
Cover Sheet

Name of submitted algorithm : SERPENT

Principal submitter : Ross J. Anderson

Tel: +44 1223 334733
Fax: +44 1223 334678
email: Ross.Anderson@cl.cam.ac.uk
URL: www.cl.cam.ac.uk/users/rja14

University of Cambridge
Computer Laboratory
Pembroke Street
Cambridge CB2 3QG
England

Auxiliary submitters : Eli Biham
: Lars R Knudsen

Inventors, and owners of the patent
application for the algorithm : Ross J. Anderson

: Eli Biham
: Lars R. Knudsen

Signature

Ross J. Anderson



2.B. Algorithm Specification and Supporting

Documentation

2.B.1 Written specification

This is contained in the attached paper “Serpent: A Proposal for the Ad-
vanced Encryption Standard of which an initial version (entitled “Serpent:
A new block cipher proposal”) appeared in Fast Software Encryption — pro-
ceedings of fifth international workshop, Springer Lecture Notes in Computer
Science v 1372 pp 222–238

2.B.2 Computational efficiency

Computational efficiency estimates are included in the paper. We summarise
them here.

1. The number of cycles required to encrypt or decrypt is independent of
the key size; all keys shorter than 256 bits are padded to that length
and used as a 256 bit key.

2. It takes about 1830–1940 instructions to encrypt 128 bits using Ser-
pent. The exact figure depends on the processor used, and encryption
is very slightly faster than decryption in the optimised implementation,
although it needs a few more instructions. On a Pentium processor,
the 1940 instructions required take about 1738 clock cycles. That the
clock cycle count is less than the instruction count is due to efficient
use of pipelining. The time required to set up or change a key is ap-
proximately the time required to perform one encryption; there is no
extra time required to set up the algorithm such as by building internal
tables.

3. On a 133MHz Pentium/MMX processor running Linux, our optimised
C implementation achieves an encryption throughput of 9,791,000 bits
per second which corresponds to about 1738 clock cycles per block.
We therefore expect that on a 200 MHz Pentium as specified in section
6.B, Serpent will have a throughput of about 14.7 Mbit/sec unless
the test software or choice of operating system imposes a significant
performance penalty.



4. Our Java implementation performs 10,000 encryptions in 3.3 seconds
on a 133 MHz Pentium MMX. This translates to 388 kbit/s, and we
expect 583 kbit/s on the NIST 200 MHz machine (though just-in-time
compilation should speed things up). In each case, this translates to
about 44,000 clock cycles per block.

5. On 8-bit processors, a compact implementation should take less than
1Kbyte but 34,000 clock cycles, giving a throughput of about 12.8 kbit/s
on a 3.5 MHz 6805 as used in low-cost smartcards. An implementation
optimised for speed should take 11,000 clock cycles and thus deliver
40.7 kbit/s, but occupy about 2K of memory. This is comparable with
common DES implementations and more than adequate for typical ap-
plications.

6. We expect that a fully pipelined hardware implementation would take
about 100,000 gates. If piplined key scheduling is not a requirement (it
would almost never be), then this falls to 67,000. If pipelining of eight
stages at a time is adequate (as it would usually be) then the gate count
falls to about 18,000. With no pipelining, it falls to about 4,500. In
addition it is possible to construct highly efficient hardware/software
versions of our algorithm by adding an extra instruction called ‘BIT-
SLICE’ to existing processors at a cost of about 3,200 gates.

2.B.3 KAT and MCT Tests

These are included on diskette

2.B.4 Expected strength

The following workload figures are for the best attack that we expect to be
possible on our cipher:

Block Size Key Size Workload Type of attack Chosen/Known Texts
128 128 2128 Exhaustive Search 1
128 192 2192 Exhaustive Search 2
128 256 2256 Exhaustive Search 2

We do not believe that either differential or linear attacks are possible.



Indeed, with the current state of the art we do not believe that they give
useful attacks even if Serpent is reduced from 32 rounds to 16. In any case,
we advise users to change keys well before birthday attacks are possible (i.e.
well before 264 texts have been encrypted). In that case, no shortcut attacks
are possible using any techniques known to us and we believe that any such
attack would require a major theoretical breakthrough.

We decided to use twice the number of rounds that are necessary to guard
against all presently known attacks, because if DES serves as a reasonable
guide, the cipher selected for AES may have to withstand attack for 50 years
or more (25 years as a standard, and 25 years in legacy systems). If Moore’s
law continues to hold, then such attacks might involve hardware capable of
searches in excess of 2100 as well as considerable advances in the techniques
of cryptanalysis.

2.B.5 Resistance against known attacks

Our cipher resists all known attacks. The details are in the paper which also
includes references.

2.B.6 Advantages and limitations

An extremely important advantage of Serpent is the bitslice design technique
which enables us to use the S-boxes from DES, and thus benefit from the
extensive analysis already done on DES, while avoiding the poor software
performance from which DES suffers. The result is a cipher which, on the
main target platform, is as fast as single DES while being more secure than
three-key triple-DES.

In order to design a cipher to withstand 50 years of attacks, we did not
believe it prudent to use novel and untested ideas, especially as the AES
algorithm will be accepted after a short review period and used to protect
enormous volumes of financial transactions, health records and government
information.

To design a cipher using only well understood components and techniques,
while simultaneously delivering enough performance improvement to justify
a move away from triple-DES, required an innovative idea. However this
innovative idea had to be such as to enable the existing cryptanalytic ap-
paratus to be used, rather than a new construction whose weakness might



only become apparent to the cryptanalytic community after some years. Our
bitslice construction is that idea.

Other more specific advantages of Serpent include:

a. When Serpent is implemented on the industry standard architecture
(Intel Pentium/MMX or Pentium II) it is possible to perform simul-
taneous CBC encryption and MAC computation on a message using
different keys.

b. Serpent can also be used in standard modes of operation, such as in
Output Feedback Mode to give a very efficient and strong pseudo-
random bit generator for stream cipher and other applications.

c. Serpent provides adequate performance as a hash function. We are
aware of no way in which it differs from a pseudorandom permutation,
and it will thus provide a one-way collision-free hash function when
used in feedforward mode, subject to the limits imposed by its block
length. On many modern processors, it allows several streams of data
to be hashed simultaneously.

d. Serpent runs quickly enough on smartcards and other 8-bit processors
for the key management, value transfer and similar protocols commonly
implemented on such devices. The fact that key set up or change
requires computation equivalent to only one encryption makes it also
suitable for applications such as ATM encryption where key agility may
be required.

e. Serpent can be implemented in hardware in a variety of ways depend-
ing on the precise performance requirements. There is a particularly
efficient way to add it to an existing CPU by means of a special pur-
pose instruction that speeds up software implementations considerably.
Serpent also supports highly pipelined hardware implementations for
applications such as ATM/B-ISDN, and very compact hardware imple-
mentations for applications such as pay-TV decoder ASICs.

2.C Magnetic Data

2.C.1 Reference Implementation

Enclosed.



2.C.2 Mathematically Optimized Implementation

ANSI C and Java enclosed.

2.C.3 Test values

Enclosed.

2.D Intellectual Property Statements

2.D.1 Statement by the Submitter

Enclosed.

2.D.2 Statement by Patent Application Owner

Enclosed.

2.D.3 Statement by the owners of the Reference and
Mathematically Optimized Implementations

Enclosed.


