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Abstract

In 1861, Maxwell derived two of his equations of electromagnetism by modelling a magnetic
line of force as a ‘molecular vortex’ in a fluid-like medium. Later, in 1980, Berry and colleagues
conducted experiments on a ‘phase vortex’, a wave geometry in a fluid which is analogous to a
magnetic line of force and also exhibits behaviour corresponding to the quantisation of magnetic
flux. Here we unify these approaches by writing down a solution to the equations of motion for
a compressible fluid which behaves in the same way as a magnetic line of force. We then revisit
Maxwell’s historical inspiration, namely Faraday’s 1846 model of light as disturbances in lines
of force. Using our unified model, we show that such disturbances resemble photons: they are
polarised, absorbed discretely, obey Maxwell’s full equations of electromagnetism to first order,
and quantitatively reproduce the correlation that is observed in the Bell tests.

In 1746 Euler modelled light as waves in a
frictionless compressible fluid; a century later in
1846, Faraday modelled it as vibrations in ‘lines
of force’ as in figure 1 [1–4].

Figure 1: Faraday’s 1846 model of light as waves
in lines of force, and Maxwell’s 1861 figure show-
ing his extension to a magnetic line of force.

Fifteen years later Maxwell combined these
approaches, proposing that a magnetic line of
force is a ‘molecular vortex’ (see the diagram
from his 1861 paper in figure 1 [5–7]). A fluid-
like medium flows around the line, and centrifu-
gal forces reduce the pressure near the centre,
giving a ‘tension’ along the axis which accounts

for the forces between the poles of magnets.

Maxwell then derived two of his equations of
electromagnetism. Suppose the mean momen-
tum per unit volume of fluid is p(x). In modern
notation with unit charge, the magnetic field is
B = ∇ × p, and it obeys Gauss’s law for mag-
netism ∇.B = 0, since ∇.(∇ × p) is identically
zero. Defining the magnetic flux by φ =

∫
B.ds

where ds is a surface element, Stokes’s theo-
rem shows that φ =

∮
p.d` 6= 0 where the

path d` encircles the centre. If the fluid ex-
erts a mean force density E on an external sys-
tem then it must lose momentum, E = −∂p/∂t.
Faraday’s law of induction follows immediately:
∇ × E = −∂B/∂t. Feynman later rediscov-
ered a similar derivation [8]. On later interpreta-
tions, the momentum density p corresponds to
the magnetic vector potential.

Maxwell’s magnetic line of force can be almost
any axis with mass flow around it (

∮
p.d` 6= 0).

An ordinary vortex in a fluid is not a good exam-
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ple, since it is pinned to the fluid and is there-
fore not symmetric under Lorentz transforma-
tion [9]. A better example is suggested by a
series of experiments, starting a hundred years
later, on quantised magnetic flux.

1 Phase vortex

In 1961 Deaver and Fairbank, and independently
Doll and Näbauer, showed that magnetic flux
is quantised [10, 11]. A superconductor has
a macroscopic ‘order parameter’, written ReiS

where R is the amplitude and S is the phase [12].
When a superconducting ring encloses n quanta
of magnetic flux, the phase S advances by 2nπ
around it, ∮

∇S.d` = 2nπ (1)

where d` is the circumference and n is an integer.
In fluid mechanics, the wave geometry in (1)

is called a ‘phase vortex’. In 1980 Berry, Cham-
bers, Large, Upstill and Walmsley made a steady
‘bathtub’ vortex by draining water from a tank,
and sent water waves past it as shown in fig-
ure 2 [13]. The waves propagate slower when
they travel against the flow, producing more
wavecrests above the centre than below it. The
number of extra wavecrests depends on the vor-
tex strength. If the waves are continuous (apart
from near the axis, where they vanish) the in-
crease in phase is quantised as in (1).

Figure 2: Water waves near a steady vortex.
Note there is one more wave-crest above the cen-
tre than below it. (Courtesy Michael Berry [13])

As well as exhibiting an analogue of flux quan-
tisation, the experiment showed good agreement
with the Aharonov-Bohm effect which deflects a
charged particle near a magnetic field. Later,
Fleury, Sounas, Sieck, Haberman and Alù made

a phase vortex in sound waves and observed an
analogue of the magnetic Zeeman effect [14].

These experiments suggest a simple update of
Maxwell’s molecular vortex. The density ρ of
Euler’s compressible fluid obeys the wave equa-
tion to first order, ∂2ρ/∂t2−c2∇2ρ = 0 where c is
the speed of sound, and the update is a solution
to the wave equation in cylindrical coordinates
(r, θ, z)

δρn ∝ Jn(krr) cos(ωt− nθ − kzz) (2)

Here δρn is the excess density of the fluid, n is an
integer, Jn is a cylindrical Bessel function of the
first kind [15, §9.1], and ω2 = c2(k2r +k2z). This is
a phase vortex since the phase S = ωt−nθ−kzz
advances by −2nπ around the centre. Figure 3
shows the case n = 1.

Figure 3: Cross section of the excess density of
the phase vortex δρ1 ∝ J1(r) cos(ωt− θ−kzz) at
t = z = 0 (left, courtesy Keith Moffatt). At the
centre (r = 0), fluid is flowing towards θ = π/2.
The flow near the z axis forms a helix (right).

Mass flows around the axis on average because
the flow speed u of the fluid is correlated with
its density. From Euler’s equation to first or-
der, ρo ∂u/∂t = −∇P = −c2∇ρ where we have
used c2 = dP/dρ, giving ρo u = −c2

∫
∇ρ dt [9].

Substituting ρ = ρo + R cos(S) gives u = uo +
c2/(ωρo)R cos(S)∇S, where ω = ∂S/∂t is con-
stant; here uo is not of interest in irrotational
flow. The remaining momentum per unit volume
ρu has a term in cos2(S), whose mean (neglect-
ing any high-frequency variation) is 1

2
, giving a

mean momentum density [16]

p =
c2

2ωρo
R2∇S (3)
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By inspection of the phase S = ωt − nθ −
kzz, net mass flows around the phase vortex (2),∮
p.d` 6= 0. Maxwell’s two equations follow by

defining B = ∇× p as shown above.

In general, if f(x, t) obeys the wave equation
then so does f(x′, t′) where the primed coordi-
nates have undergone a Lorentz transformation
with the characteristic speed c of sound [17,18].
It follows that a moving line of force is given
by a Lorentz transformation of (2) to first or-
der. Note that a moving magnetic field is like-
wise given by a Lorentz transformation of a sta-
tionary one, this time with c being the speed of
light – an apparent coincidence to which we will
return.

Figure 3 shows an elevated flow velocity near
the centre. This gives a negative Bernoulli
pressure and a ‘tension’ along the axis as in
Maxwell’s magnetic line of force.

Finally, the kinetic energy of (2) is unbounded
at large radius, from J1(r) ∝ r−1/2 cos(r + π/4)
as r → ∞. In other fields of study, similar
difficulties require renormalisation methods, but
they may be superfluous here. Acoustic waves
are usually adiabatic, with a reduced wave speed
in regions of low pressure [9]. This will reduce
the speed near the axis and perturb the solu-
tion. There is another system that obeys the
same equations, namely an optical fibre. Re-
fraction reduces the wave speed near the centre,
and the waves decay exponentially with radius
at large distance.

2 Inverse square force

Maxwell’s 1861 paper did not have a good ac-
count of the electrostatic force [6]. Yet it was
already known that a vibrating tuning fork at-
tracts a balloon [19]. In 1880 Bjerknes investi-
gated this by making two small bladders pulsate
at the same frequency in a tank of water. He
observed an inverse-square force between them,
a phenomenon now known as the ‘secondary
Bjerknes force’. This seemed analogous to the
electrostatic force and led Lorentz to model elec-
trons as ‘covibrating particles’ [20–22].

The force on a small body of volume V is
V∇P where P is the pressure. Suppose one
body, A, pulsates at angular frequency ω, so
pressure waves are transmitted through the fluid
and the pressure gradient near another body,
B, varies as ∇P ∝ cos(ωt). If B pulsates
in phase, so its excess volume is also propor-
tional to cos(ωt), then V∇P has a term in
cos2(ωt) which is never negative. The mean
force is inverse-square and the phase determines
whether it is attractive or repulsive [9, p127].

The same holds in a compressible fluid, where
the pressure obeys the wave equation ∂2P/∂t2−
c2∇2P = 0 to first order. As noted above,
this equation is symmetric under Lorentz trans-
formation so that ∇P , and hence the Bjerknes
force, must have the same symmetry when the
phases remain locally aligned. This lets us reuse
the standard argument that extends the inverse-
square force between stationary electrons to a
moving frame. Imposing Lorentz symmetry
on an inverse-square force yields Maxwell’s full
equations of electromagnetism.

Oil droplets that are made to bounce on a
vibrating bath behave in this way [23]. They
bounce in the depressions, which tends to
keep their phases aligned with the waves as
above. Measurements show that they repel each
other with an inverse-square force, while moving
droplets experience an analogue of the magnetic
force [24].

3 Electromagnetic waves

We now revisit Maxwell’s inspiration, namely
Faraday’s 1846 model of light as waves in lines
of force (figure 1). In our update of his model, a
disturbance or wavepacket travels along a phase
vortex. We will consider in detail the simplest
case, amplitude modulation, where the Fourier
components are given by (2) with various values
of kz. These components all have the same chi-
rality, so the wavepacket has the same symmetry
as circularly polarised light.

The nonlinear terms in Euler’s equation for a
compressible fluid will perturb the shape of the
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disturbance after it has propagated some dis-
tance. Such processes are studied in fluid me-
chanics and typically result in the disturbance
being compressed; they are seen in phenomena
such as tidal bores and sonic booms [9].

The wave described above is localised near the
axis (see figure 3), so it can only exchange its
energy with a small system if the phase vor-
tex passes close by. Einstein noted in 1905 that
the energy density in light waves does not di-
lute with distance but it is absorbed discretely,
consistent with our model [25].

Maxwell envisaged a ‘sea’ of lines of force, and
noted they exert an inverse-square force on av-
erage when they radiate from a central point [5,
p160-163]. Regarding the average behaviour
of the waves propagating along such lines, we
saw from Bjerknes’ result that the motion obeys
Maxwell’s full equations of electromagnetism to
first order.

This model extends to linearly polarised
wavepackets, which inhabit lines of force that
have equal and opposite chiral components, such
as the following solution to the wave equation

δρ1 + δρ−1 ∝ J1(krr) cos(ωt− kzz) cos(θ − θo)
(4)

where the δρi are defined in (2) and we have
generalised the origin of θ to be θo. This line
of force is oriented with an oscillating dipole of
density parallel to θ = θ0 along its length.

We have described wavepackets in a fluid
which have the same symmetry as polarised
light. Yet for many years polarised waves were
thought impossible in a fluid. This belief arose
from a misinterpretation of Fresnel’s 1821 paper
on polarised light, as we now examine.

Euler’s fluid model of light fell from favour af-
ter Young and Fresnel could not think of a mech-
anism by which polarised waves might propa-
gate in a fluid [4, p218] [26, p261] [27]. Some
time after Fresnel’s paper in 1821 it came to
be assumed that no such mechanism was pos-
sible. Waves in vortices or phase vortices, such
as those described above, do not appear to have
been considered. Even a century later, Einstein
maintained that some kind of ‘ether of the gen-

eral theory of relativity’ was needed, but could
not see how it could be a fluid, given the be-
lief that polarised waves are ‘not possible in a
fluid’ [28].

Yet today we have many examples of polarised
waves in fluids. At its simplest, a wave prop-
agating in laminar flow displaces the flow as
shown in figure 4. This makes it asymmetric
about the axis of a ray – the historical mean-
ing of ‘polarised’ [4]. Polarised waves are ob-
served in the atmosphere, where the asymmetry
is due to Coriolis forces [29–31]; in superfluid
4helium where the asymmetry is due to differ-
ential flows [32]; and superfluid 3helium where
it is due to atomic spin [33–35]. We saw more
complex polarised waves arising from Maxwell’s
model.

Longitudinal  +  Laminar    =   Transverse
     wave                flow     component

Direction of 
propagation

Figure 4: A wave displaces laminar flow

As for Maxwell, he did not know about the
inverse-square secondary Bjerknes force and his
1861 fluid model did not have a good account of
the electrostatic force. He later downplayed it
in favour of a more abstract field-theoretic pre-
sentation, similar to that taught today, and fluid
models of electromagnetism were not pursued.

4 The model of Clauser,

Horne, Shimony and Holt

A line of force such as (4) has a definite ori-
entation, which determines the polarisation of
any amplitude modulated wavepackets travel-
ling along it. In this respect, our extension of
Faraday’s model of light diverges from that ad-
vanced in 1969 by Clauser, Horne, Shimony and
Holt (‘CHSH’), in which they assumed that in-
formation relating to polarisation can only be
‘carried by and localised within’ a wavepacket or
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photon. Basing a calculation on an earlier anal-
ysis by Bell, CHSH showed that their assump-
tion leads to a contradiction to the predictions of
quantum mechanics which can be tested exper-
imentally [36, 37]. When these ‘Bell tests’ were
conducted by Freedman and Clauser in 1972 and
then Aspect, Dalibard and Roger in 1982, they
confirmed the quantum predictions [38,39].

Figure 5 shows a CHSH experiment from the
viewpoint of Faraday’s approach. In outline, a
sudden disturbance S stimulates a line of force
L, causing wavepackets to travel along the line of
force in opposite directions until they reach po-
larisers A and B. Photomultipliers detect pack-
ets that pass through the polarisers. The figure
shows the case where the polarisers and the line
of force are oriented in the same direction, θ = 0
in the usual cylindrical coordinates.

Figure 5: CHSH’s experiment from the view-
point of Faraday’s approach. A source of light
(S) stimulates a line of force (L) between two
polarisers (A) and (B).

Suppose the polarisers contain particles (such
as phase vortex rings [40] or other quasiparti-
cles [41]) which are arranged with a net oscillat-
ing dipole of density in the θ = π/2 direction
but no net dipoles along θ = 0. If they couple to
the lines of force in the vicinity then we would
expect the region between them to contain two
normal sets of lines of force, given by (4) with
θo = π/2 (which couple to or emanate from the
dipoles) and θo = 0 (for example, lines emanat-
ing from further away to which the polarisers are
transparent). For simplicity, figure 5 only shows

a line of force with θo = 0.

In figure 5 an oscillating system, or source S,
stimulates a line of force oriented in the θ = 0
direction. The stimulation occurs through the
quadratic terms in Euler’s equation (see [42] and
[43] for a parametric mechanism, which transfers
the available energy completely or not at all).
This creates amplitude modulated wavepackets
in the line of force, which travel in opposite di-
rections away from the source. They will pass
unhindered through the polarisers, which do not
couple to them because they have no dipoles
parallel to θ = 0, and will be detected by the
photomultipliers at both stations. Conversely, if
the source stimulates a line of force oriented in
the θ = π/2 direction, then the wavepackets will
couple to the polariser and be absorbed or re-
flected, so neither photomultiplier will register a
signal. Thus, the two signals will be 100% cor-
related when the polarisers are parallel to each
other. This is observed experimentally.

Suppose the polariser B in figure 5 is now ro-
tated through angle φ and the experiment is re-
peated. Near the source S, the lines of force
emanating from A are oriented with θo = 0 or
π/2, and those from B with θo = φ or φ + π/2.
Without loss of generality we suppose the source
couples parametrically to one of the lines of force
from A (the calculation is equivalent if it couples
to those from B).

First consider a wavepacket in a line of force
which is oriented in the θ = 0 direction. As be-
fore, one of the wavepackets will travel towards
A and will pass directly through the polariser
and trigger the detector. The other wavepacket
travels in the opposite direction, and will prop-
agate for some distance near the lines of force
from B. The wavepacket has a component in
the φ direction whose amplitude is proportional
to cosφ, and in the φ+ π/2 direction it is propor-
tional to sinφ. These components will couple to
the lines of force from B through nonlinearities
in the equation of motion. There are quadratic
terms in Euler’s equation, which, to lowest or-
der, give a probability of resonant transfer which
is quadratic in amplitude. See [43] for an exam-
ple parametric mechanism for such coupling. It
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follows that the lines of force at angle φ will be
stimulated with probability cos2 φ, and those at
angle φ+π/2 will be stimulated with probability
sin2 φ.

Thus, with suitable normalisation, the num-
ber of times a wavepacket is detected at both A
and B is N++ = cos2 φ and the number of times
it is detected at A but not B is N+− = sin2 φ.
From symmetry we also have N−+ = N+− and
N−− = N++ in the obvious notation. We are
interested in the correlation function

N++ +N−− −N+− −N−+
N++ +N−− +N+− +N−+

=
cos2 φ− sin2 φ

cos2 φ+ sin2 φ

= cos(2φ)

which is the same as the quantum prediction
(Bell’s calculation of cosφ was for spin-half par-
ticles [36], rather than spin 1 photons as here).
The later ‘Bell test’ experiments confirmed the
quantum prediction [38, 39]. They have been
extended in a number of ways, but they have
only been conducted using stationary polaris-
ers [44, 45].

These experiments challenge the CHSH as-
sumption that information about polarisation
can only be ‘carried by and localised within’ the
photons. The conventional approach holds that
the CHSH assumption is true but incomplete:
further hypotheses are made about parallel uni-
verses or about non-local phenomena that can
transmit information (but not actual observable
signals) faster than light [46, 47]. Our exten-
sion of Faraday’s 1846 model of light offers a
simpler alternative that is both physical and lo-
cal. The CHSH assumption is not true in Fara-
day’s model. Instead there is prior communica-
tion of orientation along phase vortices such as
(4), communication which the CHSH calculation
excludes by its explicit assumption.

5 Conclusion

In 1746 Euler modelled light as waves in a com-
pressible fluid. Most nineteenth-century scien-
tists rejected his model because they believed

polarised waves to be impossible in a fluid, a
belief that is now well known to be false.

We brought Maxwell’s 1861 model of a mag-
netic line of force up to date using modern
knowledge of polarised waves and of experi-
ments on quantised magnetic flux. Our model
obeys the equations for Euler’s fluid and sup-
ports light-like solutions which are polarised, ab-
sorbed discretely, consistent with the Bell tests,
and obey Maxwell’s equations to first order.

Euler’s fluid obeys the wave equation to first
order. We saw that this equation is symmetric
under Lorentz transformation, so if the funda-
mental particles are quasiparticles in such a fluid
then the Lorentz symmetry of material bodies
emerges naturally. Euler’s fluid also has the
symmetries of general relativity [18], which has
led to experiments on Hawking radiation in a
superfluid [48, 49]. For quasiparticles, see phase
vortex rings [40] and Volovik’s model [41].

Finally, for further connections with quan-
tum mechanics, see [24, 50] for experiments in
which bouncing droplets exhibit quantum-like
phenomena. The main reason such fluid ana-
logues are not considered more widely is the as-
sumption that quantum mechanics simply can-
not emerge from classical phenomena – princi-
pally because nobody had been able to think of
a classical model of light that is consistent with
Maxwell’s equations and reproduces the Bell test
results quantitatively. Our extension of Fara-
day’s model of light provides a counterexample.

In general, classical models of quantum phe-
nomena must feature long-range order if they
are to be consistent with the Bell tests; see Ver-
voort [44, 45]. With bouncing droplets in two
dimensions, this order arises from the driving os-
cillation [23,24]. In the three-dimensional model
shown here, the order comes from a line of force.
Some variants of ’t Hooft’s cellular automaton
interpretation of quantum mechanics may like-
wise have such order [51], or it may emerge from
the synchronisation of the spins of particles [43].
No doubt there are other possibilities. But given
the mechanism we have described, it is indeed
possible for quantum mechanics to emerge from
an underlying classical system.
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larisation développe dans les lames cristallisées. In
Annales de Chimie et Physique, volume 17, pages
101–112, 1821.

7

upload.wikimedia.org/wikipedia/commons/b/b8/On_Physical_Lines_of_Force.pdf
upload.wikimedia.org/wikipedia/commons/b/b8/On_Physical_Lines_of_Force.pdf
signallake.com/innovation/DysonMaxwell041989.pdf
www.dspace.cam.ac.uk/handle/1810/243916
www.gutenberg.org/files/18345/18345-h/18345-h.htm


[28] A Einstein. Ether and the theory of relativity
(lecture on 5 may 1920). The Genesis of General
Relativity, pages 1537–1542, 2007
http://www-history.mcs.st-andrews.ac.uk/Extras/

Einstein_ether.html.

[29] HP Greenspan. The theory of rotating fluids.
Breukelen Press (first published 1968 by CUP),
1990.

[30] HK Moffatt. Field Generation in Electrically Con-
ducting Fluids (sec. 10.2). Cambridge University
Press, 1978.

[31] O Bühler. Waves and Mean Flows, 2nd edn. Cam-
bridge University Press, Cambridge, 2014.

[32] IN Adamenko, KE Nemchenko, VA Slipko, and
AFG Wyatt. Transverse sound in differentially
moving superfluid helium. Physical Review B,
77(14):144515, 2008.

[33] LD Landau. Oscillations in a Fermi liquid. Soviet
Physics JETP-USSR, 5(1):101–108, 1957.

[34] Y Lee, TM Haard, WP Halperin, and JA Sauls.
Discovery of the acoustic Faraday effect in super-
fluid 3He-B. Nature, 400(6743):431–433, 1999.

[35] S Putterman. Superfluid Hydrodynamics. American
Elsevier Pub. Co, 1974.

[36] JS Bell. On the Einstein-Podolsky-Rosen paradox.
Physics, 1(3):195–200, 1964.

[37] JF Clauser, MA Horne, A Shimony, and RA Holt.
Proposed experiment to test local hidden-variable
theories. Physical Review Letters, 23:880–884, 1969.

[38] SJ Freedman and JF Clauser. Experimental test
of local hidden-variable theories. Physical Review
Letters, 28(14):938, 1972.

[39] A Aspect, J Dalibard, and G Roger. Experimental
test of Bell’s inequalities using time-varying analyz-
ers. Physical review letters, 49(25):1804–1807, 1982.

[40] RM Brady. The irrotational motion of a compress-
ible inviscid fluid. ArXiv 1301.7540, 2013.

[41] GE Volovik. The Universe in a Helium Droplet.
Clarendon Press, Oxford, 2003.

[42] C. A. Mead. Collective Electrodynamics: quantum
foundations of electromagnatism. MIT Press, Cam-
bridge Mass, 2000.

[43] RM Brady and RJ Anderson. Violation of Bell’s in-
equality in fluid mechanics. arXiv:1305.6822, 2013.

[44] L Vervoort. Bell’s theorem: Two neglected solu-
tions. Foundations of Physics, 43:769–791, 2013.

[45] L Vervoort. No-go theorems face fluid-dynamical
theories for quantum mechanics. arXiv: 1406.0901,
2014.

[46] JS Bell. Speakable and Unspeakable in Quantum
Mechanics: Collected papers on quantum philoso-
phy. Cambridge University Press, 2004.

[47] H. Everett. The Everett interpretation of quantum
mechanics: Collected works 1955-1980 with com-
mentary. Princeton University Press, 2012.

[48] WG Unruh. Experimental black-hole evaporation?
Physical Review Letters, 46(21):1351–1353, 1981.

[49] O Lahav, A Itah, A Blumkin, C Gordon, S Rinott,
A Zayats, and J Steinhauer. Realization of a sonic
black hole analog in a Bose-Einstein condensate.
Physical review letters, 105(24):240401, 2010.

[50] Y Couder and E Fort. Single-particle diffraction and
interference at a macroscopic scale. Phy. Rev. Lett.,
97(15):154101, 2006.

[51] G. ’t Hooft. The cellular automaton interpretation
of quantum mechanics. arXiv:1405.1548 [quant-ph],
2014.

8

http://www-history.mcs.st-andrews.ac.uk/Extras/Einstein_ether.html
http://www-history.mcs.st-andrews.ac.uk/Extras/Einstein_ether.html

	1 Phase vortex
	2 Inverse square force
	3 Electromagnetic waves
	4 The model of Clauser, Horne, Shimony and Holt
	5 Conclusion

