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In this talk, given in April 2000, I introduced the topic of the correctness of
the sets of transactions supported by cryptographic processors.

There has been much work on verifying crypto protocols, which are typi-
cally sets of 3-5 transactions exchanged by two principals. Yet when we look at
actual implementations, there are typically 50 transactions supported by each
principal’s cryptographic facility (which might be a smartcard, cryptoprocessor,
cryptographic service provider or security software library). Just as there are
failures in which an opponent can achieve an undesired result by cutting and
pasting valid transactions, so also there are failures in which an opponent uses
cryptographic transactions in an order that was not anticipated by the facility’s
designer.

I can make this clear using an example I discovered shortly after this talk
was given, and which is discussed in some detail in my book [1]. It works against
many of the security modules — hardware cryptoprocessors — used by banks to
manage ATM networks in the 1980s.

One of the security modules’ principal protection goals was to ensure that
no single employee of any bank in the network could learn the clear value of any
customer’s personal identification number (PIN). If PINs were simply managed
in software, then any programmer with an appropriate level of access could
learn any customer’s PIN, and could therefore masquerade as them. As banks
connected their ATMSs together into networks, there was not just the risk that any
bank’s programmers might in theory masquerade as any other bank’s customers,
but also that a customer might falsely dispute a transaction he had actually made
by claiming that some bank insider must be responsible.

So the cryptographic systems used to compute and verify PINs had to sup-
port a policy of dual control. No single member of any bank’s staff should have
access to the clear value of any bank customer’s PIN. So key management in-
volved hand carrying two or more key components to each ATM when it was
initially brought online. These were combined together by exclusive-or to create
a terminal master key (conventionally known as KMT), and further encryption
keys would then be sent to the device encrypted under this master key. The
higher-level management of PINs and keys relied on the tamper-resistance prop-
erties of the security modules to prevent programmers getting hold of PINs, or
of data used to protect them such as the master keys in ATMs (and of course
the PIN keys used to derive PINs from account numbers in the first place).

The upshot was that most bank security modules had a transaction to gener-
ate a key component and print out its clear value on an attached security printer.



They also returned this value to the calling program, encrypted under a master
key KM which was kept in the tamper-resistant hardware:

SM — printer: K MT;
SM — host: {KMT;}km

and another which will combine two of the components to produce a terminal
key:

Host — SM: {KM T }gar, {KMTo} ks
SM — host: {KMTl @KMTQ}KM

To generate a terminal master key, you’d use the first of these transactions
twice followed by the second, giving KMT = KMT, & KMTs.

The protocol failure is that the programmer can take any old encrypted key
and supply it twice in the second transaction, resulting in a known terminal key
(the key of all zeroes, as the key is exclusive-or’ed with itself):

Host — VSM: {KMTl}KM,{KMTl}KM
VSM — host: {KMTy, & KMT;}km

The module also has a transaction to verify any PIN supplied encrypted
under a key that itself is encrypted under K M:

Host — SM: Account number,{ KMT1}kp, {PIN}kymr
SM — host: Y / N

So the programmer now uses the zero key to encrypt every possible PIN
(0000-9999) and supplies them to the security module along with the target
account number and the zero key encrypted under KM, {0} k. After about
5000 transactions, on average, he finds the key.

Following this attack, Mike Bond discovered a couple of protocol failures with
the IBM 4758, then the only cryptoprocessor evaluated to FIPS 140-1 level 4 —
the highest level of tamper-resistance available for unclassified equipment. This
startling result is described briefly in [1], and in more detail in a forthcoming
paper.

Mike’s attacks spurred me to look more closely at the old security module
transaction set, and I realised that there is an ever better attack. This uses a
transaction that will translate data from one key to another, and can be used
to translate almost all the interesting crypto keys in the device to the zero key.
The manuals for other security module products have yielded yet more sneaky
attacks.

To sum up: the security of cryptographic transaction sets is a new and rapidly
growing field of research. This is the talk that kicked it all off.



Much of the talk consisted of an explanation of how the IBM 3848, VISA
Security Module and IBM 4758 work at the protocol level. This is rather hard
to tidy up into a written article, as I used multicoloured slides to convey the
concept of key typing by having ‘red keys’, ‘blue keys’, ‘green keys’ and so on,
with each type of keys having a particular kind of function within the system.
From section 2.2 onwards, for example, I describe the keys used to protect PINs
as ‘red keys’: a red key should have the property that nothing encrypted under
it may ever be output in the clear.

The key typing concepts are made more difficult for the beginner to under-
stand because of the mechanism by which they are usually implemented. This
works as follows. The security module has a number of internal master keys,
and the working keys supplied in a transaction are encrypted under the master
key appropriate to that type. (Thus in the VISA security module, for example,
key encryption is done by two-key triple-DES, and what we call a ‘red’ key is
actually a key encrypted in this way under master keys 14 and 15.) The various
transactions allow a number of ‘approved’ operations to be conducted on data
that is supplied either in the clear, or encrypted under keys of particular types.
Thus, for example, to verify a customer PIN received from another bank’s ATM
through VISA’s network, the programmer calls a security module transaction
which accepts a PIN encrypted under a key of the type ‘working key shared
with VISA’, and a PIN verification key; it decrypts the PIN from the first key,
checks it with the second, and returns either ‘Correct’ or ‘Incorrect’.

The reader wishing to dive into the brutal details of all this should read the
CCA manual supplied with the 4758, as this (more or less) contains the two
earlier devices via its backward compatibility modes [7]. The reader wishing for
a more abstract view of the problem being addressed should read the following
transcript in conjuntcion with chapter 14 of my book [1]. For this reason I've
only edited the transcript lightly — adding a couple of illustrations, a couple of
equations and a table from my slides.

Ross Anderson
Cambridge, 2nd January 2001



The Correctness of Crypto Transaction Sets
(talk transcript)

This talk follows on more from the talks by Larry Paulson and Giampaolo
Bella that we had earlier. The problem I'm going to discuss is, what’s the next
problem to tackle once we’ve done crypto protocols? We keep on saying that
crypto-protocols appear to be “done” and then some new application comes
along to give us more targets to work on — multi-media, escrow, you name it.
But sooner or later, it seems reasonable to assume, crypto will be done. What’s
the next thing to do?

The argument I'm going to make is that we now have to start looking at the
interface between crypto and tamper-resistance.

Why do people use tamper resistance? I’'m more or less (although not quite)
excluding the implementation of tamper resistance that simply has a server
sitting in a vault. Although that’s functionally equivalent to many more portable
kinds of tamper resistance, and although it’s the traditional kind of tamper
resistance in banking, it’s got some extra syntax which becomes most clear when
we consider the Regulation of Investigatory Powers (RIP) Bill. When people
armed with decryption notices are going to be able to descend on your staff,
grab keys, and forbid your staff from telling you, then having these staff working
in a Tempest vault doesn’t give the necessary protection.

1 Cryptography Involving Mutually Mistrustful
Principals

In order to deploy “RIP-stop cryptography” (the phrase we’ve been using), you
need to get guarantees which are mandatory — in the sense of mandatory access
control. That is, you need guarantees, that are enforced independently of user
action and are therefore subpoena proof, that a key was destroyed at date X, or
that a key is not usable on packets over a week old, or that a key is only usable
in packets over a week old if it’s used with the thumb print of the corporate chief
security manager, or whatever. You could do this with something like Kerberos,
you just say that tickets can only be decrypted (as opposed to used) if the
corporate security manager says so (this is maybe the cheap and cheerful way of
getting RIP-stop into Windows). Alternatively, you could impose a requirement
that a key should be unusable in the same key packet twice — possible if you’ve
got a device like the 4758 with a reasonable amount of memory — or you could
have a key which is unusable without a correct biometric. All of these give you
ways of defeating RIP.

Now when we look at the larger canvas, at the applications that really use
hardware tamper-resistance, we find that most of them are used where there is
mutual mistrust. Often all the principals in a system mistrust each other.



The classic example, that Simmons discussed in the 80’s, was the business
of nuclear treaty verification, and indeed command and control generally [10].
The Americans don’t trust the Russians, and the Pentagon doesn’t trust the
commanders in the field not to use the weapons, and so you end up with this
enormous hierarchy of tamper-resistant boxes.

Pre-payment electricity meters provide another application that we have dis-
cussed at previous workshops [3]. There you have a central electricity authority,
and you have hundreds of regional electricity vendors who sell tokens which op-
erate meters. How do you balance power and cash, and stop the various vendors
running off with the cash — or selling tokens that they then don’t own up to?
The only known solution is using some kind of hardware tamper-resistance, at
least in the vending stations.

Then you’ve got bank security modules, which are basically used because
banks don’t want to trust each others’ programmers not to get at customer
PINs. Matt asked yesterday: “How could you possibly use tamper-resistance
where you have got mutual mistrust?” In practice, tamper-resistance is used
precisely where there is mutual mistrust, and this is what makes it difficult and
interesting.

A Dbrief history of tamper-resistance includes weighted code-books, sigaba
cypher machines with thermite charges, and so on — all fairly familiar. GSM
is fairly low-level stuff: your SIM contains a customer key K., and this key is
you, for practical purposes, in the network; it is used to respond to random
authentication challenges. You have no real motive to break into the SIM; it’s
just convenient to use a smartcard to hold K. (although it does prevent some
kinds of cloning such as cloning a phone in a rental car).

Pay-TV becomes more serious, and Markus Kuhn has talked about it at some
length [4]. There the mutual mistrust is between the pay-TV operator and the
customer. The customer has the master key on his premises, and the pay-TV
operator doesn’t trust the customer not to use the master key. Hence the need
for tamper-resistance.

Banking is an issue that I've written about a lot [2], and the kind of security
modules that I worked with (and indeed built some of) are basically PCs in
steel cases with lid switches. Open the lid, and bang goes the memory. This is
a very simple way of building stuff. You can make it more complex by putting
in seismometers, and photo-diodes, and all sorts of other sensors, but the basic
idea is simple. When you take it to its logical conclusion you get the IBM 4758,
where you have got a DES chip, microprocessor, battery and so on, potted in a
tamper-sensing core with alarm circuits around it.

What are the vulnerabilities of such products?

Many of the kinds of vulnerability we had in the 80’s were to do with main-
tenance access. The maintenance engineer would go in to change the battery; he
could then disable the tamper-sensing; and he could then go back on his next
visit and take out the keys. That got fixed. The way to fix it was to take the
batteries outside the device, as you can see in the photo of the 4758 in figure 1.



Then there is nothing user-serviceable inside the device, so as soon as you pen-
etrate the tamper-sensing membrane the thing dies irrevocably — it becomes a
door-stop.

Fig. 1. — the IBM 4758 cryptoprocessor (courtesy of Steve Weingart)

We’ve more or less got to the point that the hardware can be trusted. We
deal with the problem of whether the software can be trusted by getting FIPS
140-1 evaluation done by independent laboratories that sign a non-disclosure
agreement and then go through the source code. That may be enough in some
cases and not enough in others, but that isn’t the subject of this talk.

2 Cryptoprocessor Transaction Sets

What I'm interested in is the command set that the cryptographic device itself
uses. We have up till now, in this community, been looking at what happens in
protocols where Alice and Bob exchange messages, and you need to contemplate
only three or four possible types of message.

In the real world, things are much harder. If Alice and Bob are using tamper-
resistant hardware, then they have got boxes that may support dozens or even
hundreds of transactions. And we are assuming that Alice and Bob are untrust-
worthy — perhaps not all the time, perhaps you're just worried about a virus



taking over Alice’s PC — but perhaps Alice is simultaneously your customer and
your enemy, in which case you can expect a more or less continuous threat.

2.1 Early transaction sets — CUSP

Let me review quickly how cryptographic processor instruction sets developed.
The first one that’s widely documented is IBM’s CUSP, which came in in 1980
in the PCF product, and shortly after that in the 3848 [8]. This was a device the
size of a water-softener that hung off your mainframe on a channel cable. It was
designed to do things like bulk file encryption, using keys that were protected in
tamper-sensing memory.

What IBM wanted to do was to provide some useful protection for these
keys. If you merely have a device which will, on demand, encrypt or decrypt
with a key that is held in its memory, then it doesn’t seem to do you much good.
Anybody who can access the device can do the encrypting and the decrypting.

So there began to be a realization that we want, in some way or another, to
limit what various keys can be used for. Although the details are slightly more
complex than the subset I'm giving here, the idea that IBM had was that you
can divide keys into different types, and some keys can be local keys and other
keys can be remote keys. How they did this was to have three master keys for
the device — basically one master key and two offsets that would be XORed with
it to create dependent master-keys. A key that was encrypted with the main
master key, you can think of that as a blue key, and a key that was encrypted
with variant KM Hy you might think of as a green key, and a key that was
encrypted with variant K M H; you might think of as a red key.

Now few people go through this documentation [7], because the IBM termi-
nology and notation in it are absolutely horrible. But by starting to think in
terms of key typing, or key colours, you can start to make much progress.

One of the goals that IBM tried to achieve with the 3848 was to protect for
host-terminal communications using a session key which is never available in the
clear, and which therefore has no street value. (This was an NSA concern at the
time, because of their various staff members who had been selling key material
to the Russians.) So how do you protect communication between a mainframe
and its terminal?

The implementation was that you had a host transaction ECPH, which would
take a green key — that is a session key encyphered under KMHO — and a message
m, and it would, in the trusted hardware, get its hands on this green key by
decyphering it under KMHO, and then apply it to encypher the message m.

ECPH: {KS}kamm0,m — {m}Ks

So you had a means of using the green key to encypher messages, and ‘can
encypher with green key’ is a property of CUSP. Similarly, you can decypher with



a green key, because can supply Kg encyphered under K M Hy and a message
encyphered under Kg and you will get back m.

How do you go about generating keys?

The technique is to supply a random number, or a serial number — or any
value that you like, in fact — and use the device to decypher that under KMHO
to get a green key. In other words, the external encyphered keys that you hold
on your database are just numbers that you thought up somehow. They are then
‘decyphered’ and used as keys.

Then you’ve got a more sensitive transaction, ‘reformat to master key’ (RFMK),
which will take a master-key for a terminal — which is set up by an out-of-band
technique — and Kg encrypted under KMHO, and it will encypher the session
key under the master-key for the terminal.

RFMK {KS}KIV[H(),KMT e {KS}KIVIT

So we’ve got another type of key, a red key I've called it, which is assumed to
be held in the terminal. At the terminal, which is a different piece of hardware
with different syntax, you've got a transaction DMK which will take a session
key encyphered under KMT, and the clear value of KMT which is held in the
hardware; it will give you a value of Kg which can then be used to do the
decryption. (There isn’t any hardware protection on the syntax of crypto in the
terminal, because it is assumed that if you have physical access to the terminal
then you can use the keys in it.)

Now this isn’t all of the implementation, because there are other things that
you need to do. You need to be able to manage keys, and (most confusingly of all)
you need to be able to manage peer-to-peer communication between mainframes,
which was being brought in at the time. So you end up having transactions to
set up a key that is a local key at one mainframe and a remote key at the
other mainframe. The IBM view at the time was that this made public-key
cryptography unnecessary, because DES was so much faster and you needed
tamper-resistant hardware anyway, so whay not just have local keys and remote
keys? They have got the same functionality.

What went wrong with this? Well, it was very difficult to understand or
explain, because the terminology they used is very complex. All sorts of imple-
mentation errors resulted. People found that it was simpler just to use blue keys
which are all-powerful, rather than to mess around trying to separate keys into
red and green and then finding that various things they wanted to do couldn’t
be done.

Nobody really figured out how to use this CUSP system to protect PINs
properly as they were being sent from one bank to another. For example, a PIN
from another bank’s customer would come in from your cash machine, so you
would decypher it and then re-encypher it with a key you shared with VISA for
onward transmission. There were one or two hacks with which people tried to



prevent PINs being available in clear in the host mainframe — such as treating
PINs as keys — but for various reasons they didn’t really work.

2.2 Banking security modules

So the next generation of security hardware to come along. The VISA security
module, for example, takes the concept a bit further. They’ve actually got about
five or six different colours of key.

The basic idea is that the security module is generating the PIN for a cash
machine, by encrypting the account number using a key known as the PIN key.
The result is then decimalised, and either given to the customer directly or added
to an ‘offset’ on the customer’s card to give the PIN that they must actually
enter:

Account number: 8807012345691715
PIN key: FEFEFEFEFEFEFEFE
Result of DES: A2CE126C69AEC82D
Result decimalised: 0224126269042823
Natural PIN: 0224
Offset: 6565
Customer PIN: 6789

So you start off with keys which never decrypt, such as the PIN key K P,
and you also have keys which can decrypt. Now the PIN key is a ‘red key’, a
key which can never decrypt, and keys of this type are also used to protect PINs
locally. (For example, when a PIN is encrypted at a cash machine for central
verification, then the key used to perform this encryption is treated as a red
key by the security module.) You can pass the security module a PIN which has
been encrypted under a red key and it will say whether the PIN was right or
not. The green key operates like a normal crypto key; you use it for computing
MACs on messages and stuff like that.

So you use a red key to compute the PIN from the primary account num-
ber (PAN), and you use a red key to encipher the PIN from the ATM to the
host security module. The whole thing works because nothing that’s ever been
encrypted under a red key is supposed to leak out — except the fraction of a bit
per time that comes out from the PIN verification step. Then you add various
support transactions, like ‘generate terminal master key component’, ‘XOR two
terminal master key components together to get a terminal master key’ and so
on and so forth.

What’s the security policy enforced by the set of transactions that the se-
curity module provides? Well, it doesn’t quite do Bell-LaPadula, because if you
think of the red keys as being High, it allows an information flow from High to
Low — about whether a PIN at High is right or not. So you need an external



mechanism to track how many PIN retries have there been on an account, and
if there’s been more than three or 12 or whatever your limit is, then you freeze
the account.

It doesn’t quite do Clark-Wilson either, because you can generate master key
components and XOR them together, and there’s no system level protection for
separation of duties on these two master key components; that’s part of manual
procedure. But the security module is moving somewhat in the direction of Bell-
LaPadula and Clark-Wilson (although its evolution went down a different path).

Once you network many banks together, you’ve got further requirements.
You've got one type of key used to encrypt a PIN on the link between the cash
machine and the security module of the acquiring bank; you’ve got another type
of key being used between the acquiring bank and VISA; another type of key
being used between VISA and the issuing bank; then you’ve got the top level
master keys which VISA shares with banks, and so on. You can think of these
as being all of different colours.

So you’ve got all these various types of key, and you’ve got more and more
complex transactions; the VISA security module now has about 60 different
transactions in its transaction set. You've got support transactions, such as
translating different PIN formats. You also have got potential hacks which I
will come to later.

So the concern with something like the VISA box is: “Is there some combina-
tion of these 60-odd transactions, which if issued in the right order will actually
spit out a clear-text PIN?” The designers’ goal was that there were supposed
to be one or two — in order to generate PINs for customers and keys for ATMs,
for example — but they all involve trusted transactions that involve entering a
supervisor password or turning a metal key in a lock. So the issue of trusted
subjects is supposedly tied down.

2.3 The IBM 4758 security module product

Now we come to the more modern IBM product, the 4758. There’s another
picture of a 4758 in figure 2 with the shielding slightly removed. You can see
a protective mesh here, a circuit board inside it behind a metal can, and the
sensors here will alarm if you try to cut through (you can see the little sen-
sor lines there). So what does this actually achieve? Well, assuming that the
tamper-protection works (and it appears to), the software most people run on
it — IBM’s Common Cryptographic Architecture (CCA) — introduces a quite
general concept of typing, namely control vectors.

A control vector can be thought of as a string bound to each key. The physical
implementation of this is that you encipher the key under a different variant of
a master key, but that’s irrelevant at the level of abstraction that’s useful to
think about here. You can think of each key as going into the machine with a
little tag attached to it saying, “I am a green key”, “I am a red key”, “I am a
key of type 3126”7, or whatever. By default, CCA provides ten different types:



Fig. 2. — the 4758 partially opened — showing (from top left downwards) the circuitry,
aluminium electromagnetic shielding, tamper sensing mesh and potting material (cour-
tesy of Frank Stajano)

there is a data key; there’s a data translation key; there’s a MAC key; there’s a
PIN generation key; there’s an incoming PIN encryption key; and so on. There
are somewhat over 100 different transactions supplied with CCA that operate
using these key types. In addition, you can define your own key types and roll
your own transactions. You can download the details from the Web, all 400 and
whatever pages of it [7], so the target is public domain.

Even if you use the standard default types, there are some very obscure issues
that are left to the designer. There are some possible hacks, or at least unclear
things, such as if people decrypt rubbish and use it, or if people use the wrong
type of key, then can you gain some kind of advantage? Well keys supposedly
have parity, so you have to decrypt on average about 32,000 ‘wrong’ keys before
you get one that works, but there have been attacks in the past which have used
this [6]. Do any of these attacks work on the 47587

Also, in the typing structure, we find that some of these types have got fairly
explicit limitations (such as whether export is allowed or not), and you’ve got
some types of types. But there’s also a load of stuff that appears to be left more
or less implicit, or at the very least has no supplied formal model.

You have got backward-compatibility modes. The 4758 will do everything
that the old 3848 would do: it will do the ECPH, DCPH, re-format to master
key, all that stuff, so you get free documentation of the obsolete equipment in
the new equipment. You have things that approximate to the VISA transactions.



You also have a claim that the instruction set is comprehensive. Now this
makes me feel rather uneasy, because the whole reason that I'm paying out
all this money for a security processor is that its instruction set should not be
comprehensive. There should be some things that it is simply not possible to do
with it, and these things should be clearly understood.

So how did the current design come about? Well it should now be clear.
We started off with the 3848, and that was not enough for banking so someone
(actually Carl Campbell) invented the VISA security module. Then IBM saw
itself losing market share to the VSM, so it does the embrace-and-expand play
and incorporates the VSM functionality in the 4753. This evolves into the 4758,
which was then used for things like prepayment electricity meters [3]. People
then invented i-buttons and smartcards, yet more applications with which IBM’s
product line had to be compatible. Roger’s phrase, “the inevitable evolution of
the Swiss army knife”, is very appropriate.

3 Verifying Crypto Transaction Sets

So how can you be sure that there isn’t some chain of 17 transactions which
will leak a clear key? I've actually got some experience of this, because with
a security module that I designed there was one particular banking customer
who said, we need a transaction to translate PINs. They were upgrading all of
their customers to longer account numbers, and they didn’t want to change the
customers’ PINs because they were afraid that this would decrease the number
of people using their credit cards in cash machines. So they said, “We’d like to
supply two account numbers, an old account number and a new account number,
plus a PIN, and you return the difference between the old PIN and the new PIN
so we can write that as an offset onto the card track.”

So I said, “Fine — we’ll code that up. But be warned: this transaction is
dangerous. Remove this version of the software as soon as you’ve done that
batch job.” Of course they didn’t, and about a year and a half later one of
their programmers realised: “Hey — if I put in my account number and the MD’s
account number and my PIN, the machine then tells me what I've got to subtract
from my PIN in order to get the MD’s PIN!” Luckily for the bank, he went to
the boss and told all; to which our response was, “We told you, why didn’t you
do as you were told?” (This episode is described in [5].)

So managing this kind of thing isn’t as straightforward as you might think. As
I mentioned, we have got no proper formal model of what goes on in a device like
this. Although it has some flavours of Bell-LaPadula and some flavours of Clark-
Wilson, it doesn’t really behave according to either model; there are leaks at the
edges. This brings us to all the research opportunities, which aren’t necessarily
‘insurmountable’ but are, I suspect, a step change more difficult than the attacks
on protocols that people have being doing up to now.

The first opportunity is to find an attack on the 4758. Find some property
of the manual which even IBM will be forced to admit was not something they



had in mind when they designed it. Alternatively prove that it’s secure (though
given the history of provable security, that’s perhaps just as damning). Or, more
practically, provide a tool that enables the designer to use the 4758 safely. Up
until now, the IBM philosophy appears to have been: “We're selling you an F15
and you had jolly well better let us sell you a pilot and a maintenance crew and
all the rest of it at the same time.” They are not alone in this respect; BBN and
all the other vendors appear to take the same view.

So you find that you can go and buy a set of tamper-resistant hardware
boxes for maybe $2,000 each, but if you are a bank and you are building an
actual installation using them, such as a certification authority, the outlay at
the end of the day is more likely to be a quarter of a million dollars. By the
time you’ve paid for the all the consultancy, and the machines they security
modules will be attached to, and the firewalls to protect these machines from
the network, and the procedures, and the training, and all the rest of it, the cost
of the tamper-resistant box itself is essentially trivial.

So if anybody else is interested in getting into the systems integration busi-
ness and getting that $240,000 instead of funneling it to IBM, then the competi-
tive advantage might consist in having a suitable tool. Now it’s not just the 4758!
I use that as the target because we don’t know how to break its physical tamper
resistance, but there are many other architectures where you get a defined set
of crypto transactions that may in fact be quite extensible. Those that come to
mind are Microsoft CAPI, Intel CDSA — there’s dozens out there.

This is definitely more difficult than doing verification of crypto protocols —
and more interesting I think — because this is the real world problem. Somebody
who has got a penetration of your corporate network is not trying to attack
Kerberos, he’s trying to attack the boxes that contain the Kerberos keys. Those
boxes will do 50 transactions, of which you might normally use only three or four.
But the others are there and available, unless you find some way of switching
them off in a particular application, which again brings together a whole new
set of design issues. So what’s the nature of a crypto transaction set in general,
and how do you go about verifying it?

Next question: how do you relate its properties to a higher level security
policy model, such as Bell-LaPadula? And where this I suppose leads to, from
the theory and semantics point of view, is whether you can get a general theory
of restricted computation of computers that can do some things but cannot —
absolutely, definitely, provably, cannot — do other things. Is there such a lan-
guage that is complete in the sense that you can express any worthwhile crypto
transaction set in it? What do you have to add to mathematics in order to get
the expressiveness of metal? In the RIP-stop application it may very well be
that provable destruction of a key is all you need, and anything else can be built
on top of that given various external services such as perhaps secure time. But
provable destruction of a key doesn’t seem obviously related to what’s going on
in banking, because a typical bank is still running with the same ATM keys that



they set up in 1985 when VISA set up the ACDS network. Key expiration just
doesn’t come into their universe.

And finally, if you’re going to develop such a language, it would be useful if it
could deal with public key stuff as well, such as homomorphic attacks, blinding,
and so on. Because if you're going to build a machine which will, for example,
not decrypt the same PGP message twice, then you have got somehow to make
sure that the bad guys don’t send you a message which is an old message which
has been blinded so it looks like a new message.

Matt Blaze: I was surprised by your early comment — which I realise was
a throwaway — that tamper-resistant hardware appears to be almost done, so
let’s move on to the next thing. It seems to me that tamper-resistant hardware
if anything has become increasingly tenuous of late, particularly with respect to
the use of out-of-band attacks such as power analysis and timing attacks. Things
have been made even more difficult by putting the power supply outside of the
box. Do you think once Paul Kocher gets his hands on one of these IBM boxes
and hooks up his spectrum analyser to it that that’s the end?

Reply: In the case of the IBM product I don’t think so, because they’ve
got a reasonably convincing proof (in the electrical engineering sense) that this
can’t happen. They filter the power lines into the device in such a way that
all the interesting signals, given the frequencies that they’re at inside the box,
are attenuated more than 100 dBs. I agree that there is a serious problem with
smartcards, but we’ve got a project going on that, we believe it to be fixable. We
discuss this in a paper at a VLSI conference recently [9]. What we’re proposing
to do is to use self-timed dual-rail logic, so that the current that is consumed by
doing a computation is independent of the data that is being operated on. You
can do various other things as well; you can see to it that no single transistor
failure will result in an output, and so on. In fact the NSA already uses dual-
rail for resilience rather than power-analysis reasons. So there are technologies
coming along that can fix the power analysis problem.

When I say that hardware tamper-resistance has been done, what I'm actu-
ally saying is that we can see our way to products on the shelf in five or seven
years time that will fix the kind of things that Paul Kocher has been talking
about.

John Ioannidis: The kind of tamper-resistance you seem to analyse here is
not the sort of tamper resistance I'm likely to find in my wallet or my key-ring.
It’s more like the sort of tamper-resistance you find in a big box somewhere.
Maybe that big box is sitting on my desk, or under my desk, but it’s not going
to be sitting on my person.

Reply: Wrong. The logical complexity that I’ve described here is indepen-
dent of the physical size of the device. You consider the kind of SIM card that’s
likely to appear, with added-on transactions to support an electronic purse, and
you're already looking at the same scale of complexity as a VISA security mod-
ule. You're looking at much more difficult management problems, because you
have got independent threads of trust: the phone company trusts its K, and the



bank trusts its EMV keys, and how do these devices interact within the smart-
card itself? It suddenly becomes very hairy and we don’t at present have the
tools to deal with it.

Virgil Gligor: How many 4758s did IBM sell, do you know what proportion
were penetrated relative to NT or Windows 98, or any of the things that you
have on your desk?

Reply: They're selling of the order of a couple of thousand a year, I'm
aware of only one penetration which occurred — during testing as a result of a
manufacturing defect.

I assume that an NT box, or for that matter a Linux box, can be penetrated
by somebody who knows what he’s doing, and so you must assume that the host
to which your security module is attached belongs to the enemy, even if only
from time to time.

(Indistinct question)

Reply: It’s useful in security to separate design assurance from implemen-
tation assurance and from strength of mechanism. Now the strength of mecha-
nism of the tamper-resistance mechanisms in 4758s are very much higher than a
smartcard, and a smartcard is very much higher than an NT server, but that’s
a separate lecture course.

What I'm concerned about here is the logical complexity of the set of com-
mands which you issue to your tamper resistant device, be it a smartcard, or an
NT server, or a 4758, because if you screwed up somehow in the design of those,
then it doesn’t matter how much steel and how many capacitors and how many
seismometers and how many men with guns you've got. You're dead.

(Indistinct question)

Reply: We brought the designer of the 4758 over and we grilled him for a
day, and we’ve looked at the things partially dismantled, and we’ve got one or
two off-the-wall ideas about how you might conceivably, if you spent a million
bucks building equipment, have a go at it. But we don’t have any practical ideas
that we could offer to a corporation and say, “Give us a million bucks and with
a better than 50% chance we’ll have the keys out in a year.” The 4758 is hard!

John Ioannidis: What kind of primitives am I going to be offloading on
to tamper-proof hardware so that no matter what kind of penetration my NT
box has, there won’t be an order for a billion dollars to be transferred from
somewhere else to my account without my consent, so I can’t get framed for
fraud.

Reply: The sort of thing that hardware boxes are traditionally used for is
to protect the PIN key, the key that generates all the PINs of the eleven million
customers in your bank, because if a bad guy gets hold of that you’ve had it, you
have to re-issue your cards and PINs. The sort of thing that you can use a 4758
for in a high-value corporate environment is to see to it that a transaction will
only go out signed with the great seal of Barclays Bank (or whatever) provided
— let’s say — in the case of a $100m transaction, at least two managers of grade



4 or above have signed it using the signing keys and their smartcards. You can
set up a system involving the 4758 and the smartcards which will distribute the
keys, manage the certificates, and then will basically enforce your Clark-Wilson
policy.

John Ioannidis: I'm not a grade 4 manager at Goldman Sachs, or whatever
they’re called, Suppose I'm a poor AT&T employee, and 1 have a box on my
desk and I do my banking transactions over it, and I have somewhere a key given
me by the bank, or I created my own, or both, and I have a tamper-resistant
device which I want to use to secure my transaction. Now the question is, what
kind of operations should that thing support, and what kind of interface to me,
that does not go through NT or Linux, so that a transaction could not be made
without my personal, physical approval — not my electronic approval. This is
also a hard problem.

Reply: Agreed. But it’s not the problem I'm addressing. Many people have
talked about signature tablets that will display text; you put your thumb print,
for example, to OK this text and this is supposed to give you a high degree
of non-repudiation. But that’s a different problem; it’s not the problem that
interests me in the context of this talk.

Michael Roe: What Ross is deliberately ignoring is the effect of successful
tamper-resistance. If you have a very secure transaction in a very physically
secure processor then the attacker is going to attack the software that goes in
between the user interface and the secure box.

Reply: In this talk what I'm interested in is the command set that you use
to drive a tamper resistant device and how you go about defining that in a way
that’s sensible — and assuring yourself that the design holds up. (I'm talking
about design assurance not about the human computer interface aspects.)

(Indistinct question)

Reply: There have been attacks on early pay TV systems where there were
protocol failures in the smartcard. Now if you believe Gemplus figures that by
2003 there will be 1.4 billion microprocessor cards sold a year (and as the biggest
OEM they should know about that) then clearly it is important in engineering
and industrial and economic terms, as well as being a problem that’s directly
related to protocol verification. That’s the reason why I bring it to this audience.
It is a protocol problem; but it’s the next step up in difficulty. And it’s sufficiently
different that there’s an awful lot of new research for people to do, and, hopefully,
new theories to discover.

Indistinct question
q

Reply: I'm interested in Clark-Wilson-type objects and Bell-LaPadula-type
objects, because that’s where the real world is. The usual objection to Clark-
Wilson is, “Where’s the TCB?” Now as an example application, banking security
modules are 90% of the way towards a Clark-Wilson TCB, so this should also
be of scientific interest.

Indistinct question
q



Reply: An awful lot of design effort is believed to be about to go into multi-
function smartcards, where you’ve got a SIM card sitting in your WAP device,
and into which signed applets can be downloaded by your bank, by your insur-
ance company, by your health care provider, etc.

(Indistinct question)

Reply: Now separability is not the only issue here, there’s the correctness of
the transactions that people can issue, and whether the applications themselves
can be sabotaged by somebody just issuing the right commands in order.

(Indistinct question)

Reply: Even if you can download these applets safely, the applets will have
to talk to each other in many cases for it to be useful. For example, if you're
going to use your WAP device to pay for hospital treatment, by transferring
money from your electronic purse to your health card, then that involves having
interfaces that allow transactions between the two, and that’s hard to do.
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