Fourier transform of a standard font

by convolving it with a suitable low-pass filter (see Figures 15.2 and 15.3).

This turns out to have an almost imperceptible effect on the screen contents as seen

by the user. Figures 15.4 and 15.5 display photographs of the screen with the two video

signals from Figures 15.2 and 15.3.

The difference in the emitted RF is dramatic, as illustrated in the photographs in

Figures 15.6 and 15.7. These show the potentially compromising emanations, as seen

by a Tempest monitoring receiver.

The level of protection that Soft Tempest techniques can provide for VDUs is only

on the order of 10–20dB, but this translates to a difference of a zone—which, in an

organization the size of a government, can give a considerable cost saving [45].

There are other attacks that software tricks can block completely. For example,

computer keyboards can be snooped on while the microcontroller goes through a loop

that scans all the keys until it encounters one that is pressed. The currently pressed key

                                                            

1 Just as I got the copyedited manuscript of this book back from Wiley for checking. I heard, for
the first time, a believable report of a commercial Tempest attack. Apparently, one financial in-
stitution was spied on by a private investigator retained by a rival. But the big picture remains
military.
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is modulated on to the RF emissions from the keyboard. By encrypting the order in

which the keys are scanned, this kind of attack can be completely blocked.

Figure 15.2 Normal text.
Figure 15.3 Same text, low-pass filtered.

Figure 15.4 Screenshot, normal text. Figure 15.5 Screenshot, filtered text.

Figure 15.6 Page of normal text. Figure 15.7 Page of filtered text.

15.5 Active Attacks

But it’s not enough to simply encrypt a keyboard scan pattern to protect it, as the at-

tacker can use active as well as passive techniques. Against a keyboard, the technique

is to irradiate the cable with a radio wave at its resonant frequency. Thanks to the non-

linear junction effect, the keypress codes are modulated into the return signal, which is

reradiated by the cable. This can be picked up at a distance of 50 to 100 yards. To pre-

vent it, one must also encrypt the signal from the keyboard to the PC [478].

15.5.1 Tempest Viruses

There are quite a few other active attacks possible on various systems. The phenome-

non observed with our school computer in 1972—that a suitable program would cause
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a computer to play a tune on the radio, in effect turning it into a low-grade radio

transmitter—is easy enough to reimplement on a modern PC. Figures 15.8 and 15.9

show what the screen on a typical PC looks like when the video signal is an RF carrier

at 2 MHz, modulated with pure tones of 300 and 1200 Hz.

Figure 15.8 A 300 Hz broadcast signal. Figure 15.9 A 1200 Hz broadcast signal.

    Using phenomena like this, it is possible to write a Tempest virus, which will infect a

target computer and transmit the secret data it steals to a radio receiver hidden nearby.

This can happen even if the machine is not connected to the Net. The receiver need not

be expensive; a short wave radio with a cassette recorder will do, and exploit code has

already been published on the Net. With more sophisticated techniques, such as spread-

spectrum modulation, it’s possible for the attacker with more expensive equipment to

get much better ranges [478].

Some of these methods may already have been known to the intelligence commu-

nity. There have been reports of the CIA using software-based RF exploits in economic

espionage against certain European countries (for example, in a TV documentary ac-

companying the release of [464]). Material recently declassified by the NSA in re-

sponse to a FOIA request [542, 420] reveals the use of the codeword Teapot to refer to

“the investigation, study, and control of intentional compromising emanations (i.e.,

those that are hostilely induced or provoked) from telecommunications and automated

information systems equipment.” A further example is to attack equipment that has

been shielded and Tempest-certified up to a certain frequency (say, 1 GHz) by irradi-

ating it through the ventilation slots using microwaves of a much higher frequency (say

10 GHz), at which these slots become transparent [478].

The possibility of attacks using malicious code is one reason why Tempest testing

may involve not just listening passively to the emanations from the device under test,

but injecting into it signals such as long linear feedback shift register sequences. These

create a spread spectrum signal which will likely be detectable outside the equipment

and thus simulate the worst case attack in which the opponent has used a software ex-

ploit to take over the device [108].

15.5.2 Nonstop

Another class of active methods, called Nonstop by the U.S. military [55], is the ex-

ploitation of RF emanations that are accidentally induced by nearby radio transmitters

and other RF sources. If equipment that is processing sensitive data is used near a mo-
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bile phone, the phone’s transmitter may induce in it currents that get modulated with

sensitive data by the nonlinear junction effect and reradiated.

For this reason, it used to be forbidden to use a mobile phone within 5 meters of

classified equipment. Nonstop attacks are also the main Emsec concern for ships and

aircraft. Here, an attacker who can get close enough to do a passive Tempest attack can

probably do much more serious harm than eavesdropping; but because military ships

and aircraft often carry very powerful radios and radars, one must be careful that their

signals don’t get modulated accidentally with something useful to the enemy.

15.5.3 Glitching

Active Emsec threats are also significant in the smartcard world, where perhaps the

best known is the glitch attack [43]. Here, as I mentioned above, the opponent inserts

transients into the power or clock supply to the card in the hope of inducing a useful

error.

For example, one smartcard used in early banking applications had the feature that

an unacceptably high clock frequency triggered a reset only after a number of cycles,

so that transients would be less likely to cause false alarms. So it was possible to re-

place a single clock pulse with two much narrower pulses without causing an alarm

that would reset the card. This reliably caused the processor to execute a NOP, regard-

less of what instruction it was supposed to execute. By introducing glitches at suitable

times, the attacker could step over jump instructions, and thus bypass access controls.

15.5.4 Differential Fault Analysis

Even where the attacker does not know the card’s software in detail, glitch attacks can

still be a threat. It had been noticed that a number of public key cryptographic algo-

rithms would break if a random error could be induced [126]. For example, when doing

an RSA signature, the secret computation S = h(m)
d
 (mod pq) is typically carried out

mod p, then mod q; the results are then combined. However, if the card returns a de-

fective signature S which is correct modulo p but incorrect modulo q, then we will

have:

p = gcd ( pq, S 
e
 – h(m))

which breaks the system at once. These attacks can be implemented easily if the card

isn’t protected against glitches; they can also be extended to many symmetric algo-

rithms and protocols [103].

15.5.5 Combination Attacks

Other attacks use a combination of active and passive methods. I mentioned in passing

in Part 1 a trick that could be used to find the PIN in a stolen smartcard. Early card

systems would ask the customer for a PIN, and if it was incorrect, they would decre-

ment a retry counter. This involved writing a byte to EEPROM, so the current con-

sumed by the card rose measurably as the capacitors in the EEPROM voltage

multiplier circuit were charged up. On noticing this, the attacker could simply reset the

card and try the next candidate PIN.
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15.5.6 Commercial Exploitation

Not all Emsec attacks are conducted in the context of covert military surveillance or

laboratory attacks on tamper-resistant devices. I already mentioned the TV detector

vans used in Britain to catch TV license defaulters and the customers of pay-TV pi-

rates. There are also marketing applications. U.S. venue operator SFX Entertainment

monitors what customers are playing on their car radios as they drive into venue park-

ing lots by picking up the stray RF from the radio’s local oscillator. Although legal,

this alarms privacy advocates [728]. The same equipment has been sold to car dealers,

mall operators, and radio stations.

15.5.7 Defenses

The techniques that can be used to defend smartcards against active Emsec threats are

similar, though not quite the same, to those used in the passive case.

Timing randomness—jitter—is still useful, as a naive opponent might no longer

know precisely when to insert the glitch. However, a clever opponent may well be able

to analyze the power curve from the processor in real time, and compare it against the

code so as to spot the critical target instructions. In addition, fault attacks are hard to

stop with jitter, as the precise location of the fault in the code is not usually critical.

In some cases, defensive programming is enough. For example, the PIN search de-

scribed in Section 15.5.5 is prevented in more modern implementations by decrement-

ing the counter, soliciting the PIN, then increasing the counter again if it’s correct.

Differential fault attacks on public key protocols can be made a lot harder if you just

check the result.

Other systems use specific protective hardware, such as a circuit that integrates the

card reset with the circuit that detects clock frequencies that are too high or too low.

Normal resets involve halving the clock frequency for a few cycles, so an attacker who

found some means of disabling the monitoring function would quite likely find himself

unable to reset the card at all on power-up [470].

Current defenses against glitch attacks are not entirely foolproof, and extensive de-

vice testing is highly advisable. New technologies, such as the use of self-timed logic,

may improve things by providing a high level of protection against both active and

passive threats. In the meantime, if you have to write a smartcard application, attacks

based on glitching merit careful consideration.

15.6 How Serious Are Emsec Attacks?

Technical surveillance and its countermeasures are the most important aspect of Em-

sec, in both government and industry; they are likely to remain so. The range of bugs

and other surveillance devices that can be bought easily is large and growing. The mo-

tivation for people to spy on their rivals, employees, and others will continue. If any-

thing, the move to a wired world will make electronic surveillance more important, and

countermeasures will take up more of security budgets.
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Those aspects of Emsec that concern equipment not designed for surveil-

lance—Tempest, Teapot, Hijack, Nonstop, and the various types of power and glitch

attack—are set to become another of the many technologies that were initially devel-

oped in the government sector but then start being important in the design of commer-

cial products.

15.6.1 Governments

The Emsec threats to embassies in hostile countries are real. If your country is forced

by the president of Lower Slobovia to place its embassy in the second floor of an office

block whose first and third floors are occupied by the local secret police, then security

is an extremely hard problem. Shielding all electronic equipment (except that used for

deception) will be part of the solution. In less threatening environments, the use of

hardware Tempest shielding is more doubtful.

Despite the hype with which the Tempest industry maintained itself during the Cold

War, there is growing scepticism about whether any actual Tempest attacks had ever

been mounted by foreign agents, though anecdotes abound. It’s said, for example, that

the only known use of such surveillance techniques against U.S. interests in the whole

of North America was by Canadian intelligence personnel, who overheard U.S. diplo-

mats discussing the U.S. bottom line in grain sales to China; and that the East German

Stasi were found to have maps of suitable parking places for Tempest vans in West

German towns. But I’ve not found anything that can be nailed down to a reliable

source, and having been driven around an English town looking for Tempest signals, I

can testify that launching such attacks is much harder in practice than it might seem in

theory. Governments now tend to be much more relaxed about Tempest risks than 10

years ago.

15.6.2 Businesses

In the private sector, the reverse is the case. The discovery of fault attacks, and then

power attacks, was a big deal for the smartcard industry, and held up for probably two

years the deployment of smartcards in banking applications in those countries that

hadn’t already committed to them. Blocking these attacks turns out to be difficult, and

doing it properly will involve a further generation of hardware design.

And what about the future?

The “nonsecurity” aspects of emission management, namely RFI/EMC, are becom-

ing steadily more important. Ever higher clock speeds, plus the introduction of all sorts

of wireless devices and networks, and the proliferation of digital electronics into many

devices that were previously analogue or mechanical, are making electromagnetic

compatibility a steadily harder and yet more pressing problem. Different industry

groups, manage a host of incompatible standards many of which are rapidly becoming

obsolete—for example, by not requiring testing above 1 GHz, or by assuming protec-

tion distances that are no longer reasonable [455].

On the security side, attacks are likely to become easier. The advent of software ra-

dios—radios that digitize a signal at the intermediate frequency stage and do all the

demodulation and subsequent processing in software—were, until recently, an expen-

sive military curiosity [482], but are now finding applications in places like cellular

radio base stations. The next generation may be consumer devices, designed to func-

tion as GPS receivers, GSM phones, radio LAN basestations, and to support whatever
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other radio-based services have been licensed locally—all with only a change in soft-

ware. Once people learn how to program them, they might just as easily use them for

Tempest attacks.

Finally, Emsec issues are not entirely divorced from electronic warfare. As society

becomes more dependent on devices that are vulnerable to strong radio frequency sig-

nals—such as the high-power microwaves generated by military radars—the tempta-

tion to mount attacks will increase. I’ll discuss high-energy radio frequency attacks in

the next chapter.

15.7 Summary

Emission security covers a whole range of threats in which the security of systems can

be subverted by compromising emanations, whether from implanted bugs, from unin-

tentional radio frequency or conducted electromagnetic leakage, or from emanations

that are induced in some way. Although originally a concern in the national intelli-

gence community, Emsec is now a real issue for companies that build security products

such as smartcards and cash machines. Many of these products can be defeated by ob-

serving stray RF or conducted signals. Protecting against such threats isn’t as straight-

forward as it might seem.

Research Problems

The security industry badly needs a comprehensive set of emission security standards

for commercial use. Military standards are classified, and the RFI/EMC standards are

fragmented and contradictory, so a new and unified approach is overdue.

Further Reading

There is a shortage of open literature on Emsec. The classic van Eck article [259] is

still worth a read; and the only book on computer security (until this one) to have a

chapter on the subject is by Deborah Russell and G.T. Gangemi [660]. Our recent work

on Soft Tempest, Teapot, and related topics can be found in [478]. For power analysis,

see the papers by Paul Kocher [467], and by Tom Messergues, Ezzy Dabish and Robert

Sloan [547]; more papers are appearing regularly. Finally, Joel McNamara runs a com-

prehensive unofficial Tempest Web site at [542].
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CHAPTER

16

Electronic and Information
Warfare

All warfare is based on deception . . . hold out baits to entice the enemy. Feign disorder,

and crush him.

—SUN TZU, THE ART OF WAR, 1.18–20

Force, and Fraud, are in warre the two Cardinal Virtues.

—THOMAS HOBBES

16.1 Introduction

For decades, electronic warfare has been a separate subject from computer security,

even though they have some common technologies (such as cryptography). This is

starting to change as elements of the two disciplines fuse to form the new subject of

information warfare. The military’s embrace of information warfare as a slogan over

the last years of the twentieth century has established its importance—even if its con-

cepts, theory, and doctrine are still underdeveloped.

There are other reasons why a knowledge of electronic warfare is important to the

security professional. Many technologies originally developed for the warrior have

been adapted for commercial use, and there are many instructive parallels. In addition,

the struggle for control of the electromagnetic spectrum has consumed so many clever

people and so many tens of billions of dollars that we find deception strategies and

tactics of a unique depth and subtlety. It is the one area of electronic security to have

experienced a lengthy period of coevolution of attack and defense involving capable

motivated opponents.

Electronic warfare is also our main teacher when it comes to service denial attacks, a

topic that computer security people have largely ignored, but that is now center stage

thanks to distributed denial-of-service attacks on commercial Web sites. As I develop

this discussion I’ll try to draw out the parallels. In general, while people say that com-
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puter security is about confidentiality, integrity and availability, electronic warfare has

this reversed and back-to-front. The priorities are:

1. Denial of service, which includes jamming, mimicry and physical attack.

2. Deception, which may be targeted at automated systems or at people.

3. Exploitation, which includes not just eavesdropping but obtaining any opera-

tionally valuable information from the enemy’s use of his electronic systems.

16.2 Basics

The goal of electronic warfare is to control the electromagnetic spectrum. It is gener-

ally considered to consist of:

• Electronic attack, such as jamming enemy communications or radar, and dis-

rupting enemy equipment using high-power microwaves.

• Electronic protection, which ranges from designing systems resistant to jam-
ming, through hardening equipment to resist high-power microwave attack, to
the destruction of enemy jammers using anti-radiation missiles.

• Electronic support which supplies the necessary intelligence and threat recog-

nition to allow effective attack and protection. It allows commanders to search

for, identify and locate sources of intentional and unintentional electromag-

netic energy.

These definitions are taken from Schleher [677]. The traditional topic of cryptogra-

phy, namely communications security (Comsec), is only a small part of electronic pro-

tection, just as it is becoming only a small part of information protection in more

general systems. Electronic support includes signals intelligence (Sigint), which con-

sists of communications intelligence (Comint) and electronic intelligence (Elint). The

former collects enemy communications, including both message content and traffic

data about which units are communicating, while the latter concerns itself with recog-

nizing hostile radars and other non-communicating sources of electromagnetic energy.

Deception is central to electronic attack. The goal is to mislead the enemy by ma-

nipulating his perceptions in order to degrade the accuracy of his intelligence and tar-

get acquisition. Its effective use depends on clarity about who (or what) is to be

deceived, about what and how long, and—where the targets of deception are hu-

man—the exploitation of pride, greed, laziness, and other vices. Deception can be ex-

tremely cost-effective and is also relevant to commercial systems.

Physical destruction is an important part of the mix; while some enemy sensors and

communications links may be neutralized by jamming (soft kill), others will often be

destroyed (hard kill). Successful electronic warfare depends on using the available

tools in a coordinated way.

Electronic weapon systems are like other weapons in that there are sensors, such as

radar, infrared and sonar; communications links, which take sensor data to the com-

mand and control center; and output devices such as jammers, lasers, and so on. I’ll

discuss the communications system issues first, as they are the most self-contained,

then the sensors and associated jammers, and finally other devices such as electromag-
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netic pulse generators. Once we’re done with e-war, we’ll look at the lessons we might

take over to i-war.

16.3 Communications Systems

Military communications were dominated by physical dispatch until about 1860, then

by the telegraph until 1915, and then by the telephone until recently [569]. Nowadays,

a typical command and control structure is made up of various tactical and strategic

radio networks, that support data, voice, and images, and operate over point-to-point

links and broadcast. Without situational awareness and the means to direct forces, the

commander is likely to be ineffective. But the need to secure communications is much

more pervasive than one might at first realize, and the threats are much more diverse.

• One obvious type of traffic is the communications between fixed sites such as

army headquarters and the political leadership. The main threat here is that the

cipher security might be penetrated, and the orders, situation reports and so on

compromised. This might result from cryptanalysis or—more

likely—equipment sabotage, subversion of personnel, or theft of key material.

The insertion of deceptive messages may also be a threat in some circum-

stances. But cipher security will often include protection against traffic analy-

sis (such as by link encryption) as well as of the transmitted message

confidentiality and authenticity. The secondary threat is that the link might be

disrupted, such as by destruction of cables or relay stations.

• There are more stringent requirements for communications with covert assets
such as agents in the field. Here, in addition to cipher security issues, location
security is important. The agent will have to take steps to minimize the risk of
being caught as a result of communications monitoring. If she sends messages
using a medium that the enemy can monitor, such as the public telephone net-
work or radio, then much of her effort may go into frustrating traffic analysis
and radio direction finding.

• Tactical communications, such as between HQ and a platoon in the field, also
have more stringent (but slightly different) needs. Radio direction finding is
still an issue, but jamming may be at least as important; and deliberately de-
ceptive messages may also be a problem. For example, there is equipment that
enables an enemy air controller’s voice commands to be captured, cut into
phonemes and spliced back together into deceptive commands, in order to gain
a tactical advantage in air combat [324]. As voice-morphing techniques are
developed for commercial use, the risk of spoofing attacks on unprotected
communications will increase. Therefore, cipher security may include authen-
ticity as well as confidentiality and/or covertness.

• Control and telemetry communications, such as signals sent from an aircraft to

a missile it has just launched, must be protected against jamming and modifi-

cation. It would also be desirable if they could be covert (so as not to trigger a

target aircraft’s warning receiver), but that is in tension with the power levels

needed to defeat defensive jamming systems.
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The protection of communications will require some mix, depending on the circum-

stances, of content secrecy, authenticity, resistance to traffic analysis and radio direc-

tion finding, and resistance to various kinds of jamming. These interact in some rather

unobvious ways. For example, one radio designed for use by dissident organizations in

Eastern Europe in the early 1980s operated in the radio bands normally occupied by the

Voice of America and the BBC World Service—and routinely jammed by the Rus-

sians. The idea was that unless the Russians were prepared to turn off their jammers,

they would have great difficulty doing direction finding.

Attack also generally requires a combination of techniques, even where the objective

is not analysis or direction finding but simply denial of service. Owen Lewis summed

it up succinctly: according to Soviet doctrine, a comprehensive and successful attack

on a military communications infrastructure would involve destroying one third of it

physically, denying effective use of a second third through techniques such as jam-

ming, trojans or deception, and then allowing one’s adversary to disable the remaining

third in attempting to pass all his traffic over a third of the installed capacity [500].

This applies even in guerilla wars: in Malaya, Kenya, and Cyprus, the rebels managed

to degrade the telephone system enough to force the police to set up radio nets [569].

In the 1980s, NATO developed a comparable doctrine, called Counter-Command,

Control and Communications operations (C-C3, pronounced C cubed). It achieved its

first flowering in the Gulf War; the command and control systems used there are de-

scribed in [643]. (Of course, attacking an army’s command structures is much older

than that; it’s a basic principle to shoot at an officer before shooting at his men.)

16.3.1 Signals Intelligence Techniques

Before communications can be attacked, the enemy’s network must be mapped. The

most expensive and critical task in signals intelligence is identifying and extracting the

interesting material from the cacophony of radio signals and the huge mass of traffic

on systems such as the telephone network and the Internet. The technologies in use are

extensive and largely classified, but some aspects are public.

In the case of radio signals, communications intelligence agencies use receiving

equipment, that can recognize a huge variety of signal types, to maintain extensive da-

tabases of signals—which stations or services use which frequencies. In many cases, it

is possible to identify individual equipment by signal analysis. The clues can include

any unintentional frequency modulation, the shape of the transmitter turn-on transient,

the precise center frequency, and the final-stage amplifier harmonics. This RF finger-

printing technology was declassified in the mid-1990s for use in identifying cloned

cellular telephones, where its makers claim a 95% success rate [341, 677]. It is the di-

rect descendant of the World War II technique of recognizing a wireless operator by

his fist—the way he sent Morse code [523].
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Radio direction finding (RDF) is also critical. In the old days, this involved triangu-

lating the signal of interest using directional antennas at two monitoring stations. Spies

might have at most a few minutes to send a message home before having to move.

Modern monitoring stations use time difference of arrival (TDOA) to locate a suspect

signal rapidly, accurately, and automatically by comparing the phase of the signals re-

ceived at two sites. Nowadays, anything more than a second or so of transmission can

be a giveaway.

Traffic analysis—looking at the number of messages by source and destination—can

also give very valuable information, not just about imminent attacks (which were sig-

nalled in World War I by a greatly increased volume of radio messages) but also about

unit movements and other routine matters. However, traffic analysis really comes into

its own when sifting through traffic on public networks, where its importance (both for

national intelligence and police purposes) is difficult to overstate.

If you suspect Alice of espionage (or drug dealing, or whatever), you note everyone

she calls and everyone who calls her. This gives you a list of dozens of suspects. You

eliminate the likes of banks and doctors, who receive calls from too many people to

analyze (your whitelist), and repeat the procedure on each remaining number. Having

done this procedure recursively several times, you have a mass of thousands of con-

tacts, which you sift for telephone numbers that appear more than once. If (say) Bob,

Camilla, and Donald are Alice’s contacts, with Bob and Camilla in contact with Eve,

and Donald and Eve in touch with Farquhar, then all of these people are considered to

be suspects. You now draw a friendship tree, which gives a first approximation to Al-

ice’s network, and refine it by collating it with other intelligence sources.

This is not as easy as it sounds. People can have several numbers; Bob might get a

call from Alice at his work number, then call Eve from a phone booth. (In fact, if

you’re running an IRA cell, your signals officer should get a job at a dentist’s or a

doctor’s or some other place that will be called by so many different people that they

will probably be whitelisted. But that’s another story.) Also, you will need some means

of correlating telephone numbers to people. Even if you have access to the phone com-

pany’s database of unlisted numbers, prepaid mobile phones can be a serious headache,

as can cloned phones and hacked PBXs. I’ll discuss these in the chapter on telecomms

security; for now, I’ll just remark that anonymous phones aren’t new. There have been

public phone booths for generations. But they are not a universal answer for the crook,

as the discipline needed to use them properly is beyond most criminals, and in any case

causes severe disruption.

Signals collection is not restricted to agreements with phone companies for access to

the content of phone calls and the communications data. It also involves a wide range

of specialized facilities ranging from expensive fixed installations, which copy inter-

national satellite links, through temporary tactical arrangements. A book by Nicky

Hager [368] describes the main fixed collection network operated by the United States,

Canada, Britain, Australia, and New Zealand. Known as Echelon, this consists of a

number of collection stations that monitor international phone, fax, and data traffic

using computers called dictionaries. These search the passing traffic for interesting

phone numbers, network addresses, and machine-readable content; this is driven by

search strings entered by intelligence analysts. The fixed network is supplemented by

tactical collection facilities as needed; Hager describes, for example, the dispatch of

Australian and New Zealand navy frigates to monitor domestic communications in Fiji

during military coups in the 1980s. Egmont Koch and Jochen Sperber discuss U.S. and
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German installations in Germany in [464]; David Fulghum describes airborne signals

collection in [324]; satellites are also used to collect signals, and there are covert col-

lection facilities that are not known to the host country.

Despite this huge capital investment, the most difficult and expensive part of the

whole operation is traffic selection, not collection [490]. Thus, contrary to naïve ex-

pectations, cryptography can make communications more vulnerable rather than less

(if used incompetently, as it usually is). If you just encipher all the traffic you consider

to be important, you have thereby marked it for collection by the enemy. On the other

hand, if everyone encrypted all their traffic, then hiding traffic could be much easier

(hence the push by signals intelligence agencies to prevent the widespread use of

cryptography, even if it’s freely available to individuals). This brings us to the topic of

attacks.

16.3.2 Attacks on Communications

Once you have mapped the enemy network, you may wish to attack it. People often

talk in terms of “codebreaking,” but this is a gross oversimplification.

First, although some systems have been broken by pure cryptanalysis, this is fairly

rare. Most production attacks have involved theft of key material as when the U.S.

State Department code book was stolen during World War II by the valet of the U.S.

ambassador to Rome or errors in the manufacture and distribution of key material as in

the U.S. “Venona” attacks on Soviet diplomatic traffic [428]. Even where attacks based

on cryptanalysis have been possible, they have often been made much easier by errors

such as these, an example being the U.K./U.S. attacks on the German Enigma traffic

during World War II [429]. The pattern continues to this day. A recent history of So-

viet intelligence during the Cold War reveals that the technological advantage of the

United States was largely nullified by Soviet skills in “using Humint in Sigint sup-

port”—which largely consisted of recruiting traitors who sold key material, such as the

Walker family [51].

Second, access to content is often not the desired result. In tactical situations, the

goal is often to detect and destroy nodes, or to jam the traffic. Jamming can involve not

just noise insertion but active deception. In World War II, the Allies used German

speakers as bogus controllers to send German nightfighters confusing instructions, and

there was a battle of wits as authentication techniques were invented and defeated.

More recently, as I noted in the chapter on biometrics, the U.S. Air Force has deployed

more sophisticated systems based on voice morphing. I mentioned in an earlier chapter

the tension between intelligence and operational units: the former want to listen to the

other side’s traffic, and the latter to deny them its use [63]. Compromises between

these goals can be hard to find. It’s not enough to jam the traffic you can’t read, as that

tells the enemy what you can read!

Matters can, in fact, be simplified if the opponent uses cryptography—even in a

competent way. This removes the ops/intel tension, and you switch to RDF or link de-

struction as appropriate. This can involve the hard-kill approach of digging up cables

or bombing telephone exchanges (both of which the allies did during the Gulf War),

the soft-kill approach of jamming, or whatever combination of the two is economic.

Jamming is a useful expedient where a link is to be disrupted for a short period, but is
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often expensive; not only does it tie up facilities, but the jammer itself becomes a tar-

get. (There are cases where it is more effective, such as against some satellite links

where the uplink can be jammed using a tight beam from a hidden location using only

a modest amount of power.)

The increasing use of civilian infrastructure, and in particular the Internet, raises the

question of whether systematic denial-of-service attacks might be used to jam traffic.

(There are anecdotes of Serbian information warfare cells attempting such attacks on

NATO Web sites.) This threat is still considered real enough that many Western coun-

tries have separate intranets for government and military use.

16.3.3 Protection Techniques

As should be clear from the above, communications security techniques involve not

just protecting the authenticity and confidentiality of the content—which can be

achieved in a relatively straightforward way by encryption and authentication proto-

cols—but also preventing traffic analysis, direction finding, jamming and physical de-

struction. Encryption can stretch to the first of these if applied at the link layer, so that

all links appear to have a pseudorandom bitstream on them at all times, regardless of

whether there is any message traffic. But link-layer encryption alone is not in general

enough, as enemy capture of a single node might put the whole network at risk.

Encryption alone cannot protect against interception, RDF, jamming, and the de-

struction of links or nodes. For this, different technologies are needed. The obvious

solutions are:

• Dedicated lines or optical fibers.

• Highly directional transmission links, such as optical links using infrared la-
sers or microwave links using highly directional antennas and extremely high
frequencies, 20 GHz and up.

• Low-probability-of-intercept (LPI), low-probability-of-position-fix (LPPF),

and antijam radio techniques.

The first two of these options are fairly straightforward to understand, and where

feasible, they are usually the best. Cabled networks are very hard to destroy com-

pletely, unless the enemy knows where the cables are and has physical access to cut

them. Even with massive artillery bombardment, the telephone network in Stalingrad

remained in use (by both sides) all through the siege.

The third option is a substantial subject in itself, which I will now describe (albeit

only briefly).

There are a number of LPI/LPPF/antijam techniques that go under the generic name

of spread spectrum communications. They include frequency hoppers, direct sequence

spread spectrum (DSSS), and burst transmission. From beginnings around World War

II, spread-spectrum has spawned a substantial industry, and the technology (especially

DSSS) has been applied to numerous other problems, ranging from high-resolution

ranging (in the GPS system) through copyright marks in digital images (which I’ll dis-

cuss later). Let’s look at each of these three approaches in turn.
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16.3.3.1 Frequency Hopping

Frequency hoppers are the simplest spread-spectrum systems to understand and to im-

plement. They do exactly as their name suggests: they hop rapidly from one frequency

to another, with the sequence of frequencies determined by a pseudorandom sequence

known to the authorized principals. Hoppers were invented, famously, over dinner in

1940 by actress Hedy Lamarr and screenwriter George Antheil, who devised the tech-

nique as a means of controlling torpedos without the enemy detecting them or jamming

their transmissions [484]. A frequency-hopping radar was independently developed at

about the same time by the Germans [686]; in response to steady improvements in

British jamming, German technicians adapted their equipment to change frequency

daily, then hourly, and finally, every few seconds [627].

Hoppers are resistant to jamming by an opponent who doesn’t know the hop se-

quence. Such an opponent may have to jam much of the band, and thus needs much

more power than would otherwise be necessary. The ratio of the input signal’s band-

width to that of the transmitted signal is called the process gain of the system; thus, a

100 bit/sec signal spread over 10 MHz has a process gain of 10
7
/10

2
 = 10

5
 = 50 dB.

The jamming margin, which is defined as the maximum tolerable ratio of jamming

power to signal power, is essentially the process gain modulo implementation and

other losses (strictly speaking, process gain divided by the minimum bit energy-to-

noise density ratio). The optimal jamming strategy, for an opponent who can’t predict

the hop sequence, is partial band jamming—to jam enough of the band to introduce an

unacceptable error rate in the signal.

Although hoppers can give a large jamming margin, they give little protection

against an opponent who merely wants to detect their existence. A signal analysis re-

ceiver that sweeps across the frequency band of interest will often intercept them. (De-

pending on the relevant bandwidths, sweep rate, and dwell time, it might intercept a

hopping signal several times).

However, because frequency hoppers are simple to implement, they are often used in

combat networks, such as man-pack radios, with slow hop rates of 50–500 per second.

To disrupt their communications, the enemy will need a fast or powerful jammer,

which is inconvenient for the battlefield. Fast hoppers (defined in theory as having hop

rates exceeding the bit rate; in practice, with hop rates of 10,000 per second or more)

can pass the limit of even large jammers.

16.3.3.2 DSSS

In direct sequence spread spectrum, we multiply the information-bearing sequence by a

much higher-rate pseudorandom sequence, usually generated by some kind of stream

cipher. This spreads the spectrum by increasing the bandwidth (Figure 16.1). The tech-

nique was first described by a Swiss engineer, Gustav Guanella, in a 1938 patent appli-

cation [686], and developed extensively in the United States in the 1950s. Its first

deployment in anger was in Berlin in 1959.

Like hopping, DSSS can give substantial jamming margin (the two systems have the

same theoretical performance). But it can also make the signal significantly harder to

intercept. The trick is to arrange things so that at the intercept location, the signal

strength is so low that it is lost in the noise floor unless you know the spreading se-

quence with which to recover it. Of course, it’s harder to do both at the same time,

since an antijam signal should be high power and an LPI/LPPF signal low power; the
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usual modus operandi is to work in LPI mode until detected by the enemy (for exam-

ple, when coming within radar range), then boost transmitter power into antijam mode.

Figure 16.1 Spreading in DSSS (courtesy of Roche and Dugelay).

Figure 16.2 Unspreading in DSSS (courtesy of Roche and Dugelay).

There is a large literature on DSSS; and the techniques have now been taken up by

the commercial world as code division multiple access (CDMA) in various mobile ra-

dio and phone systems. DSSS is sometimes referred to as “encrypting the RF,” and it

comes in a number of variants. For example, when the underlying modulation scheme

is FM rather than AM, it’s called chirp. (The classic introduction to the underlying

mathematics and technology is [616].) The engineering complexity is higher than with

frequency hop, for various reasons. For example, synchronization is particularly criti-

cal. Users with access to a reference time signal (such as GPS or an atomic clock) can

do this much more easily; of course, if you don’t control GPS, you may be open to

synchronization attacks; and even if you do, the GPS signal might be jammed. (It has

recently been reported that the French jammed GPS in Greece in an attempt to sabo-

tage a British bid to sell 250 tanks to the Greek government, a deal in which France

was a competitor. This caused the British tanks to get lost during trials. When the ruse

was discovered, the Greeks found it all rather amusing [757].) Another strategy is to

have your users take turns at providing a reference signal.
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16.3.3.3 Burst Communications

Burst communications, as their name suggests, involve compressing the data and

transmitting it in short bursts at times unpredictable by the enemy. They are also

known as time-hop. Usually, they are not so jam-resistant (except insofar as the higher

data rate spreads the spectrum), but they can be difficult to intercept; if the duty cycle

is low, a sweep receiver can easily miss them. They are often used in radios for special

forces and intelligence agents.

An interesting variant is meteor burst transmission (also known as meteor scatter).

This relies on the billions of micrometeorites that strike the Earth’s atmosphere each

day, each leaving a long ionization trail that persists for about a third of a second, and

providing a temporary transmission path between a “mother station” and an area that

might be a hundred miles long and a few miles wide. The mother station transmits

continuously, and whenever one of the “daughters” hears mother, it starts to send

packets of data at high speed, to which mother replies. With the low power levels used

in covert operations, it is possible to achieve an average data rate of about 50 bps, with

an average latency of about 5 minutes and a range of 500–1,500 miles. With higher

power levels, and in higher latitudes, average data rates can rise into the tens of kilo-

bits per second.

As well as special forces, the U.S. Air Force in Alaska uses meteor scatter as backup

communications for early warning radars. It’s also used in civilian applications such as

monitoring rainfall in Lesotho, Africa. In niche markets, where low bit rates and high

latency can be tolerated, but where equipment size and cost are important, meteor

scatter can be hard to beat. (The technology is described in [676].)

16.3.3.4 Combining Covertness and Jam Resistance

There are some rather complex trade-offs between different LPI, LPPF, and jam resis-

tance technologies, and other aspects of performance such as their resistance to fading

and multipath, and the number of users that can be accommodated simultaneously.

They also behave differently in the face of specialized jamming techniques such as

swept-frequency jamming (where the jammer sweeps repeatedly through the target fre-

quency band) and repeater jamming (where the jammer follows a hopper as closely as

it can). Some types of jamming translate; for example, an opponent with insufficient

power to block a signal completely can do partial time jamming on DSSS by emitting

pulses that cover most of its utilized spectrum, and on frequency hop by partial band

jamming.

There are also engineering trade-offs. For example, DSSS tends to be about twice as

efficient as frequency hop in power terms, but frequency hop gives much more jam-

ming margin for a given complexity of equipment. On the other hand, DSSS signals

are much harder to locate using direction-finding techniques [287].

System survivability requirements can impose further constraints. It may be essen-

tial to prevent an opponent who has captured one radio and extracted its current key

material from using this to jam a whole network.

A typical modern military system will use some combination of tight beams, DSSS,

hopping and burst.
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• The Jaguar tactical radio used by U.K. armed forces hops over one of nine 6.4

MHz bands, and has an antenna with a steerable null that can be pointed at a

jammer or at a hostile intercept station.

• Both DSSS and hopping are used with Time Division Multiple Access (TDMA)
in the Joint Tactical Information Distribution System (JTIDS), a U.S. data link
system used by AWACS—the Airborne Warning and Control System—to
communicate with fighters [677]. TDMA separates transmission from recep-
tion, and lets users know when to expect their slot. The DSSS signal has a 57.6
KHz data rate and a 10 MHz chip rate (and so a jamming margin of 36.5 dB),
which hops around in a 255 MHz band with a minimum jump of 30 MHz. The
hopping code is available to all users, while the spreading code is limited to
individual circuits. The rationale is that if an equipment capture leads to the
compromise of the spreading code, this would allow jamming of only a single
10 MHz band, not the full 255 MHz.

• MILSTAR is a U.S. satellite communications system with 1-degree beams
from a geostationary orbit (20 GHz down, 44 GHz up). The effect of the nar-
row beam is that users can operate within three miles of the enemy without
being detected. Jam protection is from hopping; its channels hop several thou-
sand times a second in bands of 2 GHz.

• A system designed to control MX missiles (but not in the end deployed) is de-
scribed in [337] and gives an example of extreme survivability engineering. To
be able to withstand a nuclear first strike, the system had to withstand signifi-
cant levels of node destruction, jamming, and atmospheric noise. The design
adopted was a frequency hopper at 450 KHz with a dynamically reconfigur-
able network.

• French tactical radios have remote controls. The soldier can use the handset a

hundred meters from the radio. This means that attacks on the high-power

emitter don’t endanger the troops so much [216].

There are also some system-level tricks, such as interference cancellation, where the

idea is to communicate in a band you are jamming and whose jamming waveform is

known to your own radios, so they can cancel it out or hop around it. This can make

jamming harder for the enemy by forcing him to spread his available power over a

larger bandwidth, and can make signals intelligence harder, too [644].

16.3.4 Interaction Between Civil and Military Uses

Civil and military uses of communications are increasingly intertwined. Operation De-

sert Storm (the Gulf War against Iraq) made extensive use of the Gulf States’ civilian

infrastructure: a huge tactical communications network was created in a short space of

time using satellites, radio links, and leased lines. Experts from various U.S. armed

services claim that the effect of communications capability on the war was absolutely

decisive [398]. It appears inevitable that both military and substate groups will attack

civilian infrastructure to deny it to their opponents. Already, satellite links are particu-

larly vulnerable to uplink jamming. Satellite-based systems such as GPS have been

jammed as an exercise; and there is some discussion of the systemic vulnerabilities that

result from overreliance on it [310].
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Another example of growing interdependency is given by the Global Positioning

System, GPS. This started as a U.S. military navigation system, and had a selective

availability feature that limited the accuracy to about a hundred yards unless the user

had the relevant cryptographic key. This had to be turned off during Desert Storm as

there weren’t enough military GPS sets to go around, and civilian equipment had to be

used instead. As time went on, GPS turned out to be so useful, particularly in civil

aviation, that the FAA helped find ways to defeat selective availability that give an

accuracy of about three yards, compared with a claimed eight yards for the standard

military receiver [270]. Finally, in May 2000, President Clinton announced the cessa-

tion of selective availability. (Presumably, this preserves its usability in wartime.)

The civilian infrastructure also provides some defensive systems of which govern-

ment organizations (especially in the intelligence field) can make use. I mentioned the

prepaid mobile phone, which provides a fair degree of anonymity; secure Web servers

offer some possibilities; and another example is the anonymous remailer, a device that

accepts encrypted email, decrypts it, and sends it on to a destination contained within

the outer encrypted envelope. I’ll discuss this technology in more detail in Section

20.4.3; one of the pioneers of anonymous networking was the U.S. Navy [637]. Con-

spiracy theorists suspect that public use of the system provides cover traffic for classi-

fied messages.

Although communications security on the Net has, until now, been interpreted

largely in terms of message confidentiality and authentication, it looks likely that the

future will become much more like military communications, in that various kinds of

service denial attacks, anonymity, and deception plays will become increasingly im-

portant. I’ll return to this theme later. For now, let’s look at the aspects of electronic

warfare that have to do with target acquisition and weapon guidance, as these are

where the arts of jamming and deception have been most highly developed. (In fact,

although there is much more in the open literature on the application of electronic at-

tack and defense to radar than to communications, much of the same material clearly

applies to both.)

16.4 Surveillance and Target Acquisition

Although some sensor systems use passive direction finding, the main methods used to

detect hostile targets and guide weapons to them are sonar, radar, and infrared. The

first of these to be developed was sonar, which was invented and deployed in World

War I (under the name of Asdic) [366]. Except in submarine warfare, the key sensor is

radar. Although radar was invented by Christian Hülsmeyer in 1904 as a maritime anti-

collision device, its serious development only occurred in the 1930s, and it was used

by all major participants in World War II [369, 424]. The electronic attack and protec-

tion techniques developed for it tend to be better developed than, and often go over to,

systems using other sensors. In the context of radar, “electronic attack” usually means

jamming (though in theory it also includes stealth technology), and “electronic protec-

tion” refers to the techniques used to preserve at least some radar capability.
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16.4.1 Types of Radar

A very wide range of systems are in use, including search radars, fire-control radars,

terrain-following radars, counterbombardment radars, and weather radars. They have a

wide variety of signal characteristics. For example, radars with a low RF and a low

pulse repetition frequency (PRF) are better for search, while high-frequency, high PRF

devices are better for tracking. A good textbook on the technology is by Schleher

[677].

Simple radar designs for search applications may have a rotating antenna that emits

a sequence of pulses and detects echos. This was an easy way to implement radar in the

days before digital electronics; the sweep in the display tube could be mechanically

rotated in synch with the antenna. Fire-control radars often used conical scan; the

beam would be tracked in a circle around the target’s position, and the amplitude of the

returns could drive positioning servos (and weapon controls) directly. Now the beams

are often generated electronically using multiple antenna elements, but tracking loops

remain central. Many radars have a range gate, circuitry that focuses on targets within

a certain range of distances from the antenna; if the radar had to track all objects be-

tween, say, 0 and 100 miles, then its pulse repetition frequency would be limited by the

time it takes radio waves to travel 200 miles. This would have consequences for angu-

lar resolution and for tracking performance generally.

Doppler radar measures the velocity of the target by the change in frequency in the

return signal. It is very important in distinguishing moving targets from clutter, the

returns reflected from the ground. Doppler radars may have velocity gates that restrict

attention to targets whose radial speed with respect to the antenna is within certain

limits.

16.4.2 Jamming Techniques

Electronic attack techniques can be passive or active.

The earliest countermeasure to be widely used was chaff—thin strips of conducting

foil cut to a half the wavelength of the target signal, then dispersed to provide a false

return. Toward the end of World War II, allied aircraft were dropping 2,000 tons of

chaff a day to degrade German air defenses. Chaff can be dropped directly by the air-

craft attempting to penetrate the defenses (which isn’t ideal, as they will then be at the

apex of an elongated signal) or by support aircraft, or fired forward into a suitable pat-

tern using rockets or shells. The main counter-countermeasure against chaff is the use

of Doppler radars; the chaff is very light, so it comes to rest almost at once and can be

distinguished fairly easily from moving targets.

Other techniques include small decoys with active repeaters that retransmit radar

signals, and larger decoys that simply reflect them; sometimes one vehicle (such as a

helicopter) acts as a decoy for another more valuable one (such as an aircraft carrier).

The principles are quite general. Weapons that home using RDF are decoyed by special

drones that emit seduction RF signals, while infrared guided missiles are diverted us-

ing flares.

The passive countermeasure in which the most money has been invested is stealth,

reducing the radar cross-section (RCS) of a vehicle so that it can be detected only at
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very much shorter range. This means, for example, that the enemy has to place his air

defense radars closer together, so he has to buy a lot more of them. Stealth includes a

wide range of techniques, and a proper discussion is well beyond the scope of this

book. Some people think of it as “extremely expensive black paint,” but there’s more

to it than that. Because an aircraft’s RCS is typically a function of its aspect, it may

have a fly-by-wire system that continually exhibits an aspect with a low RCS to identi-

fied hostile emitters.

Active countermeasures are much more diverse. Early jammers simply generated a

lot of noise in the range of frequencies used by the target radar; this technique is

known as noise jamming or barrage jamming. Some systems used systematic fre-

quency patterns, such as pulse jammers, or swept jammers which traversed the fre-

quency range of interest (also known as squidging oscillators). But such a signal is

fairly easy to block—one trick is to use a guard band receiver, a receiver on a fre-

quency adjacent to the one in use, and to blank the signal when this receiver shows a

jamming signal. It should also be noted that jamming isn’t restricted to one side. As

well as being used by the radar’s opponent, the radar itself can also send suitable spu-

rious signals from an auxiliary antenna to mask the real signal or simply to overload

the defenses.

At the other end of the scale lie hard-kill techniques such as anti-radiation missiles

(ARMs), often fired by support aircraft, which home in on the sources of hostile sig-

nals. Defenses against such weapons include the use of decoy transmitters, and blink-

ing transmitters on and off.

In the middle lies a large toolkit of deception jamming techniques. Most jammers

used for self-protection are deception jammers of one kind or another; barrage and

ARM techniques tend to be more suited to use by support vehicles.

The usual goal with a self-protection jammer is to deny range and bearing informa-

tion to attackers. The basic trick is inverse gain jamming or inverse gain amplitude

modulation. This is based on the observation that the directionality of the attacker’s

antenna is usually not perfect; in addition to the main beam, it has sidelobes through

which energy is also transmitted and received, albeit much less efficiently. The side-

lobe response can be mapped by observing the transmitted signal, and a jamming sig-

nal can be generated so that the net emission is the inverse of the antenna’s directional

response. The effect, as far as the attacker’s radar is concerned, is that the signal seems

to come from everywhere; instead of a “blip” on the radar screen you see a circle cen-

tered on your own antenna. Inverse gain jamming is very effective against the older

conical-scan fire-control systems.

More generally, the technique is to retransmit the radar signal with a systematic

change in delay and/or frequency. This can be either noncoherent, in which case the

jammer is called a transponder, or coherent—that is, with the right waveform—when

it’s a repeater. (It is now common to store received waveforms in digital radio fre-

quency memory (DRFM) and manipulate them using signal processing chips.)

An elementary countermeasure is burn-through. By lowering the pulse repetition

frequency, the dwell time is increased, so the return signal is stronger—at the cost of

less precision. A more sophisticated countermeasure is range gate pull-off (RGPO).

Here, the jammer transmits a number of fake pulses that are stronger than the real ones,

thus capturing the receiver, and then moving them out of phase so that the target is no

longer in the receiver’s range gate. Similarly, with Doppler radars the basic trick is

velocity gate pull-off (VGPO). With older radars, successful RGPO would cause the
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radar to break lock and the target to disappear from the screen. Modern radars can re-

acquire lock very quickly, so RGPO must either be performed repeatedly or combined

with another technique—commonly, with inverse gain jamming to break angle tracking

at the same time.

An elementary counter-countermeasure is to jitter the pulse repetition frequency.

Each outgoing pulse is either delayed or not, depending on a lag sequence generated by

a stream cipher or random number generator. This means that the jammer cannot an-

ticipate when the next pulse will arrive, and so has to follow it. Such follower jamming

can only make false targets that appear to be further away. The (counter)
3
-measure is

for the radar to have a leading-edge tracker, which responds only to the first return

pulse; and the (counter)
4
-measures can include jamming at such a high power that the

receiver’s automatic gain control circuit is captured, or cover jamming in which the

jamming pulse is long enough to cover the maximum jitter period.

The next twist of the screw may involve tactics. Chaff is often used to force a radar

into Doppler mode, which makes PRF jitter difficult (as continuous waveforms are

better than pulsed for Doppler), while leading-edge trackers may be combined with

frequency agility and smart signal processing. For example, true target returns fluctu-

ate, and have realistic accelerations, while simple transponders and repeaters give out a

more or less steady signal. Of course, it’s always possible for designers to be too

clever; the Mig-29 could decelerate more rapidly in level flight by a rapid pull-up than

some radar designers had anticipated, and so pilots could use this maneuver to break

radar lock. And now, of course, enough MIPS are available to manufacture realistic

false returns.

16.4.3 Advanced Radars and Countermeasures

A number of advanced techniques are used to give an edge on the jammer.

Pulse compression, first developed in Germany in World War II, uses a kind of di-

rect sequence spread-spectrum pulse, filtered on return by a matched filter to compress

it again. This can give processing gains of 10–1,000. Pulse compression radars are re-

sistant to transponder jammers, but are vulnerable to repeater jammers, especially

those with digital radio frequency memory. However, the use of LPI waveforms is im-

portant if you do not wish the target to detect you first.

Pulsed Doppler is much the same as Doppler, and sends a series of phase stable

pulses. It has come to dominate many high-end markets, and is widely used, for exam-

ple, in look-down shoot-down systems for air defense against low-flying intruders. As

with elementary pulsed tracking radars, different RF and pulse repetition frequencies

have different characteristics: we want low-frequency/PRF for unambiguous

range/velocity and also to reduce clutter—but this can leave many blind spots. Air-

borne radars that have to deal with many threats use high PRF and look only for ve-

locities above some threshold, say 100 knots—but are weak in tail chases. The usual

compromise is medium PRF—but this suffers from severe range ambiguities in air-

borne operations. Also, search radar requires long, diverse bursts, whereas tracking

needs only short, tuned ones. An advantage is that pulsed Doppler can discriminate

some very specific signals, such as modulation provided by turbine blades in jet en-
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gines. The main deception strategy used against pulsed Doppler is velocity gate pull-

off, although a new variant is to excite multiple velocity gates with deceptive returns.

Monopulse is becoming one of the most popular techniques. It is used, for example,

in the Exocet missiles that proved so difficult to jam in the Falklands war. The idea is

to have four linked antennas so that azimuth and elevation data can be computed from

each return pulse using interferometric techniques. Monopulse radars are difficult and

expensive to jam, unless a design defect can be exploited; the usual techniques involve

tricks such as formation jamming and terrain bounce. Often the preferred defensive

strategy is just to use towed decoys.

One of the more recent tricks is passive coherent location. Lockheed’s Silent Sentry

system has no emitters at all, but rather utilizes reflections of commercial radio and

television broadcast signals to detect and track airborne objects [508]. The receivers,

being passive, are hard to locate and attack; and knocking out the system entails de-

stroying major civilian infrastructures, which opponents will often prefer not to do for

various propaganda reasons. This strategy is moderately effective against some kinds

of stealth technology.

The emergence of digital radio frequency memory and other software radio tech-

niques holds out the prospect of much more complex attack and defense. Both radar

and jammer waveforms may be adapted to the tactical situation with much greater

flexibility than before. But fancy combinations of spectral, temporal, and spatial char-

acteristics will not be the whole story. Effective electronic attack is likely to continue

to require the effective coordination of different passive and active tools with weapons

and tactics. The importance of intelligence, and of careful deception planning, is likely

to increase.

16.4.4 Other Sensors and Multisensor Issues

Much of what I’ve said about radar applies to sonar as well, and a fair amount applies

to infrared. Passive decoys—flares—worked very well against early heat-seeking mis-

siles that used a mechanically spun detector, but are less effective against modern de-

tectors that incorporate signal processing. Flares are like chaff in that they decelerate

rapidly with respect to the target, so the attacker can filter on velocity or acceleration.

Flares are also like repeater jammers in that their signals are relatively stable and

strong compared with real targets.

Active infrared jamming is harder, and thus less widespread, than radar jamming. It

tends to exploit features of the hostile sensor by pulsing at a rate or in a pattern that

causes confusion. Some infrared defense systems are starting to employ lasers to dis-

able the sensors of incoming weapons; and it has recently been admitted that a number

of UFO sightings were actually due to various kinds of jamming (both radar and infra-

red) [75].

One growth area is multisensor data fusion, whereby inputs from radars, infrared

sensors, video cameras, and even humans are combined to give better target identifica-

tion and tracking than any could individually. The Rapier air defense missile, for ex-

ample, uses radar to acquire azimuth while tracking is carried out optically in visual

conditions. Data fusion can be harder than it seems. As discussed in Section 13.8,

combining two alarm systems will generally result in improving either the false alarm

or the missed alarm rate, while making the other worse. If you scramble your fighters

when you see a blip on either the radar or the infrared, there will be more false alarms;
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but if you scramble only when you see both, it will be easier for the enemy to jam you

or to sneak through.

System issues become more complex where the attacker himself is on a platform

that’s vulnerable to counterattack, such as a fighter bomber. He will have systems for

threat recognition, direction finding, and missile approach warning; and the receivers

in these will be deafened by his jammer. The usual trick is to turn the jammer off for a

short “look-through” period at random times.

With multiple friendly and hostile platforms, things get much more complex still.

Each side might have specialist support vehicles with high-power dedicated equipment,

which makes it to some extent an energy battle—“he with the most watts wins.” A

SAM belt may have multiple radars at different frequencies to make jamming harder.

The overall effect of jamming (as of stealth) is to reduce the effective range of radar.

But the jamming margin also matters, and who has the most vehicles, and the tactics

employed.

With multiple vehicles engaged, it’s also necessary to have a reliable way of distin-

guishing friend from foe.

16.5 IFF Systems

The technological innovations of World War II—and especially jet aircraft, radar, and

missiles—made it impractical to identify targets visually, and imperative to have an

automatic way to identify friend or foe (IFF). Early IFF systems emerged during that

war, using a vehicle serial number or “code of the day”; but this is open to spoofing.

Since the 1960s, U.S. aircraft have used the Mark XII system, which has cryptographic

protection as discussed in Section 2.3. Here, it isn’t the cryptography that’s the hard

part, but rather the protocol and operational problems.

The Mark XII has four modes, of which the secure mode uses a 32-bit challenge and

a 4-bit response. This is a precedent set by its predecessor, the Mark X; if challenges or

responses were too long, the radar’s pulse repetition frequency (and thus it accuracy)

would be degraded. The Mark XII sends a series of 12–20 challenges at a rate of one

every four milliseconds. In the original implementation, the responses were displayed

on a screen at a position offset by the arithmetic difference between the actual response

and the expected one. The effect was that while a foe had a null or random response, a

friend would have responses at or near the center screen, which would light up. Re-

flection attacks are prevented, and MIG-in-the-middle attacks made much harder, be-

cause the challenge uses a focused antenna, while the receiver is omnidirectional. (In

fact, the antenna used for the challenge is typically the fire control radar, which in

older systems was conically scanned).

I mentioned in Section 2.3 that cryptographic protection alone isn’t bulletproof: the

enemy might record and replay valid challenges, with a view to using your IFF signal

for direction finding purposes. This can be a real problem in dense operational areas

with many vehicles and emitters, such as on the border between East and West Ger-

many during the Cold War, and parts of the Middle East to this day. There, the return

signal can be degraded by overlapping signals from nearby aircraft—an effect known

as garbling. In the other direction, aircraft transponders subjected to many challenges

may be unable to decode them properly—an effect known as fruiting. Controlling these

phenomena means minimizing the length of challenge and response signals, which
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limits the usefulness of cryptographic protection. As a result, the Royal Air Force re-

sisted American demands to make the Mark XII a NATO requirement and continues

using the World-War-II-vintage Mark X, changing the codes every 30 minutes. (The

details of Mark X and Mark XII, and the R.A.F.-U.S.A.F. debate, can be found in

[348].) This is yet another example of the surprising difficulty of getting cryptography

to add value to a system design.

The system-level issues are even less tractable. The requirement is to identify enemy

forces, but an IFF system reliant on cooperation from the target can only identify

friends positively. Neither neutrals, nor friends with defective or incorrectly set trans-

ponders, can be distinguished from enemies. So while IFF may be used as a primary

mechanism in areas where neutrals are excluded (such as in the vicinity of naval task

forces at sea in wartime), its more usual use is as an adjunct to more traditional meth-

ods, such as correlation with flight plans. In this role it can still be very valuable.

Since the Gulf war, in which 25% of Allied troop casualties were caused by

“friendly fire”, a number of experimental systems have been developed that extend IFF

to ground troops. One U.S. system combines laser and RF components. Shooters have

lasers, and soldiers have transponders; when the soldier is illuminated with a suitable

challenge, his equipment broadcasts a “don’t shoot me” message using frequency-

hopping radio [820]. An extension allows aircraft to broadcast targeting intentions on

millimeter wave radio. This system was due to be fielded in the year 2000. Britain is

developing a cheaper system called MAGPIE, in which friendly vehicles carry a low-

probability-of-intercept millimeter wave transmitter, and shooters carry a directional

receiver [381]. (Dismounted British foot soldiers, unlike their American counterparts,

have no protection.) Other countries are developing yet other systems.

16.6 Directed Energy Weapons

In the late 1930s, there was panic in Britain and America on rumors that the Nazis had

developed a high-power radio beam that would burn out vehicle ignition systems.

British scientists studied the problem and concluded that this was infeasible [424].

They were correct—given the relatively low-powered radio transmitters, and the sim-

ple but robust vehicle electronics, of the 1930s.

Things started to change with the arrival of the atomic bomb. The detonation of a

nuclear device creates a large pulse of gamma-ray photons, which in turn displace

electrons from air molecules by Compton scattering. The large induced currents give

rise to an electromagnetic pulse (EMP), which may be thought of as a very high am-

plitude pulse of radio waves with a very short rise time.

Where a nuclear explosion occurs within the earth’s atmosphere, the EMP energy is

predominantly in the VHF and UHF bands, though there is enough energy at lower fre-

quencies for a radio flash to be observable thousands of miles away. Within a few tens

of miles of the explosion, the radio frequency energy may induce currents large enough

to damage most electronic equipment that has not been hardened. The effects of a blast

outside the earth’s atmosphere are believed to be much worse (although there has never

been a test). The gamma photons can travel thousands of miles before they strike the

earth’s atmosphere, which could ionize to form an antenna on a continental scale. It is

reckoned that most electronic equipment in Northern Europe could be burned out by a
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one megaton blast at a height of 250 miles above the North Sea. For this reason, criti-

cal military systems are carefully shielded.

Western concern about EMP grew after the Soviet Union started a research program

on non-nuclear EMP weapons in the mid-80s. At the time, the United States was de-

ploying “neutron bombs” in Europe—enhanced radiation weapons that could kill peo-

ple without demolishing buildings. The Soviets portrayed this as a “capitalist bomb”

which would destroy people while leaving property intact, and responded by threaten-

ing a “socialist bomb” to destroy property (in the form of electronics) while leaving the

surrounding people intact.

By the end of World War II, the invention of the cavity magnetron had made it pos-

sible to build radars powerful enough to damage unprotected electronic circuitry for a

range of several hundred yards. The move from valves to transistors and integrated

circuits has increased the vulnerability of most commercial electronic equipment. A

terrorist group could in theory mount a radar in a truck and drive around a city’s finan-

cial sector wiping out the banks. For battlefield use, a more compact form factor is pre-

ferred, and so the Soviets are said to have built high-energy RF (HERF) devices from

capacitors, magnetohydrodynamic generators and the like.

By the mid 1990s, the concern that terrorists might get hold of these weapons from

the former Soviet Union led the agencies to try to sell commerce and industry on the

idea of electromagnetic shielding. These efforts were dismissed as hype. Personally, I

tend to agree. The details of the Soviet HERF bombs haven’t been released, but phys-

ics suggests that EMP is limited by the dielectric strength of air and the cross-section

of the antenna. In nuclear EMP, the effective antenna size could be a few hundred me-

ters for an endoatmospheric blast, up to several thousand kilometers for an exoatmos-

pheric one. But in “ordinary” EMP/HERF, it seems that the antenna will be at most a

few meters. NATO planners concluded that military command and control systems that

were already hardened for nuclear EMP should be unaffected.

As for the civilian infrastructure, I suspect that a terrorist can do a lot more damage

with an old-fashioned truck bomb made with a ton of fertilizer and fuel oil, and he

doesn’t need a PhD in physics to design one! Anyway, the standard reference on EMP

is [645].

Concern remains however, that the EMP from a single nuclear explosion 250 miles

above the central United States could do colossal economic damage, while killing few

people directly [53]. This potentially gives a blackmail weapon to countries such as

Iran and North Korea, both of which have nuclear ambitions but primitive infrastruc-

tures. In general, a massive attack on electronic communications is more of a threat to

countries such as the United States that depend heavily on them than on countries such

as North Korea, or even China, that don’t. This observation goes across to attacks on

the Internet as well, so let’s now turn to information warfare.

16.7 Information Warfare

Since about 1995, the phrase information warfare has come into wide use. Its popular-

ity appears to have been catalyzed by operational experience in Desert Storm. There,

air power was used to degrade the Iraqi defenses before the land attack was launched;

and one goal of NSA personnel supporting the allies was to enable the initial attack to

be made without casualties—even though the Iraqi air defenses were at that time intact
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and alert. The attack involved a mixture of standard e-war techniques, such as jammers

and antiradiation missiles; cruise missile attacks on command centers; attacks by spe-

cial forces, who sneaked into Iraq and dug up lengths of communications cabling from

the desert; and, allegedly, the use of hacking tricks to disable computers and telephone

exchanges. (By 1990, the U.S. Army was already calling for bids for virus production

[518].) The operation successfully achieved its mission of ensuring zero Allied casual-

ties on the first night of the aerial bombardment. Military planners and think tanks

started to consider how the success could be extended.

There is little agreement about definitions. The conventional view, arising out of

Desert Storm, was expressed by Major YuLin Whitehead ([790, p 9]):

The strategist . . . should employ [the information weapon] as a precursor weapon to

blind the enemy prior to conventional attacks and operations.

The more aggressive view is that properly conducted information operations should

encompass everything from signals intelligence to propaganda; and, given the reliance

that modern societies place on information, it should suffice to break the enemy’s will

without fighting.

16.7.1 Definitions

In fact, there are roughly three views on what information warfare means:

• It is just a remarketing of the stuff that the agencies have been doing for dec-

ades anyway, in an attempt to maintain the agencies’ budgets post-Cold-War.

• It consists of the use of hacking in a broad sense—network attack tools, com-
puter viruses, and so on—in conflict between states or substate groups, in or-
der to deny critical military and other services, whether for operational or
propaganda purposes. It has been observed, for example, that the Internet,
though designed to withstand thermonuclear bombardment, was knocked out
by the Morris worm.

• It extends the electronic warfare doctrine of controlling the electromagnetic

spectrum to control of all information relevant to the conflict. It thus extends

traditional e-war techniques, such as radar jammers, by adding assorted hack-

ing techniques, but also incorporates propaganda and news management.

The first of these views was the one taken by some cynical defense insiders to whom

I’ve spoken. The second is the popular view found in newspaper articles, and also

Whitehead’s. It’s the one I’ll use as a guide in this section, but without taking a posi-

tion on whether it actually contains anything really new, either technically or doctri-

nally.

The third finds expression in a book by Dorothy Denning [235], whose definition of

information warfare is, “operations that target or exploit information media in order to

win some advantage over an adversary.” Its interpretation is so broad that it includes

not just hacking but all of electronic warfare and all existing intelligence-gathering

techniques (from sigint through satellite imagery to spies), and propaganda, too. In a

later article, she’s discussed the role of the Net in the propaganda and activism sur-

rounding the Kosovo war [236]. However the bulk of her book is given over to com-

puter security and related topics.
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A similar view of information warfare, and from a writer whose background is de-

fense planning rather than computer security, is by Edward Waltz [790]. He defines

information superiority as “the capability to collect, process and disseminate an unin-

terrupted flow of information while exploiting or denying an adversary’s ability to do

the same”. The theory is that such superiority will allow the conduct of operations

without effective opposition. The book has less technical detail on computer security

matters than Denning’s, but sets forth a first attempt to formulate a military doctrine of

information operations.

16.7.2 Doctrine

When writers such as Denning and Waltz include propaganda operations in informa-

tion warfare, the cynical defense insider may remark that nothing has changed. From

Roman and Mongol efforts to promote a myth of invincibility, through the use of

propaganda radio stations by both sides in World War II and the Cold War, to the

bombing of Serbian TV during the Kosovo campaign and denial-of-service attacks on

Chechen Web sites by Russian agencies [198]—the tools may change but the game

remains the same.

But there is a twist, perhaps thanks to government and military leaders’ lack of fa-

miliarity with the Internet. When teenage kids deface a U.S. government department

Web site, an experienced computer security professional is likely to see it as the

equivalent of graffiti scrawled on the wall of a public building. After all, it’s easy

enough to do, and easy enough to remove. But the information warfare community can

paint it as undermining the posture of information dominance that a country must pro-

ject in order to deter aggression.

So there is a fair amount of debunking to be done before the political and military

leadership can start to think clearly about the issues. For example, it’s often stated that

information warfare provides casualty-free way to win wars: “just hack the Iranian

power grid and watch them sue for peace.” The three obvious comments are as follows.

• The denial-of-service attacks that have so far been conducted on information

systems without the use of physical force have mostly had a transient effect. A

computer goes down; the operators find out what happened; they restore the

system from backup and restart it. An outage of a few hours may be enough to

let a wave of bombers get through unscathed, but it appears unlikely to bring a

country to its knees. In this context, the failure of the Millennium Bug to cause

the expected damage may be a useful warning.

• Insofar as there is a vulnerability, developed countries are more exposed. The
power grid in the United States or Britain is much more computerized than that
in the average developing country.

• Finally, if such an attack causes the deaths of several dozen people in Iranian

hospitals, the Iranians aren’t likely to see the matter much differently from a

conventional military attack that killed the same number of people. Indeed, if

information war targets civilians to greater extent than the alternatives, then

the attackers’ leaders are likely to be portrayed as war criminals. The Pinochet

case, in which a former head of government only escaped extradition on health

grounds, should give pause for thought.
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Having made these points, I will restrict discussion in the rest of this section to tech-

nical matters.

16.7.3 Potentially Useful Lessons from Electronic Warfare

Perhaps the most important policy lesson from the world of electronic warfare is that

conducting operations that involve more than one service is very much harder than it

looks. Things are bad enough when army, navy, and air force units have to be coordi-

nated—during the U.S. invasion of Grenada, a ground commander had to go to a pay

phone and call home using his credit card in order to call down an air strike, as the dif-

ferent services’ radios were incompatible. (Indeed, this was the spur for the develop-

ment of software radios [482]). Things are even worse when intelligence services are

involved, as they don’t train with warfighters in peacetime, and so take a long time to

become productive once the fighting starts. Turf fights also get in the way: under cur-

rent U.S. rules, the air force can decide to bomb an enemy telephone exchange but has

to get permission from the NSA and/or CIA to hack it [63]. The U.S. Army’s commu-

nications strategy is now taking account of the need to communicate across the tradi-

tional command hierarchy, and to make extensive use of the existing civilian

infrastructure [672].

At the technical level, many concepts may go across from electronic warfare to in-

formation protection in general.

• The electronic warfare community uses guard band receivers to detect jam-

ming, so it can be filtered out (for example, by blanking receivers at the pre-

cise time a sweep jammer passes through their frequency). Using bait

addresses to detect spam is essentially the same concept.

• There is also an analogy between virus recognition and radar signal recogni-
tion. Virus writers may make their code polymorphic, in that it changes its
form as it propagates, to make life harder for the virus scanner vendors. Simi-
larly, radar designers use very diverse waveforms to make it harder to store
enough of the waveform in digital radio frequency memory to do coherent
jamming effectively.

• Our old friends, the false accept and false reject rate, will continue to dominate
tactics and strategy. As with burglar alarms or radar jamming, the ability to
cause many false alarms (however crudely) will always be worth something:
as soon as the false alarm rate exceeds about 15%, operator performance is de-
graded. As for filtering, it can usually be cheated.

• The limiting economic factor in both attack and defense will increasingly be
the software cost, and the speed at which new tools can be created and de-
ployed.

• It is useful, when subjected to jamming, not to let the jammer know whether,
or how, his attack is succeeding. In military communications, it’s usually bet-
ter to respond to jamming by dropping the bit rate rather than by boosting
power; similarly, when a nonexistent credit card number is presented at your
Web site, you might say, “Sorry, bad card number, try again,” but the second
time it happens you should take a different line (or the attacker will keep on
trying). Something such as, “Sorry, the items you have requested are tempo-
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rarily out of stock and should be mailed within five working days” may do the
trick.

• Although defense in depth is in general a good idea, you have to be careful of
interactions between the different defenses. The classic case in e-war is when
chaff dispensed by a warship to defend against an incoming cruise missile
knocks out its anti-aircraft guns. The side effects of defenses can also be ex-
ploited. The most common case on the Net is the mail bomb: an attacker
forges offensive newsgroup messages, which appear to come from the victim,
who then gets subjected to a barrage of abuse and attacks.

• Finally, some perspective can be drawn from the differing roles of hard kill

and soft kill in electronic warfare. Jamming and other soft-kill attacks can be

cheaper in the short term; they can be used against multiple threats; and they

have reduced political consequences. But damage assessment is hard, and you

may just divert the weapon to another target. As most i-war is soft kill, these

comments can be expected to go across, too.

16.7.4 Differences Between E-War and I-War

There are differences as well as similarities between traditional electronic warfare and

the kinds of attack that can potentially be run over the Net.

• There are roughly two kinds of war: open war and guerilla war. Electronic

warfare comes into its own in the former case, such as in air combat, most na-

val engagements, and the desert. In forests and mountains, the man with the

AK-47 can still get a result against mechanized forces. Guerilla war has

largely been ignored by the e-war community, except insofar as they make and

sell radars to detect snipers and concealed mortar batteries.

In cyberspace, the “forests and the mountains” are likely to be the large

numbers of insecure hosts belonging to friendly or neutral civilians and orga-

nizations. The distributed denial-of-service (DDoS) attack, in which hundreds

of innocent machines are subverted and used to bombard a target Web site

with traffic, has no real analogue in the world of electronic warfare. Never-

theless, it is the likely platform for launching attacks even on “open” targets

such as large commercial Web sites. So it’s unclear where the open country-

side in cyberspace actually is.

• Another possible source of asymmetric advantage for the guerilla is complex-

ity. Large countries have many incompatible systems; this makes little differ-

ence when fighting another large country with similarly incompatible systems,

but can leave them at a disadvantage to a small group that has built simple,

coherent systems.

• Anyone trying to attack the United States is unlikely to repeat Saddam
Hussein’s mistake of trying to fight a tank battle. Guerilla warfare will be the
norm, and cyberspace appears to be fairly well suited for this.
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• There is no electronic warfare analogue of “script kiddies,” people who

download attack scripts and launch them without really understanding how

they work. That such powerful weapons are available universally, and for free,

has few analogues in meatspace. Perhaps the closest is in the lawless areas of

countries such as Afghanistan, where all men go about with military weapons.

16.8 Summary

Electronic warfare is much more developed than most other areas of information secu-

rity. There are many lessons to be learned, from the technical level up through the tac-

tical level to matters of planning and strategy. We can expect that, as information

warfare evolves from a fashionable concept to established doctrine, these lessons will

become important for practitioners.

Research Problems

An interesting research problem is how to port techniques and experience from the

world of electronic warfare to the Internet. This chapter is only a sketchy first attempt

at setting down the possible parallels and differences.

Further Reading

A good (although nontechnical) introduction to radar is by P. S. Hall [369]. The best

all-round reference for the technical aspects of electronic warfare, from radar through

stealth to EMP weapons, is by Curtis Schleher [677]; a good summary was written by

Doug Richardson [644]. The classic introduction to the anti-jam properties of spread-

spectrum sequences is by Andrew Viterbi [778]; the history of spread-spectrum is ably

told by Robert Scholtz [686]; the classic introduction to the mathematics of spread-

spectrum is by Raymond Pickholtz, Donald Schilling, and Lawrence Milstein [616];

while the standard textbook is by Robert Dixon [254]. An overall history of British

electronic warfare and scientific intelligence, which was written by a true insider, that

gives a lot of insight not just into how the technology developed but also into strategic

and tactical deception, is by R. V. Jones [424, 425].

Finally, the history of the technical aspects of radar, jammers, and IFF systems is

available from three different and complementary viewpoints: the German by David

Pritchard [627], the British by Jack Gough [348], and the American by Robert Buderi

[142].
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CHAPTER

17

Telecom System Security

I rarely had to resort to a technical attack. Companies can spend

 millions of dollars toward technological protections and that’s

 wasted if somebody can basically call someone on the telephone

 and either convince them to do something on the computer that

 lowers the computer’s defenses or reveals the information

 they were seeking.

—KEVIN MITNICK

17.1 Introduction

The protection of telecommunications systems is an important case study for a number

of reasons. First, many distributed systems rely on the underlying fixed or mobile

phone network in ways that are often not obvious. Second, the history of security fail-

ures in telecoms is instructive. Early attacks were carried out on phone companies by

enthusiasts (“phone phreaks”) to get free calls; next the phone system’s vulnerabilities

began to be exploited by crooks to evade police wiretapping; then premium rate calls

were introduced, which created the motive for large-scale fraud; then, when telecoms

markets were liberalized, some phone companies started conducting attacks on each

other’s customers, and some phone companies have even attacked each other. At each

stage, the defensive measures undertaken were not only very expensive but also tended

to be inadequate for various reasons. It appears that the same pattern is repeating with

the Internet—only that history will be much speeded up.

17.2 Phone Phreaking

The abuse of communication services goes back centuries. In the days before postage

stamps were invented, postage was paid by the recipient. Unsolicited mail became a
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huge problem (especially for famous people), so recipients were allowed to inspect a

letter and reject it if they wished rather than paying for it. People soon worked out

schemes to send short messages on the covers of letters which their correspondents

rejected, and the regulations brought in to stop this were never really effective [594].

The early optical telegraphs, which worked using semaphores or heliographs, were

abused by people to place foreknowledge bets on races; here, too, attempts to legislate

the problem away were a failure [729].

The telephone was to be no different.

17.2.1 Attacks on Metering

Early metering systems were wide open to abuse.

• In the 1950’s, the operator in some systems had to listen for the sound of coins

dropping on a metal plate to tell that a callbox customer had paid, so some

people acquired the knack of hitting the coinbox with a piece of metal that

struck the right note.

• Initially, the operator had no way of knowing which phone a call had come
from, so she had to ask the caller his number. The caller could give the number
of someone else, who would be charged. This was risky to do from your own
phone, but people did it from callboxes. When operators started calling back to
verify the number for international calls, people worked out social engineering
attacks (“This is IBM here; we’d like to book a call to San Francisco, and be-
cause of the time difference, we’d like our managing director take it at home
tonight. His number is xxx-yyyy”). Therefore, callbox lines had a feature
added to alert the operator. But in the U.K. implementation, there was a bug: a
customer who had called the operator from a callbox could depress the rest for
a quarter-second or so, whereupon he’d be disconnected and reconnected (of-
ten to a different operator), with no signal this time that the call was from a
callbox. He could then place a call to anywhere and bill it to any local number.

• This system also signalled the entry of a coin by one or more pulses, each of

which consisted of the insertion of a resistance in the line followed by a brief

open circuit. At a number of colleges, enterprising students installed “magic

buttons” that could simulate this in a callbox in the student union so people

could phone for free. (The bill in this case went to the student union, for which

the magic button was not quite so amusing.)

Attacks on metering mechanisms continue. Many countries have changed their pay-

phones to use chip cards in order to cut the costs of coin collection and vandalism.

Some of the implementations have been poor (as I remarked in the chapter on tamper

resistance) and villains have manufactured large quantities of bogus phone cards. Other

attacks involve what’s called clip-on: physically attaching a phone to someone else’s

line to steal their service.

In the 1970s, when international phone calls were very expensive, foreign students

would clip their own phone on to a residential line in order to call home; an unsus-

pecting home owner could get a huge bill. Despite the fact that, in most countries, the

cable was the phone company’s legal responsibility up to the service socket in the
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house, phone companies were mostly adamant that householders should pay, and could

threaten to blacklist them if they didn’t. Now that long distance calls are cheap, the

financial incentive for clip-on fraud has largely disappeared. But it’s still enough of a

problem that the Norwegian phone company designed a system whereby a challenge

and response are exchanged between a wall-socket-mounted authentication device and

the exchange software before a dial tone is given [426].

Clip-on fraud had a catastrophic effect on a family in Cramlington, a town in the

Northeast of England. The first sign they had of trouble was hearing a conversation on

their line. The next was a visit from the police, who said there’d been complaints of

nuisance phone calls. The complainants were three ladies, all of whom had a number

that was one digit different from a number to which this family had supposedly made a

huge number of calls. When the family’s bill was examined, there were also calls to

clusters of numbers that turned out to be payphones; these had started quite suddenly at

the same time as the nuisance calls. Later, when the family had complained to the

phone company about a fault, their connection was rerouted and this had solved the

problem.

The phone company denied the possibility of a tap, despite the report from its main-

tenance person, who noted that the family’s line had been tampered with at the distri-

bution box. (The phone company later claimed this report was in error.) It turned out

that a drug dealer had lived close by, and it seemed a reasonable inference that he had

tapped their line in order to call his couriers at the payphones using the victim’s calling

line ID. But both the police and the local phone company refused to go into the house

where the dealer had lived, claiming it was too dangerous—even though the dealer had

by now got six years in jail. The Norwegian phone company declined an invitation to

testify about clip-on for the defense. The upshot was that the subscriber was convicted

of making harrassing phone calls, in a case widely believed to have been a miscarriage

of justice. Discussion continues about whether the closing of ranks between the phone

company and the police was a policy of denying that clip-on was possible, a reflex to

cover a surveillance operation—or something more sinister.

Stealing dial tone from cordless phones is another variant on the same theme. In the

early 1990s, this became so widespread in Paris that France Telecom broke with phone

company tradition and announced that it was happening, claiming that the victims were

using illegally imported cordless phones that were easy to spoof [475]. Yet to this day

I am unaware of any cordless phones—authorized or not—with decent air link authen-

tication. The new digital cordless phones use the DECT standard, which allows for

challenge-response mechanisms [769]; but the terminals fielded so far seem to simply

send their names to the base station.

Social engineering is another widespread trick. A crook calls you pretending to be

from AT&T security, and asks whether you made a large number of calls to Peru on

your calling card. When you deny this, she says that the calls were obviously fake, but,

in order to reverse the charges, can she confirm that your card number is

123–456–7890–6543? No, you say (if you’re not really alert), it’s

123–456–7890–5678. Because 123–456–7890 is your phone number, and 5678 your

password, you’ve just given that caller the ability to bill calls to you.

The advent of premium rate phone services has also led to scamsters developing all

sorts of tricks to get people to call them: pager messages, job ads, fake emergency

messages about relatives, “low-cost” calling cards with 900-access numbers—you

name it. The 809 area code for the Caribbean used to be a favorite cover for crooks
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targeting U.S. subscribers; recently, the introduction of new area codes there, such as

345 for the Cayman Islands, makes it even harder to spot the numbers of premium rate

operators. Phone companies’ advice is “Do not return calls to unfamiliar telephone

numbers” and “Beware of faxes, email, voice mail, and pages requesting a return call

to an unfamiliar number” [13]. But just how practical is that?

17.2.2 Attacks on Signalling

The term phone phreaking refers to attacks on signalling, as well as to pure toll fraud.

Until the 1980s, phone companies used signalling systems that worked in-band by

sending tone pulses in the same circuit that carried the speech. The first attack I’ve

heard of dates back to 1952; and by the mid-to-late 1960s, many enthusiasts in both

America and Britain had worked out ways of rerouting calls. They typically used

homemade tone generators, of which the most common were called blue boxes. The

trick was to call an 800 number, then send a tone that would clear down the line at the

far end—that is, disconnect the called party while leaving the caller with a trunk line

connected to the exchange. The caller could now enter the number he really wanted

and be connected without paying. Notoriously, Steve Jobs and Steve Wozniak first

built blue boxes before they diversified into computers [319].

Phone phreaking started out with a strong ideological element. In those days, most

phone companies had monopolies. They were large, faceless, and unresponsive. People

whose domestic phone lines had been tapped in a service theft found they were stuck

with the charges. If the young man who had courted your daughter was (unknown to

you) a phone phreak who hadn’t paid for the calls he made to her, you would suddenly

find the company trying to extort either his name or a payment. Phone companies were

also aligned with the state. In many countries, it turned out that there were signalling

codes or switch features that would enable the police to tap your phone from the com-

fort of the police station, without having to send out a lineman to install a wiretap.

Back in the days of Vietnam and student protests, this was inflammatory stuff. Phone

phreaks were counterculture heroes, while phone companies aligned themselves firmly

with the Forces of Darkness.

As there was no way to stop blue-box type attacks as long as telephone signalling

was carried in-band, the phone companies spent years and many billions of dollars up-

grading exchanges so that the signalling was carried out-of-band, in separate channels

to which the subscribers had no easy access. Gradually, region by region, the world

was closed off to blue-box attacks, though there are still a few places left. For example,

the first time that USAF operations were disrupted by an information warfare attack by

noncombatants was in 1994, when two British hackers broke into the Rome Air Force

Base via an analog link through an ancient phone system in Argentina. This cut-out

was used effectively to hold up investigators [722]. But to defeat a modern telephone

network, different techniques are needed.

17.2.3 Attacks on Switching and Configuration

The second wave of attacks targeted the computers that did the switching. Typically,

these were Unix machines on a LAN in an exchange, which also had machines with

administrative functions such as maintenance scheduling. By hacking one of these less

well-guarded machines, a phreak could go across the LAN and break into the switching
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equipment—or into secondary systems such as subscriber databases. For a survey of

PacBell’s experience of this, see [167]; for Bellcore’s, see [462].

Using these techniques, unlisted phone numbers could be found, calls could be for-

warded without a subscriber’s knowledge, and all sorts of mischief became possible. A

Californian phone phreak called Kevin Poulsen got root access to many of PacBel’s

switches and other systems in 1985–1988; this apparently involved burglary as much

as hacking (he was eventually convicted of conspiring to possess 15 or more counter-

feit, unauthorized, and stolen access devices.) He did petty things like obtaining un-

listed phone numbers for celebrities, and winning a Porsche from Los Angeles radio

station KIIS-FM. (Each week, KIIS would give a Porsche to the 102nd caller, so Kevin

and his accomplices blocked out all calls to the radio station’s 25 phone lines save their

own, made the 102nd call, and collected the Porsche.) Poulsen was also accused of

unlawful wiretapping and espionage; these charges were dismissed. In fact, the FBI

came down on him so heavily that there were allegations of an improper relationship

between the agency and the phone companies, along the lines of “you scratch our

backs with wiretaps when needed, and we’ll investigate your hacker problems” [294].

Although the unauthorized wiretapping charges against Poulsen were dismissed, the

FBI’s sensitivity does highlight the possibility that attacks on phone company comput-

ers can be used by foreign intelligence agencies to conduct remote wiretaps. Some of

the attacks mentioned in [167] were from overseas, and the possibility that such tricks

might be used to crash the whole phone system in the context of an information war-

fare attack has for some years been a concern of the NSA [321, 480]. Also, prudent

nations assume that their telephone switchgear has vulnerabilities known to the gov-

ernment of the country in which it was made.

But although high-tech attacks do happen—and newspaper articles on phone

phreaking tend to play up the “evil hacker” aspects—most real attacks are much sim-

pler. Many involve insiders, who deliberately misconfigure systems to provide free

calls from (or through) favored numbers. This didn’t matter all that much when the

phone company’s marginal cost of servicing an extra phone call was near zero, but

with the modern proliferation of value-added services, people with access to the sys-

tems can be tempted to place (or forge) large numbers of calls to accomplices’ sex

lines. Deregulation, and the advent of mobile phones, have also made fraud serious, as

they give rise to cash payments between phone companies [200]. Insiders also get up to

mischief with services that depend on the security of the phone network. In a hack

reminiscent of Poulsen, two staff at British Telecom were dismissed after they each

won 10 tickets for Concorde from a phone-in offer at which only one randomly se-

lected call in a thousand was supposed to get through [754].

As for outsiders, consider the “arch-hacker,” Kevin Mitnick. He got extensive press

coverage when he was arrested and convicted following a series of break-ins, many of

which involved phone systems, and which made him the target of an FBI manhunt. But

he testified after his release from prison that almost all of his exploits had involved

social engineering. His congressional testimony, quoted at the head of this chapter,

sums up the problem neatly [555]. Phone company systems are vulnerable to careless

insiders as well as to malicious insiders—just like hospital systems and many others

I’ve discussed.
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17.2.4 Insecure End Systems

After direct attacks on the systems kept on phone company premises, the next major

vulnerabilities of modern phone systems are insecure terminal equipment and feature

interaction.

There have been a number of cases where villains exploited people’s answering ma-

chines by tricking them into dialing premium rate numbers. The problem arises from

phone company switches that give you dial tone 12 seconds after the other party hangs

up. So I can record 13 blank seconds on your answering machine, followed by the

tones of the number to which I’d like a message delivered, with the message; I then

call again, get the machine to play back its messages and hang up on it. Recently, a

similar trick has been done with computers—that three-hour call to a sex line in Sierra

Leone that appears on your phone bill may well have been dialed by a virus on your

PC.

But the really big frauds using insecure end systems are directed against companies.

Fraud against corporate private branch exchange systems (PBXes) had become big

business by the mid-1990s, and costs business billions of dollars a year [202]. PBXes

are usually supplied with facilities for refiling calls, also known as direct inward sys-

tem access (DISA). The typical application is that the company’s sales force can call in

to an 800-number, enter a PIN or password, then call out again, taking advantage of the

low rates a large company can get for long distance calls. As you’d expect, these PINs

become known and get traded by villains [564]. The result is known as dial-through

fraud.

In many cases, the PINs are set to a default by the manufacturer, and never changed

by the customer. In other cases, PINs are captured by crooks who monitor telephone

traffic in hotels to steal credit card numbers; phone card numbers and PBX PINs are a

useful sideline. Many PBX designs have fixed engineering passwords that allow re-

mote maintenance access, and prudent people reckon that any PBX will have at least

one back door installed by the manufacturer to give easy access to law enforcement

and intelligence agencies (it’s said, as a condition of export licensing). Of course such

features get discovered and abused. In one case, the PBX at Scotland Yard was com-

promised, and used by villains to refile calls, costing the Yard a million pounds, for

which they sued their telephone installer. The crooks were never caught [745]. This

case was particularly poignant, as one of the criminals’ motivations in such cases is to

get access to communications that will not be tapped.

Dial-through fraud is mostly driven by premium rate services; the main culprits are

crooks who are in cahoots with premium line owners. Secondary culprits are organized

criminals who use the calling line ID of respectable companies to hide calls, such as

from the United States to Colombia, or from England to Pakistan and China—often via

a compromised PBX in a third country to mask the traffic. (This appears to be what

happened in the Scotland Yard case, as the crooks made their calls out of America)

Most companies don’t understand the need to guard their dial tone, and wouldn’t know

how to even if they wanted to. PBXes are typically run by company telecoms managers

who know little about security, while the security manager often knows little about

phones.

Exploits of insecure end-systems sometimes affect domestic subscribers too, now

that many people have computers attached to their phones. A notorious case was the

Moldova scam. In 1997, customers of a porn site were told to download a “viewer”

program, which dropped their phone line and connected them to a phone number in
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Moldova (having turned off their modem speakers so they wouldn’t notice). The new

connection stayed up until they turned off their computers. The result was that thou-

sands of subscribers incurred hundreds of thousands of dollars in international long

distance charges at over $2 per minute. Their phone companies tried to collect this

money, but there was an outcry; eventually, the subscribers got their money back and

the Federal Trade Commission enjoined and prosecuted the perpetrators [284]. Since

then, there have been a number of copycat scams; most recently, AT&T has been get-

ting complaints about calls to Chad, routed there by a Web company that appears to be

in Ireland [543]

Premium rate scams and anonymous calling are not the only motives. As phones

start to be used for tasks such as voting, securing entry into apartment buildings,

checking that offenders are observing their parole terms, and authenticating financial

transactions, more motives are created for evermore creative kinds of mischief, espe-

cially for hacks that defeat caller line ID. One of the more extreme cases occurred in

London. A crook turned up to buy gold bullion with a bank check; the bullion dealer

phoned the bank to verify it; and having got assurances from the voice at the other end,

he handed over the gold. The check turned out to be forged; an accomplice had tapped

the bank’s phone line at the distribution box in the street.

Sometimes, attacks are conducted by upstanding citizens for perfectly honorable

motives. A neat example, due to Udi Manber, is as follows. Suppose you have bought

something that breaks, and the manufacturer’s helpline has only an answering machine.

To get service, you have to take the answering machine out of service. This can often

be done by recording its message, and playing it back so that it appears as the customer

message. With luck, the machine’s owner will think it’s broken and it’ll be sent off for

maintenance.

17.2.5 Feature Interaction

More and more cases of telephone manipulation involve feature interaction.

• Inmates at the Clallam Bay Correctional Center in Washington state, who were

only allowed to make collect calls, found an interesting exploit of a system

that the phone company (Fone America) introduced to handle collect calls

automatically. The system would call the dialed number, after which a synthe-

sized voice would say: “If you will accept a collect call from (name of caller),

please press the number 3 on your telephone twice.” Prisoners were supposed

to state their name for the machine to record and insert. The system had, as an

additional feature, the capability to have the greeting delivered in Spanish. In-

mates did so; and when asked to identify themselves, said, “If you want to hear

this message in English, press 33.” This worked often enough that they could

get through to corporate PBXes and talk the operator into giving them an out-

side line. The University of Washington was hit several times by this scam

[298].

• In November 1996, British Telecom launched a feature called Ringback. If
you dialed an engaged number, you could then enter a short code; as soon as
the called number was free, both your phone and theirs would ring. The re-
sulting call would be billed to you. However, when it was used from a pay-
phone, it was the phone’s owner who ended up with the bill, rather than the
caller. People with private payphones, such as pub landlords and shopkeepers,
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lost a lot of money, which the phone company was eventually obliged to re-
fund [412].

• Call forwarding is a source of many scams. There have been cases in which
hackers have persuaded a phone company operator to forward calls for some-
one they didn’t like to a sex line. The victim then gets billed for the premium
rate charges.

• Conference calls also cause a lot of trouble. For example, football hooligans in

some countries are placed under a curfew that requires them to be at home

during a match, and to prove this by calling the probation service, which veri-

fies their number using caller ID. The trick is to get one of your kids to set up

a conference call with the probation service, and the mobile you’ve taken to

the match. If the probation officer asks about the crowd noise, you tell him it’s

the TV and you can’t turn it down or your mates will kill you. (And if he

wants to call you back, you get your kids to forward the call.)

This brings us to the many problems caused by mobile phones.

17.3 Mobile Phones

Since the early 1980s, mobile phones have ceased to be an expensive luxury and have

become one of the big technological success stories, with 30–50 percent annual sales

growth worldwide. In some countries, notably Scandinavia, most people have at least

one mobile, and many new electronic services are built on top of them. For example,

there are machines that dispense a can of soda when you call a number displayed on

the front; the drink gets added to your phone bill. Growth is particularly rapid in de-

veloping countries, where the wireline network is often dilapidated and people used to

wait years for phone service to be installed.

Also, although most people use their mobiles sparingly because of the call charges

(most phone calls by duration are made from and to wireline phones), criminals make

heavy use of mobiles. In Britain, for example, over half of the police wiretaps are now

on mobile numbers.

So mobile phones are very important to the security engineer, both as part of the un-

derlying infrastructure and as a channel for service delivery. They can also teach us a

lot about fraud techniques and countermeasures.

17.3.1 Mobile Phone Cloning

The first generation of mobile phones used analogue signals and no real authentication.

The handset simply sent its serial numbers in clear over the air link. (In the U.S. sys-

tem, there are two of them: one for the equipment, and one for the subscriber.) So vil-

lains built devices that would capture these numbers from calls in the neighborhood.

(I’ve even seen a phone that was reprogrammed to do this by a simple software hack.)

One of the main customers was the call-sell operation, which would steal phone serv-

ice and resell it cheaply, often to immigrants or students who wanted to call home. The
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call-sell operators would hang out at known pitches with cloned mobiles, and their

customers would line up to phone home for a few dollars.

A black market developed in phone serial numbers, and enterprising engineers built

tumblers—mobile phones that used a different identity for each call. Tumblers are de-

signed to be hard for the police to track [406]. The demand for serial numbers got so

large that satisfying it was increasingly difficult, even by snooping at places like air-

ports where lots of mobiles were turned on. So as well as passive listening, active

methods started to get used.

Modern mobile phones are cellular, in that the operator divides the service area up

into cells, each covered by a base station. The mobile uses whichever base station has

the strongest signal, and there are protocols for “handing off” calls from one cell to

another as the customer roams. (For a survey of mobile phone technology, see [636].)

The active attack consists of a fake base station, typically at a place with a lot of pass-

ing traffic such as a freeway bridge. As phones pass by, they hear a stronger base sta-

tion signal and attempt to register by sending their serial numbers.

A number of mechanisms have been tried to cut the volume of fraud. Most operators

have intrusion detection systems that watch out for suspicious patterns of activity, such

as calls being made from New York and Los Angeles within an hour of each other, or a

rapid increase in the volume of calls. A number of heuristics have been developed. For

example, genuine mobiles that roam and that call home regularly, but then stop calling

home, have usually been stolen.

In the chapter on electronic warfare, I mentioned RF fingerprinting, a formerly clas-

sified military technology in which signal characteristics that vary from one handset to

another are used to identify individual devices and tie them to the claimed serial num-

bers [341]. Although this technique works—it was used by Vodafone in Britain to

nearly eliminate cloning fraud from analogue mobiles—it is expensive, as it involves

modifying the base stations. (Vodafone also used an intrusion detection system, which

tracked customer call patterns and mobility, described in [769]; its competitor, Cellnet,

simply blocked international calls from analogue mobiles—which helped move its

high-value customers to its more modern digital network.) Another proposed solution

was to adopt a cryptographic authentication protocol, but there are limits on how much

can be done without changing the whole network. For example, one can use a chal-

lenge-response protocol to modify the serial number [305]. But many of the mecha-

nisms people have proposed to fortify the security of analogue cellular phones have

turned out to be weak [780].

Eventually, the industry decided that it made sense to redesign the entire system, not

just to make it more secure but to support a host of new features such as the ability to

roam from one country to another without requiring a new handset (important in

Europe where lots of small countries are jammed close together), and the ability to

send and receive short text messages.

17.3.2 GSM System Architecture

The second generation of mobile phones uses digital technology. By the year 2000,

most handsets worldwide used the Global System for Mobile Communications, or

GSM, which was designed from the start to facilitate international roaming, and

launched in 1992. The United States, Japan, and Israel have different digital standards

(although there is a competing GSM service in parts of America).
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GSM’s designers set out to secure the system against cloning and other attacks; the

goal was that it should be at least as secure as the wireline system it was to replace.

What they did, how they succeeded, and where they failed, make an interesting case

history.

17.3.3 Communications Security Mechanisms

The authentication protocols used in GSM are described in a number of places, such as

[141] (which also describes the mechanisms in an incompatible U.S. system). But the

industry tried to keep secret the cryptographic and other protection mechanisms that

form the core of the GSM security system. This didn’t work; some eventually leaked,

and the rest were discovered by reverse-engineering. I’ll describe them briefly here;

more can be found on sites such as [713].

Each network has two databases, a home location register (HLR), which contains

the location of its own mobiles, and a visitor location register (VLR), for the location

of mobiles that have roamed in from other networks. These databases enable incoming

calls to be forwarded to the correct cell; see Figure 17.1 for an overview.

The handsets are commodity items. They are personalized using a subscriber iden-

tity module (SIM), a smartcard you get when you sign up for a network service, and

which you load into your handset. The SIM can be thought of as containing three num-

bers:

1. There’s a personal identification number, which you use to unlock the card.

In theory, this stops stolen mobiles being used. In practice, many networks set

an initial PIN of 0000, and most users never change it.

2. There’s an international mobile subscriber identification (IMSI), a unique

number that maps on to your mobile phone number.

3. Finally there is a subscriber authentication key Ki, a 128-bit number that

serves to authenticate that IMSI and is known to your home network.

Unlike the banks, which used master keys to generate PINs, the phone companies

decided that master keys were too dangerous. Instead of diversifying a master key, KM,

to manufacture the authentication keys as Ki = {IMSI}KM, the keys are generated ran-

domly and kept in an authentication database attached to the HLR.

The protocol used to authenticate the handset to the network runs as follows. On

power-up, the SIM requests the customer’s PIN; once this is entered correctly, it emits

the IMSI, which the handset sends to the nearest base station. This is sent to the sub-

scriber’s HLR, which generates five triplets. Each triplet consists of:

• RAND, a random challenge

• SRES, a response

• Kc, a ciphering key

The relationship between these values is that RAND, encrypted under the SIM’s

authentication key Ki, gives an output that is SRES concatenated with Kc:

{RAND}Ki = (SRES | Kc)
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Figure 17.1 GSM authentication system components.

The standard way to do this encryption is using a one-way function called Comp128,

or A3/A8 (A3 refers to the SRES output, and A8 to the Kc output). (This is a hash

function with 40 rounds, described in detail in [138].) The basic idea is much like in

Figure 5.10; each round consists of table look-ups followed by mixing. There are five

tables, with 512,256,128,64, and 32 byte entries each, and the hash function uses them

successively in each block of five rounds; there are eight of these blocks.

On the face of it, this looks like such a complex hash function that it should be im-

possible to find preimages of output hash values. Yet once its design finally leaked, a

vulnerability was noticed. Four of the bytes—i, i + 8, i + 16, and i + 24, at the output

of the second round depend only on the value of the same bytes of the input. Two of

these input bytes (i and i + 8) are bytes of the key, and thus are fixed for any given

SIM card, while the other two bytes of the input come from the challenge input.

This four-byte-to-four-byte channel is called a narrow pipe, and it’s possible to

probe it by varying the two input bytes that come from the challenge. Since the rounds

are nonbijective, you can hope for a collision to occur after two rounds; and the birth-

day paradox guarantees that collisions will occur pretty rapidly (since the pipe is only

four bytes wide). Once all the details have been worked out, it turns out that you need

about 60,000 suitably chosen challenges to extract the key [781, 783]. The effect is

that, given access to a SIM issued by a network that uses Comp128, the authentication

key can be extracted in several hours using software that is now available on the Net.

Almost all networks do use Comp128. So someone who rents a car with a mobile

phone could clone its SIM overnight using his laptop and a suitable adaptor; and

someone who sells you a GSM mobile phone might have made a “spare copy” of the

authentication key, which he can use later to bill calls to your account.

This attack is yet another example of the dangers of using a secret cryptographic

primitive that has been evaluated by only a small group of people. The cryptanalytic

techniques necessary to find the flaw were well known [773], and it’s likely that if

Comp128 had been open to public scrutiny, the flaw would have been found.

Anyway, the triplets are sent to the base station, which now presents the first RAND

to the mobile. It passes this to the SIM, which computes SRES. The mobile returns this

to the base station; if it’s correct, the mobile and the base station can now communicate

using the ciphering key Kc. The whole authentication protocol looks like that shown in

Figure 17.2.

There’s a vulnerability in this protocol. In most countries, the communications be-

tween base stations and the VLR pass unencrypted on microwave links. (They tend to

be preferred to the local wireline network because the local phone company is often a

competitor, and, even if not, microwave makes installation simpler and quicker.) So an

attacker could send out an IMSI of his choice, then intercept the triplet on the micro-

wave link back to the local base station. A German mobile operator, which offered a

reward of 100,000 Deutschmarks to anyone who could bill a call to a mobile number
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whose SIM card was held in its lawyer’s office, backed down when we asked for the

IMSI [30].

Figure 17.2 GSM authentication protocol.

Triples can also be replayed. An unscrupulous foreign network can get five triples

while you are roaming on it, then keep on reusing them to allow you to phone as much

as you want. This means that the network doesn’t have to refer back to your network

for further authorization (and even if they do, it doesn’t protect you, as the visited net-

work might not send in its bills for a week or more). So your home network can be

prevented from shutting you off while you roam, and (depending on the terms of the

contract between the phone companies) it may still be liable to pay the roamed network

the money. This means that even if you thought you’d limited your liability by using a

prepaid SIM, you might still end up with your network trying to collect money from

you. This is why, to enable roaming with a prepaid SIM, you’re normally asked for a

credit card number. You can end up being billed for more than you expected.

I have no reliable report of any frauds being carried out by outsiders (that is, attack-

ers other than phone company staff) using these techniques. When GSM was intro-

duced, the villains simply switched their modus operandi to buying phones using stolen

credit cards, using stolen identities, or bribing insiders [807]. Robbery is also getting

big; in the London borough of Lewisham, theft of mobile phones accounts for 30–35%

of street robberies, with 35% of victims being male and under 18 [501].

From about 1997, prepaid mobile phones were introduced, and many criminals

promptly started using them. In most European countries, prepaids can be bought for

well under $100, including enough airtime for three months’ worth of moderate use.

Prepaids have turned out to be very good not just for evading police wiretapping but

for stalking, extortion, and other kinds of harrassment. Prepaid phones are also liable

to all sorts of simple frauds. For example, if your identity isn’t checked when you buy

it, there’s little risk to you if you recharge it, or enable roaming, with a stolen credit

card number [214].

In addition to authentication, the GSM system is supposed to provide two additional

kinds of protection: location security and call content confidentiality.

The location security mechanism is that once a mobile is registered to a network, it

is issued with a temporary mobile subscriber identification (TMSI), which acts as its

address as it roams through the network. The attack on this mechanism uses a device

called an IMSI-catcher, which is sold to police forces [308]. The IMSI-catcher, which

can be operated in a police car tailing a suspect, acts as a GSM base station. Because it

is closer than the genuine article, its signal is stronger, so the mobile tries to register

with it. The IMSI-catcher claims not to understand the TMSI, and so the handset help-

fully sends it the cleartext IMSI. (This feature is needed if mobiles are to be able to

roam from one network to another without the call being dropped, and to recover from

failures at the VLR [769].) The police can now get a warrant to intercept the traffic to
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that mobile or—if they’re in a hurry—just do a middleperson attack, in which they

pretend to be the network to the mobile and the mobile to the network.

The GSM system is supposed to provide call content confidentiality by encrypting

the traffic between the handset and the base station once the authentication and regis-

tration are completed. The speech is digitized, compressed, and chopped into packets;

each packet is encrypted by xor-ing it with a pseudorandom sequence generated from

the ciphering key Kc and the packet number. The algorithm commonly used in Europe

is A5.

A5, like Comp128, was originally secret; like Comp l28, it was leaked and attacks

were found on it. The algorithm is shown in Figure 17.3. It has three linear feedback

shift registers of lengths 19,22, and 23; their outputs are combined using exclusive-or

to form the output keystream. The nonlinearity in this generator comes from a major-

ity-clocking arrangement, whereby the middle bits ci of the three shift registers are

compared and the two or three shift registers whose middle bits agree are clocked.

The obvious attack on this arrangement is to guess the two shorter registers, then

work out the value of the third. As there are 41 bits to guess, one might think that

about 2
40

 computations would be needed on average. But it’s slightly more complex

than this, as the generator loses state; many states have more than one possible precur-

sor, so more guesses are needed. That said, Alex Biryukov and Adi Shamir found that

by putting together a number of suitable optimizations, A5 could be broken without an

unreasonable amount of effort. Their basic idea was to compute a large file of special

points to which the state of the algorithm converges, then look for a match with the

observed traffic. Given this precomputed file, the attack could use several seconds of

traffic and several minutes’ work on a PC, or several minutes of traffic and several

seconds’ work [104].

Figure 17.3 A5 (courtesy of Alex Biryukov and Adi Shamir).
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Reverse-engineering actual systems also showed that the keying of A5 was deliber-

ately weakened. Although, in theory, A5 has a 64-bit key (the initial loads for the shift

registers) the actual implementations set the ten least significant key bits to zero.

What’s more, phones sold to phone companies in many countries have a further weak-

ened version of A5, called A5/2. (There was a political row in Australia when it was

realized that A5/2 was being used there.)

The conspiracy theorists had a field day with all this—security mechanisms being

deliberately weakened at the behest of intelligence agencies to make mobile phones

easy to tap. The truth is, as always, more subtle.

Intelligence agencies gain access to cleartext from their own countries’ networks and

from countries where an outstation (such as in an embassy) can intercept a suitable

microwave link. Even in the home country, interception can occur with or without the

cooperation of the phone company; equipment to grab traffic from the microwave links

is fairly widely available. But in most countries, police are getting laws passed that

give them direct access to phone company systems, as this gives them even

more—such as location register data which enables them to track the past movements

of suspects. There was a storm in Switzerland in 1997 when the press found that the

phone company was giving location data to the police [618]. In the United States, the

FCC ordered mobile phone companies to be able to locate people “so that 911 calls

could be dispatched to the right place.” This was imposed on every user of mobile

phone service, rather than letting users decide whether to buy mobile location services

or not. U.S. privacy activists are currently in litigation with the FCC over this.

Undoubtedly, there has been agency interference in the design of GSM, but the

benefits from having weak authentication and confidentiality mechanisms appear lim-

ited to tactical sigint situations. Consider the case mentioned in the chapter on elec-

tronic warfare, where the New Zealand navy sent a frigate to monitor a coup in Fiji.

Even if the Fijian phone company had been allowed to use A5 rather than A5/2, this

would not have frustrated the mission, because signals intelligence officers could

snatch the triplets off the microwave links, hack the location register, or whatever. If

all else failed, a key could be found by brute force. But being able to break the traffic

quickly is convenient— especially when you are dispatched on a peacekeeping mission

in a country to which your intelligence people have never paid enough attention to em-

place a hack (or a human asset) in the local phone company.

The net effect is that the initial GSM security mechanisms provided slightly better

protection than the wireline network in countries allowed to use A5, and slightly worse

protection elsewhere. The vulnerabilities in the communications security mechanisms

neither expose subscribers in developed countries to much additional wiretapping, nor

prevent the frauds that cause them the most grief.

17.3.4 The Next Generation: 3gpp

The third generation of digital mobile phones was initially known as the Universal

Mobile Telecommunications System (UMTS) but now as the Third-Generation Part-

nership Project (3gpp). The security is much the same as GSM, but upgraded to deal

with a number of GSM’s known vulnerabilities. The system is supposed to enter serv-

ice in 2003–2004; some of the design details are still being worked on, so this section

is necessarily somewhat tentative. However, the overall security strategy is described

in [786], and the current draft of the security architecture is at [775].
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The crypto algorithms A5 and Comp l28 are replaced by a block cipher called Ka-

sumi [442]. This is public and is based on a design by Mitsuru Matsui, called Misty,

which has withstood public scrutiny for some years [527]. All keys are now 128 bits.

Cryptography will be used to protect the integrity and confidentiality of both message

content and signalling data, rather than just content confidentiality—although in the

first phase of 3gpp the protection will not be end-to-end. The practice of transferring

triples in the clear between base stations will cease, as will the vulnerability to rogue

base stations; so IMSI-catchers will not work against third-generation mobiles. Instead,

there will be a properly engineered interface for lawful interception [776]. Originally,

this was supposed to supply plaintext only; now, the provision of key material will also

be available as a national option.

In the basic 3gpp protocol, the authentication is pushed back from the base station

controller to the visitor location register. The home location register is now known as

the home environment (HE), and the SIM as the UMTS SIM (USIM). The home envi-

ronment chooses a random challenge RAND as before, and enciphers it with the USIM

authentication key K to generate a response RES, a confidentiality key CK, an integrity

key IK, and an anonymity key AK.

{RAND}K = (RES | CK | IK | AK)

There is also a sequence number SEQ known to the HE and the USIM. A MAC is

computed on RAND and SEQ, then the sequence number is masked by exclusive-or’ing

it with the anonymity key. The challenge, the expected response, the confidentiality

key, the integrity key, and the masked sequence number are made up into an authenti-

cation vector AV, which is sent from the HE to the VLR. The VLR then sends the

USIM the challenge, the masked sequence number, and the MAC; the USIM computes

the response and the keys, unmasks the sequence number, verifies the MAC, and, if it’s

correct, returns the response to the VLR (see Figure 17.4).

3gpp has many other features, including details of sequence number generation,

identity and location privacy mechanisms, backward compatability with GSM, mecha-

nisms for public key encryption of authentication vectors in transit from HEs to VLRs,

and negotiation of various optional cryptographic mechanisms. Many of these still

were not defined at the time of writing.

     Figure 17.4 The 3gpp authentication protocol.

In first phase of 3gpp, confidentiality will be, in effect, a higher-quality implemen-

tation of what’s already available in GSM: eavesdropping on the air link will be pre-

vented as before, and the currently possible attacks on the backbone network, or by

bogus base stations, will be excluded. Police wiretaps will still be possible at the VLR.
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In the second phase, 3gpp is proposed to have end-to-end encryption, so that the call

content and some of the associated signalling will be protected from one handset to

another. This has led to government demands for the use of a key escrow protocol—a

protocol that would make keys available to police and intelligence services on demand.

The catch is that, if a mobile phone call takes place from a British phone company’s

subscriber using a U.S. handset, roaming in France, to a German company’s subscriber

roaming in Switzerland using a Finnish handset, and the call goes via a long-distance

service based in Canada and using Swedish exchange equipment, then which of these

countries’ intelligence agencies will have access to the keys? (Traditionally, most of

them would have had access to the call content one way or another.)The solution fa-

vored by the agencies in Britain and France (at least) is the so-called Royal Holloway

protocol [418], designed largely by Vodafone. It gives access to the countries where

the subscribers are based (in this case, Britain and Germany). This is achieved by using

a variant of Diffie-Hellman key exchange, in which the users’ private keys are ob-

tained by encrypting their names under a super-secret master key known to the local

phone company and/or intelligence agency. Although this protocol has been adopted in

the British civil service and the French health service, it is at odds with the phone

company security philosophy that master keys are a bad thing. Quite apart from this,

and from the unease which many people feel with built-in eavesdropping facilities, the

protocol is clunky and inefficient [50]. There is also tension with local law enforce-

ment requirements: in the above example, the police forces of the two countries in

which the targets are roaming (France and Switzerland) will also want access to the

traffic [776]. The debate continues; one possible resolution is tromboning, an estab-

lished wiretap technique in which traffic is routed from the switch to the monitoring

service and back, before going on its way. However, internetwork tromboning can in-

troduce noticeable delays that could alert the target of investigation.

Consequently, 3gpp won’t provide a revolution in confidentiality. As with GSM, its

design goal is that security should be comparable with that of the wired network [390].

This looks like being doable.

The security of the billing mechanisms is a thornier issue. The GSM billing mecha-

nism is inadequate for 3gpp, for a number of reasons:

• A call detail record (CDR) is generated only after the calling phone goes on-

hook. This is an established feature of wireline networks, but when the envi-

ronment changed to mobile, it became a serious problem. The attack is that

someone running a call-sell operation sets up a long conference call using a

mobile that was stolen, or a prepaid for which roaming was enabled using a

stolen credit card (as discussed in Section 17.3.3). His clients join and leave

this call one after the other, and the advice-of-charge facility lets him know

how much to bill them. The phone stays off-hook continuously for several

days. As soon as it goes on-hook, a CDR for several thousand dollars is gen-

erated, and the alarm goes off. So he throws the phone in the river and starts

using the next one. By 1996, this had become so serious that Vodafone intro-

duced a six-hour limit on all mobile calls.
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• However, it won’t be acceptable to just drop all 3gpp calls after six hours.
Many users are expected to have always-on internet connections (such as from
their laptops) with relatively light packet traffic most of the time.

• The phone companies also want to be able to charge for relatively high-value
product and service delivery, ranging from the current premium services
through services based on location (“give me a map showing me how to drive
to the nearest McDonald’s”) to multimedia services.

1
 Customers will be

charged not just by the phone company but by other service providers; in ad-
dition to call duration and data volume, they will be billed according to the
quality of service they receive, such as the effective bandwidth.

• Finally, the European Commission intends to require that all 3gpp operators

retain location information on mobile phones for at least a year, for law en-

forcement purposes. Having a location history in the subscriber billing re-

cords may be the cheapest way to do this.

It is clear that the existing GSM mechanisms are inadequate—even adding such

features as real-time international settlement would be extremely expensive. A redes-

ign is needed. The proposed solution is to redesign the CDR to contain the required

data quantity, location and quality-of-service information, and to build an online cost-

control mechanism to limit the charges incurred for each user [558]. The cost-control

mechanisms are not being standardized, but can involve forwarding charging data from

either the local network or the gateway to the home environment, which will be able to

have the call terminated if the available credit is exhausted (as with a prepaid SIM

card) or if the use appears to be fraudulent.

One proposed way of implementing this is to incorporate a micropayment mecha-

nism [56]. The idea is that the phone will send regular tick payments to each of the

networks or service providers that are due to be paid for the call. The tick payments

can be thought of as electronic coins and are cryptographically protected against for-

gery.

At the start of the call, the handset will compute a number of phone ticks by re-

peated hashing: t1 = h(t0), t2 = h(t1), and so on, with tk (for some credit limit k, typically

2
10

 units) being signed by the phone company. The phone will then release ticks regu-

larly in order to pay for the services as the call progresses. It will start by releasing tk,

then tk–1, then tk–2, and so on. If a charge is subsequently disputed—whether by a sub-

scriber or a network operator—the party claiming an amount of, say, j ticks must ex-

hibit the ticks tk–j and tk, the latter with a certificate. As the hash function h is one-way,

this should be hard to do unless the handset actually released that many ticks. The tick

tk–j can now be checked by applying the hash function to it j times and verifying that

the result is tk. (This protocol is an example of multiple simultaneous discovery, having

                                                            

1 Presumably, given that many new communications services are used first for porn, this will
mean live strip shows to order on the screen of your mobile, beamed to you from a country with
relaxed indecency laws. So more prudish governments will demand ways to get round the 3gpp
privacy mechanisms so they can censor content—just as the music industry will want ways to
prevent user-to-user copying. We’ll discuss this more in Chapter 20.
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been invented by our group at Cambridge, by Pedersen, and by Rivest and Shamir, in-

dependently in 1995 [26, 605, 648].)

One advantage of using a tick payment mechanism is that, as well as protecting the

phone companies from conference call frauds, it could protect the subscriber from

many more. Phone users will at least in principle be able to spot the kind of 900 num-

bers that charge $24 per call or that masquerade as ordinary numbers or both.

17.3.5 GSM Security: A Success or Failure?

Whether GSM security was a success or a failure depends on whom you ask.

From the point of view of cryptography, it was a failure. Both the Comp 128 hash

function and the A5 encryption algorithm were broken once they became public. In

fact, GSM is often cited as an object lesson in Kerckhoff’s Principle—that crypto-

graphic security should reside in the choice of the key, rather than in the obscurity of

the mechanism. The mechanism will leak sooner or later, and it’s better to subject it to

public review before, rather than after, a hundred million units have been manufac-

tured. (GSM security wasn’t a disaster for most cryptographers, of course, as it pro-

vided plenty of opportunities to write research papers.)

From the phone companies’ point of view, GSM was a success. The shareholders of

GSM operators, such as Vodafone, have made vast amounts of money, and a (small)

part of this is due to the challenge-response mechanism in GSM stopping cloning. The

crypto weaknesses were irrelevant, as they were never exploited (at least not in ways

that did significant harm to call revenue). One or two frauds persist, such as the long

conference call trick; but, on balance, the GSM design has been good to the phone

companies.

From the criminals’ point of view, GSM was also fine. It did not stop them stealing

phone service; their modus operandi merely changed, with the cost falling on credit

card companies or on individual victims of identity theft or street robbery. It did not

stop calls from anonymous phones; the rise of the prepaid phone industry made them

even easier. (The phone companies were happy with both of these changes.) And, of

course, GSM did nothing about dial-through fraud.

From the point of view of the large-country intelligence agencies, GSM was fine.

They have access to local and international traffic in the clear anyway, and the weak-

ened version of A5 facilitates tactical signint against developing countries. And the

second wave of GSM equipment is bringing some juicy features, such as remote con-

trol of handsets by the operator [636]. If you can subvert (or masquerade as) the op-

erator, then there seems to be nothing to stop you quietly turning on a target’s mobile

phone without his knowledge and listening to the conversation in the room.

From the point of view of the police and low-resource intelligence agencies, things

are not quite so bright. The problem isn’t the added technical complexity of GSM net-

works: court-ordered wiretaps can be left to the phone company (although finding the

number to tap can be a hassle if the suspect is mobile). The problem is the introduction

of prepaid mobile phones. This not only decreases the signal to noise ratio of traffic

analysis algorithms and makes it harder to target wiretaps, but also encourages crimes

such as extortion and stalking.

From the customer’s point of view, GSM was originally sold as being completely

secure. Was this accurate? The encryption of the air link certainly did stop casual

eavesdropping, which was an occasional nuisance with analogue phones. (There had

been some high-profile cases of celebrities being embarrassed, including one case in



Chapter 17: Telecom System Security

363

Britain where Prince Charles was overheard talking to his mistress before his divorce,

and one in the United States involving Newt Gingrich.) But almost all the phone tap-

ping in the world is done by large intelligence agencies, to whom the encryption

doesn’t make much difference.

Things are even less positive for the subscriber when we look at billing. Crypto-

graphic authentication of handsets can’t stop the many frauds perpetrated by premium

rate operators and phone companies. If anything it makes it harder to wriggle out of

bogus charges, as the phone company can say in court that your smartcard and your

PIN must have been used in the handset that made the call. The same will apply to

3gpp if micropayments aren’t used. The one minor compensation is that GSM facili-

tated the spread of prepaid phones, which can limit the exposure.

So the security features designed into GSM don’t help the subscriber much. They

were designed to provide “security” from the phone company’s point of view: they

dump much of the toll fraud risk, while not interrupting the flow of premium rate busi-

ness—whether genuine or fraudulent.

In the medium term, the one ray of comfort for the poor subscriber is that one real

vulnerability in GSM—the long conference call—may drive the introduction of micro-

payment schemes, which may, as a side effect, make premium rate scams harder. I say

“may” rather than “will,” as it will be interesting to see whether the phone companies

implement them properly. There is a business incentive to provide a user interface that

enables subscribers to monitor their expenditure (so they can be blamed for frauds they

don’t spot), while discouraging most of them from actually monitoring it (so the phone

companies continue to make hundreds of millions from their share of the premium rate

scam revenue). We shall have to wait and see.

17.4 Corporate Fraud

The question of corporate fraud is particularly relevant, as one of the fastest growing

scams in the United States is the unscrupulous phone company that bills lots of small

sums to unwitting users. It collects phone numbers in various ways. (For example, if

you call an 800 number, then your own number will be passed to the far end regardless

of whether you tried to block caller line ID.) It then bills you a few dollars. Your own

phone company passes on this charge, and you find there’s no effective way to dispute

it. Sometimes, the scam uses a legal loophole: if you call an 800 number in the United

States, the company may say, “Can we call you right back?” If you agree, you’re

deemed to have accepted the charges, which are likely to be at a high premium rate.

The same can happen if you respond to voice prompts as the call progresses. These

practices are known as cramming.

Another problem is slamming—the unauthorized change of a subscriber’s long dis-

tance telephone service provider without their consent. The slammers tell your local

phone company that you have opted for their services; your phone company routes

your long distance calls through their service; they hope you don’t notice the change

and dispute the bill; and the telephone charges can then be jacked up. Some local
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phone companies, such as Bell Atlantic, allow their customers to freeze their chosen

long distance carrier [13].

It would be a mistake to assume that cramming and slamming are done only by

small fly-by-night operators. AT&T is one of the worst offenders, having been fined

$300,000 not only for slamming, but for actually using forged signatures of subscribers

to make it look as if they had agreed to switch to their service. They got caught when

they forged a signature of the deceased spouse of a subscriber in Texas [252].

Another problem is the fly-by-night phone company. Anyone in the United States is

legally entitled to set up a phone company; it is fairly straightforward to set one up,

collect some cash from subscribers, then vanish once the invoices for interconnect fees

come in from the established players. In Britain, there is a company that advertises sex

lines with normal phone numbers to trap the unwary; it then sends them huge bills at

their residential addresses and tries to intimidate them into paying. In a case currently

before the courts, they justify this in terms of non-discrimination rules: if British Tele-

com can make huge charges for phone sex, why can’t they?

It’s not just the small operators that indulge in dubious business practices. An exam-

ple that affects even some large phone companies is the short termination of interna-

tional calls.

Although premium rate numbers are used for a number of more or less legitimate

purposes, such as software support, many of them exploit minors or people with com-

pulsive behavior disorders. So regulators have forced phone companies in many coun-

tries to offer premium rate number blocking to subscribers. Phone companies get

around this by disguising premium rate numbers as international ones. I mentioned the

scams with Caribbean numbers in Section 17.2.1. Now, many other phone companies

from small countries with lax regulators have got into the act, offering sex line opera-

tors a range of numbers on which they share the revenue.

Often, a call made to a small-country phone company doesn’t go anywhere near its

ostensible destination. One of the hacks used to do this is called short termination, and

works as follows. Normally, calls for the small Pacific country of Tuvalu go via Telstra

in Perth, Australia, where they are forwarded by satellite. However, the sex line num-

bers are marked as invalid in Telstra’s system, so they are automatically sent via the

second-choice operator—a company in New Zealand. (The girls—or to be more pre-

cise, the elderly retired hookers who pretend to be young girls—are actually in Man-

chester, England.) Technically, this is an interesting case of a fallback mechanism

being used as an attack vehicle. Legally, it is hard to challenge, as there is an interna-

tional agreement (the Nairobi Convention) that prevents phone companies selectively

blocking international destinations. Thus, if you want to stop your kids phoning the sex

line in Tuvalu, you have to block all international calls, which makes it harder for you

to phone that important client in Germany.

Problems like these are ultimately regulatory failures, and they are increasingly

common. (For example, in the Moldova scam mentioned above, the calls didn’t go to

Moldova but to Canada [151].) These problems may well get worse as technology

makes many new, complex services possible and the regulators fail to keep up.

Even the phone companies themselves sometimes fall foul of the growing complex-

ity. There are two cases before the courts as I write this, in which phone companies are

chasing people who noticed that calling an international premium number at their best

discount rate actually cost less than the amount they could get paid by operating the

premium service. The profits they’re alleged to have made have two commas rather
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than the usual one. The phone companies claim this was fraud; the defendants that it

was honest arbitrage. We shall have to wait and see what the juries think.

17.5 Summary

Phone fraud is a fascinating case study. People have been cheating phone companies

for decades, and recently the phone companies have been vigorously returning the

compliment. To start off with, systems were not really protected at all, and it was easy

to evade charges and redirect calls. The mechanism adopted to prevent this—out-of-

band signalling—has proved inadequate as the rapidly growing complexity of the sys-

tem opened up many more vulnerabilities. These range from social engineering attacks

on users through poor design and management of terminal equipment such as PBXes to

the exploitation of various hard-to-predict feature interactions.

Overall, the security problems in telecoms have been the result of environmental

changes. These have included deregulation, which brought in many new phone compa-

nies. However, the main change has been the introduction of premium rate numbers.

While previously phone companies sold a service with a negligible marginal cost of

provision, suddenly real money was involved; and while previously about the only se-

rious benefit to be had from manipulating the system was calls that were hard for the

police to tap, suddenly serious money could be earned. The existing protection mecha-

nisms were unable to cope with this evolution.

The growing complexity nullified even the fairly serious effort made to secure the

GSM digital mobile system. Their engineers concentrated on communications security

threats rather than computer security threats; they also concentrated on the phone com-

panies’ interests at the expense of the customers’. The next-generation mobile service,

3gpp, looks capable of doing slightly better; but we shall have to wait and see how it

gets implemented in practice.

Research Problems

Relatively little research has been done outside phone company and intelligence

agency labs on issues related specifically to phone fraud and wiretapping. However,

there is growing interest in protocols and other mechanisms for use with novel tele-

communications services. The recently published 3gpp protocol suite is sufficiently

large and complex that it may take some time for the formal methods and security

protocol people to analyze fully. Next-generation value-added services are bound to

introduce new vulnerabilities. The interaction between all these communications and

security protocols, and the mechanisms used for distributed systems security, is fertile

ground for both interesting research and horrendously expensive engineering errors:

there are already regular workshops on how to use system engineering techniques to

manage feature interactions in telecommunications.
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Further Reading

There are a lot of scattered articles about phone fraud, but nothing I know of which

brings everything together. A useful site for the fraud techniques currently being used

in the United States is the Alliance to Outfox Phone Fraud, an industry consortium

[13]. The underlying technologies are described in a number of reference books, such

as [636] on GSM, and more can be found on Web sites such as [713]. An overview of

UMTS can be found in [400], and the ‘full Monty’ in [56]. To keep up with phone

fraud, a useful resource is the Discount Long Distance Digest [252].
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CHAPTER

18

Network Attack and Defense

Whoever thinks his problem can be solved using

cryptography, doesn’t understand his problem and doesn’

t understand cryptography.

—ATTRIBUTED BY ROGER NEEDHAM AND BUTLER LAMPSON

 TO EACH OTHER

18.1 Introduction

Internet security is a fashionable and fast-moving field; the attacks that are catching

the headlines can change significantly from one year to the next. Regardless of whether

they’re directly relevant to the work you do, network-based attacks are so high-profile

that they are likely to have some impact, even if you only use hacker stories to get your

client to allocate increased budgets to counter the more serious threats. The point is,

some knowledge of the subject is essential for the working security engineer.

There are several fashionable ideas, such as that networks can be secured by en-

cryption and that networks can be secured by firewalls. The best place to start de-

bunking these notions may be to look at the most common attacks. (Of course, many

attacks are presented in the media as network hacking when they are actually done in

more traditional ways. A topical example is the leak of embarrassing emails that ap-

peared to come from the office of the U.K. prime minister, and were initially blamed

on hackers. As it turned out, the emails had been fished out of the trash at the home of

his personal pollster by a private detective called Benji the Binman, who achieved in-

stant celebrity status [520].)

18.1.1 The Most Common Attacks

Many actual attacks involve combinations of vulnerabilities. Examples of vulnerabili-

ties we’ve seen in earlier chapters include stack overflow attacks (where you pass an
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over-long parameter to a program that carelessly executes part of it) and password

guessing, both of which were used by the Internet worm. A common strategy is to get

an account on any machine on a target network, then install a password sniffer to get

an account on the target machine, then use a stack overflow to upgrade to a root ac-

count.

The exact vulnerabilities in use change from one year to the next, as bugs in old

software get fixed and new software releases a new crop of them. Still, there are some

patterns, and some old favorites that keep coming back in new guises. Here’s a list of

the top 10 vulnerabilities, as of June 2000 [670].

1. A stack overflow attack on the BIND program, used by many Unix and Linux

hosts for DNS, giving immediate account access.

2. Vulnerable CGI programs on Web servers, often supplied by the vendor as

sample programs and not removed. CGI program flaws are the common

means of taking over and defacing Web servers.

3. A stack overflow attack on the remote procedure call (RPC) mechanism, used

by many Unix and Linux hosts to support local networking, and which allows

intruders immediate account access (this was used by most of the distributed

denial of service attacks launched during 1999 and early 2000).

4. A bug in Microsoft’s Internet Information Server (IIS) Web server software,

which allowed immediate access to an administrator account on the server.

5. A bug in sendmail, the most common mail program on Unix and Linux com-

puters. Many bugs have been found in sendmail over the years, going back to

the very first advisory issued by CERT in 1988. One of the recent flaws can

be used to instruct the victim machine to mail its password file to the attacker,

who can then try to crack it.

6. A stack overflow attack on Sun’s Solaris operating system, which allows in-

truders immediate root access.

7. Attacks on NFS (which I’ll describe shortly) and their equivalents on Win-

dows NT and Macintosh operating systems. These mechanisms are used to

share files on a local network.

8. Guesses of usernames and passwords, especially where the root or adminis-

trator password is weak, or where a system is shipped with default passwords

that people don’t bother to change.

9. The IMAP and POP protocols, which allow remote access to email but are

often misconfigured to allow intruder access.

10. Weak authentication in the SNMP protocol, used by network administrators to

manage all types of network-connected devices. SNMP uses a default pass-

word of “public” (which a few “clever” vendors have changed to “private”).

Observe that none of these attacks is stopped by encryption, and not all of them by

firewalls. For example, vulnerable Web servers can be kept away from back-end busi-

ness systems by putting them outside the firewall, but they will still be open to van-

dalism; and if the firewall runs on top of an operating system with a vulnerability, then

the bad guy may simply take it over.
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Although some of these attacks may have been fixed by the time this book is pub-

lished, the underlying pattern is fairly constant. Most of the exploits make use of pro-

gram bugs, of which the majority are stack overflow vulnerabilities. The exploitation

of protocol vulnerabilities (such as NFS) vies with weak passwords for second place.

In effect, there is a race between the attackers, who try to find loopholes, and the

vendors, who develop patches for them. Capable motivated attackers may find exploits

for themselves and keep quiet about them, but most reported attacks involve exploits

that are not only well known but for which tools are available on the Net.

18.1.2 Skill Issues: Script Kiddies and Packaged Defense

One of the main culture changes brought by the Net is that, until recently, sophisticated

attacks on communications (such as middleperson attacks) were essentially the pre-

serve of national governments. Today, we find not just password-snooping attacks but

also more subtle routing attacks being done by kids, for fun. The critical change here is

that people write the necessary exploit software, then post it on sites such as

www.rootshell.com, from which script kiddies can download it and use it. This term

refers primarily to young pranksters who use attack scripts prepared by others, but it

also refers to any unskilled people who download and launch tools they don’t fully un-

derstand. As systems become ever more complicated, even sophisticated attackers are

heading this way; no individual can keep up with all the vulnerabilities that are discov-

ered in operating systems and network protocols. In effect, hacking is being progres-

sively deskilled, while defence is becoming unmanageably complex.

As discussed in Chapter 4, the Internet protocol suite was designed for a world in

which trusted hosts at universities and research labs cooperated to manage networking

in a cooperative way. That world has passed away. Instead of users being mostly hon-

est and competent, we have a huge user population that’s completely incompetent

(many of whom have high-speed always-on connections), a (small) minority that’s

competent and honest, a (smaller) minority that’s competent and malicious, and a (less

small) minority that’s malicious but uses available tools opportunistically.

Deskilling is also a critical factor in defense. There are a few organizations, such as

computer companies, major universities, and military intelligence agencies, that have

people who know how to track what’s going on and tune the defenses appropriately.

But most companies rely on a combination of standard products and services. The

products include firewalls, virus scanners, and intrusion detection systems; the services

are often delivered in the form of new configuration files for these products. In these

ways, vulnerabilities become concentrated. An attacker who can work out a defeat of a

widely sold system has a wide range of targets to aim at.

We’ll now look at a number of specific attack and defense mechanisms. Keep in

mind here that the most important attack is the stack overwriting attack, and the second

most important is password guessing; but because I already covered the first in Chapter

4 and the second in Chapters 2–3, we’ll move down to number three: vulnerabilities in

network protocols.
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18.2 Vulnerabilities in Network Protocols

Commodity operating systems such as Unix and NT are shipped with a very large

range of network services, many of which are enabled by default, and/or shipped with

configurations that make “plug and play” easy—for the attacker as well as the legiti-

mate user. We will look at both local area and Internet issues; a common theme is that

mapping methods (between addresses, filenames, etc.) provide many of the weak

points.

This book isn’t an appropriate place to explain network protocols, so I offer a tele-

graphic summary, as follows: the Internet Protocol (IP) is a stateless protocol that

transfers packet data from one machine to another; it uses 32-bit IP addresses, often

written as four decimal numbers in the range 0–255, such as 172.16.8.93. Most Internet

services use a protocol called Transmission Control Protocol (TCP), which is layered

on top of IP, and provides virtual circuits by splitting up the data stream into IP pack-

ets and reassembling it at the far end, asking for repeats of any lost packets. IP ad-

dresses are translated into the familiar Internet host addresses using the Domain Name

System (DNS), a worldwide distributed service in which higher-level name servers

point to local name servers for particular domains. Local networks mostly use

Ethernet, in which devices have unique Ethernet addresses, which are mapped to IP

addresses using the Address Resolution Protocol (ARP).

There are many other components in the protocol suite for managing communica-

tions and providing higher-level services. Most of them were developed in the days

when the Net had only trusted hosts, and security wasn’t a concern. So there is little

authentication built in; and attempts to remedy this defect with the introduction of the

next generation of IP (IPv6) are likely to take many years.

18.2.1 Attacks on Local Networks

Let’s suppose that the attacker is one of your employees; he has a machine attached to

your LAN, and he wants to take over an account in someone else’s name to commit a

fraud. Given physical access to the network, he can install packet sniffer software to

harvest passwords, get the root password, and create a suitable account. However, if

your staff use challenge-response password generators, or are careful enough to only

use a root password at the keyboard of the machine it applies to, then he has to be more

subtle.

One approach is to try to masquerade as a machine where the target user has already

logged on. ARP is one possible target; by running suitable code, the attacker can give

wrong answers to ARP messages and claim to be the victim. The victim machine might

notice if alert, but the attacker can always wait until it is down—or take it down by

using another attack. One possibility is to use subnet masks.

Originally, IP addresses used the first 3 bytes to specify the split between the net-

work address and the host address. Now they are interpreted as addressing network,

subnetwork, and host, with a variable network mask. Diskless workstations, when

booting, broadcast a request for a subnet mask; many of them will apply any subnet

mask they receive at any time. So by sending a suitable subnet mask, a workstation can

be made to vanish.
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Another approach, if the company uses Unix systems, is to target Sun’s Network

File System (NFS), the de facto standard for Unix file sharing. This allows a number of

workstations to use a network disk drive as if it were a local disk; it has a number of

well-known vulnerabilities to attackers who’re on the same LAN. When a volume is

first mounted, the client requests from the server a root filehandle, which refers to the

root directory of the mounted file system. This doesn’t depend on the time, or the

server generation number, and it can’t be revoked. There is no mechanism for per-user

authentication; the server must trust a client completely or not at all. Also, NFS servers

often reply to requests from a different network interface to the one on which the re-

quest arrived. So it’s possible to wait until an administrator is logged in at a file server,

then masquerade as her to overwrite the password file. For this reason, many sites use

alternative file systems, such as ANFS.

18.2.2 Attacks Using Internet Protocols and Mechanisms

Moving up to the Internet protocol suite, the fundamental problem is similar: there is

no real authenticity or confidentiality protection in most mechanisms. This is particu-

larly manifest at the lower-level TCP/IP protocols.

Consider, for example, the three-way handshake used by Alice to initiate a TCP

connection to Bob and to set up sequence numbers, shown in Figure 18.1.

This protocol can be exploited in a surprising number of different ways. Now that

service denial is becoming really important, let’s start off with the simplest service

denial attack: the SYN flood.

18.2.2.1 SYN Flooding

The SYN flood attack is, simply, to send a large number of SYN packets and never

acknowledge any of the replies. This leads the recipient (Bob, in Figure 18.1) to accu-

mulate more records of SYN packets than his software can handle. This attack had

been known to be theoretically possible since the 1980s, but came to public attention

when it was used to bring down Panix, a New York ISP, for several days in 1996.

A technical fix, the so-called SYNcookie, has been found and incorporated in Linux

and some other systems. Rather than keeping a copy of the incoming SYN packet, B

simply sends out as Y an encrypted version of X. That way, it’s not necessary to retain

state about sessions that are half-open.

Figure 18.1 TCP/IP handshake.
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18.2.2.2 Smurfing

Another common way of bringing down a host is known as smurfing. This exploits the

Internet Control Message Protocol (ICMP), which enables users to send an echo

packet to a remote host to check whether it’s alive. The problem arises with broadcast

addresses that are shared by a number of hosts. Some implementations of the Internet

protocols respond to pings to both the broadcast address and their local address (the

idea was to test a LAN to see what’s alive). So the protocol allowed both sorts of be-

havior in routers. A collection of hosts at a broadcast address that responds in this way

is called a smurf amplifier.

The attack is to construct a packet with the source address forged to be that of the

victim, and send it to a number of smurf amplifiers. The machines there will each re-

spond (if alive) by sending a packet to the target, and this can swamp the target with

more packets than it can cope with. Smurfing is typically used by someone who wants

to take over an Internet relay chat (IRC) server, so they can assume control of the cha-

troom. The innovation was to automatically harness a large number of “innocent” ma-

chines on the network to attack the victim.

Part of the countermeasure is technical: a change to the protocol standards in August

1999 so that ping packets sent to a broadcast address are no longer answered [691]. As

this gets implemented, the number of smurf amplifiers on the Net is steadily going

down. The other part is socioeconomic: sites such as www.netscan.org produce lists of

smurf amplifiers. Diligent administrators will spot their networks on there and fix

them; the lazy ones will find that the bad guys utilize their bandwidth more and more;

and thus will be pressured into fixing the problem.

18.2.2.3 Distributed Denial-of-service Attacks

A more recent development along the same lines made its appearance in October 1999.

This is the distributed denial of service (DDoS) attack. Rather than just exploiting a

common misconfiguration as in smurfing, an attacker subverts a large number of ma-

chines over a period of time, and installs custom attack software in them. At a prede-

termined time, or on a given signal, these machines all start to bombard the target site

with messages [253]. The subversion may be automated using methods similar to those

in the Morris worm.

So far, DDoS attacks have been launched at a number of high-profile Web sites, in-

cluding Amazon and Yahoo. They could be even more disruptive, as they could target

services such as DNS and thus take down the entire Internet. Such an attack might be

expected in the event of information warfare; it might also be an act of vandalism by

an individual. Curiously, the machines most commonly used as hosts for attack soft-

ware in early 2000 were U.S. medical sites. They were particularly vulnerable because

the FDA insisted that medical Unix machines, when certified for certain purposes, had

a known configuration. Once bugs had been discovered in this, there was a guaranteed

supply of automatically hackable machines to host the attack software (another exam-

ple of the dangers of software monoculture).

At the time of writing, the initiative being taken against DDoS attacks is to add

ICMP traceback messages to the infrastructure. The idea is that whenever a router for-
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wards an IP packet, it will also send an ICMP packet to the destination with a prob-

ability of about 1 in 20,000. The packet will contain details of the previous hop, the

next hop, and as much of the packet as will fit. System administrators will then be able

to trace large-scale flooding attacks back to the responsible machines, even when the

attackers use forged source IP addresses to cover their tracks [93]. It may also help

catch large-scale spammers who abuse open relays – relays llowing use by "transit"

traffic, that is, messages which  neither come from nor go to email addresses for which

that SMTP server is  intended to provide service.

18.2.2.4 Spam and Address Forgery

Services such as email and the Web (SMTP and HTTP) assume that the lower levels are

secure. The most that’s commonly done is a look-up of the hostname against an IP ad-

dress using DNS. So someone who can forge IP addresses can abuse the facilities. The

most common example is mail forgery by spammers; there are many others. For exam-

ple, if an attacker can give DNS incorrect information about the whereabouts of your

company’s Web page, the page can be redirected to another site—regardless of any-

thing you do, or don’t do, at your end. As this often involves feeding false information

to locally cached DNS tables, it’s called DNS cache poisoning.

18.2.2.5 Spoofing Attacks

We can combine some of the preceding ideas into spoofing attacks that work at long

range (that is, from outside the local network or domain).

Say that Charlie knows that Alice and Bob are hosts on the target LAN, and wants to

masquerade as Alice to Bob. He can take Alice down with a service denial attack of

some kind, then initiate a new connection with Bob [559, 90]. This entails guessing the

sequence number Y, which Bob will assign to the session, under the protocol shown in

Figure 18.1. A simple way of guessing Y, which worked for a long time, was for Char-

lie to make a real connection to Alice shortly beforehand and use the fact that the value

of Y changed in a predictable way between one connection and the next. Modern stacks

use random number generators and other techniques to avoid this predictability, but

random number generators are often less random than expected—a source of large

numbers of security failures [774].

If sequence number guessing is feasible, then Charlie will be able to send messages

to Bob, which Bob will believe come from Alice (though Charlie won’t be able to read

Bob’s replies to her). In some cases, Charlie won’t even have to attack Alice, just ar-

range things so that she discards Bob’s replies to her as unexpected junk. This is quite

a complex attack, but no matter; there are scripts available on the Web that do it.

18.2.2.6 Routing Attacks

Routing attacks come in a variety of flavors. The basic attack involves Charlie telling

Alice and Bob that a convenient route between their sites passes through his. Source-

level routing was originally introduced into TCP to help get around bad routers. The

underlying assumptions—that “hosts are honest” and that the best return path is the

best source route—no longer hold, and the only short-term solution is to block source

routing. However, it continues to be used for network diagnosis.
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Another approach involves redirect messages, which are based on the same false as-

sumption. These effectively say, “You should have sent this message to the other

gateway instead,” and are generally applied without checking. They can be used to do

the same subversion as source-level routing.

Spammers have taught almost everyone that mail forgery is often trivial. Rerouting

is harder, since mail routing is based on DNS; but it is getting easier as the number of

service providers goes up and their competence goes down. DNS cache poisoning is

only one of the tricks that can be used.

18.3 Defense against Network Attack

It might seem reasonable to hope that most attacks—at least those launched by script

kiddies—can be thwarted by a system administrator who diligently monitors the secu-

rity bulletins and applies all the vendors’ patches promptly to his software. This is part

of the broader topic of configuration management.

18.3.1 Configuration Management

Tight configuration management is the most critical aspect of a secure network. If you

can be sure that all the machines in your organization are running up-to-date copies of

the operating system, that all patches are applied as they’re shipped, that the service

and configuration files don’t have any serious holes (such as world-writeable password

files), that known default passwords are removed from products as they’re installed,

and that all this is backed up by suitable organizational discipline, then you can deal

with nine and a half of the top ten attacks. (You will still have to take care with appli-

cation code vulnerabilities such as CGI scripts, but by not running them with adminis-

trator privileges you can greatly limit the harm that they might do.)

Configuration management is at least as important as having a reasonable firewall;

in fact, given the choice of one of the two, you should forget the firewall. However,

it’s the harder option for many companies, because it takes real effort as opposed to

buying and installing an off-the-shelf product. Doing configuration management by

numbers can even make things worse. As noted in Section 18.2.2.3, U.S. hospitals had

to use a known configuration, which gave the bad guys a large supply of identically

mismanaged targets.

Several tools are available to help the systems administrator keep things tight. Some

enable you to do centralized version control, so that patches can be applied overnight,

and everything can be kept in synch; others, such as Satan, will try to break into the

machines on your network by using a set of common vulnerabilities [320]. Some fa-

miliarity with these penetration tools is a very good idea, as they can also be used by

the opposition to try to hack you.

The details of the products that are available and what they do change from one year

to the next, so it is not appropriate to go into details here. What is appropriate is to say

that adhering to a philosophy of having system administrators stop all vulnerabilities at

the source requires skill and care; even diligent organizations may find that it is just

too expensive to fix all the security holes that were tolerable on a local network but not

with an Internet connection. Another problem is that, often, an organisation’s most
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critical applications run on the least secure machines, as administrators have not dared

to apply operating system upgrades and patches for fear of losing service.

This leads us to the use of firewalls.

18.3.2 Firewalls

The most widely sold solution to the problems of Internet security is the firewall. This

is a machine that stands between a local network and the Internet, and filters out traffic

that might be harmful. The idea of a “solution in a box” has great appeal to many orga-

nizations, and is now so widely accepted that it’s seen as an essential part of corporate

due diligence. (Many purchasers prefer expensive firewalls to good ones.)

Firewalls come in basically three flavors, depending on whether they filter at the IP

packet level, at the TCP session level, or at the application level.

18.3.2.1 Packet Filtering

The simplest kind of firewall merely filters packet addresses and port numbers. This

functionality is also available in routers and in Linux. It can block the kind of IP

spoofing attack discussed earlier by ensuring that no packet that appears to come from

a host on the local network is allowed to enter from outside. It can also stop denial-of-

service attacks in which malformed packets are sent to a host, or the host is persuaded

to connect to itself (both of which can be a problem for people still running Windows

95).

Basic packet filtering is available as standard in Linux, but, as far as incoming at-

tacks are concerned, it can be defeated by a number of tricks. For example, a packet

can be fragmented in such a way that the initial fragment (which passes the firewall’s

inspection) is overwritten by a subsequent fragment, thereby replacing an address with

one that violates the firewall’s security policy.

18.3.2.2 Circuit Gateways

More complex firewalls, called circuit gateways, reassemble and examine all the pack-

ets in each TCP circuit. This is more expensive than simple packet filtering, and can

also provide added functionality, such as providing a virtual private network over the

Internet by doing encryption from firewall to firewall, and screening out black-listed

Web sites or newsgroups (there have been reports of Asian governments building na-

tional firewalls for this purpose).

However, circuit-level protection can’t prevent attacks at the application level, such

as malicious code.

18.3.2.3 Application Relays

The third type of firewall is the application relay, which acts as a proxy for one or

more services, such as mail, telnet, and Web. It’s at this level that you can enforce

rules such as stripping out macros from incoming Word documents, and removing ac-

tive content from Web pages. These can provide very comprehensive protection

against a wide range of threats.
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The downside is that application relays can turn out to be serious bottlenecks. They

can also get in the way of users who want to run the latest applications.

18.3.2.4 Ingress versus Egress Filtering

At present, almost all firewalls point outwards and try to keep bad things out, though

there are a few military systems that monitor outgoing traffic to ensure that nothing

classified goes out in the clear.

That said, some commercial organizations are starting to monitor outgoing traffic,

too. If companies whose machines get used in service denial attacks start getting sued

(as has been proposed in [771]), egress packet filtering might at least in principle be

used to detect and stop such attacks. Also, as there is a growing trend toward snitch-

ware, technology that collects and forwards information about an online subscriber

without their authorization. Software that “phones home,” ostensibly for copyright en-

forcement and marketing purposes, can disclose highly sensitive material such as local

hard disk directories. I expect that prudent organizations will increasingly want to

monitor and control this kind of traffic, too.

18.3.2.5 Combinations

At really paranoid sites, multiple firewalls may be used. There may be a choke, or

packet filter, connecting the outside world to a screened subnet, also known as a de-

militarized zone (DMZ), which contains a number of application servers or proxies to

filter mail and other services. The DMZ may then be connected to the internal network

via a further filter that does network address translation. Within the organization, there

may be further boundary control devices, including pumps to separate departments, or

networks operating at different clearance levels to ensure that classified information

doesn’t escape either outward or downward (Figure 18.2).

Such elaborate installations can impose significant operational costs, as many rou-

tine messages need to be inspected and passed by hand. This can get in the way so

much that people install unauthorized back doors, such as dial-up standalone machines,

to get their work done. And if your main controls are aimed at preventing information

leaking outward, there may be little to stop a virus getting in. Once in a place it wasn’t

expected, it can cause serious havoc. I’ll discuss this sort of problem in Section 18.4.6

later.

18.3.3 Strengths and Limitations of Firewalls

Since firewalls do only a small number of things, it’s possible to make them very sim-

ple, and to remove many of the complex components from the underlying operating

system (such as the RPC and sendmail facilities in Unix). This eliminates a lot of vul-

nerabilities and sources of error. Organizations are also attracted by the idea of having

only a small number of boxes to manage, rather than having to do proper system ad-

ministration for a large, heterogeneous population of machines.
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Figure 18.2 Multiple firewalls.

Conversely, the appeal of simplicity can be seductive and treacherous. A firewall

can only be as good as its configuration, and many organizations don’t learn enough to

do this properly. They hope that by getting the thing out of the box and plugged it in,

the problem will be solved. It won’t be. It may not require as much effort to manage a

firewall as to configure every machine on your network properly in the first place, but

it still needs some. In [203], there is a case study of how a firewall was deployed at

Hanscom Air Force Base. The work involved the following: surveying the user com-

munity to find which network services were needed; devising a network security pol-

icy; using network monitors to discover unexpected services that were in use; and lab

testing prior to installation. Once it was up and running, the problems included ongo-

ing maintenance (due to personnel turnover), the presence of (unmonitored) communi-

cations to other military bases, and the presence of modem pools. Few nonmilitary

organizations are likely to take this much care.

A secondary concern, at least during the late 1990s, was that many of the products

crowding into the market simply weren’t much good. The business had grown so

quickly, and so many vendors had climbed in, that the available expertise was spread

too thinly.

The big trade-off remains security versus performance. Do you install a simple fil-

tering router, which won’t need much maintenance, or do you go for a full-fledged set

of application relays on a DMZ, which not only will need constant reconfiguration—as

your users demand lots of new services that must pass through it—but will also act as a

bottleneck?
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An example in Britain was the NHS Network, a private intranet intended for all

health service users (family doctors, hospitals, and clinics—a total of 11,000 organiza-

tions employing about a million staff in total). Initially, this had a single firewall to the

outside world. The designers thought this would be enough, as they expected most traf-

fic to be local (as most of the previous data flows in the health service had been). What

they didn’t anticipate was that, as the Internet took off in the mid-1990’s, 40% of traf-

fic at every level became international. Doctors and nurses found it very convenient to

consult medical reference sites, most of which were in America. Trying to squeeze all

this traffic through a single orifice was unrealistic. Also, since almost all attacks on

healthcare systems come from people who’re already inside the system, it was unclear

what this central firewall was ever likely to achieve.

Another issue with firewalls (and boundary control devices in general) is that they

get in the way of what people want to do, and so ways are found round them. As most

firewalls will pass traffic that appears to be Web pages and requests (typically because

it’s for port 80), more and more applications use port 80, as it’s the way to get things to

work through the firewall. Where this isn’t possible, the solution is for whole services

to be reimplemented as Web services (webmail being a good example). These pres-

sures continually erode the effectiveness of firewalls, and bring to mind John Gil-

more’s famous saying that ‘the Internet interprets censorship as damage, and routes

around it.’

Finally, it’s worth going back down the list of top ten attacks and asking how many

of them a firewall can stop. Depending on how it’s configured, the realistic answer

might be about four.

18.3.4 Encryption

In the context of preventing network attacks, many people have been conditioned to

think of encryption. Certainly, it can sometimes be useful. For example, on the network

at the lab I work in, we use a product called secure shell (SSH), which provides en-

crypted links between Unix and Windows hosts [817, 1, 597]. When I dial in from

home, my traffic is protected; and when I log on from the PC at my desk to another

machine in the lab, the password I use doesn’t go across the LAN in the clear.

Let’s stop and analyze what protection this gives me. Novices and policymakers

think in terms of wiretaps, but tapping a dial-up modem line is hard now that modems

use adaptive echo cancellation. It essentially involves the attacker inserting two back-

to-back modems into the link from my house to the lab. So this is a low-probability

threat. The risk of password sniffing on our LAN is much higher; it has happened in

the past to other departments. Thus, our network encryption is really providing a

lower-cost alternative to the use of handheld password generators.

Another approach is to do encryption and/or authentication at the IP layer, which is

to be provided in IPv6, and is available as a retrofit for the current IP protocol as IPsec.

An assessment of the protocol can be found in [290]; an implementation is described in

[782]. IPsec has the potential to stop some network attacks, and to be a useful compo-

nent in designing robust distributed systems, but it won’t be a panacea. Many machines

will have to connect to all comers, and if I can become the administrator of your Web
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server by smashing the stack, then no amount of encryption or authentication is likely

to help you very much. Many other machines will be vulnerable to attacks from inside

the network, where computers have been suborned somehow or are operated by dis-

honest insiders. There will still be problems such as service denial attacks. Also, de-

ployment is likely to take some years.

A third idea is the virtual private network (VPN). The idea here is that a number of

branches of a company, or a number of companies that trade with each other, arrange

for traffic between their sites to be encrypted at their firewalls. This way the Internet

can link up their local networks, but without their traffic being exposed to eavesdrop-

ping. VPNs also don’t stop the bad guys trying to smash the stack of your Web server

or sniff passwords from your LAN, but for companies that might be the target of ad-

versarial interest by developed-country governments, it can reduce the exposure to in-

terception of international network traffic. (It must be said, though, that intercepting

bulk packet traffic is much harder than many encryption companies claim; and less

well-funded adversaries are likely to use different attacks.)

Encryption can also have a downside. One of the more obvious problems is that if

encrypted mail and Web pages can get through your firewall, then they can bring all

sorts of unpleasant things with them. This brings us to the problem of malicious code.

18.4 Trojans, Viruses, and Worms

If this book had been written even five years earlier, malicious code would have mer-

ited its own chapter.

Computer security experts have long been aware of the threat from malicious code,

or malware. The first such programs were Trojan horses, named after the horse the

Greeks ostensibly left as a gift for the Trojans but that hid soldiers who subsequently

opened the gates of Troy to the Greek army. The use of the term for malicious code

goes back many years (see the discussion in [493, p. 7].)

There are also viruses and worms, which are self-propagating malicious programs,

and to which I have referred repeatedly in earlier chapters. There is debate about the

precise definitions of these three terms: the common usage is that a Trojan horse is a

program that does something malicious (such as capturing passwords) when run by an

unsuspecting user; a worm is something that replicates; and a virus is a worm that rep-

licates by attaching itself to other programs.

18.4.1 Early History of Malicious Code

Malware seems likely to appear whenever a large enough number of users share a

computing platform. It goes back at least to the early 1960s. The machines of that era

were slow, and their CPU cycles were carefully rationed among different groups of

users. Because students were often at the tail of the queue—they invented tricks such

as writing computer games with a Trojan horse inside to check whether the program



Security Engineering: A Guide to Building Dependable Distributed Systems

380

was running as root, and if so to create an additional privileged account with a known

password. By the 1970s, large time-sharing systems at universities were the target of

more and more pranks involving Trojans. All sorts of tricks were developed.

In 1984, there appeared a classic paper by Thompson in which he showed that even

if the source code for a system were carefully inspected, and known to be free of vul-

nerabilities, a trapdoor could still be inserted. His trick was to build the trapdoor into

the compiler. If this recognized that it was compiling the login program, it would insert

a trapdoor such as a master password that would work on any account. Of course,

someone might try to stop this by examining the source code for the compiler, and then

compiling it again from scratch. So the next step is to see to it that, if the compiler rec-

ognizes that it’s compiling itself, it inserts the vulnerability even if it’s not present in

the source. So even if you can buy a system with verifiably secure software for the op-

erating system, applications and tools, the compiler binary can still contain a Trojan.

The moral is that you can’t trust a system you didn’t build completely yourself; vulner-

abilities can be inserted at any point in the tool chain [746].

Computer viruses also burst on the scene in 1984, thanks to the thesis work of Fred

Cohen. He performed a series of experiments with different operating systems that

showed how code could propagate itself from one machine to another, and (as men-

tioned in Chapter 7) from one compartment of a multilevel system to another. This

caused alarm and consternation; and within about three years, the first real, live viruses

began to appear “in the wild.” Almost all of them were PC viruses, as DOS was the

predominant operating system. They spread from one user to another when users

shared programs on diskettes or via bulletin boards.

One of the more newsworthy exceptions was the Christmas Card virus, which spread

through IBM mainframes in 1987. Like the more recent Love Bug virus, it spread by

email, but that was ahead of its time. The next year brought the Internet worm, which

alerted the press and the general public to the problem.

18.4.2 The Internet Worm

The most famous case of a service denial attack was the Internet worm of November

1988 [263]. This was a program written by Robert Morris Jr which exploited a number

of vulnerabilities to spread from one machine to another. Some of these were general

(e.g., 432 common passwords were used in a guessing attack, and opportunistic use

was made of .rhosts files), and others were system specific (problems with sendmail,

and the fingerd bug mentioned in Section 4.4.1). The worm took steps to camouflage

itself; it was called sh and it encrypted its data strings (albeit with a Caesar cipher).

Morris claimed that this code was not a deliberate attack on the Internet, merely an

experiment to see whether his code could replicate from one machine to another. It

could. It also had a bug. It should have recognized already infected machines, and not

infected them again, but this feature didn’t work. The result was a huge volume of

communications traffic that completely clogged up the Internet.

Given that the Internet (or, more accurately, its predecessor the ARPANET) had

been designed to provide a very high degree of resilience against attacks—up to and

including a strategic nuclear strike—it was remarkable that a program written by a stu-

dent could disable it completely.

What’s less often remarked on is that the mess was cleaned up, and normal service

was restored within a day or two; that it only affected Berkeley Unix and its deriva-

tives (which may say something about the dangers of the creeping Microsoft
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monoculture today); and that people who stayed calm and didn’t pull their network

connection recovered more quickly, because they could find out what was happening

and get the fixes.

18.4.3 How Viruses and Worms Work

A virus or worm will typically have two components: a replication mechanism and a

payload. A worm simply makes a copy of itself somewhere else when it’s run, perhaps

by breaking into another system (as the Internet worm did) or by mailing itself as an

attachment to the addresses on the infected system’s address list (as a number of more

recent worms have done). In the days of DOS viruses, the most common way for a vi-

rus to replicate was to append itself to an executable file, then patch itself in, so that

the execution path jumped to the virus code, then back to the original program.

Among the simplest common viruses were those that infected .com ‘type executables

under DOS. This file format always had code starting at address 0x100, so it was sim-

ple for the virus to attach itself to the end of the file and replace the instruction at

0x100 with a jump to its start address. Thus, the viral code would execute whenever

the file was run; it would typically look for other, uninfected, .com files and infect

them. After the virus had done its work, the missing instruction would be executed and

control would be returned to the host program.

Given a specific platform, such as DOS, there are usually additional tricks available

to the virus writer. For example, if the target system has a file called accounts.exe, it is

possible to introduce a file called accounts.com, which DOS will execute first. This is

called a companion virus. DOS viruses may also attack the boot sector or the partition

table; there are even printable viruses, all of whose opcodes are printable ASCII char-

acters, meaning they can even propagate on paper. A number of DOS viruses are ex-

amined in detail in [512].

The second component of a virus is the payload. This will usually be activated by a

trigger, such as a date, and may then do one or more of a number of bad things:

• Make selective or random changes to the machine’s protection state (this is

what we worried about with multilevel secure systems).

• Make selective or random changes to user data (e.g., trash the disk).

• Lock the network (e.g., start replicating at maximum speed).

• Steal resources for some nefarious task (e.g., use the CPU for DES keysearch).

• Get your modem to phone a premium-rate number in order to make money
from you for a telephone scamster.

• Steal or even publish your data, including your crypto keys.

• Create a backdoor through which its creator can take over your system later,

perhaps to launch a distributed denial of service attack.

Until recently, the most damaging payloads were those that leave backdoors for later

use, and those that do their damage slowly and imperceptibly. An example of the sec-

ond are viruses that occasionally swap words in documents or blocks in files; by the

time this kind of damage comes to the administrator’s attention, all extant generations

of backup may be corrupted. Finally, on September 21
st
 2000 came a report of a virus

with a payload that had long been awaited. Swiss bank UBS warned its customers of a
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virus that, if it infected their machines, would try to steal the passwords used to access

its electronic home banking system.

Various writers have also proposed “benevolent” payloads, such as to perform soft-

ware upgrades in a company, to enforce licensing terms, or even to roam the world

looking for cheap airline tickets (so-called intelligent agents)—though the idea that a

commercial Web site owner would enable alien code to execute on their Web server

with a view to driving down their prices was always somewhat of a pious hope.

18.4.4 The Arms Race

Once viruses and antivirus software companies had both appeared, there was an arms

race in which each tried to outwit the other.

As a virus will usually have some means of recognizing itself, so that it does not in-

fect the same file twice, some early antivirus software immunized files, by patching in

enough of the virus to fool it into thinking that the file was already infected. However,

this is not efficient, and won’t work at all against a large virus population. The next

generation were scanners, programs that searched through the early part of each ex-

ecutable file’s execution path for a string of bytes known to be from an identified vi-

rus.

Virus writers responded in various ways, such as by delaying the entry point of the

virus in the host file code, thereby forcing scanners to check the entire filespace for

infection; and by specific counterattacks on popular antivirus programs. The most re-

cent evolution was polymorphic viruses. These change their code each time they repli-

cate, to make it harder to write effective scanners. Typically, they are encrypted, but

have a small header that contains code to decrypt them. With each replication, the virus

re-encrypts itself under a different key; it may also insert a few irrelevant operations

into the decryption code, or change the order of instructions where this doesn’t matter.

The encryption algorithm is often simple and easy to break, but even so is enough to

greatly slow down the scanner.

The other main technical approach to virus prevention is the checksummer. This is a

piece of software that keeps a list of all the authorized executables on the system, to-

gether with checksums of the original versions of these files. However, one leading

commercial product merely calculates cyclic redundancy checks using two different

polynomials—a technique that could easily be defeated by a smart virus writer. Where

the checksummer does use a decent algorithm, the main countermeasure is stealth,

which in this context means that the virus watches out for operating system calls of the

kind used by the checksummer and hides itself whenever a check is being done.

18.4.5 Recent History

By the late 1980s and early 1990s, PC viruses had become such a problem that they

gave rise to a whole industry of antivirus software writers and consultants. Many peo-

ple thought that this wouldn’t last, as the move from DOS to “proper” operating sys-
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tems like Windows would solve the problem. Some of the antivirus pioneers even sold

their companies: one of them tells his story in [720].

But the spread of interpreted languages has provided even more fertile soil for mis-

chief. There was a brief flurry of publicity about bad Java applets in the late 1990s, as

people found ways of penetrating Java implementations in browsers; this raised secu-

rity awareness considerably [537]. But the main sources of infection at the start of the

twenty-first century are the macro languages in Microsoft products such as Word, and

the main transmission mechanism is the Internet. An industry analysis claims that the

Net “saved” the antivirus industry [423]. Another view is that it was never really under

threat, that users will always want to share code and data, and that, in the absence of

trustworthy computing platforms, we can expect malware to exploit whichever sharing

mechanisms they use. Still another view is that Microsoft is responsible, as it was

reckless in incorporating such powerful scripting capabilities in applications such as

word processing. As they say, your mileage may vary.

In any case, Word viruses took over as the main source of infection in the United

States in 1996, and in other countries shortly afterward [57]. By 2000, macro viruses

accounted for almost all incidents of mobile malicious code. A typical macro virus is a

macro that copies itself into uninfected word processing documents on the victim’s

hard disk, and waits to be propagated as users share documents. Some variants also

take more active steps to replicate, such as by causing the infected document to be

mailed to people in the victim’s address book. (There’s a discussion of macro viruses

in [128], which also points out that stopping them is harder than was the case for DOS

viruses, as the Microsoft programming environment is now much less open, less well

documented, and complex.)

In passing, it’s worth noting that malicious data can also be a problem. An interest-

ing example is related by David Mazières and Frans Kaashoek, who operate an anony-

mous remailer at MIT. This device decrypts incoming messages from anywhere on the

Net, uncompresses them, and acts on them. Someone sent them a series of 25 Mb mes-

sages consisting of a single line of text repeated over and over; these compressed very

well and so were only small ciphertexts when input; but when uncompressed, they

quickly filled up the spool file and crashed the system [531]. There are also attacks on

other programs that do decompression such as MPEG decoders. However, the most

egregious cases involve not malicious data but malicious code.

18.4.6 Antivirus Measures

In theory, defense has become simple: if you filter out Microsoft executables at your

firewall, you can stop most of the bad things out there. In practice, life isn’t so simple.

A large Canadian company with 85,000 staff did just that, but many of their staff had

personal accounts at Web-based email services, so when the Love Bug virus came

along it got into the company as Web pages, without going through the mail filter at

the firewall. The company had configured its mail clients so that each of them had the

entire corporate directory in their personal address book. The result was meltdown as

85,000 mail clients all tried to send an email to each of 85,000 addresses.
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For a virus infestation to be self-sustaining, it needs to pass an epidemic threshold,

at which its rate of replication exceeds the rate at which it’s removed [452]. This de-

pends not just on the infectivity of the virus itself, but on the number (and proportion)

of connected machines that are vulnerable. Epidemic models from medicine can be

applied to some extent, though they are limited by the different topology of software

intercourse (sharing of software is highly localized), and so predict higher infection

rates than are actually observed. One medical lesson that does seem to apply is that the

most effective organizational countermeasures are centralized reporting, and response

using selective vaccination [453].

In the practical world, this comes down to managerial discipline. In the days of

DOS-based file viruses, this meant controlling all software loaded on the organiza-

tion’s machines, and providing a central reporting point for all incidents. Now that vi-

ruses arrive primarily in email attachments or as active content in Web pages, it may

involve filtering these things out at the firewall, and, seeing to it that users have pru-

dent default settings on their systems—such as disabling active content on browsers

and macros in word processing documents.

The nature of the things that users need to be trained to do, or to not do, will change

over time as systems and threats evolve. For example, in the mid-1990s, the main tasks

were to stop infections coming in via PCs used at home, both for work and for other

things (such as kids playing games), and to get staff to “sweep” all incoming email and

diskettes for viruses, using standalone scanning software. (An effective way of doing

the latter, adopted at a London law firm, was to reward whoever found a virus with a

box of chocolates—which would then be invoiced to the company that had sent the

infected file). Now that typical antivirus software includes automatic screening and

central reporting, the issues are more diffuse, such as training people not to open sus-

picious email attachments, and having procedures to deal with infected backups. But as

with the organic kind of disease, prevention is better than cure; and software hygiene

can be integrated with controls on illegal software copying and unauthorized private

use of equipment.

18.5 Intrusion Detection

The typical antivirus software product is an example of an intrusion detection system.

In general, it’s a good idea to assume that attacks will happen, and it’s often cheaper to

prevent some attacks and detect the rest than it is to try to prevent everything. The

systems used to detect bad things happening are referred to generically as intrusion

detection systems. Other examples from earlier chapters are the application-specific

mechanisms for detecting mobile phone cloning and fraud by bank tellers. Certain

stock markets have installed systems to try to detect insider trading by looking for sus-

picious patterns of activity. Although they are all performing very similar tasks, their

developers don’t talk to each other much, and we see the same old wheels being rein-

vented again and again.

Intrusion detection in corporate and government networks is a fast-growing field of

security research; for example, U.S. military funding grew from almost nothing to mil-

lions in the last few years of the twentieth century. This growth has been prompted by

the realization that many systems make no effective use of log and audit data. In the
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case of Sun’s operating system Solaris, for example, we found in 1996 that the audit

formats were not documented, and tools to read them were not available. The audit

facility seemed to have been installed to satisfy the formal checklist requirements of

government systems buyers, rather than to perform any useful function. There was the

hope that improving this would help system administrators detect attacks, whether after

the fact or even when they were still in progress.

18.5.1 Types of Intrusion Detection

The simplest intrusion detection methods involve sounding an alarm when a threshold

is passed. Three or more failed logons, a credit card expenditure of more than twice the

moving average of the last three months, or a mobile phone call lasting more than six

hours, might all flag the account in question for attention. More sophisticated systems

generally fall into two categories.

The first, misuse detection systems, use a model of the likely behavior of an intruder.

An example would be a banking system that alarms if a user draws the maximum per-

mitted amount from a cash machine on three successive days. Another would be a Unix

intrusion detection system that looked for a user’s account being taken over by some-

one who used the system in a much more sophisticated way; thus an account whose

user previously used only simple commands would alarm if the log showed use of a

compiler. An alarm might also be triggered by specific actions such as an attempt to

download the password file. In general, most misuse detection systems, like antivirus

scanners, look for a signature, a known characteristic of some particular attack. One of

the most general misuse detection signatures is interest in a honey trap—something

enticing left to attract attention. I mentioned, for example, that some hospitals maintain

dummy records with celebrities’ names to entrap staff who don’t respect medical con-

fidentiality.

The second type of intrusion detection strategy is anomaly detection. Such systems

attempt the much harder job of looking for anomalous patterns of behavior in the ab-

sence of a clear model of the attacker’s modus operandi. The hope is to detect attacks

that have not been previously recognized and catalogued. Systems of this type often

use artificial intelligence techniques—neural networks are particularly fashionable.

The dividing line between misuse and anomaly detection is somewhat blurred. A

particularly good borderline case is given by Benford’s law, which describes the distri-

bution of digits in random numbers. One might expect that numbers beginning with the

digits 1, 2, . . . 9 would be equally common. But, in fact, numbers that come from ran-

dom natural sources, so that their distribution is independent of the number system in

which they’re expressed, have a logarithmic distribution: about 30% of decimal num-

bers start with 1. (In fact, all binary numbers start with 1, if initial zeroes are sup-

pressed.) Crooked clerks who think up numbers to cook the books, or even use random

number generators without knowing Benford’s law, are often caught using it [529].

18.5.2 General Limitations of Intrusion Detection

Some intrusions are really obvious. If what you’re worried about is a script kiddie van-

dalizing your corporate Web site, then the obvious thing to do is to have a machine in
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your operations room that fetches the page once a second, displays it, and rings a really

loud alarm when it changes. (Make sure you do this via an outside proxy; and don’t

forget that it’s not just your own systems at risk. The kiddie could replace your adver-

tisers’ pictures with porn, for example, in which case you’d want to pull the links to

them pretty fast.)

In general however, intrusion detection is a difficult problem. Fred Cohen proved

that detecting viruses (in the sense of deciding whether a program is going to do

something bad) is as hard as the halting problem, meaning we can’t ever expect a com-

plete solution [192].

Another fundamental limitation comes from the fact that there are basically two dif-

ferent types of security failure: those that cause an error (which I defined in Section 6.2

to be an incorrect state) and those that don’t. An example of the former is a theft from

a bank that leaves traces on the audit trail. An example of the latter is an undetected

confidentiality failure caused by a radio microphone placed by a foreign intelligence

service in your room. The former can be detected (at least in principle, and forgetting

for now about the halting problem) by suitable processing of the data available to you.

But the latter can’t be. It’s a good idea to design systems so that as many failures as

possible fall into the former category, but it’s not always practicable [182].

There’s also the matter of definitions. Some intrusion detection systems are config-

ured to block any instances of suspicious behavior, and, in extreme cases, to take down

the affected systems. Apart from opening the door to service denial attacks, this turns

the intrusion detection system into an access control mechanism. As we’ve already

seen, access control is in general a hard problem, that incorporates all sorts of issues of

security policy which people often disagree on or simply get wrong. (The common

misconceptions that you can do access control with intrusion detection mechanisms

and that all intrusion detection can be done with neural networks together would imply

that some neural network bolted on to a LAN could be trained to enforce something

like Bell-LaPadula. This seems fatuous.)

I prefer to define an intrusion detection system as one that monitors the logs and

draws the attention of authority to suspicious occurrences. This is closer to the way

mobile phone operators work. It’s also critical in financial investigations; see [658] for

a discussion, by a special agent with the U.S. Internal Revenue Service, of what he

looks for when trying to trace hidden assets and income streams. A lot hangs on edu-

cated suspicion, based on long experience. For example, a $25 utility bill may lead to a

$250,000 second house hidden behind a nominee. Building an effective system means

having the people, and the machines, each do the part of the job they’re best at; and

this means getting the machine to do the preliminary filtering.

Then there’s the cost of false alarms. For example, I used to go to San Francisco

every May, and I got used to the fact that after I’d used my U.K. debit card in an ATM

five days in a row, it would stop working. Not only does this upset the customer, but

villains quickly learn to exploit it (as do the customers—I just started making sure I got

enough dollars out in the first five days to last me the whole trip). As in so many secu-

rity engineering problems, the trade-off between the fraud rate and the insult rate is the

critical one; And, as I noted in Chapter 13, “Biometrics,” Section 13.8, we can’t expect

to improve this trade-off simply by looking at lots of different indicators. In general,

we must expect that an opponent will always get past the threshold if he or she is pa-

tient enough, and either does the attack very slowly or does a large number of small

attacks.
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A particularly intractable problem with commercial intrusion detection systems is

redlining. When insurance companies used claim statistics on postcodes to decide the

level of premiums to charge, it was found that many poor and minority areas suffered

high premiums or were excluded altogether from coverage. In a number of jurisdic-

tions, this is now illegal. But the problem is much broader. For example, Washington is

pushing airlines to bring in systems to profile passengers for terrorism risk, so they can

be subjected to more stringent security checks. The American-Arab Anti-

Discrimination Committee has reported many incidents where innocent passengers

have been harassed by airlines that have implemented some of these recommendations

[516].

In general, if you build an intrusion detection system based on data-mining tech-

niques, you are at serious risk of discriminating. If you use neural network techniques,

you’ll have no way of explaining to a court what the rules underlying your decisions

are, so defending yourself could be hard. Opaque rules can also contravene European

data protection law, which entities citizens to know the algorithms used to process

their personal data.

In general, most fielded intrusion detection systems use a number of different tech-

niques [661]. They tend to draw heavily on knowledge of the application, and to be

developed by slow evolution.

18.5.3 Specific Problems Detecting Network Attacks

Turning now to the specific problem of detecting network intrusion, the problem is

much harder than, say, detecting mobile phone cloning, for a number of reasons. For

starters, the available products still don’t work very well, with success rates of perhaps

60–80% in laboratory tests and a high false alarm rate. For example, at the time of

writing, the U.S. Air Force has so far not detected an intrusion using the systems it has

deployed on local networks—although once one is detected by other means, the traces

can be found on the logs.

The reasons for the poor performance include the following, in no particular order.

• The Internet is a very “noisy” environment, not just at the level of content but

also at the packet level. A large amount of random crud arrives at any sub-

stantial site, and enough of it can be interpreted as hostile to generate a signifi-

cant false alarm rate. A survey by Bellovin [89] reports that many bad packets

result from software bugs; others are the fault of out-of-date or corrupt DNS

data; and some are local packets that escaped, travelled the world, and re-

turned.

• There are too few attacks. If there are ten real attacks per million ses-
sions—which is almost certainly an overestimate—then even if the system has
a false alarm rate as low as 0.1%, the ratio of false to real alarms will be 100. I
talked about similar problems with burglar alarms in Chapter 10; it’s also a
well known issue for medics running screening programs for diseases such as
HIV where the test error exceeds the organism’s prevalence in the population.
In general, where the signal is so far below the noise, an alarm system is likely
to so fatigue the guards that even the genuine alarms get missed.
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• Many network attacks are-specific to particular versions of software, so most
of them concern vulnerabilities in old versions. Thus, a general misuse detec-
tion tool must have a large, and constantly changing, library of attack signa-
tures.

• In many cases, commercial organizations appear to buy intrusion detection
systems simply to tick a “due diligence” box. This is done to satisfy insurers or
consultants.

• Encrypted traffic, such as SSL-encrypted Web sessions, can’t easily be sub-
jected to content analysis or filtered for malicious code. It’s theoretically pos-
sible to stop the encryption at your firewall, or install a monitoring device with
which your users share their confidentiality keys. However, in practice, this
can be an absolute tar-pit [3].

• The issues raised in the context of firewalls largely apply to intrusion detec-

tion, too. You can filter at the packet layer, which is fast but can be defeated

by packet fragmentation; you can reconstruct each session, which takes more

computation and so is not really suitable for network backbones; or you can

examine application data, which is more expensive still, and needs to be con-

stantly updated to cope with the arrival of new applications.

Although the USAF has so far not found an attack using local intrusion detection

systems, attacks have been found using network statistics. Histograms are kept of

packets by source and destination address and by port. This is a powerful means of

detecting stealthy attacks, in which the opponent sends one or two packets per day to

each of maybe 100,000 hosts. Such attacks would probably never be found using local

statistics, and they’d be lost in the noise floor. But when data collection is done over a

large network, the suspect source addresses stick out like the proverbial sore thumb.

For all these reasons, it appears unlikely that a single-product solution will do the

trick. Future intrusion detection systems are likely to involve the coordination of a

number of monitoring mechanisms at different levels, both in the network (backbone,

LAN, individual machine) and in the protocol stack (packet, session, and application).

This doesn’t mean a clean partition in which packet filtering is done in the backbone

and application level stuff at proxies; bulk keyword searching might be done on the

backbone (as long as IPsec doesn’t cause all the traffic to vanish behind a fog of

crypto).

18.6 Summary

Preventing and detecting attacks that are launched over networks, and particularly over

the Internet, is probably the most newsworthy aspect of security engineering. The

problem is unlikely to be solved any time soon, as so many different kinds of vulner-

ability contribute to the attacker’s toolkit. Ideally, people would run carefully written

code on secure platforms; in real life, this won’t always happen. But there is some

hope that firewalls can keep out the worst of the attacks, that careful configuration
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management can block most of the rest, and that intrusion detection can catch most of

the residue that make it through.

Because hacking techniques depend so heavily on the opportunistic exploitation of

vulnerabilities introduced accidentally by the major software vendors, they are con-

stantly changing. In this chapter, I concentrated on explaining the basic underlying sci-

ence (of which there’s surprisingly little). Although the Internet has connected

hundreds of millions of machines that are running insecure software, and often with no

administration to speak of, and scripts to attack common software products have

started to be widely distributed, most of the bad things that happen are the same as

those that happened a generation ago. The one new thing to have emerged is the dis-

tributed denial-of-service attack, which is made possible by the target system’s being

connected to many hackable machines. Despite all this, the Internet is not a disaster.

Perhaps a suitable analogy for the millions of insecure computers is given by the

herds of millions of gnu which once roamed the plains of Africa. The lions could make

life hard for any one gnu, but most of them survived for years by taking shelter in

numbers. Things were a bit more tense for the very young, the very old, and those who

went for the lusher grazing ahead of the herd. The Internet’s much the same. There are

analogues of the White Hunter, who’ll carefully stalk a prime trophy animal; so you

need to take special care if anyone might see you in these terms. (If you think that the

alarms in the press about ‘Evil Hackers Bringing Down the Internet’ are somehow

equivalent to the hungry peasant with a Kalashnikov, then it may well be worth bearing

in mind the even greater destruction done by colonial ranching companies with the

capital to fence off the veld in 100,000-acre lots.)

Of course, if you are going for the lusher grazing, or will have to protect high-profile

business-critical systems against network attack, then you should read all the hacker

Web pages, examine all the hacker software worth looking at, subscribe to the mailing

lists, read the advisories, and install the patches. Although hacking has, to a great ex-

tent, been deskilled, a similar approach to defense cannot be expected to work more

than some of the time, and box-ticking driven by due-diligence concerns isn’t likely to

achieve more than a modest amount of operational risk reduction.

Research Problems

In the academic world, research is starting to center on intrusion detection. One inter-

esting theme is to make smarter antivirus products by exploiting analogies with biol-

ogy. IBM is automating its techniques for identifying and culturing viruses, with a

view to shipping its corporate clients a complete “path lab” [452]; Stephanie Forrest

and colleagues at the University of New Mexico mimic the immune system by gener-

ating a lot of random “antibodies,” then removing those that try to “kill” the system’s

own tissue [302]. How appropriate are such biological analogies? How far can we take

them?

Further Reading

The classic on Internet security was written by Steve Bellovin and Bill Cheswick [94].

Another solid book is by Simson Garfinkel and Eugene Spafford [331], which is a
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good reference for the detail of many of the network attacks and system administration

issues. An update on firewalls, and a survey of intrusion detection technology, has

been written recently by Terry Escamilla [275]. The seminal work on viruses is by

Fred Cohen [192], though it was written before macro viruses became the main prob-

lem. Java security is discussed by Gary McGraw and Ed Felten [537] and by Li Gong

(its quondam architect) [346]. A survey of security incidents on the Internet appears in

a thesis by John Howard [392]. Advisories from CERT [199] and bugtraq [144] are

also essential reading if you want to keep up with events; and hacker sites such as

www.phrack.com and (especially) www.rootshell.com bear watching.
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CHAPTER

19

Protecting E-Commerce
Systems

If you try to buck the markets, then the markets will buck you.

—MARGARET THATCHER

19.1 Introduction

The protection of electronic commerce systems pulls together a lot of the topics dis-

cussed in previous chapters. Failures come from misconfigured access control, imple-

mentation blunders, theft of network services, inappropriate use of crypotology—you

name it. In this chapter, I’ll cover some protection issues specific to e-commerce, such

as how online credit card payments are handled, and what goes wrong.

If you are a programmer building e-commerce systems for a dot-com startup, much

of the material in this chapter should be fairly familiar to you. You are much more

likely to get value from the chapters on access control, network security, and (particu-

larly) on banking. The most likely attacks on your business don’t involve the vulner-

abilities in the Internet protocol suite or the payment infrastructure—and you can’t do

anything about those anyway.

The typical e-business startup appears to be most at risk from internal fraud. This is

where most frauds in normal businesses come from, despite things like double-entry

bookkeeping, which have evolved over centuries to control them. Many startups have

none of these internal controls. They begin as a few people who all know each other

and, if successful at raising capital, rapidly hire a lot of new staff who’re focused on

money and not very carefully screened. A survey found in October 2000, for example,

that 37% of dot-com executives have shady pasts, compared with 10% found in due

diligence checks on normal companies [257].
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19.2 A Telegraphic History of E-Commerce

Many of the problems afflicting e-businesses stem from the popular notion that e-

commerce is something completely new, invented in the mid-1990s. This is simply

untrue.

Various kinds of visual signalling were deployed from classical times. Systems in-

cluded heliographs (which used mirrors to flash sunlight at the receiver), semaphones

(which used the positions of moving arms to signal letters and numbers), and flags.

Land-based systems sent messages along chains of beacon towers, and naval systems

between ships. To begin with, their use was military, but after the Napoleonic War, the

French government opened its heliograph network to commercial use. Very soon, the

first frauds were carried out. For two years, until they were discovered in 1836, two

bankers bribed an operator to signal the movements of the stock market to them cov-

ertly by making errors in transmissions, which they could observe from a safe distance.

Other techniques were devised to signal the results of horseraces. Various laws were

passed to criminalize this kind of activity, but they were ineffective. The only solution

for the bookies was to “call time” by a clock, rather than waiting for the result and

hoping that they were the first to hear it.

From the 1760s to the 1840s, the electric telegraph was developed by a number of

pioneers, of whom the most influential was Samuel Morse. He persuaded Congress in

1842 to fund an experimental line from Washington to Baltimore; this so impressed

people that serious commercial investment started, and by the end of that decade, there

were 12,000 miles of line being operated by 20 companies. This was remarkably like

the Internet boom of the late 1990s [729].

Banks were the first big users of the telegraph, and they decided that they needed

technical protection mechanisms to prevent transactions being altered by crooked op-

erators en route. (I discussed the test key systems they developed for the purpose in the

chapter on banking systems.) Telegrams were also used to create national markets. For

the first time, commodity traders in New York could find out within minutes the prices

that had been set in auctions in Chicago; likewise, fishing skippers arriving in Boston

could find out the price of cod in Gloucester. A recent history of the period shows that

most of the concepts and problems of electronic commerce were familiar to the Victo-

rians [729]. How do you know who you’re speaking to? How do you know if they’re

trustworthy? How do you know whether the goods will be delivered, and whether

payments will arrive? The answers found in the nineteenth century involved intermedi-

aries—principally banks that helped businesses manage risk using instruments such as

references, guarantees, and letters of credit.

In the 1960s, banks in many countries computerized their bookkeeping, and intro-

duced national interbank systems for handling direct payments to customer accounts,

enabling banks to offer services such as payroll to corporate customers. In the early

1970s, this was extended to international payments, as described in the banking sys-

tems chapter. The next large expansion of electronic commerce took place in the late

1970s to mid-1980s with the spread of electronic data interchange (EDI). Companies

ranging from General Motors to Marks and Spencer built systems that enabled them to

link up their computers to their suppliers’, so that goods could be ordered automati-

cally. Travel agents built similar systems to order tickets in real time from airlines.
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In 1985, the first retail electronic banking system was offered by the Bank of Scot-

land, whose customers could use Prestel, a proprietary email system operated by Brit-

ish Telecom, to make payments. When Steve Gold and Robert Schifreen hacked

Prestel—as described in the chapter on passwords—it initially terrified the press and

the bankers. They realized that the hackers could easily have captured and altered

transactions. But once the dust settled and people thought through the detail, it became

clear there was little real risk. The system allowed only payments between your own

accounts and to accounts which you’d previously notified to the bank, such as your gas

and electricity suppliers.

This pattern, of high-profile hacks—which caused great consternation but which, on

sober reflection, turned out to be not really a big deal—has continued ever since.

To resume this brief history, the late 1980s and early 1990s saw the rapid growth of

call centers, which—despite all the hoopla about the Web—remain in 2000 by far the

largest delivery channel for business-to-consumer electronic commerce. As for the In-

ternet, it was not something that suddenly sprung into existence in 1995, as a Martian

monitoring our TV channels might believe. The first time I used an online service to

sell software I’d written was in 1984 or 1985; and I first helped the police investigate

an online credit card fraud in 1987. In the latter case, the bad guy got a list of hot credit

card numbers from his girlfriend, who worked in a supermarket; he used them to buy

software from companies in California, which he downloaded to order for his custom-

ers. This worked because hot card lists at the time carried only those cards that were

being used fraudulently in that country; it also guaranteed that the bank would not be

able to debit an innocent customer. As it happens, the criminal quit before there was

enough evidence to nail him. A rainstorm washed away the riverbank opposite his

house and exposed a hide which the police had built to stake him out.

The use of credit cards to buy stuff electronically “suddenly” became mainstream in

about 1994 or 1995, when the public started to go online in large numbers. Suddenly

there was a clamor that the Internet was insecure, that credit card numbers could be

harvested on a huge scale, and that encryption would be needed.

19.3 An Introduction to Credit Cards

For many years after their invention in the 1950s, credit cards were treated by most

banks as a loss leader used to attract high-value customers. Eventually, in most coun-

tries, the number of merchants and cardholders reached critical mass, and the transac-

tion volume took off. In Britain, it took almost 20 years before most banks found the

business profitable; then all of a sudden it became extremely profitable. The credit card

system is now extremely well entrenched as the payment mechanism used on the Net.

Because of the huge investment involved in rolling out a competitor to tens of thou-

sands of banks, millions of merchants, and billions of customers worldwide, any new

payment mechanism is likely to take some time to get established—with a possible

exception, which I’ll discuss shortly. When you use a credit card to pay for a purchase
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in a store, the transaction flows from the merchant to her bank (the acquiring bank),

which pays her after deducting a merchant discount of, typically, 4–5%. If the card was

issued by a different bank, the transaction next flows to a switching center run by the

brand (such as VISA), which takes a commission and passes it to the issuing bank for

payment. Daily payments between the banks and the brands settle the net cash flows.

The issuer also gets a slice of the merchant discount, but makes most of its money from

extending credit to cardholders at rates usually much higher than the interbank rate.

19.3.1 Fraud

The risk of fraud from stolen cards was traditionally managed by a system of hot card

lists and merchant floor limits. Each merchant gets a local hot card list—formerly on

paper, now stored in her terminal—plus a limit set by their acquiring bank, above

which they have to call for authorization. The call center, or online service, which she

uses for this has access to a national hot card list; above a higher limit, they will con-

tact the brand which has a complete list of all hot cards being used internationally;

above a still higher limit, the transaction will be checked all the way back to the card

issuer.

The introduction of mail order and telephone order (MOTO) transactions in the

1970s meant that the merchant did not have the customer present, and was not able to

inspect the card. What was to stop a crook ordering goods using a credit card numbers

he’d picked up from a discarded receipt?

Banks managed the risk by using the expiry date as a password, lowering the floor

limits, increasing the merchant discount, and insisting on delivery to a cardholder ad-

dress, which is supposed to be checked during authorization. But the main change was

to shift liability so that the merchant bore the full risk of disputes. If you challenge an

online credit card transaction (or in fact any transaction made under MOTO rules), the

full amount is immediately debited back to the merchant, together with a significant

handling fee. The same procedure applies whether the debit is a fraud, a dispute, or a

return.

Of course, having the cardholder present doesn’t guarantee that fraud will be rare.

For many years, most fraud was done in person with stolen cards, and the stores that

got badly hit tended to be those selling goods that can be easily fenced, such as jewelry

and consumer electronics. Banks responded by lowering their floor limits. More re-

cently, as technical protection mechanisms have improved, there has been an increase

in scams involving cards that were never received by genuine customers. This pre-

issue fraud can involve thefts from the mail of the many “pre-approved” cards that ar-

rive in junk mail, or even applications made in the names of people who exist and are

creditworthy, but are not aware of the application (identity theft). These attacks on the

system are intrinsically hard to tackle using purely technical means.

19.3.2 Forgery

In the early 1980s, electronic terminals were introduced through which a sales clerk

could swipe a card and get an authorization automatically. But the sales draft was still

captured from the embossing, so crooks figured out how to re-encode the magnetic

strip of a stolen card with the account number and expiry date of a valid card, which

they often got by fishing out discarded receipts from the trash cans of expensive restau-

rants. A re-encoded card would authorize perfectly, but when the merchant submitted
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the draft for payment, the account number didn’t match the authorization code (a six-

digit number typically generated by encrypting the account number, date, and amount).

The merchants didn’t get paid, and raised hell.

Banks responded in the mid-1980s by introducing terminal draft capture, where a

sales draft is printed automatically using the data on the card strip. The crooks’ re-

sponse was a flood of forged cards, many produced by Triad gangs: between 1989 and

1992, magnetic strip counterfeiting grew from an occasional nuisance into half the to-

tal fraud losses [6]. VISA’s response was card verification values (CVVs), three-digit

MACs computed on the card strip contents (account number, version number, expiry

date) and written at the end of the strip. They worked well at first; in the first quarter of

1994, VISA International’s fraud losses dropped by 15.5%, while Mastercard’s rose

67% [165]. Subsequently, Mastercard adopted similar checksums, too.

The crooks’ response was skimming—operating businesses where genuine customer

cards were swiped through an extra, unauthorized, terminal to grab a copy of the mag-

netic strip, which would then be re-encoded on a genuine card. The banks’ response

was intrusion detection systems, which in the first instance tried to identify criminal

businesses by correlating the previous purchase histories of customers who com-

plained.

In the late 1990s, credit card fraud rose sharply due to another simple innovation in

criminal technology: the crooked businesses that skim card data absorb the cost of the

customer’s transaction rather than billing it. You have a meal at a Mafia-owned restau-

rant, offer a card, sign the voucher, and fail to notice when the charge doesn’t appear

on your bill. Perhaps a year later, there is suddenly a huge bill for jewelry, electronic

goods, or even casino chips. By then you’ve completely forgotten about the meal, and

the bank never had a record of it [318].

19.3.3 Automatic Fraud Detection

Consequently, a lot of work was done in the 1990s on beefing up intrusion detection.

There are a number of generic systems that do anomaly detection, using techniques

such as neural networks, but it’s unclear how effective they are. When fraud is down

one year, it’s hailed as a success for the latest fraud-spotting system [61]; when the

figures go up a few years later, the vendors let the matter pass quietly [714].

More convincing are projects undertaken by specific store chains that look for

known patterns of misuse. For example, an electrical goods chain in the New York area

observed that offender profiling (by age, sex, race, and so on) was ineffective, and used

purchase profiling instead to cut fraud by 82% in a year. Its technique involved not just

being suspicious of high-value purchases, but training staff to be careful when custom-

ers were careless about purchases and spent less than the usual amount of time dis-

cussing options and features. These factors can be monitored online, too, but one

important aspect of the New York success is harder for a Web site: employee reward-

ing. Banks give a $50 reward per bad card captured, which many stores just keep, so

their employees don’t make an effort to spot cards or risk embarrassment by confront-

ing a customer. In New York, some store staff were regularly earning a weekly bonus

of $150 or more [525].

With the human out of the loop at the sales end, the only psychology from which a

site designer can leverage is that of the villain. It has been suggested that an e-

commerce site should have an unreasonably expensive “platinum” option, which few

genuine customers will want to buy [721]. This performs two functions. First, it allows
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you to do rudimentary purchase profiling. Second, it fits with the model of Goldilocks

pricing, developed by online economists Shapiro and Varian, who point out that the

real effect of airlines offering first-class fares is to boost sales of business class seats to

travelers who can now convince their bosses (or themselves) that they are being “eco-

nomical” [696]. Another idea is to have a carefully engineered response to suspect

transactions: if you just say “bad card, try another one,” then the fraudster probably

will. You may even end up being “used” by the crooks as an online service that tells

them which of their stolen cards are on the hot list, and this can upset your bank (even

though the banks are to blame for the system design). A better approach is claim that

you’re out of stock, so the bad guy will go elsewhere [721].

19.3.4 Economics

There’s a lot of misinformation about credit card fraud, with statistics quoted selec-

tively to make points. In one beautiful example, VISA was reported to have claimed

that card fraud was up and that card fraud was down, on the same day [380]

However, a consistent pattern of figures can be dug out of the trade publications.

The actual cost of credit card fraud, before the recent rise, was about 0.15% of all in-

ternational transactions processed by VISA and MasterCard [652], while national rates

varied from 1% in America to 0.2% in the U.K. to under 0.1% in France and Spain.

The prevailing business culture has a large effect on the rate. U.S. banks, for example,

are much more willing to send out huge junk mailings of pre-approved cards to in-

crease their customer base, and write off the inevitable pre-issue fraud as a cost of do-

ing business. In other countries, banks are more risk-averse.

France is interesting, as it seems, at first sight, to be an exceptional case, in which a

particular technology has brought real benefits. French banks introduced chip cards for

all domestic transactions in the late 1980s, and this reduced losses from 0.269% of

turnover in 1987 to 0.04% in 1993 and 0.028% in 1995. However, there is now an in-

creasing amount of cross-border fraud. French villains use foreign magnetic stripe

cards— particularly from Britain [315, 652]—while French chip cards are used at mer-

chants in non-chip countries [166]. But the biggest reduction in Europe was not in

France but in Spain, where the policy was to reduce all merchant floor limits to zero

and make all transactions online. This cut their losses from 0.21% of turnover in 1988

to 0.008% in 1991 [73].

The lessons appear to be that, first, card fraud is cyclical, as new defenses are intro-

duced and the villains learn to defeat them; and second, that the most complicated and

expensive technological solution doesn’t necessarily work best in the field.

19.4 Online Credit Card Fraud: The Hype and the Reality

We turn now from traditional credit card fraud to the online variety. There was great

anxiety in the mid-1990s that the use of credit cards on the Internet would lead to an

avalanche of fraud, as “Evil Hackers” intercepted emails and Web forms, and har-
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vested credit card numbers by the million. These fears drove banks and software ven-

dors to devise two protocols to protect Web-based credit card transactions: SSL and

SET, which I’ll explain in the next section.

The hype surrounding this type of fraud has been grossly overdone. Intercepting

email is indeed possible, but it’s surprisingly difficult in practice—so much so that

governments are bullying ISPs to install snooping devices on their networks to make

court-authorized wiretaps easier [114]. But the cost of such devices is so high that the

ISPs are resisting this pressure as forcefully as they can. I’ll go into this further in

Chapter 21. And although it is possible to redirect a popular Web page to your own site

using tricks such as DNS cache poisoning, it’s a lot simpler to tap the plain old tele-

phone system—and no one worries much about the few credit card numbers that get

harvested from hotel guests this way.

Credit card numbers are indeed available on the Net, but usually because someone

hacked the computer of a merchant who disobeyed the standard bank prohibition

against retaining customer credit card numbers after being paid. (As this book was go-

ing to press, VISA announced that, starting in 2001, all its merchants will have to obey

10 new security rules; for example, they must install a firewall, keep security patches

up to date, encrypt stored and transmitted data, and regularly update antivirus software

[752].) Likewise, fraudulent Web-based transactions do occur, but mainly because of

poor implementation of the system whereby cardholder addresses are checked during

authorization. The real problem facing dot-coms is disputes.

It is easy to repudiate a transaction. Basically, all the customer has to do is call the

credit card company and say, “I didn’t authorize that,” and the merchant will be sad-

dled with the bill. This was workable in the days when almost all credit card transac-

tions took place locally, and most were for significant amounts. If a customer

fraudulently repudiated a transaction, the merchant would pursue them through the

courts and harrass them using local credit reference agencies. In addition, the banks’

systems are often quite capable of verifying local cardholder addresses.

But the Internet differs from the old mail order/telephone order regime, in that many

transactions are international, amounts often are small, and verifying overseas ad-

dresses via the credit card system is problematic. Often, all the call center operator can

do is check that the merchant seems confident when reading an address in the right

country. Thus, the opportunity for repudiating transactions—and getting away with

it—is hugely increased. There are particularly high rates of repudiation of payment to

porn sites. No doubt some of these disputes happen when a transaction made under the

influence of a flush of hormones turns up on the family credit card bill, and the card-

holder has to repudiate it to save his marriage; but many are the result of blatant fraud

by operators.

At the time of writing, the press was reporting that the Federal Trade Commission

was prosecuting the operators of scores of adult Web sites, including playboy. com, for

billing thousands of users for supposedly free services. The scam was to offer a “free

tour” of the site, demand a credit card number, supposedly to verify that the user was

over 18, and then bill him anyway. Some sites billed other consumers who have never

visited them at all [389]. (Of course, none of this should have surprised the student of

more traditional telecomms fraud, as it’s just cramming in a new disguise.) If even ap-

parently large and “respectable” Web sites such as playboy. com indulge in such prac-

tices, it’s much easier for consumers to get away with fraudulently repudiating

transactions.
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The critical importance of this for online businesses is that, if more than a small per-

centage of your transactions are challenged by customers, your margins will be eroded;

and in extreme cases your bank may withdraw your card acquisition service. It has

been reported that the collapse of sportswear merchant boo.com was because it had too

many returns: its business model assumed a no-quibble exchange or refund policy. But

too many of its shipments were the wrong size, or the wrong color, or just didn’t ap-

peal to the customers. In the end, the credit card penalties were the straw that broke the

camel’s back [721].

This history suggests that technological fixes may not be as easy as many vendors

claim, and that the main recources will be essentially procedural. American Express

has announced that it will offer its customers credit card numbers that can be used once

only; this will protect customers from some of the scams. In order not to run out of

numbers, they will issue them one at a time to customers via their Web site (which will

drive lots of traffic to them) [204]. Many other bankers are already coming to the con-

clusion that the way forward lies with better address verification, rather than with

cryptography [62].

However, if you’re working as a security engineer, then a lot of your clients will

want to talk about technical matters, such as encrypting credit card numbers, so we’ll

look at the available crypto mechanisms anyway.

19.5 Cryptographic Protection Mechanisms

The existing cryptographic protection mechanisms used by the bank card industry—

the PINs used at ATMs and some point-of-sale terminals, and the CVVs described in

Section 19.3.2, which make card forgery more difficult—are largely ineffective online,

so new mechanisms were developed. The most widely used is the Secure Sockets

Layer protocol (SSL), an encryption system bundled with most Web browsers.

19.5.1 SSL

Recall that in public key encryption, a server can publish a public key KS and any Web

browser can then send a message M containing a credit card number to it, encrypted

using KS: {M}KS. This is, in essence, what SSL does, although in practice it is more

complicated. SSL was developed to support encryption and authentication in both di-

rections, so that both http requests and responses could be protected against both

eavesdropping and manipulation.

Here is a simplified description of the SSL version used to protect Web pages that

solicit credit card numbers.

1. The client sends a client hello message to the server, which contains its name

C, a transaction serial number C#, and a random nonce NC.

2. The server sends a server hello message, which contains its name S, a trans-

action serial number S#, a random nonce NS, and a certificate CS containing
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its public key KS. The client now checks the certificate CS back to a root cer-

tificate issued by a company such as Verisign and stored in the browser.

3. The client sends a key exchange message containing a pre-master-secret key

K0, encrypted under the server public key KS. It also sends a finished message

with a message authentication code (MAC) computed on all the messages to

date. The key for this MAC is the master-secret K1. This key is computed by

hashing the pre-master-secret key with the nonces sent by the client and

server: K1 = h(K0, NC, NS). From this point onward, all the traffic is encrypted;

we’ll write this as {...}KCS in the client-server direction and {...}KSC from the

server to the client. These keys are generated in turn by hashing the nonces

with K1.

4. The server also sends a finished message with a MAC computed on all the

messages to date. It then finally starts sending the data.

C Æ S: C, C#, NC

S Æ C: S, S#, NS, CS

C Æ S: {K0}KS

C Æ S: {finished, MAC(K1, everything_to_date)}KCS

S Æ C: {finished, MAC(K1, everything_to_date)}KSC, {data}KSC

The SSL design goals included minimizing the load on the browser, and then mini-

mizing the load on the server. Thus, the public key encryption operation is done by the

client, and the decryption by the server; the standard encryption method (ciphersuite)

uses RSA, for which encryption can be arranged to be much faster than decryption.

(This was a wrong design decision, as browsers generally have a lot more compute cy-

cles to spare than servers; the use of RSA has created a brisk aftermarket for crypto

accelerator boards for Web servers.) Also, once a client and server have established a

pre-master-secret, no more public key operations are needed, as further master-secrets

can be obtained by hashing it with new nonces.

The full SSL protocol is more complex than this, and has gone through a number of

versions. It supports a number of different ciphersuites; for example, export versions of

browsers can be limited to 40-bit keys—a condition of export licensing that was im-

posed for many years by the U.S. government. Other ciphersuites support signed Dif-

fie-Hellman key exchanges for transient keys, to provide forward and backward

secrecy. SSL also has options for bidirectional authentication, so that if the client also

has a certificate, this can be checked by the server. In addition, the working keys KCS

and KSC can contain separate subkeys for encryption and authentication. For example,

the most commonly used ciphersuite uses the stream cipher RC4 for the former and

HMAC for the latter, and these need separate keys.

Although early versions of SSL had a number of bugs [784], the latest version

(called TLS by Microsoft) appears to be sound (but it has to be implemented carefully

[116]). It is being used for much more than electronic commerce—an example being

medical privacy, where it’s likely to replace proprietary networks and allow confiden-

tial patient data to be sent over the Internet [175]. SSL is also spreading from Web ap-

plications, and is now incorporated as an option in Win2K, where it can be used to set

up secure sessions between machines in different domains. There are problems,
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though, and some of the most glaring have to do with the nature and management of

certificates. We’ll talk about them in Section 19.5.3.

19.5.2 SET

Early experience with credit cards and the Internet showed that the real risk of com-

promise of credit card numbers did not come from eavesdropping on IP traffic—of

which no case has ever been confirmed—but from hacking merchant Web servers and

other end systems, which often retain credit card numbers, and are frequently attacked.

So, in 1995–1996, there was an effort to develop a better payment protocol, which

would use digital signatures rather than credit card numbers.

Eventually, a consortium which included Microsoft, Netscape, VISA, and Master-

Card, came up with the Secure Electronic Transaction (SET) protocol. The ideas be-

hind SET were:

• Customers will have public key certificates too, not just merchants. So cus-

tomers can sign transactions, which include payment orders to their banks.

• The customer signs and enciphers two separate messages, one to the merchant,
which contains a description of the goods and the price but not the credit card
number; and another to the bank, which contains the price and the credit card
number but not the description of the goods. The signatures are linked.

• The back-end transaction processing from the acquiring bank to the brand to

the card-issuing bank uses the existing legacy systems.

SET was supposed to reassure customers that online transactions would be secure,

and to reduce the cost of fraud (mainly by denying credit card numbers to merchants).

The business model was that SET transactions would be treated as if the cardholder

were present; that is, the bank would assume the fraud risk, and the merchant discount

would be lower.

Because of the number of different legacy systems that had to be supported, and the

range of features demanded by various industry players, SET is even more complex

than SSL. Again, I’ll give a simplified account of it.

First, the customer sends the merchant server her certificate CC for her public key

KC, and a nonce, NC. The server replies with certificated public keys for the merchant

(CS, KS) and its bank (CB, KB), plus a transaction sequence number S#. Then the cus-

tomer sends a message containing an order, encrypted under the merchant’s public key,

and a payment instruction, encrypted under the bank’s public key. Hashes of both of

these are signed with the customer’s private signing key. Next is an authorization step,

which can be performed online or deferred, as appropriate: the server sends the pay-

ment instruction to the acquiring bank, together with a summary of the order, which

includes the amount payable but not the exact description of the goods. The bank

checks all this and refers to the card-issuing bank, if necessary. If everything’s in or-

der, it sends the server an authorization response similar to the traditional one (with an

amount and an authorization code), fortified with a signature.

C Æ S: C, NC, CC

S Æ C: S, S#, CS, CB
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C Æ S: {Order}KC, {Payment}KB, sigKC {h(Order), h(Payment)}

S Æ B: {Summary}KB, {Payment}KB

B Æ S: sigKB {Auth_response}

SET appears to have met its specifications, but failed to succeed in the marketplace.

The reasons are instructive.

• First, the benefits turned out to be less than expected. Many large merchants

were breaking their cardholder agreements by retaining customer credit card

numbers—principally for use as indexes in marketing databases—and were not

prepared to stop using them. So a feature was added whereby merchants could

get the credit card number from the acquiring bank. This was thought to negate

much of the hoped-for security improvement. (In fact, it wasn’t that bad as

banks could have issued credit card numbers that were valid only for SET

transactions, so stealing them wouldn’t have mattered.)

• Second, the costs were too high. Building a public key infrastructure to issue
all credit cardholders with public key certificates would have been enormously
expensive. Performance was also an issue.

• Third, there was nothing in it for the customers. Customers trading on the Web

under MOTO rules could reverse the transaction if they were unhappy—not

just about the payment, but about the service, the product, or anything else.

Using SET transferred them to cardholder-present rules, and in many countries

removed this protection. Thus, customers were much worse off and would

have been insane to use SET. Also, installing SET usually involved down-

loading megabytes of SET wallet and going through a laborious certification

procedure.

In the end, SET cost too much and delivered too little; and as far as the customers

were concerned, it was a disaster. It is being allowed to expire quietly. The main lesson

is, perhaps, that when designing systems for e-business, you should deal with issues as

they are in practice, rather than in theory, and think about how your design will affect

the interests of principals other than your client.

19.5.3 PKI

Public key infrastructures (PKIs) are still an issue; there is frequent semantic confusion

between “public (key infrastructure)” and “(public key) infrastructure.” In the first, the

infrastructure can be used by whatever new applications come along; I call this an open

PKI; in the second, it can’t; I call this a closed PKI.

Examples of open PKIs are:

• Merchants using SSL are supposed to have certificates for their public keys,

and several companies such as Verisign will certify a public key as belonging

to a particular company after doing appropriate due diligence.

• There are many proposals to base new online services, and particularly busi-
ness-to-business services, on certified digital signatures.



Security Engineering: A Guide to Building Dependable Distributed Systems

402

• Many governments are thinking of issuing their citizens with public key cer-

tificates, probably in smartcards, as next-generation identity cards. Although

most businesses are really only interested in whether they will be paid, gov-

ernments offer a range of services (such as tax and welfare) that can be

cheated by people who can masquerade as more than one person. So there is

much government interest in promoting the use of PKI technology, and this

has led to legislation, which I’ll discuss in Chapter 21.

The classic examples of closed PKIs are to be found in the networks operated by

military agencies and by banking service providers such as SWIFT, which use asym-

metric cryptography but do not publish any keys. Now that Win2K includes SSL as an

authentication mechanism, it can be used to set up secure wide area networking across

a number of scattered sites in a company; and if the number of sites is at all large, this

may involve the company operating its own PKI to manage the keys. So closed PKIs

may become much more common; and even where a service using asymmetric cryptog-

raphy is offered to the public, there may be no keys published. An example is the

Mondex electronic purse, which uses RSA cryptography and further protects the keys

in tamper-resistant smartcards.

At the time of writing, PKI was one of the most heavily promoted protection tech-

nologies. However, it has a number of intrinsic limitations, many of which have to do

with the first interpretation—namely that the infrastructure is provided as a public

service that anyone can use. I discussed many of the underlying problems in Chapter 6.

Naming is difficult; and a certificate saying, “Ross Anderson has the right to adminis-

ter the machine foo.com” means little in a world with dozens of people of that name.

One way to solve the naming problem is for each business to run its own closed PKI,

which might be thought of at the system level as giving customers a unique account

number which isn’t shared with anyone else. This leads to the “one key or many” de-

bate. Should I expect to have a single signing key to replace each of the metal keys,

credit cards, swipe access cards, and other tokens that I currently carry around? Or

should each of these be replaced by a different signing key? The second option is more

convenient for business as sharing access tokens can lead to huge administrative costs

and liability issues. It also protects the customer: I don’t want to have to use a key with

which I can remortgage my house to make calls from a payphone. It’s just too easy to

dupe me into signing a message by having the equipment display another, innocuous,

one. (I don’t know how to be confident even of a digital signature I make on my own

PC, and I’ve worked in security for over fifteen years. Checking all the software in the

critical path between the display and the signature software is way beyond my pa-

tience.) But the existing PKI machinery was largely developed to provide an electronic

replacement for the telephone book, and tends to assume that everyone will have a

unique name and a unique key. This in turn means an open PKI architecture.

This leads to political issues, such as, which CAs do we trust, and why? Various at-

tempts have been made by governments to license certification authorities and to im-

pose a condition that there be “back doors” for law enforcement access. Governments

overwhelmingly favor the one-key-fits-all model of the world. It’s also possible that

open PKIs will be favored by network economics, which I discuss in Section 19.6:

once a single PKI becomes dominant, the pressure on everyone to use it could lead to

its being entrenched as a monopoly. (This is the reason for the high stock market

valuation of VeriSign.)
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There are numerous issues of implementation detail. For example, the dominant cer-

tificate format (X.509) does not have the kind of flexible and globally scalable ‘hot

card’ system that the credit card industry has developed over the years. It rather as-

sumes that anyone relying on a certificate can download a certificate revocation list

from the issuing authority. This is tiresome and inefficient Better ways of managing

certificate revocation have been proposed; the question is whether they’ll get imple-

mented. Also, X.509 is designed to certify names, when for most purposes people want

to certify an authorization.

There are many other limitations of certificates:

• Most users disable the security features on their browsers, even if these

weren’t disabled by default when the software shipped. Recall that the third

step of the SSL protocol was for the client browser to check the certificate

against its stored root certificates. If the check fails, the browser may ask the

client for permission to proceed; but the way most browsers are configured, it

will just proceed anyway. This lets many e-commerce sites save themselves

money by using expired certificates or even self-signed certificates; most users

don’t see the warnings (and wouldn’t know how to respond if they did).

• The main vendors’ certificates bind a company name to a DNS name, but are
not authorities on either; and they go out of their way to deny all liability.

• Competition in the certificate markets is blocked by the need to get a new root
certificate into Microsoft Internet Explorer (VeriSign stockholders will con-
sider this to be not a bug but a feature).

• Even when you do get a valid certificate, it may be for a company and/or DNS
name different from that of the site you thought you were shopping at, because
the Web site hosting or the credit card acquisition was outsourced.

• U.S. export regulations have meant that large numbers of sites use weak en-

cryption. A recent survey of SSL security showed that of 8,081 different se-

cure Web servers, 32% weren’t, for various reasons—too-short keys, weak

ciphersuites, and expired certificates being the main causes [567].

There is also a serious problem with consumer protection law. Introducing a pre-

sumption that digital signatures are valid undermines the signer’s rights; in paper sys-

tems the risk of fraud is borne by the party who relies on the signature. In the absence

of such a presumption, it makes no difference to the cardholder’s liability whether the

sites at which he shopped had valid certificates with appropriate names; and in any

case, there’s no convenient way for him to record his transactions to show that he exer-

cised due diligence. I go into some of these issues at greater length in Chapter 21.

In short, while public key infrastructures can be useful in some applications, they are

unlikely to be the universal solution to security problems as their advocates seem to

believe. They don’t tackle most of the really important issues at all.

19.5.4 EDI and Business-to-Business Systems

The early examples of electronic commerce given in Section 19.2, such as the tele-

graph and EDI, were largely business-to-business systems. These systems provide
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many of the examples of working PKIs. We looked at an example in detail in Section

9.3.1—the SWIFT network used since the mid-1970s to send secure payment messages

between banks in different countries, and upgraded in the 1990s to use public key

techniques. Essentially, the same architecture has been adopted for a number of other

systems, including the CREST system used to register ownership of all U.K.-listed eq-

uities and to support share dealing between banks and brokers.

A more modern example of a business-to-business system is Bolero, an EU system

that handles electronic bills of lading [262, 458, 492]. These are the legal documents

that confer ownership of shipping cargoes. Their average value is about $25,000, but,

depending on the price of oil, an oil tanker’s cargo can be worth $100,000,000. Car-

goes are often traded many times while the ship is at sea, and many of the traders are

rather dubious shell companies. In addition, the enforcement of sanctions against rogue

states means that their national intelligence agencies are often involved in using such

shell companies to buy things like oil when they shouldn’t. So this is a high-value,

high-threat environment. Quite some care has to be taken to ensure that bills of lading

cannot be duplicated, and that their ownership history can be established.

Bolero uses two main protection mechanisms. First, there is tamper resistance. IBM

4753 or 4758 cryptoprocessor cards are used to hold the bills; and there is a protocol

involving digital signatures that is used to transfer them. Second, a central registry is

used to ensure that the name of the unique holder can be determined at all times. There

is also a registration authority (which vets the credentials of organizations) and a certi-

fication authority (which signs the public keys of individuals authorized by registered

organizations).

Another example is healthcare EDI systems, which typically send test results, such

as radiology and cytology from large hospitals and laboratories, to family doctors and

local clinics. Here the requirement isn’t non-duplicability, but authenticity plus confi-

dentiality. Early systems provided this using closed, proprietary messaging networks;

more modern systems have encryption and authentication mechanisms that work at

message gateways. The dozens of messages sent each day from a hospital laboratory to

a general medical practice are batched up, signed with the hospital’s signing key, en-

crypted with the practice’s public key, and shipped by email. In an ideal world, mes-

sages would be signed individually by the consultant writing the opinion, and

addressed to the physician treating the patient; in practice, this is hard, as both labs and

physicians use proprietary systems that can communicate only using EDIFACT gate-

ways. These are specialized systems that do format conversion; they are too expensive

for everyone to have them running on their PC. This design causes a number of prob-

lems. For example, if a record of the digital signatures of lab reports is to be kept in

case of malpractice litigation, then the whole batch must be kept, which conflicts with

privacy rules about the destruction of records pertaining to patients who have died or

moved away.

This kind of problem isn’t limited to healthcare. Many systems have message proc-

essing functions that cause subsets of transaction data to go to different destinations in

an organization. Protecting the integrity of structured data can be much harder than it

looks.

So, for a number of reasons, implementing business-to-business secure communica-

tions isn’t at all straightforward. As innovative business models proliferate, there are

bound to be expensive design errors. I’ll discuss how to reduce the probability of these

in Part 3.
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19.5.5 E-Purses and Micropayments

In the first half of the 1990s, a large number of electronic purse systems were devel-

oped. The idea was to replace debit cards with something that would work offline

without being more vulnerable to forgery. The typical implementation involved both

customers and merchants having chip cards, each with a value counter, plus a card-to-

card payment protocol whereby two cards would authenticate each other—one would

be debited and the other would be credited. I described the design of a typical protocol

in Section 2.7.1.

The promoters of these schemes had huge hopes. Europay Austria, for example, was

confident that its product would displace 20% of cash transactions within three years.

But by the end of the decade, the outcome was disappointing. Even where an e-purse

chip has been built into standard bank cards and issued to the entire customer base, as

with Proton in Belgium and the Geldkarte in Germany, usage remains disappointing.

(The business is surveyed in [763].) The slow take-off might have been expected,

given the history of credit cards; like them, e-purses suffer from what economists call

network externalities, meaning that the more the cards are used, the more merchants

accept them, and the more useful they become—not just to their existing customers but

to potential adopters. But when few people use them, merchants don’t have a motive to

buy terminals; and with few terminals, they attract few users. At best, such schemes

have some way to go before they reach critical mass; they may get there eventually,

driven by applications such as payphones, and then they could grow very quickly in-

deed. I discuss the underlying economics further in Section 19.6.

The one exception to the slow start imposed on new payment mechanisms by net-

work externalities may be the micropayment mechanism that might be shipped with the

second phase of third-generation mobile phones, which I described in Section 17.3.4.

As all purchasers of next-generation phones will be using this system to pay for calls,

as well as for value-added services, the extra cost involved in adding a new service

should be low, while the customer base should be substantial within a few years. There

is a risk that, as with Geldkarte, this will end up as a system that’s widely deployed but

has few active users; but there’s also the possibility that it might fly. (Phone-based

payments could also become a serious problem if, as seems likely, third-generation

phones get the capability to run Java applets—with all the potential for malicious code,

feature interaction, and general confusion that this would bring.)

It’s also conceivable that third-generation phones could provide a close thing to a

universal open PKI, if certification authorities are used to sign users’ public key cer-

tificates in a way that’s usable by other services. On the other hand, if the top-level

public key protocol is the Royal Holloway one, and (as in its established government

uses), this escrows signing keys as well as confidentiality keys [50], then it will be

much less useful, because the evidential value of signatures produced by the system

will be undermined.

19.6 Network Economics

The network externalities mentioned above don’t just apply to people trying to launch

new payment systems, but are of very much wider importance. Many communications

systems, and the downstream applications they support, suffer from them. They dictate
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not just e-commerce business models, but also many of the problems that the security

engineer must wrestle with.

The key observation is that the more users there are on a system, the more people

there are to talk to, and so the more useful it is to each user. (This is sometimes re-

ferred to as Metcalfe’s law.) There are many documented examples of how the result-

ing positive feedback can give a large advantage to the early players in a market, and

lead toward a monopoly. For example, in the early years of the twentieth century,

AT&T’s dominance of long-distance telephone communication enabled it to crush lo-

cal competition and to establish itself as the near-monopoly provider in the United

States until its break-up in 1984. Compatability is also crucial. In the 1950s, there was

a battle between CBS and RCA over whose standard for color television would prevail;

although the FCC endorsed CBS, its standard wasn’t backward-compatible with the

millions of installed black-and-white TV sets. RCA’s standard was, so it won.

The most obvious effect of this positive feedback is that once a network passes a

certain critical size, it grows rapidly. The telegraph, the telephone, the fax machine

and, most recently, the Internet, have all followed this model. Another effect is that

there are enormous rewards for being first. This happens to some extent in traditional

businesses such as cars where supplyside economies of scale help big firms to grow

bigger. But there are limits: once they became too large, companies such as General

Motors couldn’t react quickly enough to compete against upstarts such as Toyota. With

networks, the economies of scale occur on the demand side, and so there is no upper

limit on growth.

Network effects aren’t limited to the kind of networks that involve shipping electri-

cal or optical signals, which economists refer to as real networks. They also apply to

virtual networks, of which the classic example is software. Recall the battle for su-

premacy between the PC and the Mac in the mid-1980s: once it was clear that there

were going to be more users of PCs than Macs, software houses concentrated on ship-

ping their products for the PC first and the Mac only afterward, if at all. This meant

that there was more software for the PC, so people were more likely to buy PCs, and

the positive feedback continued.

This isn’t limited to PC architecures, but works at all sorts of levels including appli-

cation software and file formats. Once most people started using Microsoft Word for

documents, that was even more reason for everybody else to (regardless of the risk

from Word macro viruses). And such a network effect can be enhanced by arranging

that your file formats are difficult for other companies’ programs to read, and by

changing them often; I’ll discuss this in the next section.

One of the features of markets exposed to network effects is lock-in. This can be ei-

ther technology lock-in or vendor lock-in. Technology lock-in often involves comple-

mentary suppliers, as with the software vendors whose bandwagon effect carried

Microsoft to victory over Apple. A side effect of this is that successful networks appeal

to complementary suppliers rather than to users—the potential creators of “killer apps”

need to be courted. Once the customers have a substantial investment in complemen-

tary assets, they will be locked in. Andrew Odlyzko observes that much of the lack of

user-friendliness of both Microsoft software and the Internet is due to the fact that both

Microsoft and the Internet achieved success by appealing to developers. The support

costs that Microsoft dumps on users—and, in fact, even the cost of the time wasted

waiting for PCs to boot up and shut down—greatly exceed its turnover [595].
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So there are three particularly important features of information technology markets.

• First, technology often has high fixed costs and low marginal costs. The first

copy of a chip or a software package may cost millions to produce, but subse-

quent copies may cost very little. This isn’t unique to information markets; it’s

also seen in business sectors such as airlines and hotels. In all such sectors,

pricing at marginal cost will tend to drive revenues steadily down toward the

cost of production (which in the case of information is zero).

• Second, there are often high costs to users from switching technologies, which
leads to lock-in. Such markets may remain very profitable, despite the low
marginal costs.

• Third, there are often network externalities of the sort discussed earlier. The

value of a product to a user depends on how many other users adopt it.

All three of these effects tend to lead to winner-take-all market structures with

dominant firms. Indeed, firms will attempt to manipulate these effects to gain competi-

tive advantage in various ways.

One common strategy, for example, is differentiated pricing. This means pricing the

product or service not to its cost but to its value to the customer. This is familiar from

the world of air travel: you can spend $200 to fly the Atlantic in coach class, $2,000 in

business class, or $5,000 in first. (As noted in Section 19.3.3, this is also a classic case

of Goldilocks pricing: the main function of the first-class fare is to enable people who

fly business class to claim they are being economical.) This business model is spread-

ing widely in the software and online services sectors. A basic program or service may

be available free; a much better one for a subscription; and a “gold” service at a ri-

diculous price. In many cases, the program is the same except that some features are

disabled for the budget user while the “gold” user gets a high-quality helpline. Many of

the protection mechanisms you will come across have as their real function the mainte-

nance of this differential.

Another strategy is to manipulate switching costs. The long-term value to your ISP

of your account, in the sense of the discounted future earnings, should be equal to the

total amount of money (and hassle) involved in the customers’ switching to a com-

petitor. So the ISP will do its utmost to make it easy for you to switch to them, but dif-

ficult to switch from them. This applies with particular force to dominant-firm markets

where the incumbent tries to build a monopoly which its competitors try to attack. In-

cumbents try to increase the cost of switching, whether by indirect methods, such as

controlling marketing channels and building industries of complementary suppliers, or

by direct methods, such as making systems incompatible and hard to reverse-engineer.

Meanwhile, market entrants try to do the reverse: they look for ways to reuse the base

of complementary products and services, and to reverse-engineer whatever protection

the incumbent builds in. They may use penetration pricing—selling cheaply to subsi-

dize switching—and the incumbent may respond with vaporware, designed to increase

users’ perception of the opportunity cost of switching.

As technology advances, even seemingly impregnable monopolies can be replaced,

so the competition can be vicious. Extensive use is made of protection mechanisms,

from tamper-resistant devices to proprietary encryption algorithms.
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19.7 Competitive Applications and Corporate Warfare

This leads us to the applications of information security mechanisms whose goal isn’t

to protect the customers or their data, but to either entrench or attack a monopoly.

Sometimes the mechanisms in use are obvious. For example, manufacturers of game

consoles try to keep their platforms closed so that they can monopolize sales of acces-

sories and impose conditions on games software vendors—which may involve not just

royalties but also exclusivity agreements. Legal solutions such as copyrighted inter-

faces aren’t enough, as in many countries there is an exemption from copyright law for

firms doing reverse-engineering in order to build a compatible product. So crypto-

graphic challenge-response protocols are used to authenticate genuine accessories and

game cartridges; competitors hire reverse-engineering labs to dig out the keys. I men-

tioned other applications of accessory control in Section 2.2.

Another example comes from Microsoft Passport. This is a system whose ostensible

purpose is single sign-on: a Passport user doesn’t have to think up separate passwords

for each participating Web site, with all the attendant hassle and risk. Instead, some

sites use Passport, a central authentication server run by Microsoft, to which users log

on. Servers use Web redirection to connect their Passport-carrying visitors to this

server; authentication requests and responses are passed between them by the user’s

browser in encrypted cookies. So far, so good.

But the real functions of Passport are somewhat more subtle [727]. First, by patch-

ing itself into all the Web transactions of participating sites, Microsoft can collect a

huge amount of data about online shopping habits, and enable participants to swap it.

The redirection and cookie mechanisms mean that, in effect, all the browsing sessions

you have at participating sites become one single session, managed by Microsoft. If

every site can exchange data with every other site, then the value of a network of Web

sites is the square of the number of sites, and there is a strong network externality. So

one such network may come to dominate, and Microsoft hopes to own it. Second, the

authentication protocols used between the merchant servers and the Passport server are

proprietary variants of Kerberos, meaning the Web server must use Microsoft software

rather than Apache or Netscape. In short, Passport isn’t as much a security product as a

play for control of both the Web server and purchasing information markets. It comes

bundled with services such as Hotmail, is already used by 40 million people, and does

400 authentications per second on average. Its known flaws include that Microsoft

keeps all the users’ credit card details, creating a huge target; various possible mid-

dleperson attacks; and that a user can be impersonated by someone who steals their

cookie file. Passport has a “logout” facility that’s supposed to delete the cookies for a

particular merchant, so users can use a shared PC with less risk, but this feature doesn’t

work properly for Netscape users [473].

The constant struggles to entrench or undermine monopolies, and to segment and

control markets, determine many of the environmental conditions that make the secu-

rity engineer’s work harder. The markup language XML enables document content to

be processed easily, and has the potential to build in a rich syntax of protection attrib-

utes [46]. However, it’s not taking off as many people had hoped, because if Web

pages become easily machine-readable, then comparison shopping bots are easier to

build. In addition, many online merchants gauge demand by discounting perhaps every

hundredth transaction by a random amount. This wouldn’t work if shoppers had tools

to hit the site again and again until they got a bargain. In general, there is a constant



Chapter 19: Protecting E-Commerce Systems

409

struggle between the designers of intermediaries—from Web caches to anonymous

communication services—who wish to control a user’s transactions is various ways,

and merchant sites, that wish to break this control and “own” the user directly.

I’ll come back to the effects of network economics on security in Section 22.6.

19.8 What Else Goes Wrong

An important survey of the things that went wrong with First Virtual, one of the first

online banks, revealed that the typical problem was an upset customer calling at three

in the morning and wanting to speak to someone in Korean about a missing payment.

Investigation would typically reveal that the cause was an obscurely broken imple-

mentation of one or more Internet protocols, or a mistake made in typing an email ad-

dress. Solving such problems is not currently a core competence of the typical financial

institution [129].

This pattern—that most of the problems come from unanticipated bugs and blun-

ders—was to be expected from other application areas; and it has continued. A number

of large online stores, including Buy. com, Staples. com and Amazon-backed crafts

retailer eZiba. com, were hit by pricing errors. At Buy. com, a coupon meant to be

worth $50 off any order of $500 or more actually gave $50 off any purchase, making

any item sold for $50 or less free to the buyer. At eZiba. com, each customer was of-

fered a $20 voucher; people logged on with multiple names and found that they could

use the discount many times [671]. Errors like these are nothing new; there have been

numerous cases in the past of a special offer being carelessly designed, or even just

being more popular than planned for. The difference is that, on the Net, an error can

become widely known very rapidly and lead to large losses.

There have also been some interesting attacks on specific systems. The Radio Data

System (RDS) adds a data channel to broadcast radio so the receiver can tell which sta-

tion it is and what sort of content is being broadcast. This enables the radio to switch

automatically to the strongest transmitter for your favorite network when you’re driv-

ing along in your car; you can also program the radio to interrupt you if traffic infor-

mation appears on another channel. (An RDS radio has two tuners, one of which

constantly sweeps the band looking for a higher-strength or higher-priority signal).

Pirate radio stations have developed the trick of marking their content falsely as traffic

news, so lots of car radios switch to them automatically [306]. This isn’t always obvi-

ous if the pirate is playing the same general kind of music as the station you were just

listening to. It’s also not obvious how genuine radio stations could be authenticated;

perhaps the FCC would act as a certification authority, and issue certificates along with

spectrum licenses. But then how would a genuine station that turned pirate be revoked?

The moral is that often it is necessary to protect the integrity of distribution channels;

and, more generally, that interesting new features often turn out to be vulnerable to

interesting new exploits.

Computer games are another fertile field for finding hacks. An example is Quake, a

distributed game whose source code is openly distributed. Some players have exploited
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their access to the code to modify the Quake client so that they can cheat [633]. This

raises a number of questions, particularly with e-commerce applications that employ

Java applets or other code that is run on a potentially hostile customer machine.

There’s no obvious way such applets can protect themselves against virtualization. At

the very least, it seems prudent to have a non-Java version of your site. This will not

only mean that you can do business with people like me, who leave Java turned off for

security reasons; it will also give you a fallback mechanism to block fraud based on

bad applets without having to close down your site for redevelopment.

19.9 What Can a Merchant Do?

In general, the advice I give to people concerned about e-commerce risks is that they

are not much different from normal business and IT risks.

You should make sure your developers understand the business model; use a struc-

tured development methodology; test your code thoroughly; don’t be too clever; look

around for proven ideas which you can adopt; by all means worry about the firewall

through which your internal systems are connected to the Net, but pay particular atten-

tion to internal controls to discourage, prevent, and detect insider fraud. Expect that no

matter what you do, things will go wrong and may have to be changed quickly. Don’t

be too greedy; if you put “We guarantee you can’t lose money shopping online with

us” on your Web page and “Our records are the sole and definitive evidence of all

transactions between us” in the small print, you may expect to have the TV crew from

a consumer rights program camping on your doorstep one day.

This much is motherhood and apple pie for any company IT director. The main way

in which e-commerce appears different—at least as of mid-2000—is the seriously en-

hanced risk and cost of customers repudiating credit card transactions. There’s no ob-

vious fix; but a useful damage limitation strategy is to have a controlled procedure

through which customers are invited to complain, rather than going directly to their

credit card company on day one. For example, you can advertise a policy of allowing

exchanges with a discount off the postage; and if customers do want a refund, ask them

to print out and sign a form, and mail it to you by physical post, rather than offering a

Web form for the purpose.

Above all, focus on the business risks, and have risk management documentation

that you upgrade regularly in consultation with your auditors, insurers, and directors,

rather than getting carried away with the latest technical security gizmos. Business is

business, and just because there are now highly paid computer scientists designing

business processes that used to be the domain of the work study clerks of old, this does

not mean that things are any better. The risks associated with the “Net mentality” have

to be carefully assessed and managed.

Finally, it may make sense to pay some attention to non-technical issues such as

product liability. One critical advantage enjoyed by U.S. e-businesses is that foreign

civil judgments aren’t enforced by U.S. courts. So an e-business operating from the

United States doesn’t have to worry about being sued by consumers in faraway coun-
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tries, even if the local law lets them sue locally, because the judgments they get cannot

be enforced. But in Europe, there are international reciprocal agreements: a U.K. re-

tailer sued in a local Greek court can have the judgment enforced in the U.K. On the

other hand, U.S. courts are accessible and can give punitive damages, while courts in

many European countries are so expensive and give such small awards that product

liability suits are rare. These considerations interact with credit card chargeback issues,

but are not subsumed by them. They can be so complex that all I’ll say is that you

should get legal advice: the best location for your business may depend on what you’re

selling, and to whom.

19.10 Summary

Most of the problems facing online businesses are no different from those facing other

organizations, and the network security risks are not much different from those facing

traditional businesses. The real increased risks to an e-business have to do with ways in

which traditional risk management mechanisms don’t scale properly from a world of

local physical transactions to one of worldwide, dematerialized ones. Credit card trans-

action repudiation is the main example at present. There are also significant risks to

rapidly growing companies that have hired a lot of new staff but that don’t have the

traditional internal controls in place.

Research Problems

Most of the research behind the e-commerce protection mechanisms that are already

deployed, or about to be, was done around 1994–1996. It may well be time for a sec-

ond wave now that we can see what has worked, what can work but failed in the mar-

ketplace, and where the real problems are.

Further Reading

The early history of the telegraph can be found in a book by Major General RFH Nal-

der [569], while Tom Standage tells the story of its rapid deployment in Victorian

times [729]. There is a survey of organized credit card counterfeiting in [592]. The of-

ficial specification of SSL is hard to read; a better exposition is in [604]. The SET

protocol is described in a book by its chief architect Li Song [509]. The problems of

public key certification and infrastructures are analyzed in [42, 268]. Finally, the best

book I know on network economics is by Carl Shapiro and Hal Varian [696].
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CHAPTER

20

Copyright and Privacy
Protection

The DeCSS case is almost certainly a harbinger of what I would

 consider to be the defining battle of censorship in cyberspace. In my

 opinion, this will not be fought over pornography, neo-Nazism, bomb

 design, blasphemy, or political dissent. Instead, the Armageddon of

 digital control, the real death match between the Party of the Past

 and the Party of the Future, will be fought over copyright.

—JOHN PERRY BARLOW

Be very glad that your PC is insecure—it means that after you buy

 it, you can break into it and install whatever software you want.

 What YOU want, not what Sony or Warner or AOL wants.

—JOHN GILMORE

20.1 Introduction

There are a number of reasons to consider technical mechanisms that support copyright

and privacy in a single book chapter.

At the political level, there is the conflict alluded to by Barlow in the above quota-

tion. The control of information has been near the center of government concerns since

before William Tyndale (one of the founders of the Cambridge University Press) was

burned at the stake for printing the Bible in English. The sensitivity continued through

the eighteenth-century battles over press censorship, to the more recent doctrine that

warfare is about controlling the information space of one’s own nation and its com-

petitors. In the last few generations, the great wealth accruing to the owners of literary,

film, and music copyright has created another powerful interest in control.

At a system level, both copyright and censorship are access control issues, con-

cerned with limiting access to some information to people in a particular group. In the
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former case, the group consists of people who have paid for the bits in question; in the

latter, they meet some other criterion (such as being over 18, or nonresidents of Singa-

pore, or whatever). Sometimes, they overlap, as with the common convention of re-

stricting online pornography to users who can use a credit card with an “age check”

service. (The assumption that all credit card holders are 18 or over may not hold up

forever, giving rise to an interesting security failure of the “changing environment”

type.) In general, users’ real names matter: if identity is no longer sacrosanct, liability

for sedition, copyright infringement, and defamation become shaky.

Privacy is also largely an access control issue. It’s about being able to limit the

number of people who can see who you’re exchanging email with, what you’re reading

and what music you’re listening to. In theory, there is no compelling reason why they

should be in conflict, and in the pre-electronic world, they usually weren’t Copyright

was protected by the cost of small-scale duplication; it was simpler and cheaper to buy

a book or a record than to make a single copy, and people who made large numbers of

copies could usually be tracked down and prosecuted. The cost barrier to copying was

eroded significantly by the photocopier and the cassette recorder, but they didn’t

change the basic economics. So books, records, and videos can be bought for cash and

traded secondhand. But the move to a digital world is changing this. Although there are

some systems, such as pay-TV, which depend on a physically tamper-resistant device,

most copyright control is moving in the direction of registration. Once you have

bought a software product, you’re supposed to register as a user, and this business

model is spreading to other media—which in turn is undermining privacy.

In this chapter, I’m going to use a technical view of privacy. Confidentiality means

keeping information secret because of an obligation owed to a third party, while pri-

vacy refers to the ability to control the dissemination of information about oneself. In

the privacy applications I’ve discussed up till now, these tend to overlap. For example,

my medical privacy is implemented by imposing on my doctor a duty of confidential-

ity. But in this chapter I’m interested in the mechanisms I can use to protect my own

privacy directly, starting from encrypted electronic mail and going up through online

pseudonyms and networks of anonymous remailers to file systems whose owners can

plausibly deny knowledge of their contents.

At this technical level, the tension between copyright and privacy becomes acute.

Videos and music tracks that are not protected by physically tamper-resistant tokens

can in principle be copied and shared; they can end up being traded informally, on a

large scale, and without any payment to the copyright owner; and whatever the pres-

sure brought on ISPs to curtail traffic in things like MP3 audio files, the existence of

traceless communication systems might ultimately make enforcement efforts futile. On

the other hand, a number of existing and proposed electronic distribution systems make

encrypted content freely available: to decrypt it, the user must contact a server and buy

a key—which usually means providing your name and address. This means that there’s

enormous amounts of “information exhaust,” as one vendor puts it: a central license

server knows exactly who bought access to what, and when. Marketers think this is

magnificent; privacy advocates are appalled [260].

In addition, a number of the emerging technologies cut both ways. Data hiding tech-

niques can be used to embed copyright marks invisibly in digital video; they can also

be used for steganography, that is for hiding messages in other messages. The family

snapshots that you email to your brother might actually contain a ripped-off track from

your favorite band’s latest CD. (They could also contain a message organizing demon-
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strators to picket an international trade conference, so the government interest is never

far away.)

20.2 Copyright

The protection of copyright is now an obsession of the film, music, and book publish-

ing industries (often referred to collectively—and pejoratively—by computer industry

people as “Hollywood”). But this didn’t start with the Internet. There were long and

acrimonious disputes arose in many countries over whether blank audio or videocas-

settes should be subjected to a tax whose proceeds would be distributed to copyright

owners. And the issue isn’t confined to electronic media; in Britain, several million

pounds a year are distributed to authors whose books are borrowed from public lending

libraries [629]. Going back to the nineteenth century, there was alarm that the inven-

tion of photography would destroy the book publishing trade; and in the sixteenth, the

invention of movable type printing was considered to be highly subversive by most of

the powers that were, including princes, bishops, and craft guilds.

There is now a lot of work being done on electronic copyright management systems

(ECMS), of which the most significant fielded example to date is pay-TV. We’ve al-

ready looked at the tamper-resistance aspects of pay-TV systems, and some of the

protocol failures. I noted that such systems are highly challenging because the attack-

ers can buy as many access tokens as they like for dismantling and study. But before

we worry about high-tech systems, let’s look at software protection, as most of the cur-

rent copyright issues have been played out in the PC and games software markets over

the last twenty years or so.

20.2.1 Software

Software for early computers was given away free by the hardware vendors or by users

who’d written it. IBM even set up a scheme in the 1960s whereby its users could share

programs they had written. (Most of these were useless, as they were too specialized,

too poorly documented, or otherwise too hard to adapt.) So protecting software copy-

right was not an issue. Almost all organizations that owned computers were large and

respectable; the software tended to require skilled maintenance; and so they often had

full-time system engineers employed by the hardware vendor on-site. There are still

sectors which operate on this business model. For example, one supplier of software

for bank dealing rooms takes the view that anyone who pirates its code is welcome, as

using it without skilled technical support would be a fast way for a bank to lose mil-

lions.

But when minicomputers arrived in the 1960s, software costs started to become sig-

nificant. Hardware vendors began to charge extra for their operating system, and third-

party system houses sprang up. To begin with, these mostly sold complete bespoke

systems—hardware, software, and maintenance—so piracy was still not much of an

issue. By the mid 1970s, some of them had turned bespoke systems into packages:
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software originally written for one bakery would be parameterized and sold to many

bakeries. The main type of copyright dispute in those days was when a programmer

left your company to join a competitor, and their code suddenly acquired a number of

your features. The question then was whether he’d taken code with him, or reimple-

mented it. The standard way to resolve such a problem is to look at software birth-

marks, features of how a particular implementation was done, such as the order in

which registers are pushed and popped. This continues to be an issue, and there are

various code comparison tools available—many of them developed in universities to

detect students cheating on programming assignments. (This thread of research leads to

general-purpose plagiarism-detection tools, which can trawl through natural language,

as well as code, and typically recognize a passage of text by indexing it according to

the least-common words that appear in it [376]; on to systems used by humanities

scholars to figure out whether Bacon wrote Shakespeare, and back to tools that try to

identify the authors of viruses from their coding style [476].)

With time, people invented more and more things to do with software. So a firm that

had bought a minicomputer for stock control (or contracted for time on a bureau serv-

ice) might be tempted to run a statistical program too to prepare management reports.

Meanwhile, the installed base of machines grew large enough for software sharing to

happen more than just occasionally. In response, some system houses started to put in

copyright enforcement mechanisms. A common one was to check the processor serial

number; another was the time bomb. In 1981, when I worked for a company selling

retail stock control systems, we caused a message to come up every few months saying

something like “Fault no. WXYZ—please call technical support.” WXYZ was an en-

crypted version of the licensed customer’s serial number, and if the caller claimed to

be from that customer we’d give them a password to reenable the system for the next

few months. (If not, we’d send round a salesman.) This mechanism could have been

defeated easily if the “customer” understood it, but in practice it worked fine—most of

the time it was a low-level clerk who encountered the fault message and called our

hotline.

Software piracy really started to become an issue when the arrival of microcomput-

ers in the late 1970s and early 1980s created a mass market, and software houses

started to produce products that didn’t require technical support to install and run. Ini-

tial responses varied. In a famous open letter from Bill Gates in 1976, a year after Mi-

crosoft was founded, he complained that less than 10% of all microcomputer users had

paid them for BASIC [319]. “Who cares if the people who worked on it get paid?” he

asked. “Is this fair?” His letter concluded: “Nothing would please me more than being

able to hire ten programmers and deluge the hobby market with good software.”

Appeals to people’s sense of fair play only got so far, and the industry next tackled

the obvious difference between minis and micros—the latter had no processor serial

numbers. Three general approaches were tried: to add uniqueness on to the machine, to

create uniqueness in it, or to use whatever uniqueness happened to exist already by

chance.

• The standard way to add hardware uniqueness was a dongle—a device, typi-

cally attached to the PC’s parallel port, which could be interrogated by the

software. The simplest just had a serial number; the most common executed a

simple challenge-response protocol; while some top-end devices actually per-

formed some critical part of the computation.
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• A cheaper and very common strategy was for the software to install itself on
the PC’s hard disk in a way that was resistant to naive copying. For example, a
sector of the hard disk would be marked as bad, and a critical part of the code
or data written there. Now if the product were copied from the hard disk using
the utilities provided by the operating system for the purpose, the data hidden
in the bad sector wouldn’t be copied and so the copy wouldn’t work. A variant
on the same theme was to require the presence of a master diskette which had
been customized in some way, such as by formatting it oddly or even burning
holes in it with a laser. In general, though, a distinction should be drawn be-
tween protecting the copy and protecting the master. It’s often a requirement
that people should be able to make copies for backup if they wish, but not to
make copies of the copies (this is called copy generation control).

• A product I worked on stored the PC’s configuration—which cards were pre-

sent, how much memory, what type of printer—and if this changed too radi-

cally, it would ask the user to phone the helpline. It’s actually quite surprising

how many unique identifiers there are in the average PC; ethernet addresses

and serial numbers of disk controllers are only the more obvious ones. Pro-

vided you have some means of dealing with upgrades, you can use component

details to tie software to a given machine.

A generic attack that works against most of these defenses (or at least those that

don’t hide critical code somewhere uncopiable) is to go through the software with a

debugger and remove all the calls made to the copy protection routines. Many hobby-

ists did this for sport, and competed to put unprotected versions of software products

online as soon as possible after their launch. Even people with licensed copies of the

software often got hold of unprotected versions as they were easier to back up and of-

ten more reliable generally.

The vendors also used psychological techniques.

• The installation routine for many business programs would embed the regis-

tered user’s name and company on the screen, for example in the toolbar. This

wouldn’t stop a pirate distributing copies registered in a false name, but it

could discourage legitimate users from giving casual copies to colleagues.

• Industry publicists retailed stories of organizations that had come unstuck
when they failed to get a critical upgrade of software they hadn’t paid for. One
of the popular stories was of the U.S. army bases in Germany that didn’t pay
for the VAX VMS operating system, then got hacked after they didn’t get a
security patch.

• If early Microsoft software (Multiplan, Word, or Chart) thought you were run-

ning it under a debugger, trying to trace through it, it would put up the mes-

sage, “The tree of evil bears bitter fruit. Now trashing program disk.” It would

then seek to track zero on the floppy and go “rrnt, rrnt, rrnt.”

In the mid- to late-1980s, the market split. The games market moved in the direction

of hardware protection, and ended up dominated by games console products with

closed architectures, where the software is sold in proprietary cartridges. Business

software vendors, however, generally stopped trying to protect mass-market products

using predominantly technical means. There were several reasons.

• Unless you’re prepared to spend money on seriously tamper-resistant dongle

hardware that executes some of your critical code, the mechanisms will be de-
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feated by people for whom it’s an intellectual challenge, and unprotected code

will be anonymously published. Code that isn’t protected in the first place is

less of a challenge.

• As processors got faster and code more complex, operating system interfaces
became higher level, and software protection routines of the “bad disk sector”
variety got harder to write. Now that it’s possible to run a Windows NT system
on top of Linux using vmware, application software can be completely
shielded from machine specifics such as Ethernet addresses. The net effect is
an increase in the cost and complexity of both protection and piracy.

• Protection is a nuisance. Multiple dongles get in the way of, or even interfere
with, each other. Software protection techniques tend to make a product less
robust and cause problems—as when your hard disk fails and you recover
from backup to a new disk. Protection mechanisms can also cause software
from different vendors to be unnecessarily incompatible, and in some cases
unable to reside on the same machine.

• Technical support became more and more important as software products be-
came more complex, and you only get it if you pay for the software.

• The arrival of computer viruses was great for the industry. It forced corporate
customers to invest in software hygiene, which in turn meant that casual
copying couldn’t be condoned so easily. Within a few years, antivirus pro-
grams made life much harder for copy protection designers in any case, as
nonstandard operating system usage tended to set off virus alarms.

• There was not much money to be made out of harrassing personal users as they
often made only casual use of the product and would throw it away rather than
pay.

• A certain level of piracy was good for business. People who got a pirate copy
of a tool and liked it would often buy a regular copy, or persuade their em-
ployer to buy one.

• In Microsoft’s case, customer reaction to its scare message was pretty nega-
tive.

• Many vendors preferred not to have to tackle issues such as whether the soft-
ware was licensed to the user (in which case he could migrate it to a new ma-
chine) or to the machine (in which case he could sell the computer secondhand
with the software installed). As both practices were common, mechanisms that
made one or the other very much harder caused problems. The mechanisms
that could easily deal with both (such as dongles) tended to be expensive.

• Finally, Borland shook up the industry with its launch of Turbo Pascal. Before

then a typical language compiler cost about $500 and came with such poor

documentation that you had to spend a further $50 on a book to tell you how to

use it. Borland’s product cost $49.95, was technically superior to the competi-

tion, and came with a manual that was just as good as a third party product.

(So, like many other people, once I’d heard of it, pirated a copy from a friend,

tried it and liked it, I went out and bought it.) ‘Pile it high and sell it cheap’

simply proved to be a more profitable business model—even for speciality

products such as compilers.
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The industry then swung to legal solutions. The main initiative was to establish an-

tipiracy trade organizations in most countries (in the United States, the Software Pub-

lishers’ Association), which brought a number of high-profile prosecutions against

large companies that had been condoning widespread use of pirate PC software. This

was followed by harrassing medium and even small businesses with threatening letters

demanding details of the company’s policy on enforcing copyright—holding out a car-

rot of approved software audit schemes and a stick of possible raids by enforcement

squads. All sorts of tricks were used to get pirates to incriminate themselves. A typical

ruse was the salted list. For example, one trade directory product I worked on con-

tained details of a number of bogus companies, with phone numbers directed to the

publisher’s help desk whose staff would ask for the caller’s company and check it off

against the list of paid subscribers.

Eventually, the industry discovered that the law not only provides tools for enforce-

ment, but sets limits too. The time-honored technique of using time bombs has now

been found to be illegal in a number of jurisdictions. In 1993, for example, a software

company director in Scunthorpe, England, received a criminal conviction under Brit-

ain’s Computer Misuse Act for “making an unauthorized modification” to a system

after he used a time bomb to enforce payment of an disputed invoice [194]. Many ju-

risdictions now consider time bombs unacceptable unless the customer is adequately

notified of their existence at the time of purchase.

The emphasis is now swinging somewhat back in the direction of technical mecha-

nisms. Site license agreements are enforced using license servers, which are somewhat

like dongles but are implemented on PCs that sit on a corporate network and limit the

number of copies of an application that can run simultaneously. These servers can still

be defeated by disassembling the application code, but as code becomes larger this gets

harder; combined with the threat of legal action, they are often adequate. Other mecha-

nisms include issuing such frequent updates to software that life becomes tiresome out-

side the official distribution chain; and (a cynic might say) making the operating

system so unreliable that every few months it will crash completely, forcing all soft-

ware to be reloaded from the distribution media.

The model to which the software industry is converging is thus one that combines

technical and legal measures, understanding the limits of both, and accepting that a

certain amount of copying will take place (with which you try to leverage fully-paid

sales). One of the more revealing dicta of Billionaire Bill is:

Although about three million computers get sold every year in China, people don’t

pay for the software. Someday they will, though. And as long as they’re going to steal

it, we want them to steal ours. They’ll get sort of addicted, and then we’ll somehow

figure out how to collect sometime in the next decade [332].

The latest developments have to do with online registration. If you design your

product so that customers interact with your Web site—for example, to download the

latest exchange rates, virus signatures or security patches—then you can keep a log of

everyone who uses your software. But this can be dangerous. When Microsoft tried it

with Registration Wizard in Windows 95, it caused a storm of protest. Also, a col-

league found that he couldn’t upgrade Windows 98 on a machine on his yacht since it

was always offline. But the wind appears to be blowing in this direction.



Security Engineering: A Guide to Building Dependable Distributed Systems

420

It’s also worth noting that different methods are used to counter different threats.

Large-scale commercial counterfeiting may be detected by monitoring product serial

numbers registered online; but such operations are found and closed down by using

investigative agencies to trace their product back through the supply chains, and people

are deterred from getting into the business in the first place using a combination of the

seals and other secure packaging techniques discussed in Chapter 12.

That is more or less what’s being done in the personal and small business sectors,

but with medium and large businesses, the main risk is that fewer legal copies will be

purchased than there are machines that run them. The usual countermeasure is to com-

bine legal pressure from software trade associations with site licenses and rewards for

whistleblowers. It’s significant that companies such as Microsoft make the vast bulk of

their sales from business rather than personal customers. This is perhaps the main rea-

son that the industry holds back from using online registration to enforce copyright

aggressively against personal users. The potential extra revenues are small given the

possible costs of a public backlash. Other considerations are privacy laws (especially

in Europe), and the difficulty of tracing people who change addresses or trade PCs sec-

ondhand.

To sum up: none of the low-cost protection technologies available at the beginning

of the twenty-first century is foolproof, especially against a determined opponent. But

by using the right combination of them, a large software vendor can usually get a toler-

able result—especially if prices are not too extortionate and the vendor isn’t too un-

popular. Small software companies are under less pressure, as their products tend to be

more specialized, and the risk of copying is lower, so they can often get away with

making little or no effort to control copying.

There are also many alternative business models. One is to give away a limited ver-

sion of the product, and sell online a password that unlocks its full functionality. Unix

was popularized by giving it away free to universities, while companies had to pay. A

variant on this theme is to give basic software away free to individuals but to charge

companies, as Netscape did. An even more radical model is to give software away

completely free, and make money from selling services ranging from consultancy and

support to advertising on a Web site—as the Linux industry is now doing.

This experience has led many computer people to believe that ultimately the solution

for “Hollywood’s” problem lies in a change of business model. But before we dive into

the world of protecting multimedia content, let’s look briefly at a few historical prece-

dents.

20.2.2 Books

Shapiro and Varian present a useful historical lesson in the rise of book publishing

[696]. In 1800, there were only 80,000 frequent readers in England; until then, most

books were serious philosophical or theological tomes. After the invention of the

novel, a mass market emerged for books, and circulating libraries sprung up to service

it. The educated classes were appalled, and the printers were frightened that the librar-

ies would deprive them of sales.

But the libraries so whetted people’s appetite for books that the number of readers

grew to 5,000,000 by 1850. Sales of books soared as people bought books they’d first

borrowed from a library. The library movement turned out to have been the printers’

greatest ally, and helped create a whole new market for mass-market books.
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20.2.3 Audio

Pirates have also been copying music and other audio much longer than software. Pa-

ganini was so worried that people would copy his violin concertos that he distributed

the scores himself to the orchestra just before rehearsals and performances, and col-

lected them again afterward. (As a result, many of his works were lost to posterity.)

In recent years, there have been one or two flurries of industry concern. When the

cassette recorder came along in the 1960s, the record industry lobbied for (and in some

countries got) a tax on audiocassettes, to be distributed to copyright holders. Technical

measures were also tried. The Beatles’ record “Sergeant Pepper” contained a 20 KHz

spoiler tone, which should in theory have combined with the 21 KHz bias frequency of

the tape to produce a 1 KHz whistle that would spoil the sound. In practice it didn’t

work, as many record players didn’t pick up the spoiler tone. But in practice this didn’t

matter. Cassettes turned out not to be a huge problem because the degradation in qual-

ity is noticeable on home equipment; many people just used them to record music to

listen to in their cars. Then, in the 1980s, the arrival of the Sony Walkman made cas-

settes big business; and although there was some copying, there were also huge sales of

prerecorded cassettes, and the music industry cleaned up.

The introduction of digital audio tape (DAT) caused the next worry, because a per-

fect copy of the contents of a CD could be made. The eventual response was to intro-

duce a serial copy management system (SCMS)—a single bit in the tape header that

would indicate whether a track could be copied or not [410]. The idea was that copies

made from a CD would be marked so that they could not be copied again; in this way,

people could make copies of CDs they already owned, to listen to on the move, but

couldn’t make copies of the copies. This didn’t work well, as the no-more-copies bit is

ignored by many recorders and can be defeated by simple filtering. Again, this didn’t

matter as DAT didn’t become widely used. (CD-ROMs also have a no-copy bit in the

track header but this is almost universally ignored.)

Audio copying has recently become a headline concern again, thanks to the popular-

ity of the MP3 format for compressing audio. Previously, digital audio was protected

by its size—a CD full of uncompressed music can take 650 Mb. However, MP3 en-

ables people to take an audio CD track of tens of megabytes and squeeze it into a few

hundred kilobytes, making it practical to download over a dial-up modem line. Usage

in universities is particularly heavy; in 1998, some 40% of the network traffic at MIT

was MP3 traffic. Some students have become underground disc jockeys and relay

audio streams around campus—without paying royalties to the copyright owners.

The initial response of the industry was to look for technical fixes. Alternative audio

compression technologies were developed that did contain copyright protection

mechanisms (for example, [483]), but failed to take off. Hollywood is still trying to

pressure the computer industry into making platforms on which music copying is hard,

but this is not happening.

• First, the PC is an open platform and it’s intrinsically easy to copy bit streams

inside it. There have been proposals to close the platform, such as by incorpo-

rating bus encryption (which I discussed in Section 14.5.2) into cache con-

troller chips, or even the main Intel processor line. But the first step in this

direction—a processor serial number in the Pentium III—met with huge public

resistance. Attempts to keep DVD proprietary meant preventing Linux PCs

from using DVDs, and have led to a fight I’ll discuss later. So far all we’ve
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seen are hacks, such as encrypting the music stream all the way to the sound

card driver software. The response to this is a modified sound card that grabs

the deciphered data.

• Second, the success of new hardware depends on the availability of software,
and vice versa. To launch a new platform for audio, it had better be backward-
compatible with existing CDs and players. One trick that has been proposed is
to encrypt only the least significant bits of the music track, and decode them in
the sound card driver in the PC operating system. This way, people with ex-
isting CD players can get music, and people with authorized copy protected
equipment can get higher quality music. However, the quality is most impor-
tant with classical tracks, which are not economically important, and in any
case the complete signal can be extracted using modified sound cards. Finally,
excluding Linux users from next-generation audio will probably lead to the
same kind of fight as over DVD.

• In any case, many CDs have been sold that contain easily reproducible, per-

fect-quality digital copies—in effect, billions of golden master disks that are

completely outside the industry’s control.

The next step Hollywood took was to sue, with the main targets being Web sites that

allowed MP3s to be shared. Commercial MP3 sites are being bulldozed into setting up

subscription channels and generally making their peace with the music industry. But

they have been replaced in the firing line by systems such as Napster and Freenet,

which enable users who wish to swap tracks to get in touch with each other directly.

I’ll come back to the potential of these systems when I discuss privacy mechanisms

later in the chapter. Meanwhile, I can see no compelling reason why audio protection

should develop all that differently from software protection: technical solutions that

people found ways to defeat, followed by a legal onslaught that ran out of steam even-

tually, finally settling down to a mix of technical and legal controls that limit piracy

even if it can’t be eliminated entirely.

This is not to say that I expect a one-size-fits-all copyright control package to be de-

veloped. Just as Microsoft has different needs from a small specialist firm, and uses

different methods, so also one can expect rather different controls on the current Top

of the Pops than there will be on a specialist cult item such as a CD by the Bonzo Dog

Doo-Dah Band.

• In the former case, the density of listeners is such that a track can spread

widely by personal copying, but there is a very short shelf-life. Speed and

fashion will be everything. Indeed, sales of fashion merchandise may become

much more important than CD sales; as with the Netscape/Linux business

model, it may make sense to give the “product” away free and make money on

the “maintenance” (tours, T-shirts, fan club . . . ).

• In the latter case, the appeal is timeless but to a scattered minority of enthusi-

asts, who copy tracks because they feel exploited by having to pay $17.95 for

a CD that they already have on vinyl. Because of this, it might not even be

possible to sue “violators” in many jurisdictions. So the trick may be slightly

keener pricing and/or packaging that appeals to the collector.
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I also expect that Hollywood will follow the software industry and adopt a some-

what more mature attitude to copying. After all, 70% of a market worth $100 billion is

better than 98% of a market worth $50 billion. And just as a certain amount of copying

helped market software, it can help music sales too: the Grateful Dead encouraged

bootleg taping because they had learned it didn’t harm their sales.

20.2.4 Video and Pay-TV

The early history of videocassettes is very similar to that of audio cassettes. At first

Hollywood was terrified, and refused to release movies for home viewing. Again, there

were technical measures taken to prevent copying—such as the Macrovision system

that adds spurious synchronization pulses to confuse the recording circuitry of domes-

tic VCRs—but again these turned out to be straightforward for technically savvy users

to defeat. Then Hollywood became paranoid about video rental stores, just as book

publishers had been about libraries: but Video rentals greatly increased the number of

VCRs sold, and whetted people’s desire to own their favorite movies. VCRs and

videocassettes became mass-market products rather than rock stars’ toys, and now

sales of prerecorded cassettes make up most of the income of firms such as Disney.

The business model has changed so that the cinema release is really just advertising for

the sales of the video.

And now that many of the world’s pre-teens demand that their parents build them a

collection of Disney cassettes, just like their friends have, a videocassette pirate must

make the packaging look original. This reduces the problem to an industrial counter-

feiting one. As with mass-market software before the onset of online registration, or

with perfumes and Swiss watches today, enforcement involves sending out field agents

to buy cassettes, look for forgeries, trace the supply chain and prosecute the bad guys.

Much more interesting technical protection mechanisms have been built into the last

few generations of pay-TV equipment.

The advent of pay-TV, whether delivered by cable or satellite, created a need for

conditional access mechanisms, to allow station operators to restrict reception of a

channel in various ways. If they bought only the rights to screen a movie in Poland

then they’d have to block German or Russian viewers within the satellite footprint

from watching. Porn channel operators needed to prevent reception in countries like

Britain and Ireland with savage censorship laws. Most operators wanted to be able to

charge extra for specific events such as boxing matches.

20.2.4.1 Typical System Architecture

A number of systems were developed, and their evolution was determined largely by

the hardware cost of deciphering video (for a history of set-top boxes, see [186]). The

first-generation systems, available since the 1970s, were crude analog devices which

used tricks such as inverting the video signal from time to time, interfering with the

synchronization, and inserting spikes to confuse the TV’s automatic gain control. They
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were easy enough to implement, but also easy to defeat; breaking them didn’t involve

cryptanalysis, just an oscilloscope and some patience.

The second generation of systems appeared in the late 1980s and employed a hybrid

of analogue and digital technologies—the broadcast was analogue, the subscriber con-

trol was digital. These included systems such as Videocrypt, Eurocrypt, and Nagravi-

sion. A typical such system has three components:

• There is a subscription management service at the station, which enciphers the

outgoing video, embeds various entitlement control messages (ECMs) in it,

and issues access tokens such as smartcards to subscribers.

• There is a set-top box which converts the cable or satellite signal into one the
TV can deal with. This includes descrambling it.

• Finally there is the subscriber smartcard, which personalizes the device and

controls which programs the set-top box is allowed to descramble. It does this

by interpreting the ECMs and by providing keys to the descrambling circuit in

the set-top box.

This arrangement means that the complex, expensive processes such as bulk video

scrambling can be done in a mass-produced standard device with a long product life,

while security-critical functions—which may need to be replaced in a hurry after a

hack—can be sold to the customer in a low-cost token that can easily be replaced. If

the set-top box itself had to replaced every time the system was hacked, the economics

would be much less attractive.

The set-top box decodes the ECMs from the input data stream, and passes them to

the card; the card processes the ECMs to get both control messages (such as “smartcard

number 123356: your subscriber hasn’t paid, stop working until further notice”); and

keys, known as control words, that are passed to the set-top box. The set-top box uses

the control words to descramble the video and audio streams.

20.2.4.2 Video Scrambling Techniques

The most common video scrambling technique was cut-and-rotate. This scrambles one

line of video at a time by cutting it at a point determined by a control byte and swap-

ping the left and right halves (see Figure 20.1). This involved analogue-to-digital con-

version of the video signal, storage in a buffer, and digital-to-analogue conversion after

rotation, a process that could just about be shoehorned into a low-cost custom VLSI

chip using the technology of the mid-1980s.

Figure 20.1 Cut-and-rotate scrambling.
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Figure 20.2 Scrambled video frame.

One systemic vulnerability of systems that encrypt only one line of video at a time

was that successive lines of video were usually correlated, so it was often possible to

reconstruct the image using signal processing techniques. This was first done by Mar-

kus Kuhn in 1995, and required the use of a supercomputer at the University of Erlan-

gen to do in real time. Figure 20.2 shows a frame of enciphered video, and Figure 20.3

the same frame after processing. By the time of writing, it’s possible to do this on a

powerful PC (though still not quite in real time) [733]. If this attack had been feasible

earlier, it would have caused a complete break of the system, because regardless of

how well the smartcard managed the keys, the video signal could be retrieved without

them. But the scrambling technique lasted (just) long enough; pay-TV operators are

now moving their customers to fully digital systems in which attacks using properties

of the analogue signal are irrelevant.

The generation of the control bytes is of independent interest. Every half second or

so, the smartcard supplies the set-top box with a new control word, and this is loaded

into a keystream generator which works as follows. There are two linear feedback shift

registers (of lengths 31 and 29 in the Eurocrypt system) which generate long linear

sequences. Some of the bits of register 1 are used as address lines to a multiplexer,

which selects a bit from register 2; this bit becomes the next bit of the keystream se-

quence. Each successive byte of output becomes a control byte for the scrambler (see

Figure 20.4).
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Figure 20.3 Processed video frame.

Figure 20.4 The multiplexer generator.

The designers intended that breaking this cipher should involve guessing the key;

and as it is 60 bits long a guess would take on average 2
59

 trials, which is uneco-

nomic—as it has to be done about twice a second. But it turns out that the cipher has a

shortcut attack. The trick is to guess the contents of register 1, use this address infor-

mation to place bits of the observed keystream in register 2, and if this causes a clash,

reject the current guess for register 1. (I discovered this attack in 1985, and it’s what

got me interested in cryptography.) Now the high-order four bits or so of each control

word are easy to deduce from interline correlations—it’s the least-significant bits you

really have to work hard for. So you can easily get about half the bits from a segment

of keystream, and reconstruct the control word using cryptanalysis. But this computa-

tion is still comparable with the full signal processing attack. The stream cipher, like

the scrambling technique, may be weak, but it survived (just) long enough. So the pi-

rates had to attack the subscriber management mechanisms.
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20.2.4.3 Subscriber Management Techniques

Given a population of set-top boxes that will unscramble broadcast video given a

stream of control words, the next problem is to see to it that only paying customers can

generate the control words. In general, this can be done with whitelists or blacklists.

But the bandwidth available to last-generation pay-TV systems was low—typically, of

the order of ten ECMs per second could be sent, or just over half a million a day. Thus,

the blacklist approach was the main one. With a subscriber base of five million cus-

tomers, sending an individual message to each customer would take over a week.

The basic protocol is that the smartcard interprets the ECMs; and if the current pro-

gram is one the subscriber is allowed to watch, then a MAC is computed on a series of

ECMs using a master key held in the card and supplied to the set-top box as the control

word:

CW = MAC (K; ECM1, ECM2, ECM3, ECM4)

In this way, if a subscriber stops paying, their card can be inactivated by sending an

ECM that orders it to stop issuing control words; and it needs access to the ECM

stream in order to compute the control words at all.

20.2.4.4 What Went Wrong

The first attacks on this system were protocol attacks. Since the control word sent from

the smartcard to the set-top box is the same for every set-top box currently unscram-

bling the program, it is possible for one person to place a PC between the smartcard

and the set-top box, record the stream of control words, and post them to the Internet:

other people can video-record the scrambled program, and unscramble it later after

downloading the control word file [532]. Servers for this key log attack exist, but they

are a minor nuisance to the pay-TV industry; not many viewers are prepared to get a

special adapter to connect their PC to their set-top box. Others included blockers,

which would prevent ECMs addressed to your card from being delivered to it; this

way, you could cancel your subscription without the station operator being able to can-

cel your service. Others exploited a master key leakage: someone bought a second-

hand PC, looked out of curiosity to see whether there were any interesting deleted files

on the hard disk, and managed to undelete a complete subscriber management system

for one pay-TV operator—including embedded master keys.

Once this “low-hanging fruit” had been picked, the commercial pirates turned to re-

verse-engineering customer smartcards using a series of attacks which I described in

Chapter 14. But hardware-level fixes were limited to new card issues, and the operators

didn’t want to issue a new card more than once a year as it cost several dollars per sub-

scriber, and the subscriptions were usually less than $20 a month. So other defensive

techniques had to be found.
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Litigation was tried, but it didn’t work as well as the operators hoped. A lawsuit was

lost against a pirate in Ireland, which for a while became a haven from which pirates

sold cards by mail order all over Europe. The industry’s lobbying muscle was deployed

to bring in European law to override Dublin, but this took years and the losses were

getting significant. By the middle of 1995, for example, the main U.K. satellite TV

station (Sky-TV) was losing 5% of its revenue to pirate cards.

20.2.4.5 How It Was Fixed

All through the mid-1990s, pirates and the operators engaged in a war of countermea-

sures and counter-countermeasures. The operators would buy pirate cards, analyze

them, and develop all sorts of tricks to cause them to fail. The problem faced by the

operators was this: when all the secrets in your system are compromised, how can you

still fight back against the pirates?

This might seem impossible to the conventional way of thinking about cryptology,

but the operators managed it. One of their more effective techniques was an ECM

whose packet contents were executed as code by the smartcard; in this way, the exist-

ing card base could be upgraded on the fly, and implementation differences between

the genuine and pirate cards could be exploited. Any computation that would give a

different answer on the two platforms—even if only as a result of an unintentional

timing condition—could be fed into the MAC algorithm and used to make the pirate

cards deliver invalid control words.

It’s worth looking briefly at how to revoke the access rights of subscribers who stop

paying. Each of the subscriber smartcards contains a subscriber key ki, and a binary

tree of intermediate group keys KGij links the subscriber keys to the currently active

master key KM (Figure 20.5). Each operational card knows all the group keys in the

path between it and the master key. In this scheme, if (say) key k2 appears in pirate

cards and has to be revoked, the operator will send out a stream of packets that let all

the other subscriber cards compute a new master key KM¢. The first packet will be

{KM¢}KG12, which will let half the subscribers compute KM¢ at once; then there will be

a KM¢ encrypted under an updated version of KG11: {KM¢}KG¢¢11; then this new group

key KG¢11 encrypted under KG 22; and so on. The effect is that, even with ten million

customers, the operator has to transmit fewer than 50 ECMs to do a complete key

change. Of course, this isn’t a complete solution: operators also need to think about

how to deal with pirate cards that contain several subscriber keys, and how leaked keys

can by identified without having to go to the trouble of reverse-engineering pirate

cards. However, the binary revocation tree is a useful tool in the countermeasures war.

(Using individual keys to protect group keys is not really new; Marks recounts how,

during World War II, the Special Operations Executive sent its agents iodoforms, or

open codes, enciphered under their personal keys [523]. When an iodoform was broad-

cast on the radio, it transmitted an order such as ‘blow up a railway bridge’ to many

agents simultaneously.) Other applications with similar requirements include managing

the shared “keys of the day” in naval task forces.

Psychological measures were also used. For example, one cable-TV station broad-

cast a special offer for a free T-shirt, but prevented legitimate viewers from seeing the

800-number to call; this got it a list of the pirates’ customers. Economic factors also

made a difference. Pay-TV pirates depend for their success on time-to-market as much
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as conventional software firms: a pirate who could produce a 99% correct forgery in

three weeks would wipe out a competitor who produced a 99.9% forgery after three

months. So pirate cards also have bugs, and exploiting them efficiently involves an

understanding of pirate economics. It’s best to let a pirate build up a substantial user

base before you pull the plug on him, as this will destroy his credibility with more po-

tential customers than an immediate response would. But if you leave him too long, he

may acquire both the financial and technical resources to upgrade his customers to a

high-quality forgery.

Figure 20.5 Binary revocation tree.

The main technical lesson learned by the pay-TV industry was to plan in advance for

security recovery, and to hide a number of features in its products that weren’t used

initially but could be activated later. (As usual, the same lesson had been learned years

previously by another industry—in this particular case the banknote printers.)

Eventually, the smartcards were made a bit more difficult to forge by including pro-

prietary encryption algorithms in the processor hardware. When the attacker could no

longer just read out the algorithm with a probing station, but had to reverse engineer

part of the chip, it reduced to a few dozen the number of laboratories with the technical

capability to do attacks. Many of these laboratories were drawn into the industry’s or-

bit by consultancy deals or other kinds of sponsorship. Those that remained outside the

tent, and appeared to pose a threat, were watched carefully. Vigorous legal enforce-

ment provided the last link in the chain. The industry hunted down the main commer-

cial pirates and put them out of business, whether by having them jailed or by

drowning them in litigation.

For example, in the last big pay-TV piracy case in the twentieth century, British pi-

rate Chris Cary was convicted of forging Sky-TV smartcards, whose design he had had

reverse engineered by a company in Canada for $105,000. He then sold forgeries
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through a front company in Ireland, where counterfeit cards were not illegal at the time

[568]. Sky TV’s security consultants infiltrated a spy into Cary’s Dublin sales office,

and she quietly photocopied enough documents to prove that the operation was really

being run from England [403]. The British police didn’t want to prosecute, so Sky

brought a private prosecution and had Cary convicted. When he later escaped from jail,

Sky’s private detectives relentlessly hunted him down and eventually caught him in

New Zealand, where he had fled using a passport in a dead person’s name [367].

The pay-TV story reinforces the business lesson that one must make the engineering

and legal aspects of copyright protection work together. Neither is likely to be ade-

quate on its own. An example of how not to do it comes from the world of DVD.

20.2.5 DVD

The consumer electronics industry introduced the digital video disk (DVD), later re-

named the digital versatile disk, in 1996. As usual, Hollywood took fright and said that

unless DVD had a decent copy protection mechanism, first-class movies wouldn’t be

released for it. So a mechanism called the content scrambling system (CSS) was intro-

duced.

There is also a scheme whereby the world is divided into five regions, and disks are

supposed to run only on players from some designated list of regions. This was to sup-

port the traditional business practice of releasing a movie in the United States first,

then in Europe, and so on, in order to minimize the loss if it flops. This region code

was the first to be broken and is now increasingly ignored by manufacturers. The glob-

alization of markets for products such as DVDs is destroying the market for DVD

players that will play only locally manufactured disks.

This left CSS, which was known to be vulnerable by the time that DVD was

launched [601]. One industry story was that the designers had been told to come up

with a copy protection scheme in two weeks, to use no more than 3,000 gates, and to

limit the keylength to 40 bits so the equipment wouldn’t fall foul of U.S. export regu-

lations; another story was that DVD consortium only ever intended to compel player

manufacturers to license the CSS patent from Matsushita, a condition of which would

be implementation of other copy protection mechanisms [119]. No matter whose fault

the design was, it’s actually quite curious that their system held up for three years.

The detailed description of CSS is currently the subject of frantic litigation, with

numerous injunctions issued in the United States against Web sites that have published

the code. This is almost certainly futile, as there are plenty sites outside the United

States where you can get it (such as [737]). However, because my publishers are lo-

cated in the United States and I don’t want them spending all my royalties on lawyers,

here’s a suitably abbreviated description.

CSS is based on a stream cipher which is similar to that in Figure 20.4 except that

the multiplexer is replaced with a full adder: each successive keystream bit is obtained

by adding together the next two outputs from the shift registers with carry. Combining

the xor operations of the shift registers with the add-with-carry of the combiner can

actually give a strong cipher, if there are (say) five shift registers with coprime lengths

greater than 70 [656]. But in CSS, there are only two registers, with lengths 17 and 25,

so there is a 2
16

 shortcut attack of exactly the same kind as the one discussed above.
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Where the cipher is used to protect keys rather than data, there is a further mangling

step; but this only increases the complexity to 2
25

.

The DVD protocol is as follows. Each player has one or more keys specific to the

manufacturer, and each DVD disk has a disk key, kd, encrypted under each of the cur-

rent manufacturer keys, kmi (409 of them in 1999): {kd}km1, {kd}km2, {kd}km3, . . . ,

{kd}km409. There is also a hash of kd, computed by encrypting it with itself: {kd}kd* The

actual content is protected under sector keys derived from kd. Of course, given that the

cipher can be broken with 2
25

 effort, any disk key can be found from a single disk

hash.

So CSS contravened Kerckhoffs’ principle, in that it depended for its protection on

the algorithm remaining secret. The DVD consortium appears not to have understood

this, as it hoped to keep enough of the manufacturer keys secret by economic pressure.

The idea was that if any manufacturer’s master key got leaked, then it wouldn’t be

used on future disks, so his players wouldn’t be able to play new releases. So manu-

facturers would implement decent tamper resistance—or so it was hoped. But the de-

sign of CSS doesn’t support this. Given any key in the system, all the others can be

found at once. Also, the economics of mass-producing consumer electronics doesn’t

allow the kind of processors required to give serious tamper protection.

Another set of problems came from the fact that the PC is an open platform. The

DVD consortium’s chosen method of dealing with this was that people producing DVD

player software had to obfuscate their code so that it would be hard to reverse-

engineer. Papers duly appeared on tricks for systematic software obfuscation [58].

These tricks may have pushed up the cost of reverse engineering from a few days of

effort to a few weeks, but once the CSS design was out, that was it.

An even more serious problem with the openness of the PC came from Linux, the

open source PC operating system used by millions of people. The DVD consortium’s

philosophy and architecture was not consistent with making DVD drivers available to

the Linux community. So as PCs with CD drives started being replaced in the stores

with PCs fitted with DVD drives, the Linux user community either had to break CSS or

give up using Linux in favor of Windows. Under the circumstances, even if every DVD

player had contained a pay-TV-grade smartcard processor, it was only a matter of time

before someone read it out.
1

One result of the break is a program (DeCSS) that will unprotect any DVD. The in-

dustry’s reaction was to reach for their lawyers. Web sites in the United States which

host DeCSS get hammered with injunctions, which simply cause the software to be-

come ever more widely distributed and make the industry look foolish [491]. There are

some quite unpleasant undercurrents, though. For example, copyright law traditionally

allows fair use, which includes copying parts of a work for the purpose of scholarship,

quotation, and even ridicule; the movie industry lawyers seek to squash this for digital

media so that copyright holders have completely unfettered control over what happens

to a digital work. This would be disastrous for universities, public libraries, and many

                                                            

1 This error may well be repeated with the secure digital music initiative (SDMI), a proposed re-
placement for MP3. SDMI will use encrypted audio streams that will be decrypted in the sound-
card driver software in the PC operating system. There will also be a watermarking scheme.
However, depriving Linux users—who probably include most of the world’s computer science and
engineering students—access to the latest audio unless they mount the despised Windows oper-
ating system is guaranteed to create many capable motivated opponents. The likely watermark-
ing scheme—echo hiding—was already broken in [610] by Fabien Petitcolas.
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other bodies, where the exploitation of fair use rights is strongly entrenched. So the

battle referred to by Barlow in the quote at the head of this chapter has started.

A leading U.S. authority, Samuelson, takes the view that some copying is beneficial

to publishers in a much wider range of industries than just software [665]. A European

expert put it more strongly: copyright laws are tolerated only because they are not en-

forced against the large numbers of petty offenders [610]. It is worth noting that even

if Hollywood gets all it wants in the U.S. courts, it’s unlikely to get quite the same re-

sult in Europe, where copyright law specifically allows reverse engineering for the

purpose of building compatible equipment, and where a video rental treaty may protect

temporary copies [666]. I’ll return to all this in Chapter 21 when we discuss e-policy.

Another point (made for example in [491]) is that small-scale copying of DVDs is

uneconomic anyway, as home-burnable DVD disks cost more than prerecorded ones;

that large-scale copying in the Far East already happens; and that the real reason for

the litigation is that the publication of CSS enables anyone to build a DVD player

without paying royalties to the DVD consortium.

Anyway, DVD is following the usual pattern: Hollywood terrified, and refusing to

release its best movies; technical measures taken to prevent copying, which got broken;

then litigation. A reasonable person might hope that once again the studios will see

sense in the end, and make a lot of money from selling DVDs. There will be copying,

of course, but it’s not entirely trivial yet—even a DSL modem takes hours to send a

4Gb DVD movie to a friend, and PC disk space is also an issue. Eventually, as DVD

drives replace CD drives in all PCs, we can expect to see rewriteable DVDs being

widely used for backup; and it’s completely predictable that whatever new mechanisms

are fielded to prevent copying will be circumvented. But I also predict that in 10 years’

time, the lineup of DVDs on my shelf will be pretty much the same as my videocas-

sette lineup is today—about 50 prerecorded cassettes and maybe two dozen home-

recorded ones, the former bought mostly for the family and the latter being mostly old

TV programs that have a direct relevance to my work. I’m sure the industry can live

with that.

Meanwhile, strenuous efforts are being made to improve DVD security by fitting the

next generation of players with mechanisms based on copyright marking. This is an

interesting technology, and worth a look.

20.3 Information Hiding

Hollywood’s interest in finding new mechanisms for protecting copyright came to-

gether in the mid-1990s with the military’s interest in unobtrusive communications and

public concerns over government efforts to control cryptography, and started to drive

rapid developments in the field of information hiding. This largely refers to techniques

that enable data to be hidden in other data, such as when a secret message is hidden in

an MP3 audio file, or a program’s serial number is embedded in the order in which

certain instructions are executed.
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The Hollywood interest is in copyright marks, which can be hidden unobtrusively in

digital audio, video, and artwork. These are generally either watermarks, which are

hidden copyright messages, or fingerprints, which are hidden serial numbers.

The privacy interest is in steganography, whose purpose is to embed a message in

some cover medium in such a way that its very existence remains undetectable. A

common conceptual model, proposed by Simmons [700, 707], is as follows. Alice and

Bob are in jail, and wish to hatch an escape plan; all their communications pass

through the warden, Willie; and if Willie detects any encrypted messages, he will frus-

trate their plan by throwing them into solitary confinement. So they must find some

way of hiding their secret messages in an innocuous-looking covertext. As in the re-

lated field of cryptography, we assume that the mechanism in use is known to the war-

den, so the security must depend solely on a secret key that Alice and Bob have

somehow managed to share.

There is some similarity with electronic warfare. First, if steganography is seen as a

low-probability-of-intercept communication, then copyright marking is like the related

jam-resistant communication technique: it may use much the same methods but in or-

der to resist focused attacks it is likely to have a much lower bit rate. We can think of

Willie as the pirate who tries to mangle the audio or video signal in such a way as to

cause the copyright mark detector to fail. Second, techniques such as direct sequence

spread spectrum, which were originally developed for electronic warfare, are finding

wide use in the information hiding community.

Of course, copyright marks don’t have to be hidden to be effective. Some TV sta-

tions embed their logo in a visible but unobtrusive manner in the corner of the picture,

and many ECMS systems have control tags bundled quite visibly with the content. In

many cases, this is the appropriate technology. However, in what follows I’ll concen-

trate on hidden copyright marks.

20.3.1 The DVD Marking Concept

A current objective of the DVD consortium is to find a copyright marking scheme that

will enforce serial copy management. Videos might be unmarked, marked “never

copy,” or marked “copy once only”; compliant players would not record a video

marked “never copy,” and when recording one marked “copy once only” would change

its mark to “never copy.” Commercially sold videos would be marked “never copy,”

while TV broadcasts and similar material would be marked “copy once only.” In this

way, the DVD players available to consumers would allow unlimited copying of home

videos and time-shifted viewing of TV programs, but could not easily be abused for

commercial piracy. There is an overview of the proposed mechanisms in [119].

The basic idea is simple [504]. For each disk, choose a ticket, X, which can be a ran-

dom number, plus copy control information, plus possibly some information unique to

the physical medium, such as the wobble in the lead-in track. Use a one-way hash

function h to compute h(X) and then h(h(X)). Embed h(h(X)) in the video as a hidden

copyright mark. See to it that compliant machines look for a watermark, and if they

find one will refuse to play a track unless they are supplied with h(X), which they

check by hashing it and comparing it with the mark. Finally, arrange things so that a

compliant device will record a marked track only if given X, in which case only h(X) is
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written to the new disk. In this way, a “copy once only” track in the original medium

becomes a “copy no more” track in the new medium.

Doing copy generation management using embedded marks, rather than with at-

tached data, has the advantage that it can survive conversion from digital to analogue

and back to digital. This leads to a number of problems. First, we need a method of

embedding a mark in audio or video, which—even though it might take a lot of effort

to embed—can be detected readily and is difficult for an attacker to remove. Second,

the detection must be carried out by mass-market equipment, that is, using cheap proc-

essors or custom silicon with a limited gate count, and have a low false positive alarm

rate [554]. For example, if your legitimate DVD player were to detect a mark in your

wedding video by mistake, you’d have to buy a pirate player to watch it.

20.3.2 General Information-Hiding Techniques

Information hiding goes back even further than cryptology, having its roots in camou-

flage. Probably the first historical mention is in Herodotus who records tricks used

during the wars between the Greeks and the Persians—including hiding a message in

the belly of a hare carried by a hunter, tattooing it on the shaven head of a slave whose

hair was then allowed to grow back, and writing it on the wooden base under the wax

of a writing tablet [377]. Francis Bacon proposed a system that embedded a binary

message in a book at one bit per letter by alternating between two different fonts [607].

Until quite modern times, most writers considered hiding confidential information

much more important than enciphering it [805]. Military organizations still largely

hold this view and have used all sorts of technologies, from the microdots used by

spies in much of the twentieth century to the low-probability-of-intercept radios dis-

cussed in Chapter 16.

When it comes to hiding data in other data, the modern terminology of the subject is

as follows [614]. The copyright mark, or in the case of steganography, the embedded

text, is hidden in the cover-text producing the marked text or in the case of steganogra-

phy the stego-text. In most cases, additional secret information is used during this

process; this is the marking key or stego-key, and some function of it is typically

needed to recover the mark or embedded text. Here, the word “text” can be replaced by

“audio,” “video,” and so on, as appropriate.

A wide variety of embedding schemes have been proposed.

• In many ways the obvious technique is to hide the mark or secret message in

the least-significant bits of the audio or video signal. Many public domain

steganography tools do this. But it isn’t usually a very good strategy, as the

hidden data is easy to detect statistically (the least-significant bits are no

longer correlated with the rest of the image), and it’s trivial to remove or re-

place. It’s also severely damaged by lossy compression techniques.

• A classic technique is to hide the mark or secret message at a location deter-
mined by the secret key. This was first invented in classical China. The sender
and receiver had copies of a paper mask, which had holes cut out of it at ran-
dom locations. The sender would place his mask over a blank sheet of paper,
write his message in the holes, then remove it and compose a cover message



Chapter 20: Copyright and Privacy Protection

435

including the characters of the secret embedded message. This trick was rein-
vented in the sixteenth century by the Italian mathematician Cardan and is now
known to cryptographers as the Cardan grille [428].

• A modern implementation of this hides a copyright or other message in a .gif
format image as follows. A secret key is expanded to a keystream, which se-
lects an appropriate number of pixels. The embedded message is the parity of
the color codes for these pixels. In practice, even a quite large number of the
pixels in an image can have their color changed to that of a similar one in the
palette without any visible effects [413]. However, if all the pixels are tweaked
in this way, then the hidden data is easy to remove by just tweaking them
again. A better result is obtained if the cover image and embedding method are
such that (say) only 10% of the pixels can safely be tweaked. Then, if the war-
den repeats the process, but with a different key, an independent 10% of the
pixels will be tweaked and only 10% of the bits of the hidden data will be cor-
rupted.

• In general, the introduction of noise or distortion—as happens with lossy com-
pression—will introduce errors into the hidden data almost regardless of the
embedding method unless some kind of error correcting code is added. A sys-
tem proposed for banknote marking, Patchwork, uses a repetition code—the
key selects two subsets of pixels, one of which is marked by increasing the
luminosity and the other by decreasing it. This embeds a single bit; the note is
either watermarked using that key, or it isn’t [96, 357]. In the general case, one
may want to embed more than one bit, and have the embedded data to survive
very high levels of induced errors. So a common technique is to use direct se-
quence spread spectrum techniques borrowed from electronic warfare [748].

• Spread spectrum encoding is often done in a transform space to make its ef-
fects less perceptible and more robust against common forms of compression.
These techniques are also commonly used in conjunction with perceptual fil-
tering, which emphasizes the encoding in the noisiest or perceptually most
significant parts of the image or music track, where it will be least obtrusive,
and de-emphasizes it in quiet passages of music or large expanses of color
[127].

• Some schemes use the characteristics of particular media, such as a scheme for

marking print media by moving text lines up or down by a three-hundredth of

an inch [135], or adding extra echoes to music below the threshold of percep-

tion [96]. So far, such techniques don’t seem to have become as robust, as ge-

neric techniques based on keyed embedding using transform spaces, spread

spectrum, and perceptual filtering.

Progress in copyright marking and steganography was very rapid in the last few

years of the twentieth century. Its history has repeated that of cryptology, but on a

much more compressed timescale: people invented marking schemes, which other peo-

ple broke, and eventually the technology became more mature and robust.
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20.3.3 Attacks on Copyright-Marking Schemes

Throughout this book, I’ve described attacks on cryptographic systems that occasion-

ally involved cryptanalysis, but more often relied on mistaken assumptions, protecting

the wrong things, protocol failures, and the opportunistic exploitation of implementa-

tion bugs. Copyright marking has been no different.

• In the beginning, many people assumed that the main market would be water-

marking—embedding hidden copyright messages so that ownership of a work

could be proved in court. This has turned out to be mistaken. Intellectual prop-

erty lawyers almost never have any difficulty in proving ownership of an ex-

hibit; and they don’t rely on technical measures that might confuse a jury, but

on documents such as contracts with bands and model release forms. The legal

use of copyright marks may rather be for fingerprints, namely hidden serial

numbers.

• The first large vendor of marking systems—Digimarc—then set up a service to
track intellectual property on the Web. This has clearly got some potential, as
one the main costs faced by multimedia producers is tracking the copyright of
large numbers of images and the royalties due to their owners. However, the
Digimarc system could be easily defeated by guessing the master password or
by modifying the marking software so that it would overwrite existing marks.
They also had a “Marc spider,” a bot that crawled the Web looking for marked
pictures and reporting them to the copyright owner; but there were a number of
ways to defeat this [610].

• Many marks are simply additive. This opens a whole series of possible vulner-
abilities. For example, if all the frames in a video carry the same mark, it is
possible to average them to get the mark and then subtract it out. An even sim-
pler attack is to supply some known content to a marking system, and compare
its input and output—just like the chosen plaintext attacks possible on some
cipher systems. And if a picture, P, with a mark, m, is just P + m, then a com-
petitor whose mark is m_ might simply claim that the original was P + m –
m_, and so the published picture P + m was really marked with m_.

• As usual, many designers ignored Kerckhoffs’ principle—that the security of a
system should reside in the choice of key, not in the algorithm in use. But this
principle applies with greater than usual force when marks are to be used in
evidence, as this means disclosing them in court. In fact, as even the marking
keys may need to be disclosed, it may be necessary to protect objects with
multiple marks. For example, one can have a mark with a secret key that is
system wide and that serves to identify which customer re-sold protected con-
tent in violation of his license, and a second mark with a unique key that can
be disclosed in court when he’s prosecuted.
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• There have been various attempts to develop a marking equivalent of public
key cryptography, so that (for example) anyone could insert a mark that only
one principal could detect, or anyone could detect a mark that only one princi-
pal could have inserted. The former seems just about feasible if the mark can
be inserted as the cover audio or video is being manufactured [210]. The latter
is the case of particular interest to Hollywood. However, it seems a lot harder
than it looks, as there is a very general attack. Given a device that will detect
the mark, an attacker can remove a mark by applying small changes to the im-
age until the decoder cannot find it anymore [606, 505].

• Some neat steganalysis techniques were developed to break particular embed-
ding schemes. For example, when the mark was added by either increasing or
decreasing the luminosity of the image by a small fixed amount, this caused
the peaks in the luminosity graph to become twin peaks, which meant that the
mark could be filtered out over much of many images [519].

• Another family of attacks exploit the properties of particular media. For exam-
ple, the typical Web browser, when presented with a series of graphics images,
will display them one after another without any gaps; so a marked image can
often be chopped up into smaller images, which together will look just like the
original when displayed on a Web page but in which a copyright mark won’t
be detected (see Figure 20.6) [610].

• The most general known attacks on copyright marking schemes involve suita-

bly chosen distortions. Audio marks can be removed by randomly duplicat-

ing or deleting sound samples to introduce inaudible jitter; techniques used

for click removal and resampling are also powerful mark removers. For im-

ages, there is a tool we developed called Stirmark, which introduces the

same kind of errors into an image as printing it on a high-quality printer and

then scanning it again with a high quality scanner. It applies a minor geomet-

ric distortion: the image is slightly stretched, sheared, shifted, and/or rotated

by an unnoticeable random amount (see Figure 20.7). This defeated almost

all the marking schemes in existence when it was developed, and is now a

standard benchmark for copyright mark robustness [610]. In general, it’s not

clear how to design marking schemes that will resist a chosen distortion at-

tack, in which the attacker who understands the marking scheme mangles the

content in such a way as to cause maximum damage to the mark while doing

minimal damage to the marked content.

For a fuller account of attacks on copyright marking schemes, see [610, 611]. The

technology’s improving slowly but the limiting factor appears to be the difficulty of

designing marking schemes that remain robust once the mark detection algorithm is

known. If any copy control scheme based on marking is implemented in PC software

or low-cost tamper-resistant processors, it’s only a matter of time before the algorithm

gets out; then expect to see people writing quite effective unmarking software.
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Figure 20.6 The Mosaic attack (courtesy Jet Photographic,

http://www.jetphotographic.com).

Figure 20.7 The effect of Stirmark.
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20.3.4 Applications of Copyright-Marking Schemes

The applications of marking techniques are much broader than just DVDs and still

pictures distributed on the Net. Radio adverts in the United States are commonly

marked with a serial number, to enable auditing agencies to check automatically

whether stations are playing them as often as they claim. Color copiers sold in the

United States have their serial number hidden in the bit patterns of copies, as a means

of detecting currency forgers [797]. Apparently there will be digital watermarks in the

new Euro notes, which will shortly replace many European currencies; and there has

been a call for proposals from the U.S. Bureau of Engraving and Printing, which wants

to do something similar.

While most copyright marks have to be robust to withstand distortion attacks, some

applications have been found for marks that are deliberately made as fragile as possi-

ble. One proposal highlights any changes made in an image after it was applied, and

might be useful in assuring the integrity of images to be used in evidence [489]. An-

other proposed use of fragile watermarking is to hold the tickets for the DVD copy

protection scheme [119].

Then there’s a class of proposed applications that have to do with convenience or

safety, rather than preventing malicious behavior. It has been proposed that music

broadcast over the radio should be marked with the CD’s number, so that someone who

likes it could order the CD automatically by pressing a button. And in medicine, digital

versions of X rays often get separated from the patient’s details, as the various pro-

prietary file formats get mangled through numerous protocol conversions; this safety

problem could be solved by embedding patient details directly in the image.

Finally, perhaps a quarter to a third of information-hiding research doesn’t aim at

Hollywood’s requirements, or those of the Bureau of Engraving and Printing, but at

hiding information for privacy purposes.

20.4 Privacy Mechanisms

The technology of privacy includes two types of mechanism: those with which people

discharge obligations of confidentiality to third parties, as discussed in Chapter 8, and

those which individuals can use to protect their own privacy in the face of surveillance

or other intrusion by third parties. The former are more important in the general

scheme of things: without the obligations of confidentiality owed to us by doctors,

lawyers, bankers, and other service providers, society would be very different. How-

ever, the citizen’s ability to keep certain things private remains an important backstop,

and privacy mechanisms are of much wider importance. To understand why, we have

to examine what these mechanisms achieve.

In pre-technological societies, the available protection included not just cryptogra-

phy in the form of hand ciphers and steganography in the form of prearranged signals,

but the fact that two people could walk a short distance away from everyone else and

have a conversation that left no hard evidence of what was said. If Alice claimed that
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Bob had tried to recruit her for an insurrection, then Bob could always claim the con-

verse—that it was Alice who’d proposed to overthrow the king and he who’d refused

out of loyalty. In other words, some communications were deniable. Plausible deni-

ability remains an important feature of some communications today, from everyday life

up to the highest reaches of intelligence and diplomacy. In some circumstances, it can

be implemented by convention: for example, in some countries, a participant in litiga-

tion can write a letter marked “without prejudice” to another and propose a settlement;

this letter cannot be used in evidence. However, there are many circumstances without

such clear and convenient rules, and where the electronic nature of communication

means that “just stepping outside for a minute” isn’t an available option. What then?

Another issue is anonymity. Until the industrial revolution, most people lived in

small villages where everyone knew everyone else’s business. For many people, it was

a relief to move into a town, where this wasn’t the case. Nowadays, the phrase “elec-

tronic village” not only captures the way in which electronic communications have

shrunk distance, but also for many people the fear that as everything goes online, as

data get collected about every transaction, accumulated into marketing profiles and

sold, so we will return to something resembling the status quo of the seventeenth cen-

tury. Everything about us will be known. Of course, if you live in a country such as

Germany with fierce data protection laws, then you may be safe (as long as all your

business remains in Germany). But as soon as you shop at an online store in the United

States, that protection is gone. Is there some way to conduct online business anony-

mously?

20.4.1 Content Hiding: PGP

One of the best-known and widely used privacy tools is encryption of electronic mail.

The market-leading product, Pretty Good Privacy (PGP), has done much to raise pub-

lic awareness of the issues—especially since the U.S. government harassed its author,

Phil Zimmermann, and threatened to prosecute him for allegedly breaking U.S. export

controls by making encryption software available on the Net.

PGP has a number of features but in its most basic form, each user generates a pri-

vate/public keypair. To protect a message, you sign a hash of it using your private key,

encrypt both the message and the signature with a randomly chosen session key, then

encrypt the session key using the public key of each of the intended recipients. Thus, if

Alice wants to send an encrypted email to Bob and Charlie, she forms the message:

{KS}KB, {KS}KC, {M, sigKA{h(M)}}KS

The management of keys is deliberately left to the user, the rationale being that a

single centralized certification authority would become such an attractive target that it

would likely be cracked or come under legal coercion. The intended mode of operation

is that each user collects the public keys of people she intends to correspond with, and

bundles them into her public keyring which she keeps on her system. The public keys

can be authenticated by any convenient method such as by printing them on her busi-

ness card. To make this easier, PGP supports a key fingerprint which is a one-way hash

of the public key, presented as a hexadecimal string.

Another mechanism to help users manage trust is that they can sign each others’

keys. This may simply be used as an integrity protection mechanism on their public

keyrings, but becomes more interesting if the signatures are exported. The set of pub-
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licly visible PGP signatures makes up the web of trust: the idea is that if Alice wants a

public key for Bob, with whom she has not corresponded before, then she might be

lucky enough to find a key for Bob signed by Charlie, and a key for Charlie signed by

David, whom she already trusts. The resulting certificate chain:

sigKC{KB}, sigKD{KC}, sigKA{KD}

can be taken to be equivalent to the trust relationship she seeks, namely sigKA{KB}

provided she is prepared to take the risk of either Charlie or David having been dis-

honest or incompetent.

Other mechanisms for distributing PGP keys have been developed. One of the most

widely used is a series of key servers which contain large collections of PGP keys.

Some caution is needed, as anyone can put up a key there with any attached email ad-

dress; keys for addresses such as president@whitehouse.gov aren’t controlled by the

people you might normally associate with them. There was also a book of important

public keys published [42]; this also contains information about some bugs in early

versions of PGP.

Of course, encrypting email is only part of the solution. In some countries, including

Russia, Zimbabwe, and Britain, the police have the power to require you to decrypt

ciphertext they seize, or even hand over the key. This power is also available to the

civil courts in many countries under subpoena, and to many tax authorities. Other

situations in which coercion may be a problem include where soldiers or intelligence

agents could be captured; where police power is abused, for example to seize a key on

the grounds of a supposed criminal investigation but where in reality they’ve been

bribed to obtain commercially confidential information; and where private individuals

may be tortured by robbers into revealing information such as the secret codes for their

bank cards and the location of safes [793].

In such circumstances, there is a serious problem with systems where private keys

are long-lived. If the taxman seizes your private key while investigating you, then

leaves this on a server shared with other government agencies, these agencies now

have the power to decrypt any of your old incoming messages which they happen to

have stored—and perhaps also to forge your digital signature.

So the latest versions of PGP have separate keypairs for encryption and signature:

• Your public signature verification key is the long-term key which you get peo-

ple to sign, print on your business card, include in your signature file, and so

on.

• You generate a set of time-limited encryption/decryption keypairs and sign the
public encryption keys using your long-term signature key.

• You delete your private decryption keys after they expire.

The U.S. Defense Messaging System uses a similar mechanism, but it supports the

use of short-lived public encryption keys. Each user has a key server that will provide a

fresh encryption key on demand, signed by the user’s signing key; once the message is

received and decrypted, the decryption key is destroyed.

However, there are limits to what can be done with cryptography alone, and many

conventional IT security mechanisms can even endanger privacy [296]. Encryption use

may mark your messages for traffic analysis; authentication can identify users unambi-

guously, removing wriggle room in censorship, defamation, and copyright infringe-



Security Engineering: A Guide to Building Dependable Distributed Systems

442

ment cases; and in many jurisdictions, naive encryption can be countered by what’s

called rubber hose cryptanalysis—the police simply beat the key out of you. (Coun-

tries such as Britain are slightly more civilized; there’s now a law there that lets a po-

lice officer demand your key and send you to jail if you refuse. I’ll discuss this in

Chapter 21.)

20.4.2 Content Deniability—Steganography

When the threat model includes coercion, simply destroying old keys may not be

enough, as the very existence of protected material can be sufficient to cause suspicion.

In such circumstances, more complete plausible deniability can be provided by the use

of steganography. If the secret message is well hidden in an innocuous cover object

such as an MP3 audio track, then with luck the opponent will never suspect that any-

thing clandestine is taking place.

Stored data is particularly difficult. Most customs authorities have the power to re-

quire travellers to decrypt any material found on the hard disk of their laptop in order

to check for subversive material, pornography, and the like. There are many crude

ways to hide the existence of files, such as having a separate partition on your hard

disk that runs Linux, which the customs men probably won’t understand—but against a

capable opponent such defenses are ineffective, and over time even the customs man

will acquire suitable tools. Files can be hidden using steganography tools in larger

multimedia files, but this can be inefficient.

This led to the design of the steganographic file system, which has the property that

a user may provide it with the name of an object, such as a file or directory, together

with a password; and if these are correct for an object in the system, access to it will be

provided. However, an attacker who does not have the matching object name and

password, and lacks the computational power to guess it, can get no information about

whether the named object even exists. This is an even stronger property than Bell-

LaPadula; Low cannot even demonstrate the existence of High. The user can give the

customs man the Low password, and deny that a High password exists; the customs

man should never be able to prove that the user lied.

The whole disk is encrypted, and fragments of the files are scattered through it at

places that depend on the password, with some redundancy to recover from cases

where High data is accidentally overwritten by a Low user [49]. There is an early im-

plementation described in [536]. Of course, a really robust implementation would have

to take account of many of the multilevel security issues discussed in Chapter 7, from

covert channels to limiting the damage that can be done by malicious code; there are

also some peculiarly difficult threats to steganographic systems, such as what happens

when successive snapshots of the system are taken by a Low user who then tries to de-

duce whether any High writes have occurred meanwhile. This problem is still not fully

solved, and better implementations would be useful.

20.4.3 Association Hiding—Remailers and the Dining Cryp-
tographers

However, there are limitations to what even steganography can do. As I remarked in

several contexts, the opponent often gets most of his information from traffic analysis.

Even if the communications between Alice and Bob are encrypted, and the ciphertext

is hidden in MP3 files, and even if on inspection neither Alice’s laptop nor Bob’s con-
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tains any suspicious material—whether because it’s hidden on a stego file system or

because it was simply memorized and deleted—the mere fact that Alice communicated

with Bob may give the game away. This is why criminals set much more store by

anonymous communication (such as using prepaid mobile phones) than by encryption.

Of course, there are legitimate uses too, such as anonymous helplines for abuse vic-

tims, whistleblowers, police informants, and protest groups that want to dig a perfectly

legal elephant trap for the government of the day. There’s anonymous student feedback

for university professors, anonymous refereeing of conference paper submissions, and

anonymous HIV tests where you get the results online using a one-time password that

came with a test kit you bought for cash. You may want to apply for a job without your

current employer finding out, to exchange private email with people who don’t use

encryption, or fight a harmful cult. There’s also the simple matter of preserving pri-

vacy in a world where ever more businesses collect and trade personal information. So

how can anonymity be assured online?

There are two basic mechanisms, both invented by David Chaum in the 1980s. The

first is the mix or anonymous remailer [177]. This is a device which accepts encrypted

messages, strips off the encryption, and then remails them to the address that it finds

inside. In its simplest form, if Alice wants to send anonymous email to Bob via Charlie

and David, she composes the message:

A Æ C: {D, {B, {M}KB}KD}KC

Charlie now strips off the outer wrapper and finds David’s address, plus a cipher-

text. He sends the ciphertext to David, who decrypts it and finds Bob’s address, plus a

ciphertext. He sends the ciphertext to Bob, who decrypts it and gets the message M. Of

course, an anonymous remailer could be an attractive honey trap for a law enforcement

agency or intelligence agency to operate, and so it’s common to send messages through

a number of successive remailers and arrange things so that most of them would have

to conspire to break the traffic.

There are many refinements on this basic technique. In order to prevent an opponent

tracking messages through one remailer after another, it’s common for message sizes

to be fixed; for remailers to batch up messages or to forward them after random delays;

and for message replay to be detected. Some allow replies to unknown destinations,

and others don’t; anonymous replies may be handled by a pseudonym service [531].

Anonymous connections aren’t limited to email, but can include any kind of com-

munications service: an experimental U.S. Navy system, called Onion Rout-

ing—because the messages are nested like the layers of an onion—can be used as a

communications primitive on which services such as mail and Web access can be lay-

ered [637]. There’s also a design for anonymous networks of ISDN digital telephones,

which might conceivably be built on top of third-generation mobile services [312,

419]. Indeed, the existence of anonymous communication channels greatly simplifies

the design of more complex services with anonymity requirements, such as elections

and digital cash [708]; and in the real world they can be usefully implemented by non-

cryptographic means such as broadcast by access tokens or other low-cost portable de-

vices [732].

While anonymous communications based on remailers provide protection that de-

pends on all sorts of aspects of the implementation—such as whether replay or other

chosen-traffic attacks are possible—there is another stronger mechanism that is not so
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dependent, and thus may be considered the anonymity equivalent of “unconditional

security.” This was also introduced by Chaum as the dining cryptographers’ problem,

inspired by the “dining philosophers’ problem” in distributed systems, discussed in

6.1.4.

Several cryptographers are gathered around a table for dinner, and the waiter in-

forms them that the meal has already been paid for by an anonymous benefactor, who

could be one of the participants or the NSA. The cryptographers would like to know

who. So pairs of principals share one-time pads, after which each principal outputs a

function of her “I paid/I didn’t pay” bit, and everyone can later work out the total par-

ity of all such bits. As long as not more than one of the cryptographers says “I paid,”

even parity means that the NSA paid, while odd parity means that one of the diners

paid, even if nobody can figure out who [179]. Various extensions have been proposed,

including one in which “dining drug dealers” can auction a consignment of cocaine

without revealing the bidders’ identities to the other bidders or to the seller. Nobody

except buyer and seller know who won the auction; and even the seller is not able to

find out the identity of the highest bidder before committing to the sale [732].

Doing anonymity properly is hard. As mentioned above, the anonymous remailer it-

self might be owned by the enemy. One option is to buy a service from a company

whose main business is providing anonymity, of which the most prominent is Zero

Knowledge Systems—such a firm has a lot to lose if they are exposed as dishonest or

incompetent at their chosen trade. Another is to use remailers operated by cypherpunks

or by a research team at a major university. Even then, there are still potential prob-

lems. There are all sorts of attacks involving chosen traffic insertion, which may allow

powerful opponents (those who can monitor traffic at a large number of places in the

Internet) to track relationships between correspondents [359]. Even more service denial

attacks are possible on the remailer itself. People who want the service closed down

can send large amounts of junk mail to or through the system; they can try to get it into

a mail loop with high-volume mailing lists; they may even turn up with a subpoena.

The best account of such attacks comes from David Mazières and Frans Kaashoek’s

experience of running the MIT server [531].

Another possibility is for the mail or Web forwarding functions to be undertaken by

the users rather than by a centralized service. Crowds is a system in which users group

together and do Web page forwarding for each other. In this way, if one of them

downloads a subversive Web page, then the secret police have several hundred sus-

pects to deal with [641]. A similar scheme was devised by a well-known CEO who,

each morning, helps himself at random to one of the mobile phones of his managers,

and has his switchboard forward his calls.

For many purposes, elaborate technical protection mechanisms are unnecessary.

There are several online services which enable people to browse the Web anony-

mously, such as Anonymizer [52]. Users can set up a session with these services and

enter the URLs of Web pages they want fetched; the anonymizing service will do this,

while filtering those parts of the http protocol (such as cookies) that could reveal the

client’s identity. Some of the services offer encrypted sessions, in some cases at a pre-

mium price. In fact, any Web cache will provide some level of anonymity, because

pages are fetched on the user’s behalf. However, that does mean that the cache will

have some very interesting logs!
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Implementing high-quality anonymity is hard, not just for all these reasons but also

for those discussed in Section 19.7: merchant sites are forever dreaming up new cache-

busting tricks to ensure that customers see their ads and make their identities available,

and many of these can break anonymity in one way or another. For a survey of

anonymizing services, see [524]; for a discussion of defeating them using Web redi-

rects, Java applets, and so on, see [716, 654]. It is particularly hard to flush the internal

state of some browsers, such as Internet Explorer, so care must be taken if the opposi-

tion might gain control of your PC later.

However, the most common anonymity services are the Internet cafe and the throw-

away Web-based email address. Many places offer Net access for a fixed cash sum per

hour, and there are services that offer free email accounts which can be accessed from

a browser and are supported by advertising, without any authentication of the users’

claims to identity. Some of these services offer SSL-encrypted access for added pri-

vacy. Combining the two is a very attractive proposition for the acutely privacy con-

scious, because, provided you pay cash, there may be no durable record at all linking

your electronic persona to your physical person. Of course such services occasionally

get abused. There was public alarm in Britain after a neo-nazi downloaded bomb-

making information in a London cybercafe, after which he bombed black and Asian

districts and a gay bar, killing three people and injuring more than 70 others; but it’s

unclear that he actually got anything from the anonymity [191]. Of course, cybercafes

and throwaway email accounts are useful for all sorts of legitimate purposes.

20.4.4 Association Deniability—Digital Cash

Even if you use a throwaway email account, you may want to shop on the Net, and this

usually means giving a credit card number. As I mentioned in the chapter on electronic

commerce, the merchants will routinely build a marketing profile of you, indexed by

your credit card number (even though this breaches the banks’ standard conditions of

business). You may be lucky enough to get a credit card in a false name. (This can

even be legitimate—in the United States if you work for an organization in the intelli-

gence community, and in Britain if you’re entitled to police protection for some rea-

son.) But this still won’t stop the transactions that you make being linked together into

a profile for the marketers.

This raises the question of whether there is an electronic equivalent of cash—that is,

a payment medium that is anonymous, untraceable, and unlinkable. There have been

various attempts to do this. Some vendors of electronic purses claim that their products

are anonymous, as the purse itself has only a serial number, and the link between it and

the customer’s name is known only to the issuing bank. (Some of them have got into

trouble with advertising and trading standards authorities as their claims weren’t all

that well founded.) The most interesting protection concept in this space is digital

cash, another invention by Chaum [178, 180].

In Chapter 6, I explained the underlying technical idea—the blind signature. The

customer constructs a banknote according to an agreed format, and presents it to the

bank for signature after multiplying it by a suitable random blinding factor. Things are

arranged so that after the signature is done, the blinding factor can be removed, leaving
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a digital coin, or, more accurately, a digital cashier’s check whose serial number is not

known to the bank. Extra features are needed to ensure that the bank can detect

whether a coin has been spent twice [180]; a modern digital cash system is described in

[134].

Digital cash has been tried, but so far has not succeeded in the marketplace; the first

company to launch it as a product, Digicash Inc., ended up in bankruptcy. The search

for applications continues. There have been pilot projects involving road tolls; another

possibility is the management of pseudonyms for private online e-commerce [134];

still another is that medical insurance schemes could adopt anonymous health credit

cards to protect patient privacy [117].

The basic idea behind all these systems is that a customer’s relationship with a mer-

chant can be revealed only by the customer (for example, by showing a receipt). These

systems require as part of their infrastructure an anonymous communication system

(otherwise, the merchant can just read off the customer’s name directly, such as from

an email header). This makes them of limited appeal to e-business, and expensive.

There are also intrinsic limitations. If, for example, an online transaction involves the

shipment of physical goods, there will be a delivery address. If the product is intangi-

ble, such as software or audio, the copyright owner may want some means of pursuing

you if you distribute copies widely. So the ultimate use of digital cash technology may

be in a closed application such as road tolling. Related technologies may be used to

protect voters in online elections—a subject to which I’ll return in the next chapter.

20.4.5 Other Applications and Issues

The control of meta-information, and applications of anonymity and deniability, sur-

face in a number of other applications.

20.4.5.1 The Right to Remain Ignorant

One of the most difficult things to assure in automated systems, whether with the

mechanisms described here or those described in Chapter 8, is the right to not know

something. The classic example is that in many countries you have the right not to

know the outcome of a DNA test that a relative has for an inheritable disease. Your

relative does have a right to know, and he may tell others—in theory, he might tell eve-

ryone else in the world. This is not just a problem technically, but also for the data

protection laws of a number of countries [741].

20.4.5.2 Location Security

In the chapter on telecoms security, I mentioned the location security mechanism in

GSM—the temporary mobile subscriber identity or TMSI. This turned out to be rela-

tively easy for the police to defeat; and in some countries the phone companies’ logs of

mobile users’ location history were made available to the police anyway (there was a

political furor in Switzerland when people realized this was happening there). Many

countries, including the United States, have now passed laws or regulations demanding

that this information be available on production of a warrant (or even on demand) to
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the police; there are further requirements such as tracking mobiles which make emer-

gency calls. Third generation mobile services will provide location information accu-

rate to 250 m, and in Europe at least it looks like there will be a legal requirement for

phone companies to keep this for a year in case the police want it. What’s more, many

businesses plan to offer location-based services, with marketing pitches such as “50c

off a Big Mac at the McDonalds you’re about to drive past”. There are even proposals

for authentication schemes in which mobile terminals would only be allowed access to

a system if they were in a particular area, such as within the confines of a military base

[237].

Thus there appears little prospect that real location security services will be offered

in public networks. There’s no technical reason for this—in principle, one could use

digital coins to pay for network access, and a more elaborate design is presented in

[456]—but given business and regulatory pressure it’s unlikely to happen. The most

one can expect is that users may get medium-grade privacy from each other.

Location privacy mechanisms may, however, be fielded in embedded systems, such

as road tolls in Germany, where data protection law prohibits the retention of vehicle

details once the vehicle moves out of sight of the toll gantry, unless the toll has not

been paid [164]. Of course, it will always be open to individuals to devise their own

protection measures, as with the businessman mentioned above who randomly borrows

a different mobile phone each day. However, in the absence of such extreme measures,

location privacy seems set to be one of the more difficult things to achieve in the years

ahead.

20.4.5.3 Peer-to-Peer and Censorship-Resistant Systems

If there were an anonymous channel that couldn’t be jammed, then you could use it to

send out copyrighted, blasphemous, or libellous material without getting caught. This

is one of the central tensions between anonymity, copyright, censorship, and civil lib-

erties.

An early anonymous remailer, anon.penet.fi, was closed down following legal ac-

tion brought by the Scientologists. It had been used to post a message that upset them.

This contained an affidavit by a former minister of their church, the gist of which was

reported to be an allegation that once members had been fully initiated they were told

that the rest of the human race was suffering from false consciousness; that in reality,

Jesus was the bad guy and the Devil was the good guy. Well, history has many exam-

ples of religions that denounced their competitors as both deluded and wicked; the Sci-

entologists’ innovation was to claim that the details were their copyright. They were

successful in bringing lawsuits in a number of jurisdictions.

The reaction of the Internet community has included a number of designs for dis-

tributed file stores, some of which deliberately use anonymity mechanisms to make

this kind of censorship much more difficult. An early proposal was the Eternity Serv-

ice, designed to provide long-term file storage by distributing file fragments across the

Net, encrypted so that the people hosting them would not be able to tell which frag-

ments they had, and reconstruction could only be performed through remailer mecha-

nisms [27]. A modern version of this is Publius
2
, which also provides a censor-resistant

                                                            

2 For non-U.S. readers: the revolutionaries Alexander Hamilton, John Jay, and James Madison
used the pen name Publius when they wrote the Federalist Papers, a collection of 85 articles
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anonymous publishing mechanism [785]. Another successor system is Freenet which

seeks to provide communications as well as file storage services [189].

But probably the most heavily used decentralized file-sharing service is Napster

[570]. This enables Net users who are online to share MP3 audio files with each other.

Rather than keeping the files centrally, which would invite legal action, Napster simply

provides an indexing service so that someone wanting a given track can find out who

else has got it and is prepared to share or trade. In addition to litigation from Holly-

wood, Napster has attracted perhaps 10–20 million users and a number of imitators

(such as gnutella and mojonation). Given the huge volume of MP3 traffic it has gener-

ated, there will be a temptation to use this as cover traffic, and to share other data

through the system. This other traffic might be encoded steganographically in MP3

files or simply wrapped so that it appears to be in MP3 format.

These two streams of development—censorship resistance and file sharing—have

recently been coalescing into the new discipline of peer-to-peer networking. This burst

on the scene in the middle of 2000, and is starting to encompass other issues, such as

ad-hoc networks of mobile devices.

Early computer networks were many-to-one (or, as we would now call them, client-

server): many terminals connected to one mainframe. The early ARPANET went to the

other extreme, with each connected machine being an equal peer of the others. As the

ARPANET grew into the Internet, more hierarchy and organization got added, first

with services such as DNS and telnet, and later with the development of large commer-

cial Web sites. By now, Tim Berners-Lee’s vision of the Web as a person-to-person

communications mechanism has been turned into a client-server model in which peo-

ple’s PCs act as more-or-less dumb terminals for large Web servers.

Peer-to-peer networking is often seen as a return to basics. The participating ma-

chines become equals once more, and can all communicate with each other. The driv-

ing forces are not just copyright and censorship, though. The rapid growth of the net

has left DNS behind; there are now simply not enough IP addresses. Most dial-up Web

users are now allocated a temporary IP address by their ISP, so applications that enable

users to talk to each other, such as ICQ, have had to invent their own naming systems

that function despite the intermittent connectivity of the principals.

Another reason for interest in peer-to-peer networking is the arrival of ad-hoc mo-

bile network technologies such as Bluetooth. Within a few years, you will probably

have a personal network of dozens of devices: your organizer, your mobile phone, your

heart monitor, your PC at home, your burglar alarm—and some of these will make

transient connections to things such as train ticket dispensers and the laser printer in a

client’s office. Centralised administration of such networks will be impossible (thank

goodness), and the current Internet infrastructure (such as DNS) will probably not be

able to cope. The way forward appears to be for principals to use many infrastructures,

rather than just one, and to tailor the infrastructure to the application. Some infra-

structures may be hierarchical (as with ICQ) while others may be decentralized for ex-

treme survivability (as with censorship-resistant systems) and yet others may be

transient (as with ad-hoc networks).

We have recently started to realize that many of the techniques developed for sys-

tems like Eternity and Publius, plus those developed for secure ad-hoc networking such

                                                                                                                                                            
published in New York State newspapers in 1787–1788 and which helped convince New York
voters to ratify the United States Constitution. The reference is to the U.S. right to anonymous
political speech.
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as [731] and [732], can bring quite a lot to this party. The field is young and vigorous;

a collection of papers should appear shortly as ‘Peer-to-peer: Harnessing the disruptive

potential of collaborative networking’, edited by Andy Oram and published by

O’Reilly. (I got an advance copy of this too late to include it in this book’s bibliogra-

phy.)

20.4.5.4 Subversive Group Computing

An interesting engineering problem is the extent to which it’s possible to integrate the

technologies discussed here to provide systems that are highly resistant to all kinds of

survillance and coercion. This problem has been called subversive group computing

and may be thought of as the set of technologies necessary for a subversive

group—say, for example, a Tibetan group wishing to throw off Chinese rule. The

threat model here involves not just pervasive surveillance and determined service de-

nial attacks, but also the regular subversion of group members.

One can imagine a “covert superhighway” that would enable group members to

communicate with each other using anonymity mechanisms; distributed file stores for

propaganda that would otherwise be suppressed; steganographic file systems to help

group members appear innocuous if caught; and—as a backstop—a cell mechanism to

limit the damage that could be done by a group member who is “turned.” Such a hy-

pothetical system might be thought of as a generalization of the mechanisms for ena-

bling a group of servers to withstand and recover from an integrity failure of one of

their number, such as AT&T’s Rampart and IBM’s Proactive Security, which we dis-

cussed above in 6.2.2.

There’s an obvious direct interest in such techniques not just for national liberation

groups and counterintelligence agencies, but also from the point of view of public pol-

icy generally, as they will set the technical limits of both privacy and surveillance.

And, if recent history is any guide, they are likely to be at least as much driven by the

desire to evade, or enforce, copyright as by any particular political liberation agenda.

It’s likely that these technologies will also find some wider criminal use, but as Whit-

field Diffie puts it, “If you campaign for liberty, you’re likely to find yourself drinking

in bad company at the wrong end of the bar.”

20.4.5.5 Abuse

Finally we turn to the more common kinds of abuse, such as spam, mail bombing, and

harassment generally. In meatspace, such harassment is controlled by social pressures

and at the extreme by physical confrontation: you can shut your house door in the face

of an unwanted salesman. The same holds for cash transactions. If you grab a banana

from a market stall and run off without paying, the stallholder can run after you.

One of the critical ways cyberspace is different is that these physical aspects of se-

curity and control are absent, and especially so if users can shelter behind unbreakable

anonymity. For this reason, a number of people have proposed identity escrow schemes

under which Net users have pseudonyms that normally provide identity protection but

that can be removed by order of a court [155].

A contending view is that, given the ease with which people can get throwaway

email addresses, and log on through cybercafes or via prepaid mobile phones, ano-

nymity will continue to exist and will occasionally be a factor in abuse; and given our
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experience of real-world abuse so far, other mechanisms are likely to be at least as ef-

fective as tracing the perpetrators.

Unsolicited commercial email—spam—is our main teacher when it comes to abuse.

It’s routine for spammers to hide the source address of their product to prevent

counter-attacks by irritated Net users. Throwaway email addresses are one technique

they use; another is simple mail forgery. A number of strategies have been adopted to

manage it. Many of the most effective systems use a system of bait addresses, which

are publicized on newsgroups and mailing lists so that spammers will add them to their

lists; addresses from which spam is sent to the bait addresses are then blacklisted. A

particularly effective variant on this theme adds a delay of a few hours to all messages

received from unknown hosts, in order to see if they turn up at a bait address mean-

while [411].

Another technique is rate control: an ISP may limit the number of email messages

that a subscriber can send. One supplier of anonymity services, Zero Knowledge Sys-

tems, has decided against identity escrow and in favor of rate control, plus the cancel-

lation of pseudonyms from which abusive or illegal material is sent [821]. (An

interesting footnote here is that De Montfort University in Britain has blocked Zero

Knowledge at its firewall on the grounds that it can no longer enforce its policy of

blocking pornographic materials. A debate over academic freedom is brewing.) This

doesn’t provide a huge disincentive, as the nym can’t be traced back to its purchaser,

and he can simply buy a new one. We’ll just have to see how this pans out in practice.

Spam interacts with protection mechanisms in various ways. A notable one is that

spammers sometimes use remailer services to conceal themselves, so it’s routine for

anonymity services to implement rate control (this also makes it more difficult to at-

tack the system by sending large volumes of traffic to a single pseudonym and trying to

see where the traffic goes). Another is the reverse mail bomb: by forging spam (or

other offensive messages) that appear to come from your victim, you cause him to be

deluged with angry messages from recipients.

Finally, many of the real difficulties ISPs have in tracking down the perpetrators of

abuse are not due to people hiding behind remailers, but have to do with real-world

problems. Examples are the difficulty of establishing responsibility when abusive traf-

fic comes from a phone line in a multi-occupied student house, or when someone ac-

cesses a dial-up account on a free ISP from a phone whose calling line ID has been

blocked. ISPs also often keep quite inadequate logs, and hence can’t trace abusive traf-

fic later. So, in practice, as opposed to theory, anonymity is already pretty widespread

[190].

Abuse—whether technical, social, or even criminal—is not going to go away, and

means of reducing its impact and holding the culprits responsible will continue to be an

issue. For example, the view of U.K. ISPs is that, “Anonymity should be explicitly

supported by relevant tools, rather than being present as a blanket status quo, open to

use and misuse” [190]. The detailed design of these tools is likely to remain conten-

tious for some time.

20.5 Summary

Some of the most difficult security engineering problems at the beginning of the

twenty-first century have to do with copyright and privacy. In the absence of afford-
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able tamper-proof devices, will the enforcement of intellectual property rights neces-

sarily mean detailed monitoring of who reads which book, who listens to which music,

and who runs which software? If the tools are made available to enable people to pre-

vent monitoring, will this imply large-scale piracy of copyrighted matter?

This may at first sight seem to be the modern equivalent of the old philosophers’

question of what happens when an irresistible cannon ball meets an immovable

post—both can’t exist in the universe at the same time. But, as always, it’s not that

simple. The problems facing Hollywood, and the problems of defending one’s private

space against intrusion, are more subtle and will involve the judicious combination of a

range of tools. These tools have the feature that they manage meta-information: the

source of a message, its destination, whether it’s been paid for, whether copying is al-

lowed, whether it should no longer be readable after a certain date, and so on. By a

choice of suitable mechanisms, some quite subtle combinations of properties can be

engineered.

That’s not to say that there will be no conflict between copyright and pri-

vacy—merely that governments that rush to infringe personal liberties at the behest of

the film and music industries fail to understand the problems, and deserve to have their

legislation overturned by the judiciary. Also, the headline nature of large-scale copy-

right piracy should not deflect managers and policymakers from other serious real-

world abuses, such as spam and harassment generally.

This seems an appropriate note to finish the technical part of this book. Part 3 will

deal with issues of policy, assurance, economics, and management.

Research Problems

There are many interesting research problems in copyright management. Some of them

I’ve already touched on, such as whether much cheaper tamper-proof hardware tokens

can be built. Others are the subject of intense activity, such as better ways of embed-

ding copyright marks in digital pictures and sound. There are also business modelling

issues, which seem to have got little attention. For example, could we reuse the work

done on modelling epidemic thresholds for computer viruses to find out how much it’s

economic to spend on combatting various kinds of content piracy?

Privacy is also an active field of research and innovation. Perhaps the most difficult

problems have to do with preventing the abuse of anonymous services, particularly by

people whose goal is to close down an anonymous service by abusing it deliberately.

Further Reading

Software copy protection techniques are discussed at length in [356]; there’s a brief

history of technical protection mechanisms for audio and video in [307]; and a racy

account of the co-evolution of attack and defense in pay-TV systems in [532]. More

information about pay-TV, and the available information on DVD, can be found at

various Web sites (which may move because of legal harassment); a lawyer’s view can

be found at [361].

There is an overview of information hiding techniques, including steganography and

copyright marking, in a special issue of the Proceedings of the IEEE [515]; for attacks
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on marking schemes in particular, see [610, 611]. For more detail, there’s a recent

book on the subject [443]. Kahn is, as usual, good historical background reading [428].

The best introduction to anonymous remailers is probably [531]. Finally, ongoing re-

search work can be found in the proceedings of the workshops on information hiding

[28, 59, 613].



PART

Three

In the final section of the book, I cover three themes: politics, management, and

assurance. Given that we now have some idea how to provide protection, the three

big questions are: what are you allowed to do? how do you go about organizing it?

and how do you know when you’re done?

There has been much public debate recently about whether cryptography should

be controlled in the interests of law enforcement. The evolution of U.S. and Euro-

pean law and policy on cryptography makes an interesting tale, but I’ll cover it at

some speed. It’s only the tip of an iceberg.

Other places at which security engineering is coming into conflict with politics

abound. In what circumstances should legal recognition be given to digital signa-

tures? What sort of mechanisms are feasible to protect people from inappropriate

material on the Web (and who’s to say what’s inappropriate in any case)? What are

the implications for commercial system designers of the threat of “information

warfare” by hostile powers or substate groups? And how will individual privacy be

protected? This last question is being answered quite differently in the United

States and Europe. In the former, it’s left to corporate “self-regulation,” while in

the latter, the experience of World War II has led to privacy being entrenched as a

constutional principle. “Data protection,” as it’s called in Europe, threatens a ma-

jor ruction between the two continents. Successive U.S. administrations have

tended to see privacy as something on which “a deal could be done” or that could

be fudged or just swept under the carpet—not realizing that Germans can be as in-

flexible on data protection as many Americans are on gun control.

Our next chapter is about management. This has become a dirty word in the in-

formation security world; there are endless vapid articles written in “managemen-

tese” that say nothing at great length. But management issues are important.

Organizational and economic incentives often determine whether secure systems

get built. A large number of systems have failed because the protection was tacked

on as an afterthought, or because the real purpose of the system was not its adver-

tised purpose, or because the people who controlled the system design were not the

people who suffered when it failed. Economics provides a number of insights; for

example, security engineers often work with imperfect information, and network

externalities are particularly savage. The management of residual risk, and the re-

tention of organizational know-how, are two of the other problems that frequently

cause expensive failures.
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Assurance is a huge political can of worms. On the face of it, it’s just an engi-

neering issue. How do you go about finding convincing answers to the questions:

are we building the right system? and, are we building it right? These questions are

familiar from software engineering (which can teach us a lot), but they acquire

new meaning when systems are exposed to hostile attack. Also, most of the orga-

nizational structures within which assurance claims can be made, or certified, are

poisoned one way or another. Claims about system security properties are often

thinly veiled assertions of power and control, so it should surprise no one if the re-

sults of evaluation by equipment makers, insurers’ laboratories, military agencies,

and academic attackers are very different. So it’s really important for the security

engineer to set out at the start of a project not just what the objective is, but the

criteria by which it will be judged a success or a failure.
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CHAPTER

21

E-Policy

Experience should teach us to be most on our guard to protect

 liberty when the government’s purposes are beneficient.... The

 greatest dangers to liberty lurk in insidious encroachment by men of

 zeal, well meaning but without understanding.

—SUPREME COURT JUSTICE LOUIS BRANDEIS

The arguments of lawyers and engineers pass through one another like angry ghosts.

—NICK BOHM, BRIAN GLADMAN, AND IAN BROWN [124]

21.1 Introduction

Information security is about power. It’s about determining who will be able to grant

(or deny) the use of a resource. In the past the implications went largely unexamined

and uncontested. Banks built systems that failed in their favor, rather than the custom-

ers’; hospitals harvested patient data for management and research, without telling

their patients; and governments bullied phone companies into making their networks

easy to tap. But since the early 1990s, many of these assumptions have begun to be

challenged. Contributory factors include increased public awareness, the greater im-

portance of IT in people’s lives and businesses, and the fact that computing power is

now more distributed. Cheap computers meant that small businesses could balance

their bank account and check their interest calculations, making it harder for the bank

manager to quietly add a percent or two to the agreed rate; the contempt that many

health insurers and hospitals had for medical privacy was exposed once family doctors

started competing for control of the electronic health record; and wiretapping became

an issue once ubiquitous PCs, email, and encryption software made it practical for in-

dividuals to defeat some kinds of government surveillance.
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The role of government in e-commerce and the Internet generally has become a

source of much argument. For much of the 1990s, the debate was dominated by key

escrow—the view (held by the governments of the United States, France, Russia, and,

after 1996, Britain) that copies of encryption keys should be given to the government

for the convenience of law enforcement and national intelligence agencies. The op-

posing position— held by the governments of countries such as Germany and Ireland,

Britain until 1996, and almost all of the IT industry—was that it was better to leave the

development of the Internet to technological and market forces.

I’ll delve into some of the arguments shortly. However, at the beginning of the

twenty-first century, the places where government policy meets information security

are multiplying. How are government services, from welfare payments through the

court system to passports and tax collection, to be organized in a society that increas-

ingly expects everything to be available at once and online? How can government

avoid deepening the social exclusion of the poor, the old, and ethnic minorities—who

may be the last to go online? Should elections be conducted online, and if so what

should we do to make fraud, corruption, and coercion at least as hard as they are now?

When automating government, will we replace an inefficient tiresome mess with an

automated inefficient tiresome mess?

Government departments, like businesses, are struggling to stake out territory in cy-

berspace. Key escrow was just one of the earliest land grabs, and was unsurprising

given that intelligence agencies are among the most technically sophisticated public-

sector organizations. An unfortunate side effect is that, in many countries, the debate

over who should have access to cryptographic keys has not only soured government

relations with local IT communities, but has also enabled the agencies to take a domi-

nant position in IT policy. In Britain, for example, the mantle of “national technical

authority” for such matters is worn jealously by CESG, a department of the signals

intelligence agency GCHQ. So it’s policy that all state sector keys be escrowed. This

will raise serious concerns about any online system for elections. Of course the agen-

cies will want to know who votes for Sinn Féin in Northern Ireland; but if it’s too easy

for them to find out, then the legitimacy of the province’s government will be under-

mined, and this is likely to cause more deaths than any tactical intelligence failure.

Many people consider that letting espionage agencies set national computer security

policy amounts to putting the fox in charge of the henhouse. But what’s the alterna-

tive? What sort of political control should be exercised over the agencies, and how are

they to be held accountable? Where and how are alternative public-sector centers of

expertise in information security (and IT generally) to be built?

So the first policy issue we need to look at is the whole question of how wiretaps,

traffic analysis, and cryptography are to be regulated.

21.2 Cryptography Policy

Millions of words have been written in the last few years on cryptography policy and

related issues. In this section, all I can reasonably try to do is to place the debate in

context, sketch the broad outlines, and provide pointers to primary sources.

Although restrictions on cryptography had existed for years and greatly irritated ci-

vilian users such as the banking industry, they shot to the headlines in 1993 when the

new administration of Bill Clinton astonished the IT industry with the Escrowed En-
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cryption Standard (EES), more popularly known as the Clipper chip. This was a pro-

posed replacement for DES, with a built-in back-door key that enabled government

agencies to decipher any traffic. (I explained the technical aspects in 14.5.3.) However,

Clipper is even more important as the issue that politicized cryptography and informa-

tion security generally.

U.S. opinion polarized with the government taking the view that since cryptography

is about keeping messages secret, it could be used by criminals to prevent the police

gathering evidence from wiretaps; the IT industry (with a few exceptions) took the

conflicting view that cryptography was the only means of protecting electronic com-

merce, and was thus vital to the future development of the Net. Civil liberties groups

lined up with the industry, and claimed that cryptography would be the critical tech-

nology for privacy. By 1994, the NSA had concluded that it faced a war with Micro-

soft, which it would lose, so it handed off the policy lead to the FBI, while continuing

to direct matters from behind the scenes.

The debate rapidiy became tangled up with export controls on weapons, the means

by which cryptography was traditionally controlled. U.S. software firms were not al-

lowed to export products containing cryptography that was seen as too hard to break

(usually interpreted as meaning a keylength of over 40 bits). A.U.S. software author,

Phil Zimmermann, was hauled up before a grand jury for arms trafficking after a pro-

gram he wrote—PGP—”escaped” on to the Internet. He immediately became a folk

hero and made a fortune as his product grabbed market leadership. The conflict became

international: the U.S. State Department invested significant effort in persuading other

countries to control cryptography too.

The results were mixed. Some countries that had oppressive regimes within living

memory, such as Germany and Japan, resisted American blandishments. Others, such

as Russia, seized the excuse to pass harsh crypto control laws. France relaxed a tradi-

tional prohibition on non-government use of crypto; while Britain went from a liberal,

laissezfaire policy under John Major in the mid-1990s to a draconian law under Tony

Blair in 2000—the Regulation of Investigatory Powers (RIP) Act.

Throughout this process, the means of compulsion applied by governments (outside

the Russia/Zimbabwe end of the spectrum) have become progressively more subtle.

Outright criminalization has given way to a grab-bag of economic and legal incentives.

But, overall, the popular view of the crypto policy struggle has been one in which the

Forces of Light (privacy advocates and IT companies) have slowly overcome the

Forces of Darkness (policemen and spies) in a Manichean struggle for the Soul of the

Internet.

Reality is, as always, a bit more complicated. It may be useful to step back and try to

place the debate in its historical context.

21.2.1 The History of Police Wiretapping

Since the earliest states arose, their rulers have tried to control communications. In

classical times, this was done by checks on couriers at customs posts. From the Middle

Ages, many kings either granted a monopoly of postal services to a trusted nobleman

or made them the property of the state. The letter-opening and code-breaking facilities

of early modern states, the so-called Black Chambers, are described in Kahn [428].
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The invention of electronic communications brought forth a defensive and indeed

atavistic response, one very reminiscent of the recent crypto policy debate. In most of

Europe, the telegraph service was set up as part of the Post Office and was always

owned by the government. Even where it wasn’t, regulation was usually so tight that

the industry’s growth was severely hampered, leaving America with a clear competi-

tive advantage. A profusion of national rules, which sometimes clashed with each

other, so exasperated Europeans that the International Telegraph Union (ITU) was set

up in 1865 [729]. This didn’t satisfy everyone. In Britain, the telegraph industry was

nationalized by Gladstone in 1869. (This experience was so traumatic for both gov-

ernment and business that the next significant nationalizations in Britain were not until

after 1945.)

The invention of the telephone further increased government interest in surveillance.

Resistance, both legal and technical, has a long history. In the United States, the Su-

preme Court ruled in 1928 in Olmstead vs. United States that wiretapping didn’t vio-

late the Fourth Amendment provisions on search and seizure, as there was no physical

breach of a dwelling; Judge Brandeis famously dissented. In 1967, the Court reversed

itself in Katz vs. United States, ruling that the amendment protects people, not places.

The following year, Congress legalized Federal wiretapping (in Title III of the Omni-

bus Crime Control and Safe Streets Act) following testimony on the scale of organized

crime in the United States. In 1978. following an investigation into the Nixon admini-

stration’s abuses, Congress passed the Federal Intelligence Surveillance Act (FISA),

which places controls on wiretapping for national security. In 1986, the Electronic

Communications Protection Act (ECPA) relaxed the Title III warrant provisions. By

the early 1990s, the spread of deregulated services, from mobile phones to call for-

warding, had started to undermine the authorities’ ability to implement wiretaps, as did

technical developments such as out-of-band signalling and adaptive echo cancellation

in modems. By 1994, the Communications Assistance for Law Enforcement Act

(CALEA) required all communications companies to make their networks tappable in

ways approved by the FBI. By 1999, over 2,450,000 telephone conversations were le-

gally tapped following 1,350 court orders [272, 533]. The relevant law is 18 USC (US

Code) 2510-2521 [759] for telco services. (The Cable Act of 1984 regulates wiretaps

for cable modems and is much more restrictive—so the administration wants it watered

down [439].)

It must by noted that, according to some serious analysts, there are at least as many

unauthorized wiretaps as authorized ones [250]. In some countries the figures can be

distorted by wiretapping being uncontrolled if one of the equipment owners con-

sents—so that calls from phone boxes are free to market.

But even if the official figures have to be doubled or tripled, it’s still clear that de-

mocratic regimes make very much less use of wiretapping than authoritarian ones. For

example, lawful wiretapping amounted to 63,243 line-days in the United States in

1999, or an average of just over 173 taps in operation on an average day. The former

East Germany had some 25,000 telephone taps in place, despite having a fraction of the

U.S. population [295]. There was also extensive use of technical surveillance meas-

ures, such as room bugs and body wires. (It’s hardly surprising that nudist resorts be-

came extremely popular in that country.)

It’s also worth noting that the incidence of wiretapping is highly variable in the de-

veloped democracies. In the United States, for example, only about half the states use
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it; and for many years, the bulk of the taps were in the “Mafia” states of New York,

New Jersey, and Florida (though recently, Pennsylvania and California have caught up)

[372]. There is similar variation in Europe. Wiretaps are very common in the Nether-

lands, despite Dutch liberalism on other issues [147]: they have up to 1,000 taps on the

go at once, with a tenth of America’s population. In a homicide investigation there, for

example, it’s routine to tap everyone in the victim’s address book for a week to moni-

tor how they react to the news of the death. In Britain, wiretaps are supposed to need a

ministerial warrant, and are rarer; but police use bugs and similar techniques quite a lot

in serious cases. To some extent, the technologies are interchangeable.

The cost of wiretapping is a serious issue. Before CALEA was introduced, in 1993,

U.S. police agencies spent only $51.7 million on wiretaps—perhaps a good estimate of

their value before the issue became politicized [372]. The implementation of CALEA

has supposedly cost over $500 million, even though it doesn’t cover ISPs. This raises

some obvious policy questions. Is it worth it? Should agencies cut back on wiretap-

ping, and spend the money on more cops instead? Or will they try to expand its use to

amortize their costs? Once you start molding an infrastructure to meet requirements

other than cost and efficiency, someone has to pay; and as the infrastructure gets more

complex, the bills keep on mounting.

21.2.2 The History of Traffic Analysis

However, the bulk of police communications intelligence in developed democratic

countries does not come from the surveillance of content, but from the analysis of tele-

phone toll records and other communications data. I examined in the chapter on tele-

comms security how criminals go to great lengths to bury their signals in innocuous

traffic using techniques such as prepaid mobile phones and PBX hacking, and the tech-

niques used by the police to trace networks of criminal contexts nonetheless.

Again, this is nothing new. Rulers have long used their control over postal services

to track the correspondents of potential subversives, even when the letters weren’t

opened. The introduction of postage stamps in 1840 was an advance for privacy as it

made it much easier to send a letter anonymously. Some countries got so worried about

the threat of sedition and libel that they passed laws requiring a return address to be

written on the back of the envelope. The development of the telegraph, on the other

hand, was an advance for surveillance; messages were logged by sender, receiver and

word count, so traffic totals could be compiled, and were found to be an effective indi-

cator of economic activity [729]. World War I brought home to the combatants the

value of the intelligence that could be gleaned from listening to the volume of enemy

radio traffic, even when it couldn’t conveniently be deciphered [428, 569]. Later con-

flicts reinforced this.

By the late twentieth century, traffic analysis provided the bulk of police communi-

cations intelligence. For example, in the United States, there were 1,329 wiretap appli-

cations approved in 1998 (the last year for which comparable statistics were available

at the time of writing), while there were 4,886 warrants (plus 4,621 extensions) for pen

registers (devices that record all the numbers dialed from a particular phone line) and

2,437 warrants (plus 2,770 extensions) for trap-and-trace devices (which record the

calling-line ID of incoming calls, even if the caller tries to block it). In other words,

there were 11 times as many warrants for communications data as for content. This

pattern has been stable for years, and across many countries. Why should this be?
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Wiretaps are so expensive to listen to and transcribe that most police forces with re-

stricted budgets use them only as a weapon of last resort; in contrast, the numbers a

suspect calls, and that call him, give a rapid overview of his pattern of contacts. Also,

while wiretaps usually have fairly strict warrantry requirements, most countries impose

few or no restrictions on the police use of communications data. In the United States,

no warrants were required until ECPA. Even after that, they have been easy to get: un-

der 18 USC 3123 [759], the investigative officer merely has to certify to the court “that

the information likely to be obtained by such installation and use is relevant to an on-

going criminal investigation.” This can be any crime—felony or misdemeanor—and

under either federal or state law. Unlike with wiretaps, the court has no power to deny

a warrant once a formally correct application has been made, and there is no court su-

pervision once the order has been granted. Since the passage of CALEA, warrants are

still required for such communications data as the addresses to which the subscriber

has sent e-mail messages, but basic toll records can be obtained under subpoena—and

the subscriber need not be notified. So the above figures for pen register and trap-and-

trace warrants almost certainly understate the extent of law enforcement traffic analy-

sis. In any case, both phone and computer service records can be provided to bodies

other than law enforcement agencies under 18 USC 2703(c); thus, for example, we find

Virginia and Maryland planning to use mobile phone tracking data to monitor conges-

tion on the Capital Beltway [710]. Toll data use for marketing purposes was also ex-

pressly envisioned by Congress when this law was passed.

In Britain, files of telephone toll tickets were provided by the phone company to the

police without any control whatsoever until European law forced the government to

regulate the practice in the RIP Act in 2000. Since then, comms data requires only a

notice from a senior police officer to the phone company or ISP, not a warrant.

The issue of controlling access to communications data is gradually becoming a live

one. The major problem is that comms data and content are becoming more and more

intermixed, as what’s content at one level of abstraction is often comms data at the

next. A good example comes from Web URLs. On the face of it, a URL is just the ad-

dress of a Web page to be fetched, but a URL such as http: //www.google.com/search?

q=marijuana+cultivation+UK contains the terms entered into a search engine as well as

the search engine’s name. Clearly there are many policemen who would like a list of

everyone who submitted such an enquiry. Equally clearly, giving this sort of data to the

police on anything like a large scale would have a chilling effect on online discourse. It

would most likely be found unconstitutional in many jurisdictions.

In fact, when the U.K. government was pushing the RIP bill through Parliament, it

tried to entrench a definition that would include URLs (while disclaiming that this was

the intention). The news that the police would have unrestricted access to the URLs

each user enters—their clickstream—caused a public outcry against “Big Browser,” so

the definition of communications data was trimmed. For general Internet traffic, it now

means IP addresses, but it also includes email addresses and the location of mobile

phones. All this can be demanded with only a notice from a senior police officer.

Other countries will use different definitions. For example, the U.S. Court of Ap-

peals recently ruled that the cell in which a mobile is located is sufficient, and that to

require triangulation on the device (an interpretation the police had wanted) would in-

vade privacy [760]. Also, even cell-granularity location information would not be

available under the lower standards applied to pen register warrants. Pen register war-

rants were also found insufficient for post-cut-through dialed digits, as there is no way
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to distinguish in advance between digits dialed to route calls and digits dialed to access

or to give information. In practice, this means that if a target of investigation in the

United States goes to a convenience store and buys a phone card for a few dollars, the

police can’t get a list of whom he calls unless they obtain a full wiretap warrant. They

are entitled only to the digits the suspect dials to contact the phone card operator, not

the digits he dials afterward to be connected.

The proliferation of different national standards of what is content and what is com-

munications data may have significant effects on politics and on engineering.

Finally, the analysis of call data is only one aspect of a much wider issue: law en-

forcement data matching, which means the processing of data from numerous sources.

The earliest serious use of multiple source data appears to have been in Germany in the

late 1970s, to track down safe houses used by the Baader Meinhof terrorist group. In-

vestigators looked for rented apartments with irregular peaks in utility usage, and for

which the rent and electricity bills were paid by remote credit transfer from a series of

different locations. This worked: it yielded a list of several hundred apartments, among

which were several safe houses. The tools to do this kind of analysis are now shipped

with a number of the products used for traffic analysis and for the management of ma-

jor police investigations. The extent to which they’re used depends on the local regu-

latory climate; there have been debates in Britain over police access to databases of the

prescriptions filled by pharmacists for the National Health Service, while in America,

doctors are alarmed at the frequency with which personal health information is sub-

poenaed from health insurance companies by investigators. There are also practical

limits imposed by the cost of understanding the many proprietary data formats used by

commercial and government data processors. But it’s common for police to have ac-

cess at least to utility data such as electricity bills (which get trawled to find marijuana

growers); and in the long term, absolutely anything that gets monitored and logged is

potentially liable to be subpoenaed. In both Britain and America, regulations being

proposed or introduced at the beginning of 2001 will give the police much increased

power to demand personal data electronically.

21.2.3 Communications Intelligence on Foreign Targets

I covered the technical aspects of signals intelligence in Chapter 16; now is the time to

look briefly at the political and organizational aspects.

The bulk of communications intelligence, whether involving wiretaps, traffic analy-

sis, or other techniques, is not conducted for law enforcement purposes but for foreign

intelligence. In the United States, the main agency responsible for this is the National

Security Agency, the NSA, whose budget (though classified) is certainly in the bil-

lions, given its huge facilities and its tens of thousands of employees. The NSA com-

pletely dwarfs law enforcement’s 150–200 active wiretaps. The situation is similar in

other countries; Britain’s Government Communications Headquarters (GCHQ) has

thousands of employees and an acknowledged budget of £650 million (about a billion

dollars), while for many years one single police officer at New Scotland Yard handled

the administration of all the police wiretaps in London (and ran the computer crime

squad, too).
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Information has steadily trickled out about the scale and effectiveness of modern

signals intelligence operations. Kahn’s influential history of cryptography laid the

groundwork, by describing much of what happened prior to the start of World War

II[428]; an anonymous former NSA analyst, later identified as Perry Fellwock, re-

vealed the scale of NSA operations in 1972 [288]. “Information gathering by NSA is

complete,” he wrote. “It covers what foreign governments are doing, planning to do,

have done in the past: what armies are moving where and against whom; what air

forces are moving where, and what their capabilities are. There really aren’t any limits

on NSA. Its mission goes all the way from calling in the B-52s in Vietnam to moni-

toring every aspect of the Soviet space program.”

While Fellwock’s motive was opposition to Vietnam, the next major whistleblower

was a British wartime codebreaker, Frederick Winterbotham, who wanted to write a

memoir of his wartime achievements and, as he was dying, was not bothered about

prosecution. In 1974, he revealed the Allies’ success in breaking German and Japanese

cipher systems during that war [806], which led to many further books on World War

II sigint [188, 429, 800]. Thereafter there was a slow drip of revelations by investiga-

tive journalists, quite of few of whose sources were concerned about corruption or

abuse of the facilities by officials monitoring targets they should not have, such as do-

mestic political groups. For example, whistleblower Peg Newsham revealed that the

NSA had illegally tapped a phone call made by Senator Strom Thurmond [ 157,158].

James Bamford pieced together a fair amount of information on the NSA from open

sources and by talking to former employees [70]. But the most substantial source on

the organization and methods of the signals intelligence of the United States and allies

was put together by New Zealand journalist Nicky Hager [368] following the New

Zealand intelligence community’s failure to obey an order from its Prime Minister to

downgrade intelligence cooperation with the NSA.

The end of the Cold War meant that the agencies had to find new reasons to justify

their budgets, and a common theme was developing economic intelligence operations

against competitor countries. This has accelerated the flow of information about

sources and methods. The most high-profile exposé of U.S. economic espionage was

made in a report to the European parliament [278], which is concerned that now the

USSR has evaporated, and intelligence is acquiring an economic focus, European Un-

ion member nations are now the main targets [160].

The picture that emerges from these sources is of a worldwide signals intelligence

collection system, known as Echelon, and run jointly by the WASP countries (the

United States, Britain, Canada, Australia, and New Zealand). Data, faxes, and phone

calls get collected at a large number of nodes, including international communications

cables that land in member countries (or are tapped clandestinely underwater), obser-

vation of traffic to and from commercial communications satellites, special sigint sat-

ellites that collect traffic over potentially hostile countries, and listening posts in

member states’ embassies [278]. The collected traffic is searched in real time by com-

puters known as dictionaries according to criteria such as the phone numbers or IP ad-

dresses of the sender or receiver, and keyword searches on the contents of email. These

search criteria are entered by member countries’ intelligence analysts; the dictionaries

then collect the traffic satisfying them and ship it back to the analyst. Echelon appears

to work very much like a Web search engine, except that instead of searching Web

pages it searches through the world’s phone and data network traffic in real time.



Chapter 21: E-Policy

463

A number of points here are worth bearing in mind.

• First, modern military operations would be much more difficult without sig-

nals intelligence, and in many cases they would be suicidal. The combatant

with the better understanding of the other side’s radar and communications has

a decisive advantage when it comes to jamming and deception. Without an

ability to conduct electronic warfare, a state will be unlikely to be competitive

in air or naval warfare or in tank battles on the ground. Even guerilla warfare

is less likely to be effective if the occupation forces can deny the guerilla the

use of modern communications. So it’s not surprising that most of the person-

nel at NSA are military, and its director has always been a serving general. A

large proportion of its work concerns the identification and analysis of the ra-

dars, telemetry, weapons guidance, electronic countermeasures, and other such

resources of countries that are hostile or potentially so.

• Second, the proliferation of cordless phones, radio LANs and other radio-
based technologies, plus the fact that everything is going online, present the
agencies with a cornucopia of new information sources [560]. Times have
never been so good—regardless of the outcome of policy debates over cryp-
tography.

• Third, even with a budget of billions of dollars a year and tens of thousands of
staff, not even the NSA can collect all the electronic communications every-
where in the world. The world described by Fellwock is no more. Sprint’s
budget is bigger than the NSA’s, and is largely spent on low-cost commercial
products rather than high-cost classified ones, so it can put in lines much faster
than the NSA can tap them. And even if the NSA were only interested in, say,
the U.K. university system—and could manage to tap the network access point
of every British university—it still couldn’t ship all the bits across the Atlantic
to Fort Meade, as there just isn’t enough transatlantic bandwidth. The task of
tapping all the data streams of all the corporations in Japan would be an order
of magnitude harder. Thus, the central problem facing intelligence agencies is
the same as that facing the police: traffic selection. Although in the old days it
was possible to record all telephone and data traffic across the Atlantic, even
this would be too expensive nowadays, because communications bandwidth is
growing in scale and falling in cost much more rapidly than data storage ca-
pacity. The critical question then is whether traffic selection can be done in
real time [490].

• Fourth, although other countries may complain about U.S. sigint collection, for

them to moralize about it is hypocritical. Other countries also run intelligence

operations, and are often much more aggressive in conducting economic and

other nonmilitary espionage. The real difference between the WASP countries

and the others is that no-one else has built this “system-of-systems.” Indeed,

there appear to be network effects at work in the economics of sigint as in so

many other online activities. The value of a network grows faster than its size,

and intelligence networks appear to be no different from phone networks,

banking networks, or the Internet itself. The more you tap, the cheaper it gets.

There have thus been moves to construct a “European Echelon” involving the

police and intelligence agencies of continental European countries [269, 280].

Signals intelligence is necessary for a nation’s survival, but potentially danger-

ous—just like the armed forces it serves. An army can be a good servant, but is likely
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to be an intolerable master. The issue is not whether such resources should exist, but

how they are to be held accountable. In the United States, hearings by Senator Church

in 1975 detailed a number of abuses, such as the illegal monitoring of U.S. citizens

[185]. Foreign intelligence gathering is now regulated by U.S. law in the form of 50

USC 1801–1811 [759]. This isn’t perfect; its requirements are much more lax than

those on domestic wiretapping, and in many cases the president can simply authorize

collection rather than getting a warrant. Also, there are known loopholes. One is col-

laboration with friendly services overseas. When Margaret Thatcher wanted to spy on

one of her cabinet ministers, she got the work done by the Canadians [322]; and if the

U.S. president really wanted to wiretap a senator there’s no doubt he could simply ask

Britain’s GCHQ to do the job—for them, it would be a perfectly legal foreign intelli-

gence task. And Americans are lucky: in most countries, the oversight of intelligence

isn’t even discussed.

However, there’s a much more serious consequence of poor control and account-

ability than the occasional political abuse. This is the proliferation of intelligence bu-

reaucracies that turn out to be largely useless once the shooting starts. It became a

commonplace in Washington during the Cold War that the agencies hated each other

much more than they hated the Russians. In Britain, one of the most vicious intelli-

gence battles was not against the IRA, but between the police and MI5 over who would

take the lead in the fight against the IRA. There are numerous accounts of intelligence

inefficiency and infighting by well-placed insiders, such as Jones [425]. It is in this

context of bureaucratic turf wars that we should approach the whole question of key

escrow.

21.2.4 The History of Crypto Policy

Many countries made laws in the mid-nineteenth century banning the use of cryptogra-

phy in telegraph messages, and some even forbade the use of languages other than

those on an approved list. Prussia went as far as to require telegraph operators to keep

copies of the plaintext of all messages [729]. Sometimes, the excuse was law enforce-

ment—preventing people obtaining horse race results or stock prices in advance of the

“official” transmissions—but the real reason was concern about national security. This

pattern was to repeat itself again in the twentieth century.

After the immense success that the Allies had during World War II with cryptanaly-

sis and signals intelligence in general, the U.K. and U.S. governments made an agree-

ment to continue intelligence cooperation. This is known as the UKUSA agreement,

although the other WASP countries quickly joined it. Although made in 1947, its exis-

tence was acknowledged only in 1999. Throughout much of this period, the member

nations operated a crypto policy whose main goal was to prevent the proliferation of

cryptographic equipment and know-how. Its outlines were vaguely visible to those of

us who worked in industries such as banking; more recently, articles written by former

insiders have fleshed out the details.

21.2.4.1 Export Control

Until the 1980s, almost the only makers of cryptographic equipment were companies

selling into government markets. They could, by and large, be trusted not to sell any-

thing overseas that would upset their major customers at home. This was reinforced by

export controls, which were operated “in as covert a way as possible, with the mini-
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mum of open guidance to anyone wanting, for example, an export licence. Most things

were done in behind-the-scenes negotiation between the officials and a trusted repre-

sentative of the would-be exporter” [82].

In these negotiations, the authorities would try to steer applicants toward using weak

cryptography where possible; and where confronted with a more sophisticated user,

would try to see to it that systems had a “back door” (known in the trade as a red

thread) that would give access to traffic. Anyone who tried to sell decent crypto do-

mestically could be dissuaded by various means. A large company would be threatened

with loss of government contracts; a small one, could be strangled with red tape as it

tried to get telecoms and other product approvals. The problem encompassed more than

cryptography, as controls designed for mainframes were overtaken by technology. By

the mid-1980s, the computers that kids had in their bedrooms were considered to be

munitions, and manufacturers ended up doing lots of paperwork for export orders. This

pleased the bureaucrats, as it gave them jobs and power. Of course, the power was of-

ten abused. In one case, an export order for a large number of British-made home com-

puters to the school system in Yugoslavia was blocked at the insistence of the U.S.

authorities, on the grounds that it contained a U.S. microprocessor; a U.S. firm was

promptly granted a license to export into this market. Although incidents like this

brought the system into disrepute, it persists to this day.

By the early 1970s, the development of ATMs and other electronic banking applica-

tions created a significant market for standardized, reasonable-quality cryptographic

protection. Part of the solution was to run crypto policy along the same lines as con-

trols on missile technology exports—to let just enough out to prevent companies in

other countries developing viable markets. Whenever crypto controls got so onerous

that banks in somewhere like Brazil or South Africa started having crypto equipment

custom-built by local electronics firms, export licensing would ease up until the threat

had passed.

The other part of the solution lay in control of standards for banking crypto. A

problem that worried the NSA in the 1970s was that many countries were still using

cipher machines that could be broken using the techniques developed in World War II

(and these weren’t just poor countries: the South Africans used rotor machines up till

the mid-1980s and the Swiss till the early 1990s). How could a decent cipher be pro-

vided for the banking industry, not just in America but overseas, without its being

adopted by foreign governments and thus adding hugely to the costs of intelligence

collection?

21.2.4.2 DES and Crypto Research

The solution was the Data Encryption Standard (DES). At the time, as I mentioned in

5.4.3.2, there was a good deal of controversy about whether 56 bits were enough. We

now know that this was deliberate. The NSA did not at the time have the machinery

needed to do DES keysearch; that came later. But by giving the impression that it did,

it managed to stop most foreign governments adopting it. The rotor machines contin-

ued in service, in many cases re-implemented using microcontrollers, and the traffic

continued to be harvested. Intelligence targets who encrypted their important data with

such ciphers merely solved the NSA’s traffic selection problem.
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A second initiative was to undermine academic research in cryptology. In the 1970s,

this was done directly by harassing the people involved; by the 1980s, it had evolved

into the subtler strategy of claiming that published research work was all old hat. The

agencies opposed crypto research funding, essentially by saying, “We did all that stuff

30 years ago; why should the taxpayer pay for it twice?” The insinuation that DES may

have had a trapdoor inserted into it fitted well with this play. (A side effect we still live

with is that the crypto and computer security communities got separated from each

other in the early 1980s, as the NSA worked to suppress one and build up the other.

This has significant costs today for all players, including the NSA. Another cost is that,

whenever the NSA makes a mistake, as with the design of Clipper, it gets more harshly

judged. What goes around, comes around.)

By the mid-1990s, this line had become exhausted. Agency blunders in the design of

various key escrow systems showed that they have no special expertise in cryptology

compared with the open research community, and as attempts to influence the direction

of academic research by interfering with funding have become less effective, they have

become much less common.

21.2.4.3 Clipper

Crypto policy came into the open in 1993 with the launch of the Clipper chip. The im-

mediate stimulus for Clipper was the proposed introduction by AT&T to the U.S. do-

mestic market of a high-grade encrypting telephone that would have used Diffie-

Hellman key exchange and triple-DES to protect traffic. The government’s response

was that it could use its huge buying power to ensure the success of a different stan-

dard in which spare keys would be available to the agencies to decrypt traffic. This led

to a public outcry, and Clipper was withdrawn.

Several more attempts were made to promote the use of cryptography with govern-

ment access to keys in various guises. Key escrow acquired various new names, such

as key recovery; certification authorities that kept copies of their clients’ private de-

cryption keys became known as Trusted Third Parties (TTPs)—somewhat emphasizing

the NSA definition of a trusted component as one that can break security. Much of the

policy leverage had to do with export licensing; as the typical U.S. software firm ex-

ports most of its product, and as maintaining a separate product line for export is ex-

pensive, many firms could be dissuaded from offering strong cryptography by

prohibiting its export. Products with “approved” key escrow functionality were then

granted preferential U.S. export license treatment. (The history of this struggle is still

to be fully written, but a first draft is available from Diffie and Landau [250]; and

many of the U.S. source documents, obtained under FOIA, have been published in

[684].)

One of the engineering lessons from this whole process is that doing key escrow

properly is hard. Making two-party security protocols into three-party protocols in-

creases the complexity and the risk of serious design errors; and centralizing the es-

crow databases creates huge targets [3]. Where escrow is required, it’s usually better

done with simple local mechanisms. In one army, the elegant solution is that every of-

ficer must write down her passphrase on a piece of paper, put it into an envelope,

stamp it “Secret” and hand it to her commanding officer, who puts it in the office safe.

That way, the keys are kept in the same place as the documents whose electronic ver-
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sions they protect, and there’s no central database for an airplane to bomb or a spy to

steal. (If you have been following the key escrow debate, you may have been condi-

tioned to object, “But a soldier could deposit a false key and then desert and try to sell

back the right one.” I posed this question to my informant, and he looked at me as if I

was crazy. I now believe this objection is indeed crazy, or at best clutching at straws.

Anyone, soldier or programmer, can take paper documents and try to ransom them. In

practice, it’s so rare an event that nobody bothers about it.)

21.2.4.4 European Initiatives

In Europe, things have been somewhat more confused. Here’s a brief summary (there

is an extensive survey at [472]). International arms control agreements (COCOM and

Wassenaar) bind most governments to implement export controls on cryptographic

equipment; and countries that are member states of the European Union are also bound

by an EU regulation on the export of dual-use goods—goods that have both civilian

and military uses. But European bodies have been cool toward crypto control, and na-

tional implementations vary. U.K. law doesn’t control export of intangibles, so crypto

software could be exported electronically; the Belgian government would grant li-

censes for almost anything; and Switzerland remained a major exporter of crypto

equipment. Domestic controls also varied. The French government started from a posi-

tion of prohibiting most civilian cryptography, and moved to almost complete liberali-

zation, while Britain went the other way.

In 1996, one of the last acts of the outgoing Major government in Britain was to

propose that key escrow be mandatory. The opposition Labour party made a ringing

denunciation of this: “Attempts to control the use of encryption technology are wrong

in principle, unworkable in practice, and damaging to the long-term economic value of

the information networks” [197]. Once in power, though, their view changed rapidly

and the new RIP Act allows a policeman to demand any crypto key that’s been in your

possession. If you refuse you can get two years, and if you tell anyone that it’s been

seized you can get five. One intended effect was ‘escrow by intimidation’—to bully

companies into using key escrow to ensure they could comply with law enforcement

demands for keys. However an attempt to make company directors liable to go to

prison if keys couldn’t be produced was defeated by industry lobbying. For the history

of the RIP bill, see [304].

Another thread running through European crypto policy initiatives has been the at-

tempt to link key escrow to other initiatives and standards. For example, the European

Electronic Signature Directive forces member states to grant higher-quality recognition

of digital signatures made using approved products; in at least one country, it was pro-

posed that this would mean products supporting escrow. And, as noted in the chapter

on telecomms fraud, law enforcement access was built into the standards for third gen-

eration mobile services.

21.2.4.5 Red Threading and the Crypto AG Case

Quite often, key escrow has been implemented without the knowledge of the users. The

Swedish government got upset when it learned that the “export version” of Lotus

Notes, which it used widely in public service, had its cryptography deliberately weak-

ened to allow NSA access; and at least one (U.S. export approved) cipher machine has
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broadcast its plaintext in the clear in the VHF band. But the most notorious example

was the Bühler case.

Hans Bühler worked as a salesman for the Swiss firm Crypto AG, which was a

leading supplier of cryptographic equipment to governments without the technical ca-

pability to build their own. He was arrested in Iran in 1992, and the authorities accused

him of selling them cipher machines that had been tampered with so that the Great Sa-

tan could get at the plaintext. After he had spent some time in prison, Crypto AG paid

1.44 billion Rials—about $1 million U.S.—to bail him out; then he was fired after he

got back to Switzerland. Bühler later alleged on Swiss radio and TV that the firm was

secretly controlled by the German intelligence services, and that it had been involved

in intelligence work for years [143]. The interpretation commonly put on this was that

ultimate control resided with the NSA (the founder of Crypto, Boris Hagelin, had been

a lifelong friend of William Friedman, the NSA’s chief scientist) and that equipment

was routinely red-threaded [517]. A competing interpretation is that these allegations

were concocted by the NSA to undermine the company, as it was one of the third

world’s few sources of cryptographic equipment. Bühler’s story is told in [740].

What should an ordinary security engineer—one not involved in the intelligence

business—make of all this?

21.2.5 Discussion

When the key escrow debate got going in Britain in 1994–1995, I took a line that was

unpopular at the time with both the pro-escrow and the anti-escrow lobbies. The pro-

escrow people said that because crypto provided confidentiality, and confidentiality

could help criminals, there had to be some way to defeat it. The anti-escrow lobby said

that because crypto was necessary for privacy, there must not be a way to defeat it. I

argued in [21] that essentially all the premises behind these arguments were wrong.

Most crypto applications (in the real world, as opposed to academia) are about authen-

tication, rather than confidentiality; they help the police rather than hinder them. As for

criminals, they require unobtrusive communications—and encrypting a phone call is a

good way to bring yourself to the attention of the agencies. As for privacy, most viola-

tions result from abuse of authorized access by insiders. Finally, a much more severe

problem for police or auditors investigating electronic crimes is to find acceptable evi-

dence, for which decent authentication can be helpful.

Events since have largely borne out this initially contrarian view. For most of the

1990s, I helped organize an annual conference on white-collar crime in Cambridge,

and organized regular sessions and workshops on key escrow and related issues. These

turned out to be of almost no interest to the policemen and prosecutors who formed the

bulk of our audience; they headed off to the bar as soon as the session on wiretaps and

crypto got going. Most police forces took an interest in the subject only once they were

told to. In many countries, including the United States and Britain, the lead agency on

crypto policy is a law enforcement one (the FBI and the National Criminal Intelligence

Service, respectively), but this is simply a front for the intelligence community—as

was admitted in an unguarded moment in 1996 by the U.K. representative on the Euro-

pean body responsible for crypto policy [378].
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21.2.5.1 Law Enforcement or Intelligence?

The use of law enforcement as a cover is a source of continuing problems. The aims

and objectives of policemen and spies are not quite identical, and confusing them has

clouded matters. It is perhaps an oversimplification that the former try to prevent

crimes at home, while the latter try to commit them abroad; but such aphorisms bring

out some of the underlying tension. For example, policemen want to preserve evidence,

while spies like to be able to forge or repudiate documents at will. During the discus-

sions on a European policy toward key escrow (“Euroclipper”) that led up to the Elec-

tronic Signature Directive, the German government demanded that only confidentiality

keys should be escrowed, not signature keys, whereas Britain wanted signature keys to

be escrowed as well. The British view followed the military doctrine that deception is

at least as important as eavesdropping, while the Germans supported the police doc-

trine of avoiding investigative techniques that undermine the value of any evidence

subsequently seized.

Key escrow can also, like the system for classifying official documents, help provide

plausible deniability for official wrongdoing. The key management system used in the

U.K. civil service distributes signature keys to end users encrypted under escrowed

confidentiality keys [50]. So if an embarrassing electronic document is leaked to the

press, the government can claim that it was forged by the departmental security offi-

cer—the person responsible for preventing leaks, who is also the person with access to

escrowed keys. Depending on your point of view, this is either a brilliant piece of secu-

rity engineering, whose inventor should get a medal, or a wicked and perverted design

whose inventor should get jail time for undermining public accountability and the prin-

ciples of freedom of information.

Quite apart from signing key issues, the intelligence community appears to be the

main beneficiary of crypto control. It’s not just that wiretaps are the most economic

way to keep an eye on guys like Saddam Hussein. If a significant proportion of data

traffic were encrypted, then the automated keyword searching done by systems such as

Echelon would be largely frustrated. Spooks are also aware that large numbers of new

network infrastructures are built each year, and if cryptography isn’t built in at the

start, it may well be too expensive to retrofit it later. Therefore, each year that the NSA

can hold the line on crypto controls means hundreds of networks that will be open to

surveillance for decades in the future. Whether this will work for the long-term benefit

of the United States and Europe, leave us terribly exposed in twenty years’ time once

China starts to compete as a superpower, or even lead to destabilizing conflicts on eco-

nomic espionage between the United States and Europe, is a question that doesn’t get

debated much.

This is not to say that the police have no use for wiretaps. Although many police

forces get by quite happily without them, and many of the figures put forward by the

prowiretap lobby are dishonest [250], there are some occasions when wiretapping can

be economic as an investigative tool. The Walsh report—by a senior Australian intelli-

gence officer—gives a unusually balanced examination of the issues [787]. Walsh

compared the operational merits of wiretaps, bugs, and physical surveillance, and

pointed out that wiretaps were either the cheapest or the only investigative technique in

some circumstances; but he still felt that compelling disclosure of crypto key material

to the government was likely to be ineffective. “The invocation of the principle of non-

self-incrimination may well represent the polite end of the possible range of re-

sponses,” he drily remarked. Among his findings were that there is “no compelling rea-



Security Engineering: A Guide to Building Dependable Distributed Systems

470

son or virtue to move early on regulation or legislation concerning cryptography.” But

he did recommend that police and intelligence agencies be allowed to hack into target

computers to obtain access or evidence.
1
 Although there will be some policing costs

associated with technological advances, there will also be opportunities: for example,

to infect a suspect’s computer with software that will turn it into a listening device. In

general, the police—like the intelligence services—are reaping a rich harvest from

modern technology.

Overall, the net effect on law enforcement of the key escrow debate has been nega-

tive; it has eroded both public trust and operational effectiveness. In the intelligence

community, too, many officers deeply regret having launched the Clipper initiative.

Before it, cryptography was largely unknown: a few mathematicians studied it aca-

demically, and it was used in cash machines and pay-TV decoders, but public aware-

ness of communications security was low. (When I first wrote some email encryption

software in 1985, there was almost no interest.) That has now changed. Not only do

many more criminals use anonymous communications channels, such as prepaid mo-

biles, but many countries that previously bought weak or red-threaded cipher machines

for their military and diplomats have now started to develop local expertise and prod-

ucts. However, as the saying goes, “Policy has no reverse gear.”

21.2.5.2 Carnivore

As of summer 2000, the direction of policy on wiretaps, traffic analysis, and crypto

control is acquiring two main features, The first is the blurring of the line between in-

telligence and law enforcement. There has always been some overlap, especially in

counterespionage and terrorism cases. In some countries, such as the United States,

there are agencies explicitly endowed with both functions (the FBI—though note that

in 1998, for example, only 45 of its 12,730 convictions involved what the Justice De-

partment classified as internal security or terrorism matters [751]). In others, there

have been huge turf fights. I mentioned the one in Britain over whether the police or

MI5 should deal with the IRA; since the Northern Ireland peace treaty, the same fight

has been repeated over computer crime. The end of the Cold War, and of many re-

gional insurgencies, has left a lot of well-connected agencies desperately looking for

new lines of business.

The second thread is more intrusive surveillance at ISPs. Tapping data traffic is

harder than tapping voice used to be; modern modems use adaptive echo cancellation

that makes passive interception of the local loop more difficult, while interception

elsewhere faces several obstacles such as transient IP addresses given to dial-up cus-

tomers and the increasingly distributed nature of packetized traffic. Both Russia and

                                                            

1 The Walsh report has an interesting publishing history. Originally released in 1997 as an un-
classified document, it was withdrawn three weeks later after people asked why it wasn’t yet on
sale in the shops. It was then republished in redacted form. But in 1998, researchers found un-
expurgated copies in a number of public and university libraries, which had received legal deposit
copies and had been insufficiently diligent in finding and returning them. These were published
on the Web, and the redacted parts drew attention at once to the issues the government consid-
ered sensitive. As late as 1999, the Australian government was still trying to suppress the report
[787].
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Britain have introduced laws requiring ISPs to attach black boxes to their networks for

surveillance purposes, while in the United States the FBI has a device called Carnivore

that performs this function. So-called because it’s supposed to “get the meat” out of a

digital wiretap, Carnivore is documented extensively at [717].

The thinking behind Carnivore was that legal solutions were becoming ineffective,

as the technology changes too quickly; and that the standard tools used by ISPs to

monitor their networks for diagnostic purposes got only parts of the needed informa-

tion, or too much (which conflicted with legal requirements for minimization). It was

preferable to have a technological solution based on a general-purpose platform whose

software could be upgraded as needed. In fact, Carnivore can be configured remotely,

which some ISPs don’t like. What’s more, the operator is completely trusted; pressing

a single button causes all TCP traffic to be collected, and the device lacks the audit

trails needed for establishing individual accountability. There are a number of serious

problems, such as dealing with non-standard ISP equipment and with services layered

on top of other services, such as webmail. No doubt Carnivore and its foreign equiva-

lents will continue to evolve, and the growing complexity of the ISP business will keep

their maintainers busy.

At least in the United States, the better legal supervision of wiretaps means that Car-

nivore isn’t preplaced but is installed only after a court has granted a warrant; and the

number of deployments each month can still be counted on the fingers of one hand. In

the U.K. and the Netherlands, it looks like similar devices will be installed at all major

ISPs to monitor traffic continuously [147]; in Russia, they already have been.

21.2.5.3 Underlying Policy Problems

What are we to make of a huge effort to build a capability that’s used only rarely? I am

afraid that many of the disputes in e-policy involve what Freudians might call a dis-

placement activity: inability to solve a hard problem causes frustration, which is vented

by energetically solving an irrelevant but easier one. In England, for example, it has

been notorious since at least the time of Queen Elizabeth the First that rich, successful

criminals are almost never prosecuted. They usually get caught only when their busi-

nesses collapse, as with the Barings and Maxwell cases discussed in Section 9.2.3 (and

even then, Leeson was prosecuted in Singapore rather than London, while Maxwell’s

crimes were detected only after his suicide.) In my own professional practice, I have

long since given up reporting crooked bankers to the police: there has been no prose-

cution of a senior banker that anyone can remember. In the United States, about a thou-

sand bankers at the grade of vice president and up get prosecuted every year, and over

a third get jail time. This isn’t a matter of British virtue, or American vice, but has to

do with how the two law enforcement systems are organized. U.S. police officers get

promoted if they win high-profile convictions, so the relevant U.S. agencies such as the

FBI, the Secret Service and local DAs’ offices compete to put bent bankers in jail. In

contrast, their British counterparts depend for promotion on establishment patronage;

and raiding a prominent person for anything short of murder is career death. Thus,

U.K. agencies compete to pass the buck and look the other way. Now as high-value

crimes by smart crooks are precisely the minority of crimes in which wiretaps are often

economic, the U.K. government’s public arguments about police surveillance powers

seem even thinner.



Security Engineering: A Guide to Building Dependable Distributed Systems

472

Displacement activity isn’t limited to communications intelligence issues. A lot of

noise has been made about Internet-based child sex offenses, and especially kiddie-

porn. Yet the number of such cases is small; and even in a high-profile case involving

what the judge called the “very worst possible type” of material—against former pop

idol Gary Glitter—the court thought a four-month sentence appropriate. Most offend-

ers get away with fines or community service [12]. So it’s hardly the most serious of

crimes, and as the use of computers by child porn networks goes back to the 1980s, it’s

hardly a new one either. What’s more, when you talk to people involved in child pro-

tection, it becomes clear that there are thousands of really serious cases of child abuse

every year in Britain, usually involving abuse by family members, abuse of young per-

sons with learning difficulties, abuse of children in local authority care, and under-age

prostitution. For various political reasons, the police don’t always find it convenient to

crack down on these crimes; and as for the charities, the end of the orphanage system

has left them dependent on local government for permission to place vulnerable chil-

dren in care. Still, children’s organizations spend their charitable funds campaigning

against the evils of the Net [168], rather than lobbying for the respectable middle-class

customers of 13-year-old prostitutes to be sent down for child rape [528]. (There are

some interesting reflections on attitudes to sex offenders, and the transference mecha-

nisms involved, at [215]. It appears that, just as the end of universal belief in God left,

a surveillance vacuum which governments have rushed to fill, so also the death of the

devil has left a vacancy. The greatest hysteria about child sex abuse is whipped up in

the very neighborhoods where the abuse of girls by their stepfathers or stepbrothers is

routine. People transfer to ‘the devil’ their own darkest fears and childhood traumas.)

The implication of all this for the security engineer is that you have to think hard

about the risk that your product or service will become the target of hysterical abuse by

ineffective or corrupt public servants, or by ignorant and hypocritical self-publicists.

You can’t ignore the social and political context of what you’re trying to build.

21.3 Copyright

In Chapter 20, I suggested that the 1990s debate on crypto policy is likely to be a test

run for an even bigger battle, which will be over anonymity, censorship, and copyright.

I looked at some of the technical aspects in that chapter, and discussed a number of the

business and political aspects that were integral to that story. The context is not just

copyright though. Mechanisms such as anonymous remailers and highly distributed file

stores allow people to exercise their right to anonymous political speech, and also let

them publish material that is defamatory or seditious with a decreased likelihood of

being caught and punished. Thus, the copyright enforcement lobby has some powerful

potential allies.

There are geopolitical aspects, too. In most countries, there is no right to free speech

(let alone anonymous political speech), as enjoyed in the United States; and even in

European countries, the laws on defamation and sedition can be savage. There have

also been high-profile cases in which courts in countries with laws against hate speech,

such as France and Germany, have looked for ways to censor U.S. online services. As I

write, a court in Paris has just given Yahoo three months to prevent its French sub-

scribers having access to auctions of Nazi memorabilia, which are illegal in France.

And at the Global Internet Project conference in Berlin, in November 2000, I heard the
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German federal justice minister proclaim that her greatest achievement in office was

stopping Books Online shipping copies of “Mein Kampf” to addresses in Germany.

Speaking through an interpreter, she assured us that she would not rest until they

stopped shipping it in Arizona, too. (Given that the copyright of “Mein Kampf” is

owned by the government of the state of Bavaria, they may have the right to end its

publication by boring, old-fashioned legal means; perhaps denouncing the Evils of the

Internet is thought more attractive to the voters.)

If, as Leslie Lamport said, you know you have a distributed system when the crash

of a computer you’ve never heard of stops you from getting any work done, then you

also know you’re living in the global village when a judge in a country you’ve never

heard of can try to close down your business—or at least dictate onerous conditions on

how you conduct it in your own country. (Being based in the United States, which is

isolated from international enforcement of court judgments, gives you some protec-

tion—as discussed in Section 19.9.) I don’t think anyone has ever considered the dis-

tributed systems aspects of international law, but there could be an interesting PhD

thesis in it.

Of course, it cuts both ways: third world despots and Asian strongmen denounce the

freedom of speech on the Internet as “neo-imperialism.” And most European countries

have a more liberal view of pornography than most Americans are comfortable with. It

remains to be seen whether the Internet of 2020 will have U.S. rules on freedom of

speech and European rules on porn, or the other way round.

Because of the lack of consensus on issues such as obscenity and sedition, the most

likely way for controls to be introduced will be copyright. Chapter 20 described how

successive technologies such as audiocassettes and videocassettes arrived on the mar-

ket, caused panic among copyright owners, but turned into profitable lines of business

once Hollywood had learned to manage them. PC software followed exactly the same

model, only more rapidly. Pay-TV was slightly different, as the use of tamper-resistant

subscriber tokens, plus aggressive legal pursuit of token forgers, enabled piracy to be

kept in the single percentage figures. Hollywood is now trying to get DVD to follow

the pay-TV path; however, thanks to design and other errors, this looks to be slipping

from their grasp. It now looks like DVDs will follow the same model as PC software or

videocassettes, and will be the future distribution medium for both.

The issue is by no means a straight fight between copyright and privacy. As noted in

Chapter 20, the doctrine of fair use allows people to copy parts of a work for purposes

ranging from scholarship to ridicule. The possible abolition of fair use has alarmed

universities and libraries. Pamela Samuelson expresses a common sentiment: “Why

would the Clinton administration want to transform the emerging information super-

highway into a publisher-dominated toll road” [667]?

21.3.1 DMCA

Following heavy lobbying, a treaty was made in Geneva in 1996 under the auspices of

the World Intellectual Property Oragnization (WIPO), with signatory states obliged to

harmonize the treatment of digital copyright. The implementation in the United States

was the Digital Millennium Copyright Act (DMCA) of 1998. This prohibits the altera-

tion of any electronic copyright management information (CMI) bundled with digital

content, such as details of ownership and licensing; and outlaws the manufacture, im-

portation, sale or offering for sale of anything primarily designed to circumvent copy-

right protection technology. There are specific exemptions for people engaged in
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encryption research, for libraries, and to detect and disable the kind of snitchware dis-

cussed in Section 18.3.2.4.

DMCA also provides some limited protection for ISPs that unknowingly host copy-

right material on Web sites that has been posted by their clients or other third parties.

A condition is “Notice and Take Down”: when a copyright owner notifies an ISP of a

violation, the offending material must be removed. To prevent this being abused, there

is also a provision for “Notice and Put Back”: if the subscriber files a proper “counter

notice,” attesting to its lawful use of the material, then the ISP must promptly notify

the copyright owner and restore the material within 14 business days, unless the matter

has been referred to a court.

The exemptions for libraries are the focus of continuing debate, as digital access will

mean only limited access, unless you own a copy of the work; and libraries will have to

negotiate terms for fair access for all reasonably expected purposes, in the face of ini-

tial licensing conditions and fees that that may be far too high. (These issues are dis-

cussed at [513].) Particularly intractable problems are raised by legal deposit libraries,

such as the Library of Congress and its counterparts elsewhere. Traditionally, the grant

of copyright in many countries was conditional on the copyright owner’s depositing

one or more copies of the work in a national archive. This serves a number of purposes

ranging from helping the courts resolve copyright disputes, through access by future

generations of scholars, to the supply of obscure books through library loan schemes.

But how can we preserve digital works that may use proprietary platforms, have

copyprotection schemes, and may even require occasional online access to a license

server? However, the first big test of DMCA looks to be the reverse-engineering of

DVD CSS, which is currently making its way through the U.S. courts.

21.3.2 The Forthcoming European Directive and UCITA

In Europe, there is already a Conditional Access Directive that obliges EU member

states to outlaw devices that enable unauthorized access to services such as pay-TV

and Internet subscription sites. As with DMCA, there are exemptions for bona fide re-

search. A difference is that the Conditional Access Directive protects measures that

control access to a service, not those that control access to a work.

The protection of works should arrive in the form of a Copyright Directive, which at

the time of writing is still the subject of debate. There has been vigorous lobbying on

the one hand from Hollywood and on the other from libraries. It looks like the directive

will have broadly the same effect as DMCA, though the details will be up to member

countries. (For a discussion of the proposed directive and a comparison with DMCA,

see [468].) The sort of argument being considered by the European Commission is that

if a rights holder could object to circumvention in cases where a claim based upon

copyright law would not succeed, the effective “reach” of copyright holders would ex-

pand. What’s more, some companies are already packaging copyright control mecha-

nisms with other kinds of protection, such as accessory control in the computer games

industry. It seems unreasonable to just grant copyright holders and gaming console

vendors any right for which they can devise a protection mechanism, and to criminalize

defeats of such mechanisms, however ineffective or inappropriate they are.
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Also, existing European law allows reverse-engineering for interoperability—to en-

sure that the program can work with other programs—while DMCA adds the restric-

tion that there must not be a readily available commercial alternative for that purpose.

The general European view, following the reverse-engineering of the DVD CSS (which

was necessary for the Linux community), is that the DMCA provisions are too tightly

drawn. (This means that even if Hollywood wins the U.S. case, there should be a safe

haven for Linux developers in Europe.)

Another issue in the United States is the Uniform Computer Information Transac-

tions Act (UCITA), a model law sponsored by the National Council of Commissioners

on Uniform State Laws (NCCUSL), which will be introduced in state legislatures na-

tion wide. UCITA will update the U.S. Uniform Commercial Code to cover digital

trade, and will govern contracts between manufacturers and consumers regarding

nearly all “transactions in information.” This means everything from stories, computer

programs, images, music, and Web pages to online databases and interactive games.

UCITA will significantly extend federal copyright law. Many states are unhappy with

it; it will replace copyright law with contract law in many cases, undercut fair use,

outlaw reverse-engineering even for interoperability, and enable shrink-wrap/click-on

licenses to bind users to contracts before they can even read the conditions. It could

have severe consequences for everyone from open source software authors to universi-

ties [608].

It’s by now inevitable that there will be important differences between the laws in

the United States and Europe, which may have a significant effect on security designs.

Also, at the level of fine structure, the issues look set to be fought out in dozens of in-

dividual state and national legislatures. This might work in Hollywood’s favor, as it

has the money and organizational resources to lobby in dozens of places at once. But it

also increases the likelihood that a spectacular loss somewhere will create a haven, just

as Ireland became a safe haven for pay-TV smartcard cloning in the early 1990s.

21.4 Data Protection

Data protection is a term used in Europe to mean the protection of personal informa-

tion from inappropriate use. Personal information generally means any data kept on an

identifiable human being, or data subject, such as bank account details and credit card

purchasing patterns. It corresponds roughly to the U.S. term computer privacy. The

difference in terminology is accompanied by a major difference in law and in attitudes.

In fact, this may become one of the thorniest problems in e-policy in the first decade of

the twenty-first century, as well as a serious complication for people setting up e-

businesses.

European law gives data subjects the right to inspect personal data held on them,

have them changed if inaccurate, understand how they’re processed, and in many cases

prevent them being passed on to other organizations without their consent. This means,

for example, that people who have been refused credit can see not just their files but

also the credit-scoring algorithms used to make the decision; and if a U.S. bank doesn’t
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like that, tough. There are exemptions for national security, but not for all police data.

Most commercial data are covered, and there are particularly stringent controls on data

relating to intimate matters such as health, religion, race, sexual life, and political af-

filiations. Finally, recent law prescribes that personal data may not be sent to organi-

zations in countries whose laws do not provide comparable protection. In practice, that

means America, where legal protections on privacy are fragmentary.

The implication for the engineer designing an e-commerce application is that once

the relevant European law has been tested all the way to the European court—which

might be in 2004 or 2005—it may be illegal for you to process data about your Euro-

pean customers in a facility on U.S. soil. One solution may be to put your servers in a

European country with lax enforcement, such as Britain or Iceland; but there is a

growing body of case law that constrains European governments’ freedom to turn a

blind eye. If your business model involves collecting large amounts of personal infor-

mation about buying habits, news-reading patterns, and so on, then you could be in

trouble even in London or Reykjavik.

Another solution favored by many business is coercive consent, which means you

insist that customers agree to their personal data being shared before doing business

with them. This tends to work at present (it’s how U.S. medical insurers get away with

their abuses) but isn’t guaranteed for ever. The click-on no-privacy agreement on your

Web site might be deemed an unfair contract term by a court; and in some countries, it

will be invalid if the customer is a minor or the information relates to an intimate mat-

ter such as health.

European privacy law didn’t spring full-formed from the brow of Zeus, though, and

it may be helpful to look at its origins.

21.4.1 European Data Protection: History

Technofear isn’t a late twentieth-century invention. As early as 1890, Warren and

Brandeis warned of the threat to privacy posed by “recent inventions and business

methods,” specifically photography and investigative journalism [792]. Years later,

after large retail businesses started using computers in the 1950s and banks followed in

the early 1960s, people started to worry about the social implications if all a citizen’s

transactions could be collected, consolidated, and analyzed. In Europe, big business

escaped censure by making the case that only government could afford enough com-

puters to be a serious privacy threat. It was realized that it was possible, economic and

rational for government to extend its grasp by using the personal data of all citizens as

a basis for prognosis; and given the recent memory of the Gestapo in most European

countries, this became a human rights issue. A patchwork of data protection laws be-

gan to appear, starting with the German state of Hesse in 1969. Because of the rate at

which technology changes, the successful laws have been technology-neutral. Their

common theme was a regulator (whether at national or state level), to whom users of

personal data had to report and who could instruct them to cease and desist from inap-

propriate processing The practical effect was usually that the general law became ex-

pressed through a plethora of domain-specific codes of practice.

Over time, processing by multinational businesses became an issue, and it became

clear that purely local or national initiatives were likely to be ineffective against them.
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Following a voluntary code of conduct promulgated by the OECD in 1980 [598], data

protection was entrenched by a Council of Europe convention in January 1981, which

entered into force in October 1985 [206]. Although, strictly speaking, this convention

was voluntary, many states signed on for fear of losing access to data-processing mar-

kets. It was founded in the European Convention on Human Rights, and required sig-

natory states to pass domestic legislation to implement at least certain minimum

safeguards. Data had to be obtained lawfully, and processed fairly, and states had to

ensure that legal remedies were available when breaches occurred.

The quality of implementation varied widely. In Britain, for example, Margaret

Thatcher unashamedly did the least possible to comply with European law. A data

protection body was established, but starved of funds and technical expertise; and

many exemptions were provided for favored constituencies. Though not for journalists;

if you kept notes on your laptop which identified people, you were formally liable to

give copies of this information to the data subjects on demand. In hard-line privacy

countries such as Germany the data protection bodies became serious law enforcement

agencies. Many non-European-union countries, such as Australia, Canada, Iceland and

Switzerland, passed comparable privacy laws in the 1980s and early 1990s. Some, like

Switzerland, went for the German model, while others, like Iceland, followed the Brit-

ish one.

By the early 1990s, it was clear that the difference between national implementa-

tions, exacerbated by the accretion of case law, was erecting barriers to trade. For

many businesses, the solution was to avoid controls altogether by moving (or

outsourcing) their data processing to the United States. The growing tensions led in

1995 [279] to a new Data Protection Directive. This sets higher minimum standards

than most countries had required before, with particularly stringent controls on highly

sensitive data such as health, religion, race, and political affiliation. It also prevents

personal information being shipped to “data havens” such as the United States, unless

there are comparable controls in place. The directive could prove to be a serious head-

ache for new business models, such as application rental [182].

21.4.2 Differences between Europe and the United States

The history in the United States is, basically, that business managed to persuade gov-

ernment to leave privacy largely to “Self-regulation” (for more on U.S. history on this

topic, see [572]). Although there is a patchwork of state and federal laws, they are ap-

plication-specific and highly fragmented. In general, privacy in federal government

records and in communications is fairly heavily regulated, while health and business

data are largely uncontrolled. One or two islands of regulation, do exist, such as the

Fair Credit Reporting Act of 1970, which governs disclosure of credit information, and

is broadly similar to European rules; and the Video Privacy Protection Act or “Bork

Bill,” enacted after a Washington newspaper published Judge Robert Bork’s video

rental history following his nomination to the U.S. Supreme Court.

Attitudes also differ. According to Westin, about twenty-five percent of Americans

are “privacy fundamentalists,” favoring legislative standards; twenty percent are un-

concerned, and will readily pass on their personal information for minor benefits;

while the majority, fifty-five percent, are pragmatists who take privacy decisions case
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by case. But there is a growing feeling that people have lost control of the uses to

which their personal information is put. This still lags behind Europe, where privacy is

seen as a fundamental human right that requires vigorous legislative support [802].

Clearly, the stage is set for a major conflict between Europe and the United States on

data protection. U.S. policymakers have failed to appreciate the severity of the prob-

lem; a common view on Capitol Hill is that, “It’s just a spiteful retaliation for the

Helms-Burton Act, and we can negotiate some deal on it.” Their current hope for a

deal is the safe haven concept, that U.S. data processors can simply enter into a con-

tract with their European customer or subsidiary to the effect that data will be proc-

essed in accordance with European law. Some firms have already done this, led by

Citibank which uses such an arrangement to process German cardholder data in South

Dakota. But this creates severe practical enforcement problems for EU citizens who

feel that their rights have been violated, and may well fail when tested in court. For a

discussion, see [802].

21.4.3 Current Trends

The European regulatory drive toward data thrift is counter to the direction in which

commerce is developing. Quite apart from the law enforcement surveillance techniques

discussed in the first section of this chapter, e-businesses are developing all sorts of

customer tracking and marketing tools from cookies to clicktrails, wallets to IPR en-

forcement tools, and snitchware that enables software vendors to monitor customers’

hard drives remotely. The information flow is one-way, in the sense that you retain

essentially, no rights over personal information once surrendered; yet businesses will

only license their software to you rather than sell it. Some writers have expressed the

fear that, regardless of any regulatory efforts, technology will land us in a world in

which there is no place to hide [323].

An extreme version of this view is taken by David Brin [139]. He argues that perva-

sive surveillance technologies will inevitably be available to the authorities, and the

only real question is whether they will be available to the rest of us, too. He paints a

choice between two futures—one in which the citizens live in fear of an East German-

style police force, and one in which officials are held to account by public scrutiny.

The cameras will exist: will they be surveillance cams or Web cams?

There are some successful experiments in openness. The U.S. Freedom of Informa-

tion Act may be the most conspicuous, but there are others, such as the practice (in

Iceland and in some Swiss cantons) of publishing tax returns—a practice that greatly

cuts evasion as rich men fear the loss of social status that an artificially low declared

income would bring.

Underlying such considerations is a growing understanding of the economics of pri-

vacy. The basic problem is that for the data subject, the value of personal data is its

marginal cost, while for the collector it’s the average cost. Thus collectors are going to

pay more to get data than most users will pay to deny it to them. Another economic

aspect is that, if privacy is left to technology, it will be a cost that falls largely on the

data subject; but if it’s done by regulation, it will fall more on the collector [323]. One

ray of hope is that the data that people want to keep private and the data that marketers

want to collect are often not the same commodity. Personal secrets tend to be long term

(such as a treatment for alcoholism ten years ago), while marketing data is short term

(how much can I increase the probability of selling this person an airplane seat today if

I cut the price 20%?)
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Perhaps part of the solution will come from tools such as online auctions. But there

are many places where Web cams will probably always be considered unacceptable,

such as corporate research and development labs, attorneys’ offices and doctors’ con-

sulting rooms. Defining the boundary will no doubt involve a lot of pushing and shov-

ing.

The evolution of this issue over the next few years will be of great interest to secu-

rity engineers. The issue will not be limited to the collection of data, but also to its

collation. For example, while U.S. felony convictions remain on the record forever,

many European countries have laws governing rehabilitation of offenders, under which

most convictions disappear after a period of time that depends on the severity of the

offence. But how can such laws be enforced now that Web search engines exist? The

German response is that if you want to cite a criminal case, you’re supposed to get an

officially deidentified transcript from the court. But if electronic newspaper archives

are searchable online, what good will this do—unless the identities of all offenders are

blocked from electronic reporting? Recently, for example, there has been much debate

over the monitoring of former child sex offenders, with laws in some states requiring

that offender registers be publicly available. Riots occurred in England following the

naming of some former offenders by a Sunday newspaper. There’s a long list of similar

issues, from the permissible uses of electoral rolls and lists of people who have been

naturalized to whether it is permissible to index certain types of publicly available in-

formation. The upshot is that even if data is public, its use can still cause offenses un-

der European privacy law.

This causes peculiar difficulties in the United States, where courts have consistently

interpreted the First Amendment to mean that you can’t stop the repetition of true

statements in peacetime except in a small number of cases, of which the classic exam-

ple is a regulated profession such as securities trading. Perhaps marketing will end up a

regulated profession; or perhaps the penalties for the repetition of untrue statements

can be made high enough to cause people to take care. Neither seems likely at present

in mass markets, although the rich and famous can extract substantial damages for libel

in many countries’ courts. I await with interest the first case in which someone bank-

rupts a search engine operator for bringing to public attention an expired conviction for

drug use.

It’s possible that America will enact privacy legislation that’s sufficiently mid-

Atlantic to prevent a trade war on the issue; Al Gore promised an “Electronic Bill of

Rights” to protect people against the misuse of computerized personal information of

all types. It’s conceivable that, like the Internet, privacy intrusions will suddenly reach

a critical mass, and public opinion in the United States will compel politicians to over-

ride business interests and pass European-style data protection laws. It’s also conceiv-

able that Europeans will come to share the view of American privacy pragmatists—that

though a few unlucky people may have terrible experiences, the worst that will happen

to the average family is an armful of junk mail each week with which they can light the

barbecue. But it’s also possible that Europe might become more fundamentalist still,

perhaps in reaction to U.S. e-commerce practices. Thus, although the two markets

might converge, there is a real risk that they won’t; and neither is small enough to ig-

nore.

In the meantime, it is prudent for the e-commerce designer to ensure that business

processes and systems can comply with the European way of doing things as well as

the American one.
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21.5 Evidential Issues

I mentioned the European Electronic Signature Directive, which forces member states

to grant higher-quality recognition of digital signatures made using approved products;

that there were attempts to link this approval to approved key escrow mechanisms; and

that there were attempts to force the escrow of signature keys as well, which could

have undermined the value of digital evidence.

But these are neither the beginning nor the end of the evidential issues confronting

the security engineer. Designing a system whose functions include the production of

evidence is a lot harder that it seems at first.

21.5.1 Admissibility of Evidence

When courts were first confronted with computer evidence in the 1960s, there were

various concerns about the reliability, both in a technical sense and in the legal sense

of whether it was inadmissible on the grounds that it was hearsay. Different legisla-

tures tackled this differently. In some, computer evidence is deemed to be admissible,

but can be challenged in court by the other side; in others, it can’t even be presented

unless accompanied by a certificate stating that the computer was working properly.

(This can cause problems when the evidence comes from a machine that has been

hacked.) In the United States, most of the law is found in the Federal Rules of Evi-

dence, while in Britain it’s in the Police and Criminal Evidence Act 1984 and the Civil

Evidence Act 1995.

In many cases, evidence can be derived only from the operation of a machine as it’s

operated in the normal course of business, and this can cause problems if a requirement

for evidence hasn’t been anticipated by the engineer. For example, in one case in my

own experience, a woman was accused of stealing a debit card from the mail, and the

police wanted to ascertain whether a torn-off corner of a PIN mailer found in her purse

would activate the stolen card. They got the branch manager to put the card into a

statement printer in the branch office, entered the PIN, and the card was confiscated.

The manager testified that the way the card was confiscated showed that it was because

the account had been closed rather than because the PIN was wrong. The court ruled

this evidence to be inadmissible. The law on this subject changes regularly, though.

21.5.2 Reliability of Evidence

Even where the local formalities can be observed, computer forensics pose complex

and nontrivial engineering problems. Even to the experienced systems administrator,

securing evidence of an intrusion in a timely and nondestructive manner is hard. As

operating systems get ever more complex, they become less deterministic, and their

logging and other features more opaque. The response of the law enforcement commu-

nity has been tools that will take a mirror image copy of a hard disk for subsequent

examination. This isn’t the end of the story, though, because of the complexity and

quantity of data, and the multiple interpretations that are often possible. Application

file formats usually aren’t adequately documented, and may contain bugs or features

which their creators are unwilling to discuss, because they would embarrass or even

incriminate them. New gadgets, such as palmtop computers with closed operating sys-

tems, and SIM cards for which the suspect won’t divulge the password, can force the
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practitioner to resort to the kind of reverse-engineering tricks described in Chapter 14.

Things are made worse by the technical incompetence of judges and other lawyers; the

common result is that arguments (and judgments) confuse fact, conjecture, assumption,

inference and opinion.

The signal-to-noise ratio of the court system is especially low when a case hinges on

a technical matter. Often, the only safeguard against injustice lies in the adversarial

system itself. Recall the Munden case described in 9.4.3. A man was falsely accused

and wrongly convicted of attempted fraud after he complained of unauthorized with-

drawals from his bank account. Rational argument having failed, the way in which the

appeal was won was tactical—getting an order requiring the bank to open its systems

to the defense expert, as it had done for the prosecution. When the bank refused, the

defendant’s bank statements were ruled inadmissible, and the prosecution case col-

lapsed. Thus, if a system is to be useful as a source of evidence, then it must be de-

signed to withstand examination by hostile experts. I’ll have more to say on this in

Chapter 23.

The hostile expert problem isn’t something we can expect to go away anytime soon.

In countries where experts are appointed by the court, the risk is that they will be from

the developer community, and so may have an interest in defending the system that

they are supposed to be examining dispassionately. In general, we can expect computer

forensics to remain a hard problem.

21.5.3 Electronic Signatures

In this generally unsatisfactory environment, many people hope that things can be sim-

plified by gee-whiz technologies such as electronic signatures. This term encompasses

(among other things) cryptographic digital signatures and alternative technologies such

as tablets on which users scribble copies of their manuscript signatures to record assent

to a document. In some cases, such as the U.S. Electronic Signatures in Global and

National Commerce Act, the objective is to give legal force to any “sound, symbol, or

process” by which a consumer assents to something. By pressing a telephone keypad

(“Press 0 to agree or 9 to terminate this transaction”), clicking a hyperlink to enter a

Web site, or clicking “Continue” on a software installer, the consumer consents to be

bound to an electronic contract [709].

In many jurisdictions, this is already the case. In both the United States and England,

the defining attribute of a signature is the signer’s intent, and a plaintext name at the

bottom of an email message has legal force. It may be easy to forge, but then so are the

manuscript signatures that have been used for centuries [810, 811].

However, as I discussed in the section on handwritten signatures (13.2) there are

many specific requirements that particular types of transaction—real estate, patent,

copyright—be in writing, and these can hold up the adoption of online systems. Some

countries, like Australia, have simply passed laws stating that electronic writing is OK

wherever manuscript writing was required in the past; others, like Britain, have passed

laws giving the government the power to issue regulations causing this to happen; still

others, such as Germany, have made laws giving effect to digital signatures provided

they meet laid-down technical standards. Such laws often suffer from multiple objec-
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tives. Britain, for example, wants to promote the use of software and systems that sup-

port key escrow, while Germany wants to support its smartcard industry.

The laws passed in various American states are less tainted with ulterior motives,

but still create a confusing and contradictory mosaic. Sometimes, digital signatures are

enabled for general use, and sometimes for limited purposes such as communicating

with the state government. Sometimes they’re technology specific and sometimes

they’re not. For surveys of digital signature laws, see [68, 335].

Efforts are now underway to sort out the mess. The European Union issued an Elec-

tronic Signature Directive, which came into force in January 2000, that requires mem-

ber states to introduce compatible legislation to recognize digital signatures as the legal

equivalent of manuscript signatures. The directive sets out two different standards: an

electronic signature means data attached to or logically associated with other elec-

tronic data and that serve as a method of authentication, while an advanced electronic

signature must also:

• Be uniquely linked to the signatory.

• Be capable of identifying the signatory.

• Be created using means that the signatory can maintain under his sole control.

• Be linked to the data to which it relates in such a manner that any subsequent

change of the data is detectable.

The basic idea is that an electronic signature includes a name typed at the bottom of

an email, or a push of a Web page button to assent to a deal, while the advanced vari-

ety means use of a digital signature or biometric device. Lawmakers and people writing

contracts should therefore be able to distinguish, using terms that are uniform across

Europe, between weak and strong signature mechanisms.

One embarrassing problem is that the third of these requirements can’t be met by

currently available consumer electronics technology. Given the large number of ways

in which a PC can be subverted, it would be very imprudent to have a signing key on

your PC that could bind you for more than a small sum of money. Smartcards don’t

help; a villain who can write a virus to infect your PC and sign messages with a key in

your browser software can just as easily infect the device driver of your smartcard

reader to get the bogus message signed next time you insert the card. Also, if the card

can be used in a parking meter as well as to mortgage your house, then you are ex-

tending to the parking meter the level of trust you’d normally restrict to your spouse or

your lawyer. In the absence of secure platforms, some protection can be got from the

traditional practice of having separate cards or other tokens for different types of trans-

action, so that the customer can keep the valuable ones under lock and key. (But per-

sonally I don’t see any benefit in having an electronic means of performing a

transaction I do at intervals of many years such as mortgaging my house.)

In the words of Bohm, Brown and Gladman, “It is of course no fatal reproach to the

Directive that it should thus deliver thunder with no lightning; and it could be excused

on the basis that the law will for once be ahead of events” [124]. However, there’s

enough wriggle room for countries to tack on interpretations and regulations that will

deem products from their own smartcard or other suppliers to be adequate; and the cur-

rent indications are that a moderately good smartcard will do, even if it’s used with an

insecure PC. (I’ll discuss this in more detail in Section 23.3.3.1 below.) Businesses in

other countries will then have to accept the resulting “advanced” signatures as valid.
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So what sort of risks will people run once we have digital signatures that are consid-

ered by judges to be totally secure even although they aren’t?

21.5.4 Burden of Proof

There is an even deeper problem with most digital signature laws (including those of

many U.S. states). This is that they create a presumption that a digital signature meet-

ing certain criteria (authorized type of smartcard, public key certified by licensed TTP,

whatever) is valid. This flies in the face of traditional business practice, in which the

risk that a signature is forged falls on the party who relies on it rather than on the party

who made it.

If a bank debits your account with payment of a check that you did not sign, it has

no authority for the debit and must credit the money back to you. In general, if some-

one wishes to enforce a document against you on the basis that you signed it, and you

deny that you signed it, then it is for them to prove that the signature was made or

authorized by you. This means that banks and merchants can decide for themselves

how much care to take when verifying signatures; if they decide to verify signatures

only for amounts over $1,000, or even $10,000, that is their concern, and has nothing

to do with the customer. I discussed the error rates of handwritten signatures at 13.2; in

practice the associated risks are manageable. In Chapter 19, I explained that essentially

the same happens with credit cards, although there the customer typically bears the

first $50 of the risk and in return gets the ability to pursue a claim against the card is-

suer if the merchant goes bust or otherwise fails to deliver.

It is understandable that banks and merchants would like to offload their exposure,

and digital signature laws have been held out as a means of doing this. As described in

Chapter 19, VISA and MasterCard went as far as to design the SET protocol to support

credit card payment via digital signatures; and a number of governments dangled the

bait of a presumption of validity of digital signatures as a way to get key escrow

adopted [132].

Clearly, this is a bad thing from the customer’s point of view. What’s less obvious is

that any temptation for the banks to use new technical security measures to dump risks

on the customer should also be resisted in the wider interest of public confidence in

electronic commerce and of the banking industry itself. This isn’t just a digital signa-

ture issue. In the U.K., when it turned out that people who’d accessed electronic serv-

ices at Barclays Bank via a public terminal could be hacked by the next user pressing

the Back button on the browser, the bank tried to blame customers for not clearing

their Web caches [747]. If opposing that in court, I’d have great fun finding out how

many of Barclays’ branch managers knew what a cache is, and the precise date on

which the bank’s directors had it brought to their attention that such knowledge is now

essential to the proper conduct of retail banking business.

It is predictable that such risk dumping will reduce the motivation banks have to

build secure systems, and will in time lead to injustices that neither the courts nor pub-

lic opinion will tolerate. Recall that banks in some countries dumped the risks of ATM

systems on customers, and claimed that any customers who complained of “phantom

withdrawals” were mistaken or lying, then were greatly inconvenienced when the

courts destroyed their fiction by sending ATM fraudsters to jail. The banks seem to be

slow learners, and the ATM mistakes are likely to be repeated on a very much grander

scale if digital signatures made by customers start being accepted as gospel in busi-

ness-to-consumer e-commerce transactions.
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Even in advance of the deployment of digital signatures, a number of banks have

adopted electronic banking terms and conditions under which their records of a trans-

action are definitive; they are already getting into trouble under consumer law and

truth-in-advertising regulations. These issues are discussed in detail in [124].

Business-to-business is a different matter, and as discussed in 19.5.4 there have been

systems fielded for some years that use digital signatures in applications such as inter-

bank funds transfer, registration of securities, and bills of lading. This appears likely to

be the main application of digital signature technology, at least in the short term. One

might assume that large businesses either have the expertise to secure the systems that

they use to generate signatures or to pay others to do so. But disputes will still arise,

especially with small businesses that don’t have these resources. The liability for a

forged digital signature could be particularly difficult for the courts to pin down, given

the refusal of most software companies to accept any liability at all for security failures

and even just plain bugs in their products. Therefore, the prudent thing for an e-

commerce system designer to do is to set out in the subscribers’ contract a procedure

for dispute resolution, which should be sufficiently fair to withstand furious legal

challenges once the first frauds occur.

21.6 Other Public Sector Issues

A whole grab-bag of other public sector information security issues are appearing.

They vary from one country to another; I’ll just give a few examples.

21.6.1 Service Delivery

A typical government department, such as a welfare agency or a passport office, has

the operation and maintenance of a large distributed system as its core business func-

tion. Yet governments have usually been bad at conceiving and implementing large IT

projects. Many of the reasons are well known. The civil service doesn’t pay very well,

so can’t usually compete for the brightest IT staff; many government departments have

traditional ways of doing things that don’t automate well; planning and purchasing cy-

cles are long compared with technology cycles; the managerial culture is more risk-

averse than is ideal; and outside a few specialized functions, it isn’t easy to set up a

dozen competing organizations and just let the market sort them out. Many of the

things I’ve seen go wrong with public sector projects have at their heart the culture

clash between the computer business and the civil service. This problem cuts both

ways, of course: civil servants tend to see computer people as impossibly ambitious

and pushy people who want to disturb time-honored political fudges and eliminate dis-

cretionary powers in the interests of automation.

This clash will worsen as the growth of the Net places more severe strains on civil

service administrative capabilities. The political leadership expects that government

services will be delivered online, and that service levels will rise to somewhere near

those of the private sector. The voters expect no less. Yet often automation makes
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problems worse. In Britain, for example, the National Health Service suppresses de-

mand for healthcare in a number of ways that doctors have evolved over time, such as

by making it difficult to get appointments to see a specialist. Recently, ministers have

started to insist that patients be able to book a specialist appointment over the phone,

and the predictable result is a sudden rise in demand with no corresponding increase in

supply. In the absence of a working price mechanism, this is a recipe for chaos. Al-

ready, we see signs of specialist doctors heading for early retirement as a response to

rising pressure to treat more patients.

The relevance for the security engineer is that many things that are claimed to be

impossible on “security” or “privacy” grounds are really demand-suppression issues. A

lack of sensitivity to this can make a sale of your “solution” unlikely, or its side effects

unpleasant. So you should always try to dig beneath the surface excuses and find out

what your prospective clients’ real concerns are.

21.6.2 Social Exclusion and Discrimination

A separate set of issues cluster around the delivery of government services to the poor

and the old, in the belief that they are much less likely to be online and therefore face a

reduced quality of support. The British government, for example, wants public-access

Internet terminals made available in libraries and post offices [758]. In effect, this will

provide subsidized public-sector competition for Internet cafes.

We’ll just have to wait and see whether this catches on. But while Internet use has

tended in the past to be the preserve of young affluent white males, it’s not altogether

clear that this will continue. Women and seniors are among the fastest-growing sectors

of Net usage, and the integration of mail and browser facilities into satellite TV is

bringing the Net to Joe Sixpack too. Perhaps the interesting question for the security

engineer is the extent to which public terminals open up interesting new attacks. We

saw in 21.5.4 how systems can be attacked using information kept in caches and the

like; there are many pitfalls here.

Another security engineering issue related to equality of access is that many of the

assumptions embedded in protection mechanisms can discriminate in ways that may be

illegal or at least undesirable. Section 13.8 described how many biometric authentica-

tion systems may be regressive, in that the elderly and manual workers can suffer

higher error rates with fingerprint readers, and that disabled people with no fingers, or

no eyes, risk exclusion if fingerprint or iris scanning systems become widespread.

Blind people are already seriously prejudiced in their use of the Web by many of the

tricks used by website designers to prevent their pages being scanned by comparison

shopping bots—which from the site owner’s viewpoint are security measures.

Intrusion detection systems are another contentious area; as discussed in 18.5.2,

automatic systems that detect fraud, or bogus insurance claims, or airline passengers

likely to be terrorists, often end up discriminating against some ethnic or social group.

Another issue is that systems designed for, and by, college-educated computer scien-

tists are often too hard for less educated people to use. The attitude that users are a nui-

sance must be vigorously resisted; secure systems, like any other systems, need to be

designed for the people who will actually use them. Replacing the word “user” with

“customer” or “citizen” is a small step in the right direction.
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21.6.3 Revenue Protection

One of the most high-profile concerns is that a combination of anonymous remailers,

digital cash and offshore tax havens might make the task of collecting taxes impossi-

ble, leading to the breakdown of the system of nation states. This is perhaps most co-

gently expressed by Neal Stephenson [736] but has found echoes in much other

commentary. This tends to ignore the fact that many countries get most of their reve-

nue from sales taxes and customs duties; European readers used to paying over $5 a

gallon for gas and $20 for a bottle of whisky will be much more sceptical about this

vision.

21.6.4 Elections

Finally, the most fundamental process in any democracy is the conduct of elections. If

this is undermined, the whole structure may collapse. I sincerely hope that the election

of security chief Vladimir Putin as the president of Russia had nothing to do with the

fact that the national electoral reporting system is run by FAPSI, a Russian signals in-

telligence agency formed in 1991 as the successor to the KGB’s 8th and 16th director-

ates. Its head, General Starovoitov, was reported to be an old KGB type; his agency

reported directly to President Yeltsin, who chose Putin as his successor [327, 430].

I would certainly be concerned if Britain were to introduce an electronic election

system, and if CESG, the part of GCHQ that is our “national technical authority” for

information protection, had anything to do with its design or audit. I mentioned in the

introduction to this chapter that the U.K. policy of escrowing all public sector keys

could cause serious problems here: even if the agencies don’t actually manipulate the

result, they will be sorely tempted to find out who voted for parties such as Sinn Féin.

But where are the alternative centers of expertise?

The situation in the United States is perhaps not so worrying, because control over

elections is very widely distributed, with accreditation state by state and hundreds of

legacy systems in the field. But complacency isn’t advisable. The sheer cost of ob-

taining accreditation in fifty states (over $100,000 a state to have design and source

code checked by an independent expert) will limit the number of companies that can

make a serious bid to provide the online successors to the current local systems. The

disputes over the 2000 election may also drive state legislators to embrace “modern”

online systems without stopping to think. If one or two companies end up controlling

voting in all or most of the states, they will bear close watching.

21.7 Summary

Governments and public policy concerns generally are intruding more and more into

the work of the security engineer. The legal controls on cryptography in many coun-

tries are just the most obvious example. Although misguided, these controls have a

number of pernicious and unobvious effects, of which the worst may be the erosion of

the boundary between law enforcement and intelligence. Other boundaries whose ero-
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sion could threaten civil liberties include those between traffic analysis and wiretaps

for content, between copyright and censorship, and between mechanisms that enforce

copyright and those that do other things as well, such as accessory control. Working

for increased transparency might be more strategic than taking issue with particular

technologies.

There are many other issues though. The engineer must pay attention to the protec-

tion of personal data, the quality of evidence a system produces, copyright law issues,

social exclusion and discrimination. There are also some mechanisms that we really

must get right, such as the integrity of the systems used to record and tally votes in

elections.

Research Problems

Technopolicy issues tend to involve a complex interplay between science, engineering,

applied psychology, law and economics. There is altogether too little serious cross-

disciplinary research; the apothegm at the head of this chapter captures well the prob-

lem that people from these different disciplines often talk at cross purposes. Debates on

issues such as key escrow are slowly building a body of people with experience in

talking to both computer scientists and lawyers; and electronic commerce leads com-

puter scientists to talk to economists. Initiatives that speed up this process are almost

certainly a good thing; bringing in psychologists, historians of science, and others

would also be positive. What’s not clear is how to do this within the current structures

of academic and industrial research organizations.

Further Reading

It’s extraordinarily easy for technopolicy arguments to get detached at one or more

corners from reality; and many of the nightmares conjured up to get attention and

money (such as credit card transactions being intercepted on the Internet) are really the

modern equivalent of the monsters that appeared on medieval maps to cover up the

cartographer’s ignorance. An engineer who wants to build things that work and last has

a duty not to get carried away. For this reason, it’s particularly important to dig out

primary sources—material written by experienced insiders such as R.V. Jones [425]

and Gerard Walsh [787], books by people with a long involvement in the policy proc-

ess such as Whitfield Diffie and Susan Landau [250], government reports that were

influential in policy formation such as the NRC study on cryptography policy [580],

and compilations of primary materials, such as [684].

There’s also useful material at the Web sites of organizations such as EPIC [266],

EFF [264], FIPR [304], CDT [173], the Privacy Exchange [628], and on mailing lists

such as politech [619] and ukcrypto [755].

The best book I know on computer forensics is by Tony Sammes and Brian Jenkin-

son [664]; and there’s a nice article by Peter Sommer on the forensics and evidential

issues that arose when prosecuting some U.K. youngsters who hacked the USAF Rome

airbase [722]. The Department of Justice’s “Guidelines for Searching and Seizing

Computers” also bear some attention [245]. For collections of computer crime case

histories, see Peter Neumann [590], Dorothy Denning [235], and Donn Parker [602].
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On the topic of data protection, there is a huge literature, but no concise guide that I

know of. [802] Alan Westin provides a good historical overview, with a perspective on

the coming collision between Europe and the United States. Simson Garfinkel [330]

and Michael Froomkin [323] survey U.S. privacy and surveillance issues.

There’s now quite a literature on electronic voting. The issues are largely the same

as with voting by mail or by phone, but not quite. An influential survey of the require-

ments, and of the things that can go wrong, is by Mike Shamos [693]; while Roy Salt-

man (for many years the authority at NIST) discusses things that have gone wrong in

the United States and various NIST recommendations, in [663]. There’s a report on the

feasibility of Internet voting from the State of California at [152]. Finally, Lorrie Cra-

nor has a useful link farm on electronic voting at [209].
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CHAPTER

22

Management Issues

My own experience is that developers with a clean, expressive set

 of specific security requirements can build a very tight machine. They

 don’t have to be security gurus, but they have to understand what

 they’re trying to build and how it should work.

—RICK SMITH

One of the most important problems we face today, as techniques

 and systems become more and more pervasive, is the risk of missing

 that fine, human point that may well make the difference between

 success and failure, fair and unfair, right and wrong ... no IBM

 computer has an education in the humanities.

—TOM WATSON

Management is that for which there is no algorithm. Where there

 is an algorithm, it’s administration.

—ROGER NEEDHAM

22.1 Introduction

To this point, I’ve outlined a variety of security applications, techniques, and concerns.

If you’re a working IT manager, paid to build a secure system, you will by now be

looking for a systematic way to select protection aims and mechanisms. This brings us

to the topics of system engineering, risk analysis, and threat assessment.

The experience of the business schools is that management training should be con-

ducted largely through the study of case histories, stiffened with focused courses on

basic topics such as law, economics, and accounting. I have followed this model in this
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book. We went over the fundamentals, such as protocols, access control and crypto,

and then looked at a lot of different applications. Now we have to pull the threads to-

gether and discuss how a security engineering problem should be tackled. Organiza-

tional issues matter here as well as technical ones. It’s important to understand the

capabilities of the staff who’ll operate your control systems, such as guards and audi-

tors, to take account of the managerial and work-group pressures on them, and get

feedback from them as the system evolves.

22.2 Managing a Security Project

The core of the security project manager’s job is usually requirements engineer-

ing—figuring out what to protect and how. When doing this, it is critical to understand

the trade-off between risk and reward. Security people have a distinct tendency to fo-

cus too much on the former and neglect the latter. If the client has a turnover of $10

million, profits of $1 million and theft losses of $150,000, the security consultant may

make a pitch about “how to increase your profits by 15%” when often what’s really in

the shareholders’ interests is to double the turnover to $20 million, even if this triples

the losses to $450,000. Assuming the margins remain the same, the profit is now $1.85

million, an increase of 85%. The point is, don’t fall into the trap of believing that the

only possible response to a vulnerability is to fix it; and distrust the sort of consultant

who can talk only about “tightening security.” Often, it’s too tight already.

22.2.1 A Tale of Three Supermarkets

My thumbnail case history to illustrate this point concerns three supermarkets. Among

the large operational costs of running a supermarket are the salaries of the checkout

and security staff, and the stock shrinkage due to theft. Checkout delays are also a sig-

nificant source of aggravation: just cutting the number of staff isn’t an option, and

working them harder might mean more shrinkage. What might technology do to help?

One supermarket in South Africa decided to automate completely. All produce

would carry an RF tag, so that an entire shopping cart could be scanned automatically.

If this had worked, it would have killed both birds with one stone: the same RF tags

could have been used to make theft very much harder. Though there was a pilot, the

idea couldn’t compete with barcodes. Customers had to use a special cart, which was

large and ugly, and the RF tags also cost money.

Another supermarket in a European country believed that much of their losses were

due to a hard core of professional thieves, and thought of building a face recognition

system to alert the guards whenever one of these habitual villains came into a store.

But current technology can’t do that with low enough error rates to be useful. In the

end, the chosen route was civil recovery. When a shoplifter is caught, then even after

the local magistrates have fined him about the price of a lunch, the supermarket goes

after him in the civil courts for wasted time, lost earnings, attorneys’ fees and every-

thing else they can think of; and then armed with a judgment for about the price of a



491

car they go round to his house and seize all his furniture. So far so good. But their

management got too focused on cutting losses rather than increasing sales. In the end,

they started losing market share and saw their stock price slide. Diverting effort into

looking for a security-based solution was probably a symptom of their decline rather

than a cause, but may well have contributed to it.

The supermarket that appears to be doing best is Waitrose in England which has in-

troduced self-service scanning. When you go into the store you swipe your store card

in a machine that dispenses a portable barcode scanner. You scan the goods as you pick

them off the shelves and put them into your shopping bag. At the checkout, you hand

back the scanner, get a printed list of everything you bought, swipe your credit card,

and head for the parking lot. This might seem rather risky—but then so did the self-

service supermarket back in the days when traditional grocers’ shops stocked all the

goods behind the counter, in fact, there are a number of subtle control mechanisms at

work. Limiting the service to store cardholders not only enables the managers to ex-

clude known shoplifters, but also helps market the store card. By having a card, you

acquire a trusted status visible to any neighbors you meet while shopping; conversely,

losing your card (whether by getting caught stealing, or, more likely, falling behind on

your payments) could be embarrassing. And trusting people removes much of the mo-

tive for cheating, as there’s no kudos in beating the system. Of course, should the

guard at the video screen see a customer lingering suspiciously near the racks of hun-

dred-pound wines, it can always be arranged for the system to “break” as the suspect

gets to the checkout, which gives the staff a non-confrontational way to recheck the

bag’s contents.

22.2.2 Balancing Risk and Reward

The purpose of business is profit, and profit is the reward for risk. Security mecha-

nisms can often make a significant difference to the risk/reward equation, but, ulti-

mately, it’s the duty of a company’s board of directors to get the balance right. In this

risk management task, they may draw on all sorts of advice—lawyers, actuaries, secu-

rity engineers—as well as listen to their marketing, operations, and financial teams. A

sound corporate risk management strategy involves much more than the operational

risks from attacks on information systems; there are non-IT operational risks (such as

fires and floods) as well as legal risks, exchange rate risks, political risks, and many

more. Company bosses need the big picture view to make sensible decisions, and a

difficult part of their task is to see to it that advisers from different disciplines work

together just closely enough, but no more.

Advisers need to understand each others’ roles, and work together rather than try to

undermine each other; but if the company boss doesn’t ask hard questions and stir the

cauldron a bit, then the advisers may cosy up with each other and entrench a consensus

view that steadily drifts away from reality. One of the most valuable tasks the security

engineer is called on to perform (and the one needing the most diplomatic skill) is

when you’re brought in to contribute, as an independent outsider, to challenging this

sort of groupthink. In fact, on perhaps a third of the consulting assignments I’ve done,

there’s at least one person at the client company who knows exactly what the problem

is and how to fix it—they just need a credible mercenary to beat up on the majority of

colleagues who’re averse to change. (This is one reason why famous consulting firms

that exude an air of quality and certainty often have a competitive advantage over spe-
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cialists; however, in the cases where specialists are needed, but the work is given to

“suits,” some fairly spectacular things can go wrong.)

Although the goals and management structures in government may be slightly dif-

ferent, exactly the same principles apply. Risk management is often harder because

people are more used to an approach based on compliance with a set of standards (such

as the Orange Book) rather than case-by-case requirements engineering. James Coyne

and Norman Kluksdahl present in [208] a classic case study of information security run

amok at NASA. There, the end of military involvement in Space Shuttle operations led

to a security team being set up at the Mission Control Center in Houston to fill the

vacuum left by the DoD’s departure. This team was given an ambitious charter; it be-

came independent of both the development and operations teams; its impositions be-

came increasingly unrelated to budget and operational constraints; and its relations

with the rest of the organization became increasingly adversarial. In the end, it had to

be overthrown or nothing would have got done.

22.2.3 Organizational Issues

Although this chapter is about management, I’m not so much concerned with how you

train and grade the guards as with how you build a usable system. However, you need

to understand the guards (and the auditors, and the checkout staff, and ...) or you won’t

be able to do even a halfway passable job. Many systems fail because their designers

make unrealistic assumptions about the ability, motivation, and discipline of the people

who will operate it. This isn’t just a matter of one-off analysis. For example, an ini-

tially low rate of fraud can cause people to get complacent and careless, until suddenly

things explode. Also, an externally induced change in the organization—such as a

merger or acquisition—can undermine control.

A surprising number of human frailties express themselves through the way people

behave in organizations, and for which you have to make allowance in your designs.

22.2.3.1 The Complacency Cycle and the Risk Thermostat

The effects of organizational complacency are well illustrated by phone fraud in the

United States. There is a seven-year cycle: in any one year there will be one of the

“Baby Bells” that is getting badly hurt. This causes its managers to hire experts, clean

things up, and get everything under control, at which point another of them becomes

the favored target. Over the next six years, things gradually slacken off, then it’s back

to square one.

Some interesting and relevant work has been done on how people manage their ex-

posure to risk. Adams studied the effect of mandatory seat belt laws, and established

that these laws don’t actually save lives: they just transfer casualties from vehicle oc-

cupants to pedestrians and cyclists. Seat belts make drivers feel safer, so they drive

faster to bring their perceived risk back up to its previous level. Adams calls this a risk

thermostat and the model is borne out in other applications too [8,9]. The complacency

cycle can be thought of as the risk thermostat’s corporate manifestation. No matter

how these phenomena are described, risk management remains an interactive business

that involves the operation of all sorts of feedback and compensating behavior. The
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resulting system may be stable, as with road traffic fatalities; or it may oscillate, as

with the Baby Bells.

The feedback mechanisms may provide a systemic limit on the performance of some

risk reduction systems. The incidence of attacks, or accidents, or whatever the organi-

zation is trying to prevent, will be reduced to the point at which “there are not enough

attacks”—as with the alarm systems described in Chapter 10 and the intrusion detec-

tion systems discussed in Section 18.5.3. Perhaps systems will always reach an equilib-

rium at which the sentries fall asleep, or real alarms are swamped by false ones, or

organizational budgets are eroded to (and past) the point of danger. It is not at all obvi-

ous how to use technology to shift this equilibrium point.

Risk management may be one of the world’s largest industries. It includes not just

security engineers but also fire and casualty services, insurers, the road safety industry

and much of the legal profession. Yet it is startling how little is really known about the

subject. Engineers, economists, actuaries and lawyers all come at the problem from

different directions, use different language and arrive at quite incompatible conclu-

sions. There are also strong cultural factors at work. For example, if we distinguish risk

as being where the odds are known but the outcome isn’t, from uncertainty where even

the odds are unknown, then most people appear to be more uncertainty-averse than

risk-averse. Where the odds are directly perceptible, a risk is often dealt with intui-

tively; but where the science is unknown or inconclusive, people are liberated to pro-

ject all sorts of fears and prejudices. So perhaps the best medicine is education.

Nonetheless, there are some specific things that the security engineer should either do,

or avoid.

22.2.3.2 Interaction with Reliability

A significant cause of poor internal control in organizations is that the systems are in-

sufficiently reliable, so lots of transactions are always going wrong and have to be cor-

rected manually. A high tolerance of chaos undermines control, as it creates a high

false alarm rate for many of the protection mechanisms. It also tempts staff: when they

see that errors aren’t spotted, they conclude that theft won’t be either.

A recurring theme is the correlation between quality and security. For example, it

has been shown that investment in software quality will reduce the incidence of com-

puter security problems, regardless of whether security was a target of the quality pro-

gram or not; and that the most effective quality measure from the security point of

view is the code walk-through [292]. It seems that the knowledge that one’s output will

be read and criticized has a salutary effect on many programmers.

Reliability can be one of your biggest selling points when trying to get a client’s

board of directors to agree on protective measures. Mistakes cost business a lot of

money; no one really understands what software does; if mistakes are found, the frauds

should be much more obvious; and all this can be communicated to top management

without embarrassment on either side.

22.2.3.3 Solving the Wrong Problem

Faced with an intractable problem, it is common for people to furiously attack a related

but easier one. We saw the effects of this in the public policy context in 21.2.5.3. Dis-

placement activity is also common in the private sector. An example comes from the
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smartcard industry. As discussed in Section 14.7.2, the difficulty of protecting smart-

cards against microprobing attacks has led the industry to concentrate on securing

other things instead. Even programming manuals are available only under nondisclo-

sure agreements (NDA) even plant visitors have to sign an NDA at reception; much

technical material isn’t available at all; and vendor facilities have almost nuclear-grade

physical security. Physical security overkill may impress naive customers—but almost

all of the real attacks on fielded smartcard systems used probing attacks rather than any

kind of inside information.

One organizational driver for this is an inability to deal with uncertainty. Managers

prefer approaches that can be implemented by box-ticking their way down a checklist,

and if an organization needs to deal with an ongoing risk, then some way must be

found to keep it as a process and to stop it turning into a due-diligence checklist item.

But there will be constant pressure to replace processes with checklists, as they de-

mand less management attention and effort. I noted in Section 7.6.6 that bureaucratic

guidelines for military systems had a strong tendency to displace critical thought; in-

stead of thinking through a system’s security requirements, designers just reached for

their checklists. Commercial systems are not much different.

Another organizational issue is that when exposures are politically sensitive, some

camouflage may be used. The classic example is the question of whether attacks come

from insiders or outsiders. We’ve seen in system after system that the insiders are the

main problem, whether because some of them are malicious or because most of them

are careless. But it’s imprudent to enforce controls too overtly against line managers

and IT staff, as this will alienate them and it’s often hard to get them to manage the

controls themselves. It’s also hard to sell a typical company’s board of directors on the

need for proper defenses against insider attack, as this means impugning the integrity

and reliability of the staff who report to them.

Thus, a security manager will often ask for, and get, lots of money to defend against

nonexistent “evil hackers” so that she can spend most of it on controls to manage the

real threat, namely dishonest or careless staff. I would be cautious about this strategy,

because protection mechanisms without clear justifications are likely to be eroded un-

der operational pressure—especially if they are seen as bureaucratic impositions. Of-

ten, it will take a certain amount of subtlety and negotiating skill, and controls will

have to be marketed as a way of reducing errors and protecting staff. Bank managers

love dual-control safe locks because they understand that it reduces the risk that their

families will be taken hostage; and requiring two signatures on transactions over a

certain limit means that there are extra shoulders to take the burden when something

goes wrong. But such consensus on the need for protective measures is usually lacking

elsewhere.

22.2.3.4 Incompetent or Inexperienced Security Managers

The situation is bad enough even with a competent IT security manager, who has to use

all sorts of guile to raise money for an activity that many of her management col-

leagues will tend to regard as a pure cost. In real life, the situation is even worse. In

many traditional companies, promotions to top management jobs are a matter of sen-
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iority and contacts; so if you want to get to be the CEO, you’ll have to spend maybe 20

or 30 years in the company without offending too many people. Being a security man-

ager is absolutely the last thing you want to do, as it will mean saying no to people all

the time. It’s hardly surprising that the average tenure of computer security managers

at U.S. government agencies is only seven months [384].

Things are complicated by reorganizations, in which central computer security de-

partments may be created and destroyed every few years, while the IT audit function

oscillates between the IT department, the internal audit department, and outside audi-

tors or consultants. The security function is even less likely than other business proc-

esses to receive sustained attention and analytic thought, and more likely to succumb to

a box-ticking due diligence mentality.

22.2.3.5 Moral Hazard

Companies often design systems so that the risk gets dumped on third parties. I men-

tioned in Chapter 21 that one of the attractions of digital signatures is that they can

allow the risk associated with a forged signature to be transferred from the relying

party to the alleged signer; thus, for example, transferring much of the risk associated

with online banking from the bank to the customer. I also discussed in Chapter 9, how

banks in some countries claimed that their automatic teller machines could not possibly

make mistakes, so that any disputes must be the customer’s fault.

In addition to the public policy aspects, and macroeconomic effects which I’ll come

to in Section 22.6, this has effects on the dumping company internally. It creates a

moral hazard, by removing the incentives for people to take care, and for the company

to invest in appropriate risk management techniques. Worse, a company whose policy

is to deny vigorously that some particular type of fraud is possible leaves itself open to

staff who defraud it knowing that a prosecution would be too embarrassing.

A slightly different kind of moral hazard is created when people who make system

design decisions are unlikely to be held accountable for their actions. There are many

possible causes. IT staff turnover could be high, with much reliance placed on contract

staff; a rising management star with whom nobody wishes to argue can be involved as

a user in the design team; or imminent business process re-engineering may turn loyal

staff into surreptitious job seekers. In any case, when you design a secure system, it’s a

good idea to look at your colleagues and ask yourself which of them will shoulder the

blame three years later when things go wrong. Another common incentive failure oc-

curs when one part of an organization takes the credit for the profit generated by some

process, while another part picks up the bills when things go wrong. Very often the

marketing department gets the praise for increased sales, while the finance department

is left with the bad debts. One might think that they would between them strike a bal-

ance between risk and reward, but this is very often not so. The case of the three su-

permarkets, mentioned above, is just one example of many. Companies may swing

wildly over a period of years from being risk takers to being excessively risk averse,

and (less often) back again. Adams documents in [9] that risk taking and risk aversion

are strongly associated with different personality types: the former tend to be individu-

alists, a company’s entrepreneurs, while the latter tend to be hierarchists. As the latter

usually come to dominate bureaucracies, it is not surprising that stable, established or-

ganizations tend to be much more risk averse than rational economics would dictate.
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Which tools and concepts can help cut through the fog of bureaucratic infighting and

determine a system’s protection requirements from first principles?

The rest of this chapter will be organized as follows. The next section will look at

basic methodological issues, such as top-down versus iterative development. After that,

I’ll explain how these apply to the specific problem of security requirements engi-

neering. Having set the scene, I’ll then return to risk management and look at technical

tools. Then I’ll talk about some of the economic issues, and finally discuss the things

that go wrong.

22.3 Methodology

Large software projects usually take longer than planned, cost more than budgeted for,

and have more bugs than expected. (This is sometimes known as “Cheops’ law” after

the builder of the Great Pyramid.) By the 1960s, people had started talking about the

software crisis, although the word crisis is hardly appropriate for a starte of affairs that

has now lasted (like computer insecurity) for two generations. Anyway, the term soft-

ware engineering was proposed by Brian Randell in 1968, and defined to be:

Software engineering is the establishment and use of sound engineering principles in

order to obtain economically software that is reliable and works efficiently on real

machines.

This encompassed the hope that the problem could be solved in the same way that

one builds ships and aircraft, with a proven scientific foundation and a set of design

rules [583]. Since then, much progress has been made, though never as much as one

would like.

Software engineering is about managing complexity, of which there are two kinds.

One is the incidental complexity involved in programming using inappropriate tools,

such as the assembly languages that were all that some early machines supported; pro-

gramming a modern application with a graphical user interface in such a language

would be impossibly tedious and error-prone. The other is the intrinsic complexity of

dealing with large and complex problems. A bank’s administrative systems, for exam-

ple, may involve tens of millions of lines of code and be too complex for any one per-

son to understand.

Incidental complexity is largely dealt with using technical tools. The most important

of these are high-level languages that hide much of the drudgery of dealing with ma-

chine-specific detail and enable the programmer to develop code at an appropriate

level of abstraction. There are also formal methods that enable particularly error-prone

design and programming tasks to be checked. The obvious security engineering exam-

ple is provided by the BAN logic for verifying cryptographic protocols, which I de-

scribed in Section 2.7.

Intrinsic complexity usually requires methodological tools that focus on dividing up

the problem into manageable subproblems, and restricting the extent to which these

subproblems can interact. Many tools are available on the market to help you do this;

which you use may well be a matter of your client’s policy. But there are basically two

approaches: top-down and iterative.
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22.3.1 Top-Down Design

The classical model of system development is the waterfall model developed by

Winston Royce in 1970 for the U.S. Air Force [653]. The idea is that you start from a

concise statement of the system’s requirements, elaborate this into a specification, im-

plement and test the system’s components, integrate and test them as a system, then

roll out the system for live operation (see Figure 22.1).

The idea is that the requirements are written in the user language, and the specifica-

tion in technical language; the unit testing checks the units against the specification,

and the system testing checks whether the requirements are met. At the first two steps

in this chain there is feedback on whether you’re building the right system (validation)

and at the next two on whether you’re building it right (verification). There may be

more than four steps; a common elaboration is to have a sequence of refinement steps

as the requirements are developed into ever more detailed specifications. But that’s by

the way.

The critical thing about the waterfall model is that development flows inexorably

downward from the first statement of the requirements to the deployment of the system

in the field. Although there is feedback from each stage to its predecessor, there is no

system-level feedback from, say, system testing to the requirements. Therein lie the

waterfall model’s strengths, and also its weaknesses.

The strengths of the waterfall model are that it compels early clarification of system

goals, architecture, and interfaces; it makes the project manager’s task easier by pro-

viding definite milestones to aim at; it increases cost transparency by enabling separate

charges to be made for each step, and for any late specification changes; and it’s com-

patible with a wide range of tools. Where it can be made to work, it’s usually the best

approach. The critical question is whether the requirements are known in detail in ad-

vance of any development or prototyping work. Sometimes, this is the case, such as

when writing a compiler or (in the security world) designing a tamper-resistant crypto-

graphic processor to implement a known transaction set and pass a certain level of

FIPS evaluation.

Figure 22.1 The waterfall model.
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But, often, the detailed requirements aren’t known in advance, so an iterative ap-

proach is necessary. There are quite a few possible reasons for this. Perhaps the re-

quirements aren’t understood yet by the customer, and a prototype is necessary to

clarify them rather than more discussion; the technology may be changing; the envi-

ronment could be changing; or a critical part of the project may involve the design of a

feature, such as a human-computer interface, which we know from experience will in-

volve several prototypes. (No matter how well engineered the internals of a protection

system, user interface problems are to be expected, and a pilot is advisable if the busi-

ness model allows it.)

22.3.2 Iterative Design

Many development projects just need an iterative approach to development, but the

iteration might never terminate satisfactorily. You could build a prototype for the client

who would play with it, then say, “No, I want it this way instead.” Then you would

build another one, come up against another objection, and never get anything fielded at

all.

There are two common ways to deal with this. The first is Barry Boehm’s spiral

model in which development proceeds through a pre-agreed number of iterations. In

each of these, a prototype is built and tested, with managers being able to evaluate the

risk at each stage so they can decide whether to proceed with the next iteration or to

cut their losses. It’s called the spiral model because the process is often depicted as

shown in Figure 22.2.

Figure 22.2 The spiral model.
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The other common model is evolutionary development. This has become increas-

ingly important, because it’s how the packaged software industry works, and has re-

cently been popularized under the name of “extreme programming.” Unfortunately, it

tends to be neglected in academic courses and books on software engineering.

As the world moves from bespoke software developed in formal projects to pack-

ages whose owners put in more and more features to appeal to ever wider markets,

software products become so complex that they cannot be economically developed (or

redeveloped) from scratch. Indeed, Microsoft has tried more than once to rewrite

Word, but gave up each time. (Perhaps the best book on the evolutionary development

model is by Steve Maguire, a Microsoft manager [521].) In this view of the world,

products aren’t the result of a project but of a process, which involves continually

modifying previous versions.

The critical point about evolutionary development is that just as each generation of a

biological species has to be viable for the species to continue, so each generation of an

evolving software product must be viable. The core technology for this is regression

testing. At regular intervals—perhaps once a day—all the teams working on different

features of a product upgrade check in their code, and it gets compiled to a build,

which is then tested automatically against a large set of inputs. This step checks

whether things that used to work still work, and that old bugs that had been removed

haven’t found their way back in. Of course, it’s always possible that a build just

doesn’t work at all, and there may be quite long disruptions as a major change is im-

plemented. Thus, we consider the current “generation” of the product to be the last

build that worked. One way or another, we always have viable code that we can ship

for beta testing or whatever our next stage is.

The technology of testing is probably the biggest practical improvement in software

engineering during the 1990s. Before automated regression tests were widely used,

engineers reckoned that 15% of bug fixes either introduced new bugs or reintroduced

old ones [7]. But automated testing is less useful for the security engineer, for a num-

ber of reasons. Security properties are more diverse, and security engineers are fewer

in number, so we haven’t had as much investment in tools; moreover, the available

tools are much more fragmentary and primitive than those available to the general

software engineering community. Many of the flaws that we want to find and

fix—such as stack overflow attacks—tend to appear in new features rather than to re-

appear in old ones. Specific types of attack are also often easier to fix using specific

remedies, such as the canary mentioned in Section 4.4.5 in the case of stack overflow.

And many security flaws result from subtle bugs that cross a system’s levels of ab-

straction, such as when specification errors interact with user interface features—the

sort of problem for which it’s difficult to devise automated tests. But regression testing

is still important. It finds functionality that has been affected by a change but that is

not fully understood.

Much the same applies to safety-critical systems, which are similar in many respects

to secure systems. Some useful lessons can be drawn from them.

22.3.3 Lessons from Safety-Critical Systems

Critical computer systems can be defined as those in which a certain class of failure is

to be avoided if at all possible. Depending on the class of failure, they may be safety-

critical, business-critical, security-critical, critical to the environment, or whatever.

Obvious examples of the safety-critical variety include flight controls and automatic
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braking systems. There is a large literature on this subject, and a lot of methodologies

have been developed to help manage risk intelligently.

Overall, these methodologies tend to follow the waterfall view of the universe. The

usual procedure is to identify hazards and assess risks; decide on a strategy to cope

with them (avoidance, constraint, redundancy...); trace the hazards down to hardware

and software components which are thereby identified as critical; identify the operator

procedures which are also critical and study the various applied psychology and opera-

tions research issues; and, finally, decide on a test plan and get on with the task of

testing. The outcome of the testing is not just a system you’re confident to run live, but

a safety case to justify running it.

The safety case will provide the evidence, if something does go wrong that you ex-

ercised due care; it will typically consist of the hazard analysis, the documentation

linking this to component reliability and human factor issues, and the results of tests

(both at component and system levels), which show that the required failure rates have

been achieved.

The ideal system design avoids hazards entirely. A good illustration comes from the

motor-reversing circuits shown in Figure 22.3. In the first design on the left, a double-

pole, double-throw switch reverses the current passing from the battery through the

motor. However, this has a potential problem: if only one of the two poles of the

switch moves, the battery will be short-circuited, and a fire may result. The solution is

to exchange the battery and the motor, as in the modified circuit on the right. There, a

switch failure will short out only the motor, not the battery.

Hazard elimination is useful in security engineering, too. Recall the example in the

early design of SWIFT in Section 9.3.1: there, the keys used to authenticate transac-

tions between one bank and another were exchanged between the banks directly. In this

way, SWIFT personnel and systems did not have the means to forge a valid transac-

tion, and had to be trusted much less. In general, minimizing the trusted computing

base is, to a large extent, an exercise in hazard elimination.

Once as many hazards as possible have been eliminated, the next step is to identify

failures that could cause accidents. A common top-down way of identifying the things

that can go wrong is to conduct a fault tree analysis: a tree is constructed whose root is

the undesired behavior and whose successive nodes are its possible causes. This carries

over in a fairly obvious way to security engineering; Figure 22.4 shows an example of

a fault tree (or threat tree, as it’s often called in security engineering) for fraud from

automatic teller machines. Threat trees are standard practice in the U.S. Department of

Defense.

Figure 22.3 Hazard elimination in motor-reversing circuit.
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Figure 22.4 A threat tree.

Here’s how a threat tree works. You start out from each undesirable outcome, and

work backward by writing down each possible immediate cause. You work backward

from there by adding each precursor condition, and recurse. Then, working around the

tree’s leaves, you should be able to see each combination of technical attack, opera-

tional blunder, physical penetration, and so on, which would break security. Note that

this can amount to an attack manual for the system, and so it may be highly classified.

Nonetheless, it must exist; and if the system evaluators or accreditors can find any sig-

nificant other attacks, they may fail the product.

Returning to the safety-critical world, another way of doing the hazard analysis is

failure modes and effects analysis (FMEA), pioneered by NASA, which is bottom-up

rather than top-down. This involves tracing the consequences of a failure of each of the

system’s components all the way up to the effect on the mission. This is often useful in

security engineering; it’s a good idea to have a clear picture of the consequences of a

failure of any one of your protection mechanisms.

A really thorough analysis of failure modes may combine top-down and bottom-up

approaches, and there are various ways to manage the resulting mass of data. For ex-

ample, you can construct a matrix of hazards against safety mechanisms; and if the

safety policy is that each serious hazard must be constrained by at least two independ-

ent mechanisms, then you can check that there are two entries in each of the relevant

columns. In this way, you can demonstrate graphically that, in the presence of the haz-

ard in question, at least two failures will be required to cause an accident. This meth-

odology goes across unchanged to security engineering, as I’ll explain below.

The safety-critical systems community has a number of techniques for dealing with

failure and error rates. Component failure rates can be measured statistically; the num-

ber of bugs in software can be tracked by various techniques, which I describe in the

next chapter; and there is a lot of experience with the probability of operator error at

different types of activity. The telegraphic summary is that the error rate depends on

the familiarity and complexity of the task, the amount of pressure, and the number of

cues to success. Where a task is simple, performed often, and there are strong cues to

success, the error rate might be 1 in 100,000 operations. However, when a task is per-
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formed for the first time in a confusing environment, where logical thought is required

and the operator is under pressure, then the odds can be against successful completion

of the task. Designers of systems such as nuclear reactors are well aware (at least since

Three Mile Island) that it’s when the red lights go on for the first time that the worst

mistakes get made. Similarly, in security systems, it tends to be the important but

rarely performed tasks, such as getting senior managers to set up master crypto keys,

where the most egregious blunders can be expected.

A classic example was when a bank wanted to create a set of three master keys to

link its cash machine network to VISA, and needed a terminal to drive the security

module [20]. A contractor obligingly lent the bank a laptop PC, together with software

that emulated the desired type of terminal. With this, the senior managers duly created

the required keys and sent them off to VISA. None of them realized that most PC ter-

minal emulation software packages can be set to log all the transactions passing

through, and this is precisely what the contractor did. He captured the clear zone key as

it was created, and later used it to decrypt the bank’s master PIN key.

When doing security requirements engineering, special care has to be paid to the

skill level of the staff who will perform each critical task, and estimates must be made

of the likelihood of error. Be cautious here: an airplane designer can rely on a fairly

predictable skill level from anyone with a commercial pilot’s licence; and a shipbuilder

knows the strengths and weaknesses of a sailor in the Navy. The security engineer usu-

ally has no such luck. Many security failures remind me of a remark made by a ranger

at Yosemite National Park about the devices provided to prevent bears from getting at

campers’ food supplies: that it’s an impossible engineering problem because the

brighter bears are smarter than the dumber campers.

There are also testability issues. A common problem with redundant systems is fault

masking: if the output is determined by majority voting between three processors, and

one of them fails, then the system will continue to work fine, but its safety margin will

have been eroded. Several airplane crashes have resulted from flying a craft with one

of the navigation or flight control systems dysfunctional; although pilots may be intel-

lectually aware that their display is unreliable, their reaction under pressure will be to

rely on it rather than to check it against other instruments. A further failure can then be

catastrophic. A security example is the ATM problem mentioned in Section 9.4.2

where a bank issued all its customers with the same PIN. In that cases, the fault got

masked by the handling precautions applied to PINs, which ensured that even the

bank’s security and audit staff get hold of only the PIN mailer for their own personal

account. Clearly, some thought is needed about how faults can remain visible and test-

able even when their immediate effects are masked.

The final lesson from safety-critical systems is that, although there will be a safety

requirements specification and safety test criteria as part of the safety case for the law-

yers or regulators, it is good practice to integrate the safety case with the general re-

quirements and test documentation. If the safety case is a separate set of documents,

then it’s easy to sideline it after approval is obtained, and thus fail to maintain it prop-

erly. If, on the other hand, it’s an integral part of the product’s management, not only

will it likely get upgraded as the product is, but it is also much more likely to be taken

heed of by experts from other domains who might be designing features with possible

interactions.
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As a general rule, safety must be built in as a system is developed, not retrofitted;

the same goes for security. The main difference is in the failure model. Rather than the

effects of random failure, we’re dealing with a hostile opponent who can cause some of

the components of our system to fail at the least convenient time and in the most dam-

aging way possible. In effect, our task is to program a computer which gives answers

that are subtly and maliciously wrong at the most inconvenient moment possible. This

has been referred to as “programming Satan’s computer,” to distinguish it from the

more common problem of programming Murphy’s [48]. This provides an insight into

one of the reasons security engineering is hard: Satan’s computer is hard to test [682].

22.4 Security Requirements Engineering

In Chapter 7, I defined a security policy model to be a concise statement of the protec-

tion properties that a system, or generic type of system, must have. This was driven by

the threat model, which I introduced in Chapter 3 and sets out the attacks and failures

with which the system should be able to cope. The security policy model is further re-

fined into a security target, which is a more detailed description of the protection

mechanisms that a specific implementation provides, and how they relate to the control

objectives. The security target forms the basis for testing and evaluation of a product.

The policy model and the target together may be referred to loosely as the security

policy, and the process of developing a security policy and obtaining agreement on it

from the system owner is the process of requirements engineering.

Requirements engineering is the most critical task of managing secure system devel-

opment, and is also the hardest. It’s where “the rubber hits the road.” It’s at the inter-

section of the most difficult technical issues, the most acute bureaucratic power

struggles, and the most determined efforts at blame avoidance. The available method-

ologies have consistently lagged behind those available to the rest of the system engi-

neering world [77].

In my view, the critical insight is that the process of generating a security policy and

a security target is not essentially different from the process of producing code. De-

pending on the application, you can use a top-down, waterfall approach, a limited it-

erative approach such as the spiral model, or a continuing iterative process such as the

evolutionary model. In each case, we need to build in the means to manage risk and

have the risk assessment drive the policy development or evolution.

Risk management must also continue once the system has been deployed. It’s noto-

riously hard to tell what a new invention will be useful for; attacks are just as difficult

to predict. Phone companies spent the 1970s figuring out ways to stop phone phreaks

getting free calls; as it turned out, the real problem was crooks abusing the system to

make calls that would be hard for the police to trace. Some people worried about

crooks hacking bank smartcards, and put in lots of back-end protection for the early

electronic purses; but the attacks came on pay-TV smartcards instead. Other people

worried about the security of credit card numbers used in transactions on the Net, only
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to learn that the real threat to online businesses was not hackers but refunds and dis-

putes. As they say, “The street finds its own uses for things.” The point is, don’t expect

to get the protection requirements completely right at the first attempt. In many cases,

the policy and mechanisms were set when a system was first built, then undermined as

the environment (and the product) evolved, but the protection did not. There must be a

mechanism for monitoring, and acting on, changing protection requirements.

In this section, unlike in the previous one, I’ll describe the case of evolving protec-

tion requirements first, as it is both more common and easier to manage.

22.4.1 Managing Requirements Evolution

Most of the time, security requirements have to be tweaked for one of four reasons.

First, we might need to fix a bug. Second, we may want to improve the system; as we

get more experience of the kind of attacks that happen, we will want to tune the con-

trols. Third, we may want to deal with an evolving environment; for example, if an

online ordering system that was previously limited to a handful of major suppliers is to

be extended to all of a firm’s suppliers, then the controls are likely to need review. Fi-

nally, there may be a change in the organization; firms are continually undergoing

mergers, management buyouts, business process re-engineering, you name it.

Of course, any of these could result in such a radical change that we would consider

it to be a redevelopment rather than an evolution. The dividing line between the two is

inevitably vague, but as I’ll explain, many evolutionary ideas carry over into one-off

projects.

22.4.1.1 Bug Fixing

Most security enhancements fall into the category of bug fixes or product tuning. For-

tunately, they are usually the easiest to cope with, provided that the right structures are

in place.

If you sell software that’s at all security-critical—and most anything that can com-

municate with the outside world is potentially so—then the day will come when you

get a report of a vulnerability or even an attack. In the old days, vendors could take

months to respond with a new version of the product, or would do nothing at all but

issue a warning (or even a denial). Public expectations are higher nowadays. With

mass-market products, you can expect press publicity; even with more specialized

products there is a risk of press coverage. In short, you had better have a plan to deal

with it. This will have four components: monitoring, repair, distribution, and reassur-

ance.

First, be sure to learn of vulnerabilities as soon as you can—and preferably no later

than the press (or the bad guys) do. Listening to customers is important; provide an

efficient way for them to report bugs. Consider offering an incentive, such as points

toward their next upgrade, lottery tickets, or even cash. Then make someone responsi-

ble for monitoring these reports, and for reading relevant mailing lists, such as bugtraq

[144].

Second, be able to respond appropriately. In organizations such as banks with time-

critical processing requirements, it’s normal for one member of each product team to
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be on call via a pager in case something goes wrong at three in the morning and needs

fixing immediately. This might be excessive for a small software company, but you

should still know the home phone numbers of people whose skills might be needed

urgently; see to it that there’s more than one person with each critical skill; and have

supporting procedures. For example, emergency bug fixes must be run through the full

testing process as soon as possible. And the documentation must be upgraded, too; this

is critical for evolutionary security improvement, but too often ignored. When the bug

fix changes the requirements, you need to fix their documentation, too (and perhaps

your threat model, and even top-level risk management paperwork).

Third, be able to distribute the patch or other repair to your customers rapidly. This

must be planned in advance. The details will vary depending on your product: if you

have only a few dozen customers running your code on servers at data centers that are

staffed 24/7, then it may be very easy, but if it involves patching millions of copies of

consumer software a lot of care will be needed. It may seem simple enough to get your

customers to visit your Web site once a day and check for upgrades, but to do this

safely there are a surprising number of details you have to get right. Will the server be

able to cope with the increased traffic? Have you given your customers adequate legal

notification that their software might be changed under their feet? Could an oppo-

nent—such as a disgruntled former employee—hijack the mechanism and trash your

entire customer base?

Finally, have a plan for dealing with the press. The last thing you need is for dozens

of journalists to call and be stonewalled by your switchboard operator as you struggle

madly to fix the bug. Have a set of press release templates for incidents of varying se-

verity on file in your word processor, so that all you have to do is pick the right one

and fill in the details. The release can then ship as soon as the first (or perhaps the sec-

ond) journalist calls.

22.4.1.2 Control Tuning and Corporate Governance

The main process by which organizations such as banks develop their bookkeeping

systems and their other internal controls is by tuning them in the light of experience. A

bank with 25,000 employees might be firing about one staff member a day for petty

theft or embezzlement, and, traditionally, it’s the internal audit department that will

review the loss reports and recommend system changes to reduce the incidence of the

most common scams. I gave some examples in 9.2.3.

It is important for the security engineer to have some knowledge of internal controls.

There is a shortage of books on this subject: audit is largely learned on the job, but

know-how is also available via courses and through accounting standards documents.

There is a survey of internal audit standards by Janet Colbert and Paul Bowen [193];

the most influential is the Risk Management Framework from the Committee of Spon-

soring Organizations (COSO), a group of U.S. accounting and auditing bodies [196].

This is the yardstick by which your system will be judged if it’s used in the U.S. public

sector or by companies quoted on U.S. equity markets.

The COSO model is targeted not just on internal control but on the reliability of fi-

nancial reporting and compliance with laws and regulations. Its basic process is an

evolutionary cycle: in a given environment, you assess the risks, design controls,

monitor their performance, and then go round the loop again. COSO emphasizes soft

aspects of corporate culture more than hard system design issues, and may be seen as a
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guide to managing and documenting the process by which your system evolves. How-

ever, its core consists of the internal control procedures whereby senior management

check that their control policies are being implemented and achieving their objectives,

and modify them if not.

It is also worthwhile for the security engineer to learn about the more specialized in-

formation systems audit function. The IS auditor should not have line responsibility for

security, or there will be a conflict of interest: she should not be asked to assess sys-

tems that she designed or for whose operation she is responsible. Rather, she should

monitor how things are done, look into things that are substandard or appear suspi-

cious, and suggest improvements. Much of the technical material is common with se-

curity engineering; if you have read and understood this book so far, you should be

able to get well over 50% on the Certified Information Systems Auditor (CISA) exam

(details are at [408]). The Information Systems Audit and Control Association, which

administers CISA, has a refinement of COSO known as the Control OBjectives for In-

formation and related Technology (COBIT) which is more attuned to IT needs, more

international, and more accessible than COSO (it can be downloaded from [407]).

COBIT covers much more than engineering requirements, as issues such as personnel

management, change control, and project management are also the internal auditor’s

staples. (The working security engineer needs to be familiar with this material, too.)

These general standards are necessarily rather vague. They provide the engineer

with a context and a top-level checklist, but rarely offer any clear guidance on specific

measures. For example, COBIT 5.19 states: ‘Regarding malicious software, such as

computer viruses or trojan horses, management should establish a framework of ade-

quate preventative, detective and corrective control measures’. More concrete stan-

dards are often developed to apply such general principles to specific application areas.

For example, when I was working in banking security in the 1980s, I relied on guide-

lines from the Bank for International Settlements [71]. Where such standards exist,

they are often the ultimate fulcrum of security evolutionary activity.

It’s a good idea to have high-bandwidth channels of communication to your client’s

internal audit department. But it’s not a good idea to rely on them completely for feed-

back. Usually, the people who know most about how to break the system are the staff

who actually use it. Ask them.

22.4.1.3 Evolving Environments and the Tragedy of the Commons

I’ve described a number of systems that broke after their environment changed, and

where appropriate changes to the protection mechanisms were skimped, avoided, or

forgotten. Card-and-PIN technology that worked fine with ATMs became vulnerable to

false terminal attacks when used with retail point-of-sale terminals; smartcards that

were perfectly good for managing credit card numbers and PINs in point-of-sale appli-

cations were inadequate to keep out the pay-TV pirates; and even very basic mecha-

nisms such as authentication protocols had to be redesigned for systems where the

main threat was internal rather than external. Military environments evolve particularly

rapidly in wartime, as attack and defense co-evolve; R.V. Jones attributes much of the

Allies’ relative success in electronic warfare in World War II to the fact that the Ger-

mans used a rigid top-down development methodology, which resulted in beautifully

engineered equipment, but six months too late [424].
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Changes in the application aren’t the only problem. An operating system upgrade

may introduce a whole new set of bugs into the underlying platform. Changes of scale

as business become ‘e-’ can alter the cost-benefit equation, as can the fact that many

system users may be in foreign jurisdictions with ineffective computer crime laws (or

none at all). Also, attacks that were known by experts for many years to be possible,

but that were ignored because they didn’t happen in practice, can suddenly start to

happen—a good example being the distributed denial-of-service attack.

When you own the system, things are merely difficult. You manage risk by ensuring

that someone in the organization has responsibility for maintaining its security rating;

this may involve an annual review driven by your internal audit bureaucracy, or be an

aspect of change control. Maintaining organizational memory is hard, thanks to the

high turnover of both IT and security staff, which I discussed in Section 22.2.3.4.

That’s tough enough, but where many of the really intractable problems arise is

where no one owns the system at all. The responsibility for established standards, such

as how ATMs check PINs, is diffuse. In that case, the company that developed most of

the standards (IBM) lost its leading industry role; its successor, Microsoft, is not inter-

ested in that market. Cryptographic equipment is sold by a number of specialist firms.

Although VISA used to certify equipment, it stopped in about 1990, and Mastercard

never got into that business, so there was no one person or company in charge. Each

player—equipment maker or bank—had a motive to push the boundaries just a little bit

further, in the expectation that when eventually something did go wrong, it would hap-

pen to somebody else.

This problem is familiar to economists, who call it the tragedy of the commons

[507]. If a hundred peasants are allowed to graze their sheep on the village common,

where the grass is finite, then whenever another sheep is added, its owner gets almost

the full benefit while the other ninety-nine suffer only a very small disadvantage from

the decline in the quality of the grazing. Thus, they aren’t motivated to object, but

rather to add another sheep of their own to get as much of the declining resource as

they can. The result is a dustbowl. In the world of agriculture, this problem is tackled

by community mechanisms, such as getting the parish council set up a grazing control

committee. The cowherds in tenth-century Saxon villages were already well-enough

organized to do this; one of the challenges facing us is to devise some mix of technical

and organizational controls that will give us a comparable result, only on the larger

scale of the Internet.

22.4.1.4 Organizational Change

Organizational issues are not just a contributory factor in security failure, as with the

loss of organizational memory and the lack of community mechanisms for monitoring

changing threat environments. They can often be a primary cause.

In the early 1990s, management fashion was for business process re-engineering,

which often meant using changes in business computer systems to compel changes in

the way people worked. There have been some well-documented cases in which poorly

designed systems interacted with resentful staff to cause a disaster.
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Perhaps the best known case is that of the London Ambulance Service. It had a

manual system whereby incoming emergency calls were written on forms and sent by

conveyer belt to three controllers, who allocated vehicles and passed the form to a ra-

dio dispatcher. Industrial relations were poor, and there was pressure to cut costs; man-

agers got the idea of solving all these problems by automating. Lots of things went

wrong, and as the system was phased in it became clear that it couldn’t cope with es-

tablished working practices, such as crew taking the “wrong” ambulance (staff had fa-

vorite vehicles with senior members getting the better ones). Managers didn’t want to

know, and forced the new system into use on October 26, 1992, by reorganizing the

room so that controllers and dispatchers had to use terminals rather than paper.

The result was meltdown. A number of positive feedback loops became established

that caused the system progressively to lose track of vehicles. Exception messages

built up, scrolled off screen, and were lost; incidents were held as allocators searched

for vehicles; as the response time stretched, callbacks from patients increased (the av-

erage ring time for emergency callers went over 10 minutes); as congestion increased,

the ambulance crews got frustrated, pressed the wrong buttons on their new data termi-

nals, couldn’t get a result, tried calling on the voice channel, and increased the conges-

tion; as more and more crews fell back on the methods they understood, they took the

wrong vehicles even more often; many vehicles were sent to an emergency, or none;

and, finally, the whole service collapsed. It’s estimated that perhaps 20 people died as

a direct result of not getting paramedic assistance in time. By the afternoon on the

26th, it was the major news item; the government intervened, and on the following day

the system was switched back to semi-manual operation.

This is only one of many such disasters, but it’s particularly valuable to the engineer

as it was extremely well documented by the resulting public inquiry [723]. In my own

professional experience, I’ve seen cases where similar attempts to force through

changes in corporate culture by replacing computer systems have so undermined mo-

rale that honesty became a concern. (Much of my consulting work has had to do with

environments placed under stress by corporate reorganization or even by national po-

litical crises.)

In extreme cases, a step change in the environment brought on by a savage corporate

restructuring will be more like a one-off project than an evolutionary change. There

will often be some useful base to fall back on, such as an understanding of external

threats; but the internal threat environment may become radically different. This is

particularly clear in banking. Fifteen years ago, bank branches were run by avuncular

managers and staffed by respectable middle-aged ladies who expected to spend their

entire working lives there. Today, the managers have been replaced by product sales

specialists, and the teller staff are youngsters earning near-minimum wages who turn

over every year or so. It’s simply not the same business.

22.4.2 Managing Project Requirements

This brings us to the much more difficult problem of how to do security requirements

engineering for a one-off project. The most common example might be building an e-

commerce application from scratch, whether for a start-up or for an established busi-

ness that wants to create new distribution channels.
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Building things from scratch is an accident-prone business and there are many cases

in which large software projects crashed and burned. The problems appear to be very

much the same whether the disaster is a matter of safety, of security, or of the software

simply never working at all; so security people can learn a lot from the general soft-

ware engineering literature.

The classic study of large software project disasters was written by Bill Curtis, Herb

Krasner, and Neil Iscoe [212]. They found that failure to understand the requirements

was mostly to blame: a thin spread of application domain knowledge typically led to

fluctuating and conflicting requirements, which in turn caused a breakdown in commu-

nication. They suggested that the solution was to find an “exceptional designer” with a

thorough understanding of the problem who would assume overall responsibility.

The millennium bug gives another useful data point, which many writers on software

engineering still have to digest. If one accepts that many large commercial and gov-

ernment systems actually needed extensive repair work, and the conventional wisdom

that a significant proportion of large development projects are late or never delivered at

all, then the prediction of widespread chaos at the end of 1999 was inescapable. But it

didn’t happen. Certainly, the risks to the systems used by small and medium-sized

firms were overstated [37]; nevertheless, the systems of some large firms whose op-

erations are critical to the economy, such as banks and utilities, did need substantial

fixing. But despite the conventional wisdom, there have been no reports of significant

organizations going belly-up. This appears to support Curtis, Krasner, and Iscoe’s the-

sis. The requirement for Y2K bug fixes was known completely: “I want this system to

keep on working, just as it is now, through into 2000 and beyond.”

As a requirements engineer, you need to acquire a comprehensive knowledge of the

application, as well as of the people who might attack it and the kind of tools they

might use. If domain experts are available, well and good. When interviewing them, try

to distinguish tasks that are done for a purpose, as opposed to those that are just “how

things are done around here.” Probe constantly for the reasons why things are done as

they are, and be sensitive to after-the-fact rationalizations. Focus particularly on the

things that are going to change. For example, if dealing with customer complaints de-

pends on whether the customer is presentable or not, and your job is to take this busi-

ness online, then ask the experts what alternative controls might work in a world where

it’s much harder to tell a customer’s age, sex, and social class. (This should probably

have been done round about the time of the civil rights movement in the 1960s, but

better late than never.)

When tackling a new application, dig into its history. I’ve tried to do that throughout

this book, and bring out the way in which problems repeat. To find out what electronic

banking will be like in the twenty-first century, it’s a good idea to know what it was

like in the nineteenth; human nature doesn’t change much. Historical parallels will also

make it much easier for you to sell your proposal to your client’s board of directors.

You will likely find that a security requirements specification for a new project re-

quires iteration, so it’s more likely to be spiral model than waterfall model. In the first

pass, you’ll describe the new application and how it differs from any existing applica-

tions for which loss histories are available, set out a model of the risks as you perceive

them, and draft a security policy (I’ll have more to say on risk analysis and manage-

ment in the next section). In the second pass, you might get comments from your cli-

ent’s middle management and internal auditors, while meantime you scour the
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literature—from internal audit guidelines to books like this one—for useful checklist

items and ideas you can recycle. The outcome of this will be a revised, more quantita-

tive risk model, a security policy, and a security target that sketches how the policy

will be implemented in real life. It will also set out how a system can be evaluated

against these criteria. In the third pass, the documentation will circulate to a wider

group of people, including your client’s senior management, external auditors, insurers

and perhaps an external evaluator.

22.4.3 Parallelizing the Process

Often, there isn’t an expert to hand, as when something is being done for the first time,

or when you’re building a competitor to a proprietary system whose owners won’t

share their loss history with you. An interesting question to ask is how to brainstorm a

specification just by trying to think of all the things that could go wrong. The common

industry practice is to hire a single consulting firm to draw up a security target; but the

experience I described in Section 10.3.3 suggested that using several experts in parallel

would be better. People with backgrounds in crypto, access control, internal audit, and

so on will see a problem from different angles. There is also an interesting analogy

with the world of software testing, where it is more cost-efficient to test in parallel

rather than in series: each tester has a different focus in the testing space, and will find

some subset of flaws faster than the others. (I’ll introduce a more quantitative model of

this in the next chapter.)

The preceding motivated me to carry out an experiment in 1999 to see if a high-

quality requirements specification could be assembled quickly by getting a lot of dif-

ferent people to contribute drafts. The idea was that most of the possible attacks would

be considered in at least one of them. Thus, in one of our university exam questions, I

asked what would be a suitable security policy for a company planning to bid for the

license for a public lottery.

The results are described in [36]. The model answer was that attackers, possibly in

cahoots with insiders, would try to place bets once the result of the draw was known,

whether by altering bet records or forging tickets; or would place bets without paying

for them; or would operate bogus vending stations that would pay small claims but dis-

appear if a client won a big prize. The security policy that follows logically from this is

that bets should be registered online with a server that is secured prior to the draw,

both against tampering and against the extraction of sufficient information to forge a

winning ticket; that there should be credit limits for genuine vendors; and that there

should be ways of identifying bogus vendors.

Valuable and original contributions from the students came at a number of levels,

including policy goal statements, discussions of particular attacks, and arguments

about the merits of particular protection mechanisms. At the policy level, there were a

number of shrewd observations on the need to maintain public confidence and the

threat from senior managers in the operating company. At the level of technical detail,

one student discussed threats from refund mechanisms, while another looked at attacks

on secure time mechanisms, and observed that the use of the radio time signal in lot-

tery terminals would be vulnerable to jamming (this turned out to be a real vulnerabil-

ity in one existing lottery).

The students also came up with quite a number of routine checklist items of the kind

that designers often overlook, such as “tickets must be associated with a particular

draw.” This might seem obvious, but a protocol design that used a purchase date, ticket
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serial number, and server-supplied random challenge as input to a MAC computation

might appear plausible to a superficial inspection. Experienced designers appreciate

the value of such checklists.

The lesson to be learned from this case study is that requirements engineering, like

software testing, is susceptible to a useful degree of parallelization. If your target sys-

tem is something novel, then instead of paying a single consultant to think about it for

twenty days, consider getting fifteen people with diverse backgrounds to think about it

for a day each, then have a consultant spend a week hammering their ideas into a single

coherent document.

22.5 Risk Management

Whether a threat model and security policy evolve or are developed in a one-off pro-

ject, at their heart lie business decisions about priorities—how much to spend on pro-

tection against what. This is risk management, and it should be done within the broader

framework of managing non-IT risks.

A number of firms sell methodologies for this. Some come in the form of do-it-

yourself PC software, while others are part of a package of consultancy services.

Which one you use may be determined by your client’s policies; for example, if you’re

selling anything to the U.K. government, you’re likely to have to use a system called

CRAMM. The basic purpose of such systems is to prioritize security expenditure,

while at the same time provide a financial case for it to senior management.

The most common technique is to calculate the annual loss expectancy (ALE) for

each possible loss scenario. This is the expected loss multiplied by the number of inci-

dents expected in an average year. A typical ALE analysis for a bank’s computer sys-

tems might consist of several hundred entries, including items such as those listed in

Figure 22.5. Note that accurate figures are likely to be available for common losses

(such as “Teller takes cash”), while for the uncommon, high-risk losses such as a large

funds transfer fraud, the incidence is largely guesswork.

Figure 22.5 Example of Annual Loss Expectancies.

ALEs have been standardized by NIST as the technique to use in U.S. government

procurements [602]. But in real life, the process of producing such a table is all too

often just iterative guesswork. The consultant lists all the threats she can think of, at-

taches notional probabilities, works out the ALEs, adds them all up, and gets a ludi-

crous result, such as that the bank’s ALE is greater than all its non-interest income. She

then tweaks the total down to the amount that will justify the largest security budget

she thinks the board of directors will stand for (or which her client, the chief internal
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auditor, has told her is politically possible). The loss probabilities are then massaged to

give the right answer. (Great invention, the spreadsheet.) I’m sorry if this sounds a bit

cynical, but it’s what happens more often than not. The point is, ALEs may be of some

value, but they shouldn’t be elevated into a religion.

Insurance can be of some help in managing large but unlikely risks. But the insur-

ance business is not completely scientific either. For years, the annual premium for

bankers’ bond insurance, which covered both computer crime and employee disloyalty,

was 0.5% of the sum insured. This represented pure profit for Lloyds of London, the

firm that wrote the policies. Then there was a large claim, and the premium doubled to

1% per annum. Such policies may have a deductible of between $50,000 and

$10,000,000 per incident, so they remove only a small number of very large risks from

the equation. There is a substantial benefit in having an experienced insurance assessor

check out the computer system and suggest security enhancements; but this can be ar-

ranged for much less than the six-figure sum that a typical bank might pay for cover-

age.

The main reason that large companies take out computer crime coverage—and do

many other things—is due diligence. The risks being tackled may seem on the surface

to be operational, but are often actually legal, regulatory, and PR risks. Usually, they

are managed by “following the herd”—being just another one of the millions of gnu on

the African veld, to reuse my metaphor for Internet security. This is one reason that

computer security is such a fashion-driven business. During the mid-1980s, hackers

were the main concern, and firms selling dial-back modems did a booming business.

From the late 1980s, viruses took over the corporate imagination, and antivirus soft-

ware made some people rich. Recently, with all the fanfare about e-business, the

firewall has become the new star product. These are the threats, and the products, that

are seen by corporate CEOs on TV and in the financial press. Amidst all this noise, the

security professional must retain a healthy scepticism and strive to understand what the

real threats are.

Ultimately, knowing what computer and communications security is appropriate in a

particular application comes down to judgment. Sooner or later, the client’s CEO must

choose one of the options, and the best you can do is to give a competent and honest

assessment of the pros and cons.

22.6 Economic Issues

Many of the problems that confront the security engineer have their origin in econom-

ics. Consultants often explain that the reason a design, for which they were responsible

failed was that “the client didn’t want a secure system, but just the most security I

could fit on the product in one week on a budget of $10,000.” It’s important to realize

that this isn’t just management stupidity.

I first discussed network effects in Section 19.6. Networks with more users are more

valuable to each user, leading to strong positive feedback and, very often, a huge first-

mover advantage. This is the origin of the philosophy of, “We’ll ship it on Tuesday and



513

get it right by version 3.” Although often attributed by cynics to Microsoft, this is often

perfectly rational economic behavior in markets where network economics apply.

Network economics has many other effects on the security management process.

Rather than using a standard, well-analyzed, and tested solution, companies often pre-

fer a proprietary, obscure one to increase customer lock-in and to increase the prob-

lems for competitors who try to create compatible products. Where possible, they will

use patented algorithms (even if these are not much good) as a means of imposing li-

censing conditions on manufacturers—recall from Section 20.2.5 how the DVD Con-

tent Scrambling System was used as a means of requiring manufacturers of compatible

equipment to agree to a whole list of copyright protection measures (and how this ap-

pears to have failed because it would have prevented the Linux operating system from

running on next-generation PCs). Network owners and builders will appeal to the de-

velopers of the next generation of applications by arranging for the bulk of the support

costs to fall on users rather than developers—even if this makes effective security ad-

ministration impractical. Security engineers need to study network economics texts,

such as Shapiro and Varian [696], to understand how the various plays that companies

make to entrench monopolies, or to overturn them, interact with protection mecha-

nisms.

There are also local economic issues. Security is about power, and a design will usu-

ally serve the perceived interests of whoever pays for the design work to be done. I

described, in Chapter 8, how medical payment systems that are designed by insurers

rather then by healthcare providers fail to protect patient privacy whenever this con-

flicts with the insurer’s wish to maximize information about its clients. Chapter 9 de-

scribed how banks in many countries managed for years to get their customers to bear

the risk and cost of fraud; and Chapter 21 explained how some digital signature laws

transfer the risk of forged signatures from the person who relies on the signature to the

person alleged to have made it. Section 22.4.1.3 in this chapter explained the tragedy

of the commons, where many players can dump their risks into a common pool, so that

each gets a large benefit from taking a shortcut but suffers only a small share of the

loss when something goes wrong; the result is that standards can decline rapidly.

A particularly topical case of the tragedy of the commons comes from the recent

spate of distributed denial-of-service attacks whose technical aspects I discussed in

Section 18.2.2.3. In these attacks, vandals hack a number of PCs and install attack

software that bombards the target with more message traffic than it can handle. The

probability of becoming a victim of such an attack is so low that most normal users

quite rationally ignore it, so they don’t bother to protect their PCs properly. Then, just

as a common pasture gets overgrazed, so the Internet becomes increasingly inse-

cure—and with more and more people installing high-bandwidth, always-on Internet

connections, the insecurity will get worse. Jean Camp and Catherine Wolfram have

drawn an interesting parallel between Internet insecurity and environmental pollution

in [156].

The best way to manage such situations would be for the risks to fall on the parties

most able to manage them. This is an established general principle in tort law, but

enough industries and applications manage to escape it one way or another. In the case

of distributed denial-of-service attacks, there would be little point in victims suing

whichever random users had been hacked, as most home PC users are clueless about

security; and, in any case, the risk of being the unlucky individual who got hacked and

then sued would be low. Hal Varian has suggested that the hacked users’ Internet
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service provider should carry much of the risk [771]. This would create the needed in-

centive for firewalls to police not just incoming traffic, but outgoing traffic as well.

This is the thinking behind a strategy, which I described in passing in Section 6.2.4, of

responding to a service denial attack on a Web site by replicating the site to a more

capable, distributed server. As the use of such services can be rented, the necessary

economic incentives can be implemented in a more-or-less transparent way. (For fur-

ther details, see [816].)

In practice the driving forces behind security design usually have nothing to do with

an altruistic desire to protect the end-users’ privacy and to reduce the risk that they will

be defrauded. The motives are much more likely to be the desire to grab a monopoly,

to charge different prices to different users for essentially the same service, and to

dump risk. Often, this is perfectly rational. Sometimes it isn’t; British banks that

dumped the risk of ATM fraud on their customers installed many security mechanisms

so that in case of dispute they could argue in court that they had exercised due dili-

gence; they ended up spending more on ATM security than U.S. banks, which had al-

ways borne the liability and for which security was a rational matter of risk

management [19].

In an ideal world, the removal of perverse economic incentives to create insecure

systems would depoliticize most issues. Security engineering would then be a matter of

rational risk management rather than risk dumping. But don’t hold your breath.

22.7 Summary

Developing a security requirements specification is often the most difficult part of the

entire engineering process. Like developing the system itself, it can involve a one-off

project, be a limited iterative process, or be a matter of continuous evolution. Evolu-

tion is easiest to manage, though it is complicated by changes of scale, environment,

and business structures. Doing it from scratch for a completely new system is hardest

and most error-prone, but there are still some useful techniques and lessons that can be

borrowed from elsewhere.

In the absence of anything better, I suggest to the project manager engaged in

building an application with some nontrivial protection requirements that you make a

best effort to understand precisely what these properties are, build them into the speci-

fication, and then use whatever methodology you would use normally to follow them

through implementation, testing, and deployment. But assume that you won’t get it

right first time. Make sure that you have some institutional means of capturing feed-

back on what goes wrong and how the environment is changing, so that you can feed

this back into the process of enhancing and maintaining the system. Security must be

an integral part of how you manage the system lifecycle.

Research Problems

The issues discussed in this chapter are among the most important—and most diffi-

cult—of any in our field. Ironically, they tend to receive little attention, because they

lie at the boundaries with software engineering, applied psychology, economics, and

management. Each of these interfaces appears to be a potentially very productive area
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of research—if you have the necessary background. When building systems to be ro-

bust in the face of malice, you must also build them so that they remain robust in the

face of normal human behavior, and hopefully are able to tell the difference between

the two often enough to do something useful.

Further Reading

Literature on managing the development of information systems is large, diffuse, and

multidisciplinary. There are classics that everyone should read, such as Fred Brooks’

Mythical Man-Month [140] and Nancy Leveson’s Safeware [498]. Standard textbooks

on software engineering, such as those by Roger Pressman [622] and Hans van Vliet

[767] cover the basics of project management and requirements engineering. The eco-

nomics of the software lifecycle are discussed by Fred Brooks and Barry Boehm [123].

The Microsoft approach to managing software evolution is described by Steve

McGuire [521]. There are useful parallels to other engineering disciplines. An inter-

esting book by Henry Petroski discusses the history of bridge building, why bridges

fall down, and how civil engineers learned to learn from the collapses: what tends to

happen is that an established design paradigm is stretched and stretched until it sud-

denly fails for some unforeseen reason [612]. For a survey of risk management meth-

ods and tools, see Richard Baskerville [77] or Donn Parker [602]; there are some

interesting case histories at IFCI [402]. Computer system failures are another necessary

subject of study; the best source is the comp.risks newsgroup, of which a selection has

been collated and published in print by Peter Neumann [590].

Organizational aspects are discussed at length in the business school literature, but

this can be bewildering to the outsider. A critical guide to the literature is provided by

John Micklethwait and Adrion Wooldridge, who draw out a number of highly relevant

tensions, such as the illogicality of management gurus who tell managers to make their

organizations more flexible by firing people, while at the same time preaching the vir-

tues of trust [550]. Familiarity with this material is useful for predicting the protection

consequences of your client’s latest reorganizational fashion. Finally, the best books I

know for material on the underlying economics are a popular synopsis by Carl Shapiro

and Hal Varian [696], and a standard textbook by Hal Varian [770].
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CHAPTER

23

System Evaluation and
Assurance

If it’s provably secure, it probably isn’t.

—LARS KNUDSEN

I think any time you expose vulnerabilities it’s a good thing

—U.S. ATTORNEY GENERAL JANET RENO [642]

23.1 Introduction

I’ve covered a lot of material in this book, some of it quite difficult. But I’ve left the

hardest topics to the last. These are the questions of assurance, whether the system will

work, and evaluation, how you convince other people of this.

Fundamentally, assurance comes down to the question of whether capable, moti-

vated people have beat up on the system enough. But how do you define enough? And

how do you define the system? How do you deal with people who protect the wrong

thing, because their model of the requirements is out-of-date or plain wrong? And how

do you allow for human failures? Many systems can be operated just fine by alert ex-

perienced professionals, but are unfit for purpose because they’re too tricky for ordi-

nary folk to use or are intolerant of error.

But if assurance is hard, evaluation is even harder. It’s about how you convince your

boss, your clients—and, in extremis, a jury—that the system is indeed fit for purpose;

that it does indeed work (or that it did work at some particular time in the past). The

reason that evaluation is both necessary and hard is that, often, one principal carries the

cost of protection while another carries the risk of failure. This creates an obvious ten-

sion, and third-party evaluation schemes such as the Common Criteria are marketed as

a means of making it more transparent.
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23.2 Assurance

A working definition of assurance could be “our estimate of the likelihood that a sys-

tem will not fail in some particular way.” This estimate can be based on a number of

factors, such as the process used to develop the system; the identity of the person or

team who developed it; particular technical assessments, such as the use of formal

methods or the deliberate introduction of a number of bugs to see how many of them

are caught by the testing team; and experience—which ultimately depends on having a

model of how reliability grows (or decays) over time as a system is subjected to test-

ing, use, and maintenance.

23.2.1 Perverse Economic Incentives

A good starting point for the discussion of assurance is to look at the various princi-

pals’ motives. As a preliminary let’s consider the things for which we may need assur-

ance:

• Functionality is important and often neglected. It’s all too common to end up

protecting the wrong things or protecting the right things in the wrong way.

Recall from Chapter 8, for example, how the use of the Bell-LaPadula model

in the healthcare environment caused more problems than it solved.

• Strength of mechanisms has been much in the news, thanks to U.S. export
controls on crypto. Many products, such as DVD, were shipped with 40-bit
keys and were thus intrinsically vulnerable. Strength of mechanisms is inde-
pendent of functionality, but can interact with it. For example, in Chapter 14, I
remarked how the difficulty of preventing probing attacks on smartcards led
the industry to protect other, relatively unimportant things such as the secrecy
of chip masks.

• Implementation is the traditional focus of assurance. This involves whether,
given the agreed functionality and strength of mechanisms, the product has
been implemented correctly. As we’ve seen, most real-life technical security
failures are due to programming bugs—stack overflow vulnerabilities, race
conditions, and the like. Finding and fixing them absorbs most of the effort of
the assurance community.

• Usability is the missing factor—one might even say the spectre at the feast.

Perhaps the majority of system-level (as opposed to purely technical) failures

have a large human interface component. It is very common for secure system

designers to tie up the technical aspects of protection tightly, without stopping

to consider human frailty. There are some notable exceptions. The bookkeep-

ing systems described in Chapter 9 are designed to cope with user error; and

the security printing technologies discussed in Chapter 12 are often optimized

to make it easier for untrained and careless people to spot forgeries. But us-

ability concerns developers as well as users. A developer usability issue, men-

tioned in Chapter 4 is that the access controls provided with commodity

operating systems often aren’t used, as it’s so much simpler to make code run

with administrator privilege.
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These four factors are largely independent, and the system builder has to choose an

appropriate combination of them to aim at. A personal computer user, for example,

might want high usability, medium assurance (because high would be expensive, and

we can live with the odd virus), high strength of mechanisms (they don’t cost much

more), and simple functionality (as usability is more important). But the market

doesn’t deliver this, and a moment’s thought will indicate why.

Commercial platform vendors go for rich functionality (rapid product versioning

prevents the market being commoditized, and complementary vendors that grab too

much market share can be undermined), low strength of mechanisms (except for cryp-

tography where the escrow debate has led vendors to regard strong crypto as an essen-

tial marketing feature), low implementation assurance (so the military-grade crypto is

easily defeated by Trojan horses), and low usability (application programmers matter

much more than customers, as they enhance network externalities).

In Chapter 22, I described why this won’t change any time soon. The strategy of

“ship it Tuesday and get it right by version 3” isn’t a personal moral defect of Bill

Gates, as some of his critics allege, but is dictated by the huge first-mover advantages

inherent in the economics of networks. And mechanisms that compelled application

developers to use operating system access controls would alienate them, raising the

risk that they might write their code for competitors’ platforms. Thus, the current inse-

curity of commercial systems is perfectly rational from the economists’ viewpoint,

however undesirable from the users’.

Government agencies’ ideals are also frustrated by economics. Their dream is to be

able to buy commercial off-the-shelf products, replace a small number of components

(such as by removing commercial crypto and plugging in Fortezza cards in its place),

and end up with something they can use with existing defense networks. That is, they

want Bell-LaPadula functionality (never mind that it fails to support mechanisms some

of the vendors’ other customers need) and high implementation assurance. There is

little concern with usability, as a trainable and disciplined workforce is assumed (how-

ever wrongly), and low strength of crypto is preferred so as to limit the benefits that

potential enemies can gain from otherwise high-assurance systems being on the mar-

ket. This wish list is unrealistic given not just the cost of high assurance (which I’ll

discuss shortly), but also the primacy of time-to-market, the requirement to appease the

developer community, and the need for frequent product versioning to prevent the

commoditization of markets. Also, larger networks usually swamp smaller ones; so a

million government computer users can’t expect to impose their will on 100 million

users of Microsoft Office.

The dialogue between user advocates, platform vendors, and government is probably

condemned to remain a dialogue of the deaf. But that doesn’t mean there’s nothing

more of interest to say on assurance.

23.2.2 Project Assurance

Assurance is a process very much like the development of code or documents. Just as

you will have bugs in your code and in your specification, you will also have bugs in

your test procedures. So assurance can be done as a one-off project or be the subject of

continuous evolution. An example of the latter is given by the huge databases of

known computer viruses that anti-virus software vendors accumulate over the years to
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do regression-testing of their products. Assurance can also involve a combination, as

when a step in an evolutionary development is managed using project techniques and is

tested as a feature before being integrated and subjected to system-level regression

tests. Here, you also have to find ways of building feature tests into your regression

test suite.

Nonetheless, it’s helpful to look first at the project issues, then at the evolutionary

issues.

23.2.2.1 Security Testing

In practice, security testing usually comes down to reading the product documentation,

reviewing the code, then performing a number of tests. (This is known as white-box

testing, as opposed to black-box testing, for which the tester has the product but not the

design documents or source code). The process is:

1. First look for any obvious flaws, the definition of which will depend on the

tester’s experience.

2.  Then look for common flaws, such as stack-overwriting vulnerabilities.

3. Then work down a list of less common flaws, such as those described in the

various chapters of this book.

The process is usually structured by the requirements of a particular evaluation envi-

ronment. For example, it might be necessary to show that each of a list of control ob-

jectives was assured by at least one protection mechanism; in some industries, such as

bank inspection, there are more or less established checklists (see, for example, [72]).

23.2.2.2 Formal Methods

In Chapter 2, I gave an example of a formal method: the BAN logic that can be used to

verify certain properties of cryptographic protocols. The working engineer’s take on

formal methods may be that they’re widely taught in universities, but not used any-

where in the real world. This isn’t quite true in the security business. There are prob-

lems—such as in designing crypto protocols—where intuition is often inadequate and

where formal verification can be helpful. Military purchasers go further, and require

the use of formal methods as a condition of higher levels of evaluation under the Or-

ange Book and the Common Criteria. I’ll discuss this further below. For now, it’s

enough to say that this restricts high evaluation levels to relatively small and simple

products, such as line encryption devices and operating systems for primitive comput-

ers such as smartcards. Even so, formal methods aren’t infallible. Proofs can have er-

rors, too; and often the wrong thing gets proved [673]. The quote by Knudsen at the

head of this chapter refers to the large number of breaks of cryptographic algorithms or

protocols that had previously been proven secure. These breaks generally occur be-

cause one of the proof’s assumptions is unrealistic, or has become so over time.
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23.2.2.3 Quis Custodiet?

Just as mistakes can be made by theorem provers and by testers, so they can also be

made by people who draw up checklists of things for the testers to test (and by the se-

curity textbook writers from whose works the checklist writers draw). This is the old

problem of quis custodiet ipsos custodes, as the Romans more succintly put it: who

shall watch the watchmen?

There are a number of things one can do, few of which are likely to appeal to the or-

ganization whose goal is a declaration that a product is free of faults. The obvious one

is fault injection, whereby a number of errors are deliberately introduced into the code

at random. If there are 100 such errors, and the tester finds 70 of them, plus a further

70 that weren’t deliberately introduced, then once the 30 remaining deliberate errors

are removed, you can expect that there are 30 bugs left that you don’t know about.

(This assumes that the unknown errors are distributed the same as the known ones; re-

ality will almost always be worse than this [133].)

Even in the absence of deliberate bug insertion, a rough estimate can be obtained by

looking at which bugs are found by which testers. For example, I had Chapter 7 of this

book reviewed by a fairly large number of people, as I took a draft of it to a conference

on the topic. Given the bugs they found, and the number of people who reviewed the

other chapters, I’d estimate that there are maybe three dozen errors of substance left in

the book. The sample sizes aren’t large enough in this case to justify more than a

guess, but where they are large enough, we can use statistical techniques, which I’ll

describe shortly.

Another factor is the rate at which new attacks are discovered. In the university sys-

tem, we train graduate students by letting them attack stuff; new vulnerabilites and ex-

ploits end up in research papers, which bring fame and, ultimately, promotion. The

mechanics in government agencies and corporate labs are slightly different, but the

overall effect is the same: a large group of capable, motivated people look for new ex-

ploits. Academics usually publish, government scientists usually don’t, and corporate

researchers sometimes do. So you need some means of adding new procedures to your

test suite as fresh ideas come along, and to bear in mind that it will never be complete.

Finally, we get feedback from the rate at which instances of known bugs are discov-

ered in products once they’re fielded. This also provides valuable input for reliability

growth models.

23.2.3 Process Assurance

In recent years, less emphasis has come to be placed on assurance measures focused on

the product, such as testing, and more on process measures, such as who developed the

system. As anyone with experience of system development knows, some programmers

produce code with an order of magnitude fewer bugs than others. Also, some organi-

zations produce much better quality code than others. This is the subject of much at-

tention in the industry.

Some of the differences between high-quality and low-quality development teams

are amenable to direct management intervention. Perhaps the most notable is whether

people are responsible for correcting their own bugs. In the 1980s, many organizations
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interpreted the waterfall model of system development to mean that one team wrote the

specification, another wrote the code, yet another did the testing (including some bug

fixing), while yet another did the maintenance (including the rest of the bug fixing).

The teams communicated with each other only by means of the project documentation.

This was justified on the grounds that it is more efficient for people to concentrate on a

single task at a time; interrupting a programmer to ask him to fix a bug in code he

wrote six months ago and had forgotten about could cost a day’s productivity, while

getting a maintenance programmer to do it might cost only an hour.

But the effect was that the coders produced megabytes of buggy code, and left it to

the poor testers and maintenance people to clear up after them. Over time, both quality

and productivity sagged. Industry analysts have ascribed IBM’s near-death experience

in the early 1990s, which cost over $100 billion in asset value, to this [169]. For its

part, Microsoft considers that one of its most crucial lessons learned as it struggled

with the problems of writing ever larger programs was to have a firm policy that “if

you wrote it, you fix it.” Bugs should be fixed as soon as possible; and even though

they’re as inevitable as death and taxes, programmers should never give up trying to

write clean code.

Many other controllable aspects of the organization can have a significant effect on

output quality, ranging from how bright your hires are to how you train them and the

work habits you inculcate. (See Maguire for an extended discussion of Microsoft pol-

icy [521].)

For some years, internal auditors have included process issues while evaluating the

quality of security code. This is harder to do than you might think, because a large part

of an organization’s quality culture is intangible. While some rules (such as “fix your

own bugs”) seem to be fairly universal, imposing a large number of specific rules

would induce a bureaucratic box-ticking culture, rather than a dynamic competitive

one. Consequently, recent work has aimed for a more holistic assessment of a team’s

capability; the lead contender is the Capability Maturity Model (CMM) from the Soft-

ware Engineering Institute at Carnegie-Mellon University.

CMM is based on the idea that, as a team acquires experience, it can progress

through a series of levels. The model has five levels—initial, repeatable, defined, man-

aged, and optimizing—with a list of new things to be added as you go up the hierarchy.

Thus, for example, project planning must be introduced to move up from initial to re-

peatable, and peer reviews to make the transition from repeatable to defined. There is a

fuller description and bibliography in [767]; several attempts have been made to adapt

CMM to security work, and a significant number of vendors already use it [545, 822].

An even more common process assurance approach is the ISO 9001 standard. The

essence of this standard is that a company must document its processes for design, de-

velopment, testing, documentation, audit, and management control, generally. For

more detail, see [767]; there is now a whole industry of consultants helping companies

get ISO 9001 certification. At its best, it can provide a framework for incremental

process improvement; companies can monitor what goes wrong, trace it back to its

source, fix it, and prevent it happening again. At its worst, it can be an exercise in box-

ticking which merely replaces chaos with more bureaucratic chaos.

Many writers have remarked that organizations have a natural cycle of life, just as

people do. Joseph Schumpeter argued that economic depressions perform a valuable

societal function of clearing out companies that are past it or just generally unfit, in

much the same way that fires rejuvenate forests. Successful companies become com-
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placent and bureaucratic, so that some insiders opt for the good life while others leave

(it used to be commonly said that the only people who ever left IBM were the good

ones). Too rapid growth also brings problems: Microsoft insiders blame many of the

current problems on the influx of tens of thousands of new hires in the late 1990s,

many of whom were motivated more by the prospect of making millions from stock

options than by the mission to write good code and get it running on every computer in

the known universe.

The cycle of corporate birth, death, and reincarnation turns much more quickly in

the computer industry than elsewhere, thanks to the combination of technological pro-

gress and multiple network externalities. The telecoms industry is suffering severe

trauma as the computer and communications industries merge and the phone compa-

nies’ 15-year product cycles have to shorten to 15 months to keep up with Microsoft.

The security industry is starting to feel the same pressures. Teams that worked steadily

for decades on cost-plus contracts to develop encryptors or MLS systems for the mili-

tary have suddenly been exposed to ferocious technological and market forces, and

have been told to build completely different things. Some have succeeded, as with the

MLS supplier TIS, which reinvented itself as a firewall vendor; others have failed and

disappeared. Thus, the value of a team of MLS “graybeards” is questionable. In any

case, expert teams usually depend on one or two key gurus, and when they go off to do

a startup, the team’s capability can evaporate overnight.

Schemes such as ISO 9001 and CMM would be more convincing if there were some

effective means of taking certification away from teams that had lost their stars, their

sparkle, or their relevance. It is tempting to think that a solution might lie in the sort of

ranking system used in food guides, where declaring a new establishment to be “the

best Asian restaurant in San Francisco” entails dislodging the previous holder of this

title. Of course, if certification were a more perishable asset, it would have to confer

greater market advantage for companies to invest the same amount of effort in getting

it. This may be feasible: the restaurant guide system works, and academic peer review

works somewhat along the same lines.

23.2.4 Assurance Growth

Another aspect of process-based assurance is that most customers are not so much in-

terested in the development team as in its product. But most software today is pack-

aged rather than bespoke, and is developed by a process of continual evolutionary

enhancement rather than in a one-off project. What, then, can usefully be said about

the assurance level of evolving products?

The quality of such a product can reach equilibrium if the rate at which new bugs are

introduced by product enhancements equals the rate at which old bugs are found and

removed. But there’s no guarantee that this will happen. (There are second-order ef-

fects, such as senescence, when repeated enhancement makes code so complex that its

underlying reliability and maintainability drop off, but I’ll ignore them for the sake of

simplicity.)

While controlling the rate at which bugs are introduced will depend on the kind of

development controls I’ve already described, measuring the rate at which they are re-
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moved requires different tools—models of how the reliability of software (and systems

in general) improves under testing.

A lot is known about reliability growth, as it’s of interest to many more people than

just software engineers.

Where the tester is trying to find a single bug in a system, a reasonable model is the

Poisson distribution: the probability, p, that the bug remains undetected after t statisti-

cally random tests is given by p = e
–Et

, where E depends on the proportion of possible

inputs that it affects [506]. Where the reliability of a system is dominated by a single

bug—as when we’re looking for the first, or last, bug in a system—reliability growth

can be exponential.

But extensive empirical investigations have shown that in large and complex sys-

tems, the likelihood that the t-th test fails is not proportional to e
–Et

 but to k/t for some

constant k, so the system’s reliability grows very much more slowly. This phenomenon

was first noticed and documented in the bug history of IBM mainframe operating sys-

tems [7], and has been confirmed in many other studies [514]. As a failure probability

of k/t means a mean time between failure (MTBF) of about t/k, reliability grows line-

arly with testing time. This result is often stated by the safety-critical systems commu-

nity as, ‘If you want a mean time between failure of a million hours, then you have to

test for (at least) a million hours’ [150]. This has been one of the main arguments

against the development of complex, critical systems that can’t be fully tested before

use, such as ballistic missile defense.

The reason for the k/t behavior emerged in [105], and was proved under much more

general assumptions in [133]. The latter uses techniques of statistical thermodynamics,

and its core idea is that where a population of bugs with individual survival probabili-

ties pi = e
–Eit is large enough for certain statistical assumptions to hold, and they are

eliminated over a long period of time, then the e
–Eit statistics of the individual bugs

sum to k/t for the whole system. If they were eliminated any more slowly than this, the

software would never work at all; and if they were eliminated any more quickly, the

product would rapidly become bug-free—which, as we know, it usually doesn’t.

This model gives a number of other interesting results. Under assumptions that are

often reasonable, it is the best possible: the rule that you need a million hours of testing

to get a million hours MTBF is inescapable, up to some constant multiple that depends

on the initial quality of the code and the scope of the testing. This amounts to a proof

of a version of Murphy’s Law, that the number of defects that survive a selection proc-

ess is maximized.

The model is similar to mathematical models of the evolution of a biological species

under selective pressure. The role of bugs is played, roughly, by genes that reduce fit-

ness. But some of the implications are markedly different. Murphy’s Law, that the

number of defects that survive a selection process is maximized, may be bad news for

the engineer, but it’s good news for biological species. While software testing removes

the minimum possible number of bugs, consistent with the tests applied, biological

evolution enables a species to adapt to a changed environment at a minimum cost in

early deaths, meanwhile preserving as much diversity as possible. This diversity helps

the species survive future environmental shocks. For example, if a population of rab-

bits is preyed on by snakes, the rabbits will be selected for alertness rather than speed.

The variability in speed will remain, so if foxes arrive in the neighborhood, the rabbit

population’s average running speed will rise sharply under selective predation. More

formally, the fundamental theorem of natural selection says that a species with a high
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genic variance can adapt to a changing environment more quickly. But when Fisher

proved this in 1930 [297], he was also proving that complex software will exhibit the

maximum possible number of bugs when it is migrated to a new environment.

The evolutionary model also points to fundamental limits on the reliability gains to

be had from reusable software components such as objects or libraries; well-tested li-

braries simply mean that overall failure rates will be dominated by new code. It also

explains the observation of the safety-critical systems community that test results are

often a poor performance indicator [506]: the failure time measured by a tester depends

only on the initial quality of the program, the scope of the testing and the number of

tests, so it gives virtually no further information about the program’s likely perform-

ance in another environment. There are also some results that are unexpected, but ob-

vious in retrospect. For example, each bug’s contribution to the overall failure rate is

independent of whether the code containing it is executed frequently or

rarely—intuitively, code that is executed less is also tested less. Finally, as mentioned

in Section 22.4.3, it is often more economic for different testers to work on a program

in parallel rather than in series.

In short, complex systems become reliable only following prolonged testing. Thus,

this book may be pretty reliable once thousands of people have read it and sent me bug

reports; but if there’s a second edition with a lot of new material, I can expect new

bugs to creep in too. As for mass-market software, its wide use enables rapid debug-

ging in principle; but, in practice, the constant new versions dictated by network eco-

nomics place severe limits on what may reasonably be expected.

There appears to be no reason why these results don’t go across in their entirety if a

bug is defined to be a defect that causes a security vulnerability, rather than just any

old defect—just as long as the number of bugs is large enough to do statistics.

23.2.5 Evolution and Security Assurance

Evolutionary growth of reliability may be much worse for the software engineer than

for a biological species, but for the security engineer it’s worse still.

Rather than going into the detailed mathematics, let’s take a slightly simplified ex-

ample. Suppose a large and complex product such as Win2K has a million bugs, each

with an MTBF of a billion hours. Also suppose that Paddy works for the Irish Republi-

can Army, and his job is to break into the British Army’s computer to get the list of

informers in Belfast, while Brian is the army assurance guy whose job is to stop Paddy.

So he must learn of the bugs before Paddy does.

Paddy also has a day job, so he can only do 1,000 hours of testing a year. Brian, on

the other hand, has full Windows source code, dozens of PhDs, control of the commer-

cial evaluation labs, an inside track on CERT, an information-sharing deal with other

UKUSA member states, and he runs the government’s scheme to send consultants to

critical industries such as power and telecoms to find out how to hack them (pardon

me, to advise them how to protect their systems). Brian does ten million hours a year

of testing.

After a year, Paddy finds a bug, while Brian has found 10,000. But the probability

that Brian has found Paddy’s bug is only 1%. Even if Brian declares martial law, drafts

all Britain’s 50,000 computer science graduates to a concentration camp in Gloucester-

shire, and sets them trawling through the Windows source code, he’ll still only get 100

million hours of testing done each year. After ten years, he will find Paddy’s bug. But

by then Paddy will have found nine more, and it’s unlikely that Brian will know of all
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of them. Worse, Brian’s bug reports will have become such a firehose that Bill will

have killfiled them.

In other words, Paddy has thermodynamics on his side. Even a very moderately re-

sourced attacker can break anything that’s at all large and complex. There is nothing

that can be done to stop this, as long as there are enough different security vulnerabili-

ties to do statistics. The ray of hope is that, if all your vulnerabilities are, say, stack

overflows, and you start using a new compiler that traps them, then for modelling pur-

poses, there was only a single vulnerability, and you escape the statistical trap.

23.3 Evaluation

A working definition of evaluation is “the process of assembling evidence that a sys-

tem meets, or fails to meet, a prescribed assurance target.” (Evaluation often overlaps

with testing, and is sometimes confused with it.) As I mentioned, this evidence might

be needed only to convince your boss that you’ve completed the job. But, often, it is

needed to reassure principals who will rely on the system that the principal who devel-

oped it, or who operates it, has done a workmanlike job. The fundamental problem is

the tension that arises when the party who implements the protection and the party who

relies on it are different.

Sometimes the tension is simple and visible, as when you design a burglar alarm to

standards set by insurance underwriters, and have it certified by inspectors at the insur-

ers’ laboratories. Sometimes it’s still visible but more complex, as when designing to

government security standards that try to reconcile dozens of conflicting institutional

interests, or when hiring your company’s auditors to review a system and tell your boss

that it’s fit for purpose. It is harder when multiple principals are involved; for example,

when a smartcard vendor wants an evaluation certificate from a government agency

(which is trying to encourage the use of some feature such as key escrow that is in no

one else’s interest), in order to sell the card to a bank, which in turn wants to use it to

dump the liability for fraud on to its customers. That may seem all rather crooked; but

there may be no clearly criminal conduct by any of the people involved. The crooked-

ness may be an emergent property that arises from managers following their own per-

sonal and departmental imperatives.

For example, managers often buy products and services that they know to be subop-

timal or even defective, but which are from big-name suppliers. This is known to

minimize the likelihood of getting fired when things go wrong. Corporate lawyers

don’t condemn this as fraud, but praise it as due diligence. The end result may be that

the relying party, the customer, has no say whatsoever, and will find it hard to get re-

dress against the bank, the vendor, the evaluator, or the government when things go

wrong.

Another serious and pervasive problem is that the words “assurance” and “evalua-

tion” are often interpreted to apply only to the technical aspects of the system, and ig-

nore usability (not to mention the even wider issues of appropriate internal controls

and good corporate governance). Company directors also want assurance—that the di-
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rected procedures are followed, that there are no material errors in the accounts, that

applicable laws are being complied with, and dozens of other things. But many evalua-

tion schemes (especially the Common Criteria) studiously ignore the human and orga-

nizational elements in the system. If any thought is paid to them at all, the evaluation

of these elements is considered to be a matter for the client’s IT auditors, or even for a

system administrator setting up configuration files. All that said, I’ll focus on technical

evaluation in what follows.

It is convenient to break evaluation into two cases. The first is where the evaluation

is performed by the relying party; this includes insurance assessments, the independent

verification and validation done by NASA on mission-critial code, and the previous

generation of military evaluation criteria, such as the Orange Book. The second is

where the evaluation is done by someone other than the relying party. Nowadays, this

often means the Common Criteria evaluation process.

23.3.1 Evaluations by the Relying Party

In Chapter 10, I discussed many of the concerns that insurers have with burglar alarm

systems, and the considerations that go into approving equipment for use with certain

sizes of risk. The approval process itself if simple enough; the insurance industry oper-

ates laboratories where tests are conducted. These might involve a fixed budget of ef-

fort (perhaps one person for two weeks, or a cost of $15,000). The evaluator starts off

with a fairly clear idea of what a burglar alarm should and should not do, spends the

budgeted amount of effort looking for flaws, and writes a report. The laboratory then

either approves the device, turns it down, or demands some changes.

In Section 7.4, I described another model of evaluation, that done from 1985–2000

at the NSA’s National Computer Security Center on computer security products pro-

posed for U.S. government use. These evaluations were conducted according to the

Orange Book, the Trusted Computer Systems Evaluation Criteria [240]. The Orange

Book and its supporting documents set out a number of evaluation classes:

C1: Discretionary access control by groups of users. In effect, this is considered to be

equal to no protection.

C2: Discretionary access control by single users; object reuse; audit. C2 corresponds

to carefully configured commercial systems; for example, C2 evaluations were given

to IBM mainframe operating systems with RACF, and to Windows NT. (Both of

these were conditional on a particular version and configuration; in NT’s case, for ex-

ample, it was restricted to diskless workstations).

B1: Mandatory access control. All objects carry security labels, and the security policy

(which means Bell-LaPadula or a variant) is enforced independently of user actions.

Labeling is enforced for all input information.

B2: Structured protection. As B1, but there must also be a formal model of the secu-

rity policy that has been proved consistent with security axioms. Tools must be pro-

vided for system administration and configuration management. The TCB must be

properly structured and its interface clearly defined. Covert channel analysis must be

performed. A trusted path must be provided from the user to the TCB. Severe testing,

including penetration testing, must be carried out.
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B3: Security domains. As B2, but the TCB must be minimal; it must mediate all access

requests, be tamper-resistant, and be able to withstand formal analysis and testing.

There must be real-time monitoring and alerting mechanisms, and structured tech-

niques must be used in implementation.

A1: Verification design. As B3, but formal techniques must be used to prove the

equivalence between the TCB specification and the security policy model.

The evaluation class of a system determines what spread of information may be

processed on it. The example I gave in Section 7.5.2 was that a system evaluated to B3

may in general process information at Unclassified, Confidential, and Secret, or at

Confidential, Secret, and Top Secret. (The complete rule set can be found in [244].)

Although these ratings will cease to be valid after the end of 2001, they have had a de-

cisive effect on the industry.

The business model of Orange Book evaluations followed traditional government

service work practices. A government user would want some product evaluated; the

NSA would allocate people to do it; they would do the work (which, given traditional

civil service caution and delay, could take two or three years); the product, if success-

ful, would join the evaluated products list; and the bill would be picked up by the tax-

payer. The process was driven and controlled by the government—the party that was

going to rely on the results of the evaluation—while the vendor was the supplicant at

the gate. Because of the time the process took, evaluated products were usually one or

two generations behind current commercial products, and often an order of magnitude

more expensive.

The Orange Book wasn’t the only evaluation scheme running in America. I men-

tioned in Section 14.4 the FIPS 140-1 scheme for assessing the tamper-resistance of

cryptographic processors; this uses a number of independent laboratories as contrac-

tors. Independent contractors are also used for Independent Verification and Validation

(IV&V), a scheme set up by the Department of Energy for systems to be used in nu-

clear weapons, and later adopted by NASA for manned space flight, which has many

similar components (at least at the rocketry end of things). In IV&V, there is a simple

evaluation target: zero defects. The process is still driven and controlled by the relying

party—the government. The IV&V contractor is a competitor of the company that built

the system, and its payments are tied to the number of bugs found.

Other governments had similar schemes. The Canadians had the Canadian Trusted

Products Evaluation Criteria (CTPEC), while a number of European countries devel-

oped the Information Technology Security Evaluation Criteria (ITSEC). The idea was

that a shared evaluation scheme would help European defense contractors compete

against U.S. suppliers, with their larger economies of scale; Europeans would no

longer be required to have separate certification in Britain, France, and Germany. IT-

SEC combined ideas from the Orange Book and IV&V processes, in that there were a

number of different evaluation levels; and for all but the highest of these levels, the

work was contracted out. However, ITSEC introduced a pernicious innovation: the

evaluation was not paid for by the government but by the vendor seeking an evaluation

on its product.
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This was the usual civil service idea of killing several birds with one stone: saving

public money and at the same time promoting a more competitive market. As usual, the

stone appears to have done more damage to the too-clever hunter than to either of the

birds.

This change in the rules provided the critical perverse incentive. It motivated the

vendor to shop around for the evaluation contractor who would give its product the

easiest ride, whether by asking fewer questions, charging less money, taking the least

time, or all of these. (The same may happen with FIPS 140-1 now that commercial

companies are starting to rely on it for third-party evaluations.) To be fair, the potential

for this was realized, and schemes were set up whereby contractors could obtain ap-

proval as a commercial licensed evaluation facility (CLEF). The threat that a CLEF

might have its license withdrawn was intended to offset the commercial pressures to

cut corners.

23.3.2 The Common Criteria

This sets the stage for the Common Criteria. The original goal of the Orange Book was

to develop protection measures that would be standard in all major operating systems,

not an expensive add-on for captive government markets (as Orange Book evaluated

products became). The problem was diagnosed as too-small markets, and the solution

was to expand them. Because defense contractors detested having to obtain separate

evaluations for their products in the United States, Canada, and Europe, agreement was

reached to scrap the national evaluation schemes and replace them with a single stan-

dard. The work was substantially done in 1994–1995, and the European model won out

over the U.S. and Canadian alternatives. As with ITSEC, evaluations under the Com-

mon Criteria, at all but the highest levels are done by CLEFs, and are supposed to be

recognized in all participating countries (though any country can refuse to honor an

evaluation if it says its national security is at stake); and vendors pay for the evalua-

tions.

There are some differences. Most crucially, the Common Criteria have much more

flexibility than the Orange Book. Rather than expecting all systems to conform to Bell-

LaPadula, a product is evaluated against a protection profile, which, at least in theory,

can be devised by the customer. This doesn’t signify that the Department of Defense

has abandoned multilevel security as much as an attempt to broaden the tent, get lots of

commercial IT vendors to use the Common Criteria scheme, and thus defeat the per-

verse economic incentives described in Section 23.2.1 above. The aspiration was to

create a bandwagon effect, which would result in the commercial world adapting itself

somewhat to the government way of doing things.

23.3.2.1 Common Criteria Terminology

To discuss the Common Criteria in detail, I need to introduce some more jargon. The

product under test is known as the target of evaluation (TOE). The rigor with which

the examination is carried out is the evaluation assurance level (EAL); it can range

from EAL1, for which functional testing is sufficient, all the way up to EAL7, for

which thorough testing is required as well as a formally verified design. The highest

evaluation level commonly obtained for commercial products is EAL4, although there
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is one smartcard operating system with an EAL6 evaluation (obtained, however, under

ITSEC rather than under CC).

A protection profile is a set of security requirements, their rationale, and an EAL.

The profile is supposed to be expressed in an implementation-independent way to en-

able comparable evaluations across products and versions. A security target (ST) is a

refinement of a protection profile for a given target of evaluation. In addition to evalu-

ating a product, one can evaluate a protection profile (the idea is to ensure that it’s

complete, consistent, and technically sound) and a security target (to check that it

properly refines a given protection profile). When devising something from scratch, the

idea is to first create a protection profile, and evaluate it (if a suitable one doesn’t exist

already), then do the same for the security target, then finally evaluate the actual prod-

uct. The result of all this is supposed to be a registry of protection profiles and a cata-

logue of evaluated products.

A protection profile should describe the environmental assumptions, the objectives,

and the protection requirements (in terms of both function and assurance), and break

them down into components. There is a stylized way of doing this. For example,

FCO_NRO is a functionality component (hence F) relating to communications (CO), and it

refers to nonrepudiation of origin (NRO). Other classes include FAU (audit), FCS (crypto

support), and FDP, which means data protection (this isn’t data protection as in Euro-

pean law, but refers to access control, Bell-LaPadula information flow controls, and

related properties). The component catalogue is heavily biased toward supporting MLS

systems.

There are also catalogues of:

• Threats, such as T.Load_Mal—“Data loading malfunction: an attacker may ma-

liciously generate errors in set-up data to compromise the security functions of

the TOE.”

• Assumptions, such as A.Role_Man—“Role management: management of roles
for the TOE is performed in a secure manner” (in other words, the developers,
operators and so on behave themselves).

• Organizational policies, such as P.Crypt_Std—“Cryptographic standards:
cryptographic entities, data authentication, and approval functions must be in
accordance with ISO and associated industry or organizational standards.”

• Objectives, such as O.Flt_Ins—“Fault insertion: the TOE must be resistant to
repeated probing through insertion of erroneous data.”

• Assurance requirements, such as ADO_DEL.2—“Detection of modification: the

developer shall document procedures for delivery of the TOE or parts of it to

the user.”

I mentioned that a protection profile will contain a rationale. This typically consists

of tables showing how each threat is controlled by one or more objectives, and, in the

reverse direction, how each objective is necessitated by some combination of threats or

environmental assumptions, plus supporting explanations. It will also justify the selec-

tion of an assurance level and requirements for strength of function.

The fastest way to get the hang of this is to read a few of the existing profiles, such

as that for smart cards [579]. As with many protection profiles, this provides a long list

of things that can go wrong and things that a developer can do to control them, and so

is a useful checklist. The really important aspects of card protection, though, are found

in O.Phys_Prot, “Physical protection: the TOE must be resistant to physical attack or be
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able to create difficulties in understanding the information derived from such an at-

tack” [p. 24]. An inexperienced reader might not realize that this objective is the whole

heart of the matter; and as explained in Chapter 14, it’s extremely hard to satisfy.

(There’s an admission on pp. 100–101 that competent attackers will still get through,

but this is couched in terms likely to be opaque to the lay reader.) In general, the Crite-

ria and the documents generated using them are unreadable, and this undermines the

value they were intended to bring to the nonspecialist engineer.

Still, the Common Criteria can be useful to the security engineer in that they provide

such extensive lists of things to check. They can also provide a management tool for

keeping track of all the various threats and ensuring that they’re all dealt with (other-

wise, it’s very easy for one to be forgotten in the mass of detail). But if the client in-

sists on an evaluation—especially at higher levels—then these lists are apt to turn from

a help into a millstone. Before accepting all the costs and delays this will cause, it’s

important to understand what the Common Criteria don’t do.

23.3.2.2 What the Common Criteria Don’t Do

The documents admit that the Common Criteria don’t deal with administrative security

measures, nor “technical-physical” aspects such as Emsec, nor crypto algorithms, nor

the evaluation methodology, nor how the standards are to be used. The documents

claim not to assume any specific development methodology (but then go on to assume

a waterfall approach). There is a nod in the direction of evolving the policy in response

to experience, but reevaluation of products is declared to be outside the scope. Oh, and

there is no requirement for evidence that a protection profile corresponds to the real

world; and I’ve seen a few that studiously ignore published work on relevant vulner-

abilities. In other words, the Criteria avoid all the hard and interesting bits of security

engineering, and can easily become a cherry pickers’ charter.

The most common specific criticism (apart from cost and bureaucracy) is that the

Criteria are too focused on the technical aspects of design. For example, in ADO_DEL.2

(and elsewhere) we find that procedures are seen as secondary to technical protection

(the philosophy is to appeal to procedures where a technical fix isn’t available). But, as

explained in Section 12.6, when evaluating a real system, you have to assess the capa-

bility and motivation of the personnel at every stage in the process. This is fundamen-

tal, not something that can be added on afterward.

Even more fundamental, is that business processes should not be driven by the limits

of the available technology (and especially not by the limitations of the available ex-

pensive, out-of-date military technology). System design should be driven by business

requirements; and technical mechanisms should be used only where they’re justified,

not just because they exist. In particular, technical mechanisms shouldn’t be used

where the exposure is less than the cost of controlling it, or where procedural controls

are cheaper. Remember why Samuel Morse beat the dozens of other people who raced

to build electric telegraphs in the early nineteenth century. They tried to build modems,

so they could deliver text from one end to the other; Morse realized that, given the

technology then available, it was cheaper to train people to be modems.

So much for the theory of what’s wrong with the Criteria. As always, the practical

vulnerabilities are different, and at least as interesting.
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23.3.3 What Goes Wrong

In none of the half-dozen or so affected cases I’ve been involved in has the Common

Criteria approach proved satisfactory. (Perhaps that’s because I am called in only when

things go wrong—but my experience still indicates a lack of robustness in the process.)

One of the first points that must be made is that the CLEFs that do the evaluations

are beholden for their registration to the local intelligence agency, and their staff must

all have clearances. This leaves open a rather wide path toward what one might call

institutional corruption.

Corruption doesn’t have to involve money changing hands or even an explicit ex-

change of favors. For example, when the Labor party won the 1997 election in Britain,

I soon received a phone call from an official at the Department of Trade and Industry.

He wanted to know whether I knew any computer scientists at the University of Leeds,

so that the department could award my group some money to do collaborative research

with them. It transpired that the incoming science minister represented a constituency

in Leeds. This does not imply that the minister told his officials to find money for his

local university; almost certainly it was an attempt by the officials to schmooze him.

23.3.3.1 Corruption, Manipulation, and Inertia

This preemptive cringe, as one might call it, appears to play a large part in the conduct

of the evaluation labs. The most egregious example in my experience occurred in the

British National Health Service. The service had agreed, under pressure from the doc-

tors, to encrypt traffic on the health service network; GCHQ made no secret of its wish

that key escrow products be used. Trials were arranged; one of them used commercial

encryption software from a Danish supplier that had no key escrow, and cost £3,000,

while the other used software from a U.K. defense contractor that had key escrow, and

cost £100,000. To GCHQ’s embarrassment, the Danish software worked, but the Brit-

ish supplier produced nothing that was usable. The situation was quickly salvaged by

having a company with a CLEF license evaluate the trials. In its report, it claimed the

exact reverse: that the escrow software worked fine, while the foreign product had all

sorts of problems. Perhaps the CLEF was simply told what to write; it’s just as likely

that the staff wrote what they knew GCHQ wanted to read.

Sometimes, an eagerness to please the customer becomes apparent. In the context of

the Icelandic health database (Section 8.3.4.1 above), its promoters wanted to defuse

criticism from doctors about its privacy problems, so they engaged a British CLEF to

write a protection profile for them. This simply repeated, in Criteria jargon, the pro-

moters’ original design and claims; it studiously avoided noticing flaws in this design,

which had already been documented and even discussed on Icelandic TV [38].

Sometimes the protection profiles might be sound, but the way they’re mapped to

the application isn’t. For example, European governments and IT vendors are currently

working on regulations for the “advanced electronic signatures,” which, as mentioned

in Section 21.2.4.4, will shortly have to be recognized as the equivalent of handwritten

signatures in all EU member states. The present proposal is that the signature creation

device should be a smartcard evaluated to above level EAL4. (The profile [579] is for

EAL4 augmented, which, as mentioned, is sufficient to keep out all attackers but the

competent ones.) But no requirements are proposed for the PC that displays to you the

material that you think you are signing. The end result will be a “secure” (in the sense
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of non-repudiable) signature on whatever the virus or Trojan in your PC sent to your

smartcard.

Of course, insiders figure out even more sophisticated ways to manipulate the sys-

tem. A nice example comes from how the French circumvented British and German

opposition to the smartcard-based electronic tachograph described in Section 10.4.

They wrote a relaxed protection profile and sent it to a British CLEF to be evaluated.

The CLEF was an army software company; whatever their knowledge of MLS, they

knew nothing about smartcards. But this didn’t lead them to turn down the business.

They also didn’t know that the U.K. government was opposed to approval of the pro-

tection profile. Thus, Britain was left with a choice between accepting defective road

safety standards as a fait accompli, and undermining confidence in the Common Crite-

ria.

Given all the corruption, greed, incompetence, and manipulation, it’s like a breath of

fresh air to find some good, old-fashioned bureaucratic inertia. An example is the

healthcare protection profile under development for the U.S. government. Despite all

the problems with using the MLS protection philosophy in healthcare, which I dis-

cussed in Chapter 9, that’s what the profile ended up using [34]. It assumed that no

users would be hostile (despite the fact that almost all attacks on health systems are

from insiders), and insisted that multiple levels be supported, even though, as de-

scribed in Chapter 9, levels don’t work in that context. It also provided no rules as to

how classifications or compartments should be managed, but left access control policy

decisions to the catch-all phrase “need to know.”

23.3.3.2 Underlying Problems

In general, the structure of the Common Criteria is strongly oriented toward MLS sys-

tems and to devices that support them, such as government firewalls and encryption

boxes. This is unsurprising given the missions of the agencies that developed them.

They assume trained obedient users, small systems that can be formally verified, uni-

form MLS-type security policies, and an absence of higher-level attacks, such as legal

challenges. This makes them essentially useless for most of the applications one finds

in the real world.

As for the organizational aspects, I mentioned in 23.2.3 that process-based assurance

systems fail if accredited teams don’t lose their accreditation when they lose their

sparkle. This clearly applies to CLEFs. Even if CLEFs were licensed by a body inde-

pendent of the intelligence community, many would deteriorate as key staff leave or as

skills don’t keep up with technology; and as clients shop around for easier evaluations,

there will inevitably be grade inflation. Yet, at present, I can see no usable mechanism

whereby a practitioner with very solid evidence of incompetence (or even dishonesty)

can challenge a CLEF and have it removed from the list. In the absence of sanctions

for misbehavior, institutional corruption will remain a serious risk.

When presented with a new security product, the engineer must always consider

whether the sales rep is lying or mistaken, and how. The Common Criteria were sup-

posed to fix this problem, but they don’t. When presented with a product from the

evaluated list, you have to ask how the protection profile was manipulated and by

whom; whether the CLEF was dishonest or incompetent; what pressure from which

government was applied behind the scenes; and how your rights are eroded by the cer-

tificate.
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For example, if you use an unevaluated product to generate digital signatures, then a

forged signature turns up and someone tries to use it against you, you might reasonably

expect to challenge the evidence by persuading a court to order the release of full

documentation to your expert witnesses. A Common Criteria certificate might make a

court very much less ready to order disclosure, and thus could severely prejudice your

rights. In fact, agency insiders admit after a few beers that the main issue is “confi-

dence”—that is, getting people to accept systems as secure even when they aren’t.

A cynic might suggest that this is precisely why, in the commercial world, it’s the

vendors of products that rely on obscurity and that are designed to transfer liability

(such as smartcards), to satisfy due-diligence requirements (such as firewalls) or to

impress naive users (such as PC access control products), who are most enthusiastic

about the Common Criteria. A really hard-bitten cynic might point out that since the

collapse of the Soviet Union, the agencies justify their existence by economic espio-

nage, and the Common Criteria signatory countries provide most of the interesting tar-

gets. A false U.S. evaluation of a product that is sold worldwide may compromise 250

million Americans; but as it will also compromise 400 million Europeans and 100 mil-

lion Japanese, the balance of advantage lies in deception. The balance is even stronger

with small countries such as Britain, which has fewer citizens to protect and more for-

eigners to attack. In addition, agencies get brownie points (and budgets) for foreign

secrets they steal, not for local secrets that foreigners didn’t manage to steal.

An economist, then, is unlikely to trust a Common Criteria evaluation. Perhaps I’m

one of the cynics, but I tend to view them as being somewhat like a rubber crutch. Such

a device has all sorts of uses, from winning a judge’s sympathy through wheedling

money out of a gullible government to smacking people round the head. (Just don’t try

to put serious weight on it!)

Fortunately, the economics discussed in Section 23.2.1 should limit the uptake of the

Criteria to sectors where an official certification, however irrelevant, erroneous, or

mendacious, offers some competitive advantage.

23.4 Ways Forward

In his classic book, The Mythical Man-Month, Brooks argues compellingly that there is

no “silver bullet” to solve the problems of software projects that run late and over

budget [140]. The easy parts of the problem, such as developing high-level languages

in which programmers can work much better than in assembly language, have been

done. The removal of much of the accidental complexity of programming means that

the intrinsic complexity of the application is what’s left. I discussed this in Chapter 22,

in the general context of system development methodology; the above discussion

should convince you that exactly the same applies to the problem of assurance and,

especially, to evaluation.

A more realistic approach to evaluation and assurance would look not just at the

technical features of the product but at how it behaves in real applications. Usability is

ignored by the Common Criteria, but is in reality all-important; a U.K. government
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email system that required users to reboot their PC whenever they changed compart-

ments frustrated users so much that they made informal agreements to put everything

in common compartments—in effect wasting a nine-figure investment. (Official se-

crecy will no doubt continue to protect the guilty parties from punishment.) The kind

of features I described in the context of bookkeeping systems in Chapter 9, which are

designed to limit the effects of human frailty, are also critical. In most applications, we

must assume that people are always careless, usually incompetent, and occasionally

dishonest.

It’s also necessary to confront the fact of large, feature-rich programs that are up-

dated frequently. Network economics cannot be wished away. Evaluation and assur-

ance schemes, such as the Common Criteria, ISO9001, and even CMM, try to squeeze

a very volatile and competitive industry into a bureaucratic straightjacket, to provide

purchasers with the illusion of stability. If such stability did exist, the whole industry

would flock to it; but the best people can do is flock to brands, such as IBM in the

1970s and 1980s, and Microsoft now. The establishment and maintenance of these

brands involves huge market forces; security plays a small role.

I’ve probably given you enough hints by now about how to cheat the system and

pass off a lousy product as a secure one—at least long enough for the problem to be-

come someone else’s. In the remainder of this book, I’ll assume that you’re making an

honest effort to protect a system and that you want risk reduction, rather than due dili-

gence or some other kind of liability dumping. In many cases, it’s the system owner

who loses when the security fails; I’ve cited a number of examples earlier (nuclear

command and control, pay-TV, prepayment utility meters, etc.) and they provide some

of the more interesting engineering examples.

When you really want a protection property to hold it is vital that the design be sub-

jected to hostile review. It will be eventually, and it’s better if it’s done before the

system is fielded. As discussed in one case history after another, the motivation of the

attacker is almost all-important; friendly reviews, by people who want the system to

pass, are essentially useless, compared with contributions by people who are seriously

trying to break it.

23.4.1 Semi-Open Design

One way of doing this is, to hire multiple experts from different consultancy firms or

universities. Another is to use multiple different accreditation bodies: I mentioned in

21.6.4 how voting systems in the United States are vetted independently in each state;

and in the days before standards were imposed by organizations such as VISA and

SWIFT, banks would build local payment networks, with each of them having the de-

sign checked by its own auditors. Neither approach is infallible, though; there are some

really awful legacy voting and banking systems.

Another, very well established, technique is what I call semi-open design. Here, the

architectural-level design is published, even though the implementation details may not

be. Examples that I’ve given include the smartcard banking protocol discussed in Sec-

tion 2.7.1, and the nuclear command and control systems mentioned in Chapter 11.
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Another approach to semi-open design is to use an openly available software pack-

age, which anyone can experiment with. This can be of particular value when the main

threat is a legal attack. It is unreasonable to expect a court to grant access to the source

code of a spreadsheet product such as Excel, or even to accounting software sold by a

medium-sized vendor; the opposing expert will just have to buy a copy, experiment

with it, and see what she can find. You just have to take your chances that a relevant

bug will be found in the package later, or that some other feature will turn out to un-

dermine the evidence that it produces.

23.4.2 Open Source

Open source extends the philosophy of openness from the architecture to the imple-

mentation detail. A number of security products have publicly available source code,

of which the most obvious is the PGP email encryption program. The Linux operating

system and the Apache Web server are also open source, and are relied on by many

people to protect information. There is also a drive to adopt open source in govern-

ment.

Open source software is not entirely a recent invention; in the early days of com-

puting, most system software vendors published their source code. This openness

started to recede in the early 1980s when pressure of litigation led IBM to adopt an

“object-code-only” policy for its mainframe software, despite bitter criticism from its

user community. The pendulum now seems to be swinging back.

There are a number of strong arguments in favor of open source, and a few against.

The strongest argument is that if everyone in the world can inspect and play with the

software, then bugs are likely to be found and fixed; in Eric Raymond’s famous phrase,

“To many eyes, all bugs are shallow” [634]. This is especially so if the software is

maintained in a cooperative effort, as Linux and Apache are. It may also be more diffi-

cult to insert backdoors into such a product.

Arguments against open source center on the fact that once software becomes large

and complex, there may be few or no capable motivated people studying it, hence ma-

jor vulnerabilities may take years to be discovered. A recent example was a program-

ming bug in PGP versions 5 and 6, which allowed an attacker to add an extra escrow

key without the keyholder’s knowledge [690], and which was fielded for several years

before it was spotted. (The problem may be that PGP is being developed faster than

people can read the code; that many of the features with which it’s getting crammed

are uninteresting to the potential readers; or just that now that it’s a commercial prod-

uct, people are not so motivated to do verification work on it for free.)

There have also been backdoor “maintenance passwords” in products such as send-

mail that persisted for years before they were removed. The concern is that there may

be attackers who are sufficiently motivated to spend more time finding bugs or exploit-

able features in the published code than the community of reviewers are. In fact, it can

be worse than this; as noted in Section 23.2.4, different testers find different bugs, be-

cause their test focus is different, so it’s quite possible that even once a product had

withstood 10,000 hours of community scrutiny, a foreign intelligence agency that in-
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vested a mere 100 hours might find a new exploitable vulnerability. Given the cited

reliability growth models, the probabilities are easy enough to work out.

Other arguments against open source include the observation that active open source

projects add functionality and features at dizzying speed compared to closed software,

which can open up nasty feature interactions; that there had better be consensus about

what the security is trying to achieve; and that there are special cases, such as when

protecting smartcards against various attacks, where a proprietary encryption algorithm

embedded in the chip hardware can force the attacker to spend significantly more effort

in reverse engineering.

So where is the balance of benefit? Eric Raymond’s influential analysis of the eco-

nomics of open source software [635] suggests that there are five criteria for whether a

product would be likely to benefit from an open source approach: where it is based on

common engineering knowledge, rather than proprietary techniques; where it is sensi-

tive to failure; where it needs peer review for verification; where it is sufficiently busi-

ness-critical that users will cooperate in finding and removing bugs; and where its

economics include strong network effects. Security passes all these tests, and indeed

the long-standing wisdom of Kerckhoffs is that cryptographic systems should be de-

signed in such a way that they are not compromised if the opponent learns the tech-

nique being used [454]. There is increasing interest in open source from organizations

such as the U.S. Air Force [688, 689].

It’s reasonable to conclude that while an open source design is neither necessary nor

sufficient, it is often going to be helpful. The important questions are how much effort

was expended by capable people in checking and testing the code—and whether they

tell you everything they find.

23.4.3 Penetrate-and-Patch, CERTs, and bugtraq

Penetrate-and-patch is the name given dismissively in the 1970s and 1980s to the

evolutionary procedure of finding security bugs in systems and then fixing them; it was

widely seen at that time as inadequate, as more bugs were always found. At that time,

people hoped that formal methods would enable bug-free systems to be constructed.

With the realization that such systems are too small and limited for most applications,

iterative approaches to assurance are coming back into vogue, along with the question

of how to manage them.

Naturally, there’s a competitive element to this. The U.S. government’s wish is that

vulnerabilities in common products such as operating systems and communications

software should be reported first to authority, so that they can be exploited for law en-

forcement or intelligence purposes if need be, and that vendors should ship patches

only after unauthorized persons start exploiting the hole. Companies such as Microsoft

share source code and vulnerability data with intelligence agency departments engaged

in the development of hacking tools, and the computer emergency response teams

(CERTs) in many countries are funded by defense agencies. In addition, many feel that

the response of CERTs is somewhat slow. The alternative approach is open reporting

of bugs as they’re found—as happens on a number of mailing lists, notably bugtraq.

Neither approach is fully satisfactory. In the first case, you never know who saw the

vulnerability report before you did; and in the second case, you know that anyone in
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the world could see it and use it against you before a patch is shipped. Perhaps a more

sensible solution was proposed in [631], under which a researcher who discovers a

vulnerability should first email the software maintainer. The maintainer will have 48

hours to acknowledge receipt, failing which the vulnerability can be published; the

maintainer will have a further five days to actually work on the problem, with a possi-

bility of extension by mutual negotiation. The resulting bug fix should carry a credit to

the researcher. Just before this book went to press, CERT agreed to start using this

procedure, only with a delay of 45 days for the vendor to design and test a fix [174].

This way, software companies have a strong incentive to maintain an attentive and

continually staffed bug-reporting facility, and in return will get enough time to test a

fix properly before releasing it; researchers will get credits to put on their CVs; users

will get bug fixes at the same time as bug reports; and the system will be very much

harder for the agencies to subvert.

23.4.4 Education

Perhaps as an academic, I’m biased, but I feel that the problems and technologies of

system protection need to be much more widely understood. I have seen case after case

in which the wrong mechanisms were used, or the right mechanisms were used in the

wrong way. It has been the norm for protection to be got right only at the fifth or sixth

attempt. With a slightly more informed approach, it might have been the second or

third. Security professionals unfortunately tend to be either too specialized and focused

on some tiny aspect of the technology, or else generalists who’ve never been exposed

to many of the deeper technical issues. But blaming the problem on the training we

currently give to students—whether of computer science, business administration, or

law—is too easy; the hard part is figuring out what to do about it. This book isn’t the

first step, and certainly won’t be the last word—but I hope it will be useful.

23.5 Summary

Sometimes the hardest part of a security engineering project is knowing when you’re

done. A number of evaluation and assurance methodologies are available to help. In

moderation they can be very useful, especially to the start-up firm whose development

culture is still fluid and is seeking to establish good work habits and build a reputation.

But the assistance they can give has its limits, and overuse of bureaucratic quality con-

trol tools can do grave harm. I think of them as like salt: a few shakes on your fries can

be a good thing, but a few ounces definitely are not.

But although the picture is gloomy, it doesn’t justify despondency. As people gradu-

ally acquire experience of what works, what gets attacked and how, and as protection

requirements and mechanisms become more part of the working engineer’s skill set,

things gradually get better. Security may be got right only at the fourth pass, but that’s

better than never—which was typical 15 years ago.

Life is chaotic. Success means coping with it. Complaining too much about it is the

path to failure.
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Research Problems

We could do with some new ideas on how to manage evaluation. Perhaps it’s possible

to apply some of the tools that economists use to deal with imperfect information, from

risk-pricing models to the theory of the firm. It would also be helpful if we had better

statistical tools to measure and predict failure.

Further Reading

An entire industry is devoted to promoting the assurance and evaluation biz, supported

by mountains of your tax dollars. Its enthusiasm can even have the flavor of religion.

Unfortunately, there are nowhere near enough people writing heresy.
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CHAPTER

24

Conclusions

We are in the middle of a change in how security is done.

Ten years ago, the security manager of a large company was usually a retired soldier

or policeman, for whom ‘computer security’ was a relatively unimportant speciality

which he left to the computer department, with occasional help from outside special-

ists. In ten years’ time, his job will be occupied by a systems person; she will consider

locks and guards to be a relatively unimportant speciality which she’ll farm out to a

facilities management company, with an occasional review by outside specialists.

Ten years ago, security technology consisted of an archipelago of mutually suspi-

cious islands—the cryptologists, the operating system protection people, the burglar

alarm industry, right through to the chemists who did funny banknote inks. We all

thought that the world ended at our shore. In ten years’ time, security engineering will

be an established discipline; the islands are being joined up by bridges, and practitio-

ners will need to be familiar with all of them. The banknote ink man who doesn’t un-

derstand digital watermarks, and the cryptologist who’s only interested in

communications confidentiality mechanisms, will be poor value as employees.

Ten years ago, information security was said to be about ‘confidentiality, integrity

and availability’. In ten years’ time, this list of priorities will be the other way round

(as it already is in many applications). Security engineering will be about ensuring that

systems are predictably dependable in the face of all sorts of malice, and particularly in

the face of service denial attacks. They will also have to be resilient in the face or error

and mischance. So tolerance of human carelessness and incompetence will be at least

as important as tolerating dishonesty, and this will mean paying close attention to eco-

nomic and institutional issues as well as technical ones. The ways in which real sys-

tems will provide this dependability will be much more diverse than today: tuning the

security policy to the application will be an essential part of the engineering art.
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Ten years ago, the better information security products were the domain of govern-

ment. They were designed in secret and manufactured in small quantities by cosseted

cost-plus defense contractors. Already, commercial uses dwarf government ones, and

in ten years’ time the rough and tumble of the marketplace will have taken over com-

pletely.

Ten years ago, government policy toward information security was devoted to

maintaining the effectiveness of huge communications intelligence networks built up

during the Cold War. It was run in secret and along the same lines as the nuclear or

missile technology non-proliferation policy: only enough could be exported to prevent

the development of competent manufacturers in other countries, and control had to be

maintained at all times by vetting end-users and enforcing export licensing. Already, it

is becoming clear that crypto controls are almost irrelevant to real policy needs. Issues

such as data protection, consumer protection and even online voting are more impor-

tant. In ten years’ time, information protection issues will be pervasive throughout

government operations from tax collection through market regulation, and many deci-

sions taken hastily now, at the behest of empire-building police agencies, will have to

be changed at some expense.

The biggest challenge though is likely to be systems integration and assurance. Ten

years ago, the inhabitants of the different islands in the security archipelago all had

huge confidence in their products. The cryptologists believed that certain ciphers

couldn’t be broken; the smartcard vendors claimed that probing out crypto keys held in

their chips was absolutely physically impossible; and the security printing people said

that holograms couldn’t be forged without a physics PhD and $20 million worth of

equipment. At the system level, too, there was much misplaced confidence. The banks

claimed that their automatic teller machines could not even conceivably make a mis-

taken debit; the multilevel secure operating systems crowd sold their approach as the

solution for all system protection problems; and people assumed that a security

evaluation done by a laboratory licensed by a developed country’s government would

be both honest and competent. These comfortable old certainties have all evaporated.

Many things will make the job more complicated. The distinction between outsiders

and insiders used to be central to the business, but as everything gets connected, it’s

disappearing fast. Protection used to be predicated on a few big ideas and on proposi-

tions that could be stated precisely, while now the subject is much more diverse and

includes a lot of inexact and heuristic knowledge. The system life-cycle is also chang-

ing: in the old days, a closed system was developed in a finite project, while now sys-

tems evolve and accumulate features without limit. Changes in the nature of work are

significant: while previously a bank’s chief internal auditor would remember all the

frauds of the previous thirty years and prevent the data processing department repeat-

ing the errors that had caused them, the new corporate culture of transient employment

and “perpetual revolution” (as Mao Tse-Tung described it) has all but destroyed corpo-

rate memory. Finally, there are the economics of networked information systems:

strong externalities dictate that time-to-market will remain much more important than

quality.

The net effect of all these changes is that the protection of information in computer

systems is no longer a scientific discipline, but an engineering one.
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The security engineer of the twenty-first century will be responsible for systems that

evolve constantly and face a changing spectrum of threats. She will have a large and

constantly growing toolbox. A significant part of her job will be keeping up to date

technically: understanding the latest attacks, learning how to use new tools, and keep-

ing up on the legal and policy fronts. Like any engineer, she’ll need a solid intellectual

foundation; she will have to understand the core disciplines such as cryptology, access

control, information flow, networking and signal detection. She’ll also need to under-

stand the basics of management: how accounts work, the principles of finance and the

business processes of her client. But most important of all will be the ability to manage

technology and play an effective part in the process of evolving a system to meet

changing business needs. The ability to communicate with business people, rather than

just with other engineers, will be vital; and experience will matter hugely.

I don’t think anybody with this combination of skills is likely to be unemployed—or

bored—anytime soon.
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