Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 56 Issue 3 23 February 2012 ISSN 1389-1286

ELSEVIER

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Computer Networks 56 (2012) 983-996

Contents lists available at SciVerse ScienceDirect

-m;n\fer
Computer Networks @fyrks

journal homepage: www.elsevier.com/locate/comnet

Centrality prediction in dynamic human contact networks

Hyoungshick Kim *, John Tang, Ross Anderson, Cecilia Mascolo

Computer Laboratory, University of Cambridge, United Kingdom

ARTICLE INFO ABSTRACT

Article history:
Available online 20 November 2011

Real technological, social and biological networks evolve over time. Predicting their future
topology has applications to epidemiology, targeted marketing, network reliability and rout-
ing in ad hoc and peer-to-peer networks. The key problem for such applications is usually to
identify the nodes that will be in more important positions in the future. Previous researchers
had used ad hoc prediction functions. In this paper, we evaluate ways of predicting a node’s
future importance under three important metrics, namely degree, closeness centrality, and
betweenness centrality, using empirical data on human contact networks collected using
mobile devices. We find that node importance is highly predictable due to both periodic
and legacy effects of human social behaviour, and we design reasonable prediction functions.
However human behaviour is not the same in all circumstances: the centrality of students at
Cambridge is best correlated both daily and hourly, no doubt due to hourly lecture schedules,
while academics at conferences exhibit rather flat closeness centrality, no doubt because
conference attendees are generally trying to speak to new people at each break. This high-
lights the utility of having a number of different metrics for centrality in dynamic networks,
so as to identify typical patterns and predict behaviour. We show that the best-performing
prediction functions are 25% more accurate on average than simply using the previous cen-
trality value. These prediction functions can be efficiently computed in linear time, and are
thus practical for processing dynamic networks in real-time.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past few years, network models have been
developed that shed new light on patterns of association
and interaction in human societies, with implications for
real world applications. A significant problem is to measure
the centrality of nodes (or edges) in networks; network cen-
trality can be used to identify important nodes for many
applications such as targeted advertisement and recom-
mendation [1], routing protocols [2-4], content sharing
[5], epidemiological modelling [6,7], network reliability
[8,9], resource provisioning [10], and urban planning [11].
Depending on the application, the importance of a node
can have different meanings and hence several network
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centrality measures have been proposed, namely degree,
closeness and betweenness centrality [12]. Degree central-
ity measures how many connections each node has and
has been used to attack networks; for example, the police of-
ten disrupt criminal gangs by going after the ringleaders [8].
The same models work in epidemiology, where doctors may
first vaccinate those individuals who are likely to come into
contact with most others. Closeness centrality measures the
average geodesic distance to all other nodes in the network
and has been applied to the study of influence; targeted
advertisements can favour people who can spread informa-
tion quickly to other nodes in the network [13]. Finally,
betweenness centrality identifies nodes which act as
bridges between different groups of nodes, taking into ac-
count alternative communication paths between pairs of
nodes in a network, which is useful in identifying bottle-
necks in traffic networks [14].

However, when calculating such centrality measures, the
current analysis makes two simplifying assumptions. First,
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past studies have focussed on analysing static networks that
do not change over time or aggregated networks built by
collecting information over a period of time; or in other
words, where relationships between nodes are known a pri-
ori[15]; and second, many opportunistic and delay-tolerant
communication protocols [3,10,16,17] are designed on the
assumption of the stationary nature of human contacts.
However, in real life many networks are inherently dy-
namic. For example, friends are added and removed in on-
line social networks; the topology of the internet changes
with time; and contacts between mobile devices depend
on the time of day. Therefore it is not prudent to assume
stationary human behaviour in the design of practical
applications.

A salient point is that since the end users of technolog-
ical systems are humans, clearly the evolution of such sys-
tems will be driven by natural social patterns. For example,
a simple routine of travelling to work every day brings a
regular pattern of email communications, wifi hotspot
connections, mobile phone bluetooth contacts and online
social network activity, which in turn provides the period-
icities seen in the underlying technological communication
processes. This paper makes a crucial insight: since an indi-
vidual’s schedule is regular, if they are an important node
at some time point, then it is highly likely that their impor-
tance will be correlated in the future.

We therefore set out to predict the state of such net-
works taking into account realistic schedules of human
contact networks. In this study we show in fact that intu-
itive and simple prediction functions can be designed
which take advantage of the predictability of such net-
works. Our key contributions can be summarised as
follows:

o First, we show that empirical human contact networks
are predictable and in particular, that there are clear
correlations in node centrality values corresponding to
natural human periods (i.e. 24 h) and legacy effects
(read Section 4).

e Second, based on this observation we design several
intuitive and simple prediction functions, to predict a
node’s future network centrality. We here focus on
three exemplary metrics that are used widely: degree,
closeness, and betweenness centrality. We evaluate
their performance on real human contact datasets and
show that the best-performing prediction functions
are 25% more accurate on average than just using the
last centrality value. Moreover, our experimental
results show that the best approximation method and
the optimal training time must be selected depending
on the conditions of the prediction problem (read Sec-
tion 5).

Our approach has two key advantages: (1) it is simple to
implement and deploy since we only require the past cen-
trality values of nodes, rather than tracing the geometric
positions of nodes; (2) they require linear time O(r) to
approximate network centrality where r is the number of
training time windows used. Our strategies are thus useful
for large-scale and online computation - training data can
be frequently updated in real time. We envisage that this

work can be easily integrated into dynamically evolving
technological systems that require predictive capabilities
driven by social processes.

The rest of this paper is organised as follows. Related
work and potential applications will be discussed in the
next section. In Section 3.2 we formally define the predic-
tion problem and notation. In Section 4 we explore the
temporal characteristics (e.g. periodic patterns) of human
contact networks to predict network centrality by analys-
ing the correlation between past and future centrality val-
ues. In Section 5, we evaluate the performance of the
proposed approximation methods, and recommend how
they should be used depending on the conditions. Finally,
we make final conclusions in Section 6.

2. Related work

A number of pioneering paers [18-20] focussed on con-
tact traces in order to gain insight about human movement
patterns. Chaintreau et al. [17] found that contact duration
and inter-contact time between humans can be repre-
sented by power-law distributions. Many real human con-
tact traces [20-22] support this observation. Karagiannis
et al. [23] show that inter-contact time follows a power-
law closely up to twelve hours, with an exponential cut-
off after that. Such results have been used to model poten-
tial future contacts but do not provide much insight into
the problem of predicting future network structure.

At the most basic level, prediction in complex networks
can be described in terms of the well-studied link predic-
tion problem [24-26]. However our study aims at the pre-
diction of a higher level metric which abstracts the reliance
on geodesic or contact information to compute these val-
ues. Instead we want to predict node centrality directly.

Important observations on the periodicity of human
behaviour have been made recently. Clauset and Eagle
[27], Kim and Kotz [28], and Hsu et al. [29] showed peri-
odic behaviour of human contact networks. In particular,
Clauset et al. [27] show that the periodic patterns of hu-
man contacts are characterised by external calendar cycles.
Also, Hui et al. [2] discuss how human contacts are distrib-
uted by time of day. Scherrer et al. [30] analysed the statis-
tical characteristics of human networks from real datasets.
They observed many temporal aspects of human networks;
for example, there are clear periods of one day and varia-
tions from days to nights. Scellato et al. [31] analysed the
temporal patterns of human networks based on time series
analysis to quantify the amount of the information about
the periodic patterns of human behaviour over time.

Centrality prediction in complex networks has been ap-
plied to a wide range of social-based forwarding schemes
[2-4]. It has been proposed for Delay Tolerant Networks
(DTNs), where the connection between nodes in the net-
work frequently changes over time: the basic idea is to
use node centrality for relay selections, and the forwarding
strategy is to forward messages to nodes which are more
central than the current node. Daly and Haahr [3] proposed
a scheme based on ego-centric betweenness [32]. Hui et al.
[4] consider node centrality based on social communities,
and suggested some approximation methods to predict
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network centrality values. They believe that the number of
contacts in the last time window or the average contacts
number on all previous windows can be used as reasonable
approximation solutions. They simply used six hours as
unit time under the assumption that human daily life is di-
vided into four main periods—morning, afternoon, evening,
and night—each almost six hours. In this paper we will fur-
ther discuss the validity of using the average or the last
centrality value and suggest the optimal time window size
following intensive empirical analysis. Furthermore we
discuss the feasibility of several other reasonable approxi-
mation methods which are carefully designed from the
observation from real human contact networks.

3. Preliminaries

In this section we first define notation and terminology
for centrality metrics and dynamic graphs, and then intro-
duce the generalised network centrality prediction prob-
lem which will be used in the rest of the paper.

3.1. Network centrality measures
Formally, we use the standard definition of the degree,
closeness and betweenness centrality values of a node u

as follows [12]:

3.1.1. Degree centrality

Deg(u) = 1)

where x(u) is the number of edges of node u and V is the
set of nodes in the network.

3.1.2. Closeness centrality

Closeness centrality measures how near nodes are to
each other or in practical terms how quickly a node can
communicate with all other nodes in a network. This is cal-
culated for a node u as the average shortest path length to
all other nodes in the network:

Clo(u) :\Vl%l > dist(u, v), 2)

v#ueV

where dist(u, v) is the number of hops in the shortest path
from node u to node » and V is the set of nodes in the
network.

3.1.3. Betweenness centrality

Betweenness centrality measures the sum of the frac-
tion of shortest paths through u, where the fraction is nor-
malized for each single pair of other nodes x and y. More
formally this is defined as:

Qyy(U)

)
XAuy#ucV Q"-J/

Bet(u) =

3)

where Q,, is the total number of shortest paths starting
from source node x and destination node y, and qy,(u)
are the number of shortest paths starting which actually

pass through node u (starting from source node x and des-
tination node y).

3.2. Dynamic graph model

We assume that the time during which a network is ob-
served is finite, from tgy,¢ until t.,q; without loss of gener-
ality, we set tyq¢=0 and t.,q=T. A dynamic network
G@T = (V,Eor) on a time interval [0,T] consists of a set of
vertices V and a set of temporal edges Eor where a tempo-
ral edge (u,v);; € Eor exists between vertices u and » on a
time interval [i,j] such thati < T and j > 0. In other words,
a dynamic network has a static set of vertices V while the
set of edges can change over time.

Most characterisations of dynamic networks discretise
time by converting temporal information into a sequence
of network “snapshots” to apply techniques derived from
graph theory to the analysis of networks [15,33]. For sim-
plicity, the time period is divided into fixed discrete steps
{1,...,n}. We use w to denote the size of each time win-
dow, T/n, expressed in some time unites (e.g., seconds or
hours). In other words, a dynamic network can be repre-
sented as a series of static graphs at each time, G;, G,
..., G,. The notation G, (1 < t < n) represents the aggregate
graph which consists of a set of vertices V and a set of
edges E; where an edge (u, v) € E; exists only if a temporal
edge (u, v);j € Eor exists between vertices u and v on a time
interval [i,j] such thati<w-tand j>w. (t— 1). In other
words, G; is the tth temporal snapshot of the dynamic net-
work GET during tth time window. For simplicity, we use
start(t) and end(t) to denote the starting time and the end-
ing time of G, respectively.

For clarity, we introduce the following example. When
tstare = 0, teng =3 and w = 1, the dynamic network with the
set of temporal edges in Table 1 can be represented as
the aggregated graph where all edges are aggregated into
a single graph, G ;, or the series of static networks, Gy, G,
and G; as we explained. The visual representations are
shown in Fig. 1. Unlike the aggregated view of the graph
G, in Fig. 1(a), we can see that the series of static net-
works, Gy, G and Gs in Fig. 1(b), represents temporal edge
relationships effectively.

From Fig. 1(b), we compute the network centrality val-
ues of the nodes for G4, G, and Gz to show how these val-
ues change over time. For comparison, we also compute
the centrality values of the nodes for ny3 in Fig. 1(a).

In Table 2, the centrality values of the nodes generally
change over time as the corresponding network topology
changes. For example, the node A’s closeness values
(0.333, 0.444, and 0.000) are continuously changed. By
comparing these values with the node A’s closeness value

Table 1
Example contacts in dynamic network.
Edge Time interval
(AQ) [1,1]
(AD) [2,2]
(B,D) [2,3]
(C,D) [3,3]
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(b) Time-varying Dynamic Graph

Fig. 1. Comparison of (a) aggregated representation and (b) time series representation of the contacts in Table 1.
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Table 2
Network centrality of nodes in each graph.
Node Graph Deg (node) Clo (node) Bet (node)
A Gy 0.333 0.333 0.000
G, 0.333 0.444 0.000
Gs 0.000 0.000 0.000
G5, 0.667 0.750 0.000
B Gy 0.000 0.000 0.000
G, 0.000 0.444 0.000
Gs 0.333 0.444 0.000
G5, 0.333 0.600 0.000
C Gy 0.333 0.333 0.000
G, 0.000 0.000 0.000
Gs 0.333 0.444 0.000
Gfa 0.667 0.750 0.000
D Gy 0.000 0.000 0.000
G 0.333 0.667 0.333
Gs 0.667 0.667 0.333
G35 1.000 1.000 0.667

(0.667) for G1 3, we can see that the aggregated graph gen-
erally overestimates centrality values since it ignores dis-
appearing edges.

3.3. Centrality prediction problem

We want to design a prediction function for the central-
ity value of a node in the dynamic network. For example,
given a known historical dynamic network Gj, as the
training input, how can we predict the node A’s average
closeness value in the future dynamic network, G?G when
we have a lag time of unknown interactions between time
windows 3 and 6?

A reasonable solution is to use the average centrality
value of the node A in G4, G, and Gs. In other words, we
can use 0.259 (=(0.333 + 0.444 + 0.000)/3) as the unknown,
future closeness value of the node A in G% 4. In fact, this idea
is already used to select relay nodes for forwarding algo-
rithms in Pocket Switched Networks (PSNs) [4].

We generalise the problem for predicting the average
network centrality values of nodes as follows: given a dy-
namic network G}, observed during k past time intervals,
predict the average network centrality values of the nodes
in the network during m future time intervals with I lagged
time intervals, G?b, where a=k+I,b=k+I1+ (m—1), and
0<k, I, m. In this setting, the above example problem can
be formulated with k=3, [=2, and m=2. We represent
the related variables visually in Fig. 2.

k past time Iagged time  m future time

A A A

k+1 A+!+(m—l)
(or a) (orh)

Fig. 2. The visual representation of k, I, and m.

The appropriate value of the parameter in this problem
seems to depend on applications. For example, a small m is
required to identify streets incurring temporal high traffic
overhead during rush hours while in a model of disease
spreading it seems more important to measure a node’s
long-term (or potential) centrality with a large m since
overall central nodes may strongly affect the spreading of
the disease.

We use C;j(u) to denote the node u’s average centrality
value in G =(V,E;) when i<j. In other words,
Cij(u) = O_ic(u))/( —i+ 1) where ¢(u) is the node u’s
centrality value such as Deg(u), Clo(u), or Bet(u) in G,. Sim-
ilarly, we use C; j(u) to denote the node u’s predicted aver-
age centrality value between the time intervals i and j.
With this notation, we formulate the problem on minimiz-
ing the average error between the guessed centrality val-
ues and the true centrality values. In other words, given

1k,l and m, find Cab(u) where a=k+I, b=a+ (m—-1)
for each u € V to minimise

Zuev|cab< ) — 6a‘b(u)‘
v : 4)

Error(GY o lhm) =

4. Human contact traces are predictable
4.1. Empirical dataset

We hypothesise that important nodes are more likely to
be important at similar times in the future. To test this
hypothesis we used three real human contact networks
consisting of Bluetooth devices for detecting proximity de-
vices through periodic Bluetooth scans. We summarise the
datasets as follows:

(1) MIT: In the MIT Reality Mining project [34], 97
smart phones were deployed to students and staff
at MIT over a period of 9 months. We here use the



H. Kim et al. / Computer Networks 56 (2012) 983-996

human contact traces during the first week only. The
Bluetooth scan interval is 5 min.

(2) INFOCOM: 78 iMotes, which are sensor boards
equipped Bluetooth for detecting proximity devices,
were deployed to the participants at the Infocom
2006 conference for 4 days. The Bluetooth scan
interval is 2 min [17].

(3) Cambridge: In the Haggle project [35], 12 iMotes
were deployed to the students for 6 days. The Blue-
tooth scan interval is 2 min.

Since a dynamic graph can be constructed using varying
window sizes w, finding an appropriate w introduces a nat-
ural trade-off: by considering a larger w the accuracy of the
measurements decreases since by neglecting the duration
or the order of edge appearances, the temporal character-
istics may be underestimated. However, the smaller we
make w, the more expensive it is to analyse and to collect
data. In real human contact networks, w should be reason-
ably small due to node mobility. The rate of topology
change depends on many factors including node speeds
and terrain. For these reasons, this section analyses the ef-
fects of increasing w from the finest granularity (equal to
the scanning rate). In Section 5 we will discuss the effects
of the size of w in predicting the centrality values.

4.2. Analysis of correlation between past and future centrality

Fig. 3 plots each nodes’ closeness centrality value com-
pared to its value in a past window, for the MIT dataset.

Notice three features: first, there is high correlation
(0.565) between a node’s closeness centrality value with
its value 4 h ago which fits the intuition of a legacy effect
(see the first scatter plot in Fig. 3); second, increasing the

11 AM--12 PM

987

difference decreases the correlation (—0.00832 at 12 h dif-
ference); and third, at 24 h difference the correlation rises
again (0.432), which indicates possible periodic behaviour.

Generalising this analysis, we analyse the similarity be-
tween past and future centrality values, by calculating the
average Pearson correlation coefficients among all possible
pairs of G, and C;_s for 6 where § > 1 and t > 6 + 1, where
C; denotes the centrality values of nodes in the tth tempo-
ral network G, We note that the Pearson correlation is
originally defined only if the standard deviations of the
random variables are finite and are non-zero. However,
in dynamic networks, the standard deviations can often
be zero since the nodes often have the same centrality val-
ues (e.g. when the graph is totally disconnected). Here we
assume that the Pearson correlation coefficient is zero
when the standard deviation of a random variable is zero.
This assumption helps exclude zero centrality values com-
puted from disconnected networks.

For each dataset, the results of the average correlation
coefficients are plotted in Figs. 4-6. In each figure, the X-
axis, the Y-axis and the Z-axis are the time difference value
J, the time window size w, and the average correlation va-
lue, respectively.

With this, we make four key observations:

o First, as we might expect, recent past centrality values
are strongly correlated compared with more distant
values. For betweenness, however, this trend appears
to be rather weak since the overall correlation coeffi-
cients are relatively very low compared with the other
centrality metrics.

e Second, we can see the pattern of repeated peaks with
24-h time difference although this trend seems rather
weak for Infocom. Probably, this is because people at

H

diff: =4 hours diff: =8 hours diff: =12 hours

corr:0.565 corr:0.298 corr:-0.0832
z z e z "
N N htd N
N T T o
| | 1
= = =
< < <
= = = 4

L M H L M
7 AM-- 8 AM 3 AM--4 AM 11 PM--12 AM

diff: =16 hours diff: =20 hours diff: =24 hours
corr:0.029 corr:0.279 corr:0.432
H S H [ ) s
LI e 3
M | M I
= =
< <
L M ¢ H - L M H -
7 PM--8 PM 3 PM--4PM 11 AM--12 PM

Fig. 3. Scatter plots depicting centrality correlation between a fixed window (y-axis) and an increasingly distant window from the past (x-axis) every four
hours (left-to-right). We plot for Closeness, MIT (w =1 h) for a typical weekday in September. The axis labels represent the low (L), medium (M), and high

(H) centrality values.

Correlation

Correlation

Time Difference

(a) degree

Time Difference

(b) closeness

Ceorrelation

Time Difference

(c) betweenness

Fig. 4. The average correlation analysis between C; and C;_s for § where 6 > 1 and t > § + 1 for MIT. For visualisation, we plotted the first week only.
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Correlation
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Time Difference

(a) degree
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(b) closeness
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(c) betweenness

Fig. 5. The average correlation analysis between C; and C;_; for 6 where 6 > 1 and t > ¢ + 1 for Infocom.
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(a) degree

Time Difference

(b) closeness

Correlation

Time Difference

(c) betweenness

Fig. 6. The average correlation analysis between C; and C;_; for § where § > 1 and t > 6 + 1 for Cambridge.

a conference seek out new colleagues to talk to at the
breaks between sessions, rather than socialising with
the same people. However some academics are more
sought after than others.
e Third, the average correlation coefficients for degree
and closeness are much higher than those for between-
ness. We assumed that the Pearson correlation coeffi-
cient is zero when the standard deviation of a random
variable is zero. For betweenness, this exceptional case
has been more often observed since indirect paths
between nodes which are required for betweenness
are very unlikely to be observed during the night time.
So the computed average correlation coefficients may
be rather underestimated.
Fourth, the periodic patterns are clearly shown as a
function of window size w, and longer windows give
higher correlation, except in Cambridge where the best
correlations correspond to a window size of 60 min.
This presumably represents students sitting next to
each other in lectures.

In Section 5, we will present prediction functions based
on these observations.

4.3. Comparisons with a null model

To show the significance of the second and third obser-
vations we compare with a classic random network-evolu-
tion model, namely the edge-Markovian evolving graph
(edge-MEG) [36]. An edge-MEG G(n,p;,1p,14) is defined by
four parameters, the number n of nodes, the edge probabil-

ity p; of the initial graph, the edge birth-rate r;,, and death-
rate rq: start with the initial Erd6s-Rényi random graph
Gnyp, [37], and at every time step, if an edge exists then it
will die in the next time step with the probability ry; while,
if an edge does not exist, then it will appear at the next
time step with the probability r,,. For comparison, we com-
pute the average correlation coefficients for several edge-
MEGs with n =100 and p; = 0.2. The results are shown in
Fig. 7. We can see that there are no periodic patterns in
them while the correlation coefficients are dramatically
decreased up to about zero except for Fig. 7(a). Morevoer,
the average correlation coefficients for betweenness (B.)
are very similar to those for degree (D.) and closeness
(C.) unlike human contact networks.

5. Predicting centrality values
5.1. Prediction functions

In dynamic networks, the network centrality values of
nodes can change over time as new edges are created or
existing ones removed. We want to predict these values
from the node history. In practice, it is expensive to con-
sider all mobile traces, so we evaluate simple approxima-
tion methods based on previous centrality values only.

We evaluate eight prediction functions summarised in
Table 3, based on empirical observations seen in Section
4. The first observation is that the recent past network
topologies are more similar to future network topologies
than distant past network topologies. In other words, Gy
may be more like G,_; than G,_; where [ > 1. The second
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Fig. 7. The average correlation analysis between C; and C;_s for § where 6 > 1 and i > § + 1 for several edge-MEGs. While the recent past centrality values
are highly correlated compared with more distant past centrality values, the subsequent peaks are rather irregular. In addition, the average correlation
coefficients for betweenness are very similar to those for degree and closeness. These features are totally different from human contact networks.

Table 3

Summary of prediction functions.
Function Cap() Runtime Description
Last C(u) 0o(1) Last centrality
Uniform Cie—r—1yalu) o(1) Uniform avg.
W-sqrt S (V3™ rotar) - Cr_i_1)(w) o(k) Square root weighted avg.
W-linear S ((8)" ) Ororal) - Cr 1) (1) O(k) Linear weighted avg.
R-0.05 p(k —0.05) 0o(k) Polynomial regression
R-0.15 p(k —0.15) o(k) Polynomial regression
U-period . sperio -1 Oo(k Uniform periodic avg.

P - ((‘arcsm cos (’“’pp d“) ) /wmmt) i1y (1) (k) P &

W-period 0o(k) Weighted periodic avg.

r . r.sPeriod
>oict <(|arcsm cos ( b f)

Nl
) /wmm) Gy ()

observation is that human contact patterns are repeated
periodically (e.g. 1h, 24h or 1week). With three real
datasets in Section 4, we will empirically analyse which
predictor is really effective. We present several reasonable
methods to minimise the objective function Error(G?k, I,m)
discussed in Section 3.2. Let a=k+1[, b=a+ (m—1) for
simplicity.

Last Centrality. As the first candidate, we just use the
node’s centrality value in the last temporal network (Gy)
at time k. In other words, for u € V, we use C(u) as ahb(u).

Uniform Average Centrality. In order to improve the accu-
racy of the prediction, we can use the node’s r previous
centrality values instead of one last previous centrality va-
lue. A reasonable idea is to use the node’s uniform average
centrality value between Gy ;1) ..., Gk_1, Gy where
0<r<k as the node’s future centrality value. In other
words, for u € V, we use Cy_(_1),(u) as Ea‘b(u).

We want to find the best r given the cost of computa-
tion and the accuracy of prediction, and will suggest values
based on several real datasets in Section 3.3.

Note that although the runtime complexity of the uni-

form function is O(k) for one prediction of Ea,b(u). it gives

an O(1) amortised time per computation of Ea‘b(u) for m
consecutive predictions where m > k. This property is
practically useful since many applications [4,7,9] require
the computation of consecutive centrality values over
time.

Weighted Average Centrality. In order to consider the rel-
ative importance of the recent temporal networks, we can
use the weighted average centrality value instead of the

uniform average centrality value. Formally, 6a,b(u) is com-

puted as > ;(®i/Worar) - Ck—i-1)(u) where 0<r<k and
Orora = Y1 ;. In fact, the uniform average centrality is a
special case of the weighted average centrality when
w;=1[r. We consider two reasonable weight assignments
depending on the physical time difference § between
Gi—(i-1)and G, In other words, § is the difference between
k — (i—1)and k + 1 (=a). Since time window size is w, J is
computed as (I +i — 1) - w. We consider two weight assign-

ment schemes, chosen empirically: square root <cu,~ = %)

and linear (w; =1). The weighted assignments of square
(a),- = OLZ) and cubic (a),- = 0%) functions were also evalu-

ated, but since they produce almost the same results of
Last, we do not use them.

Polynomial Regression. An approximation is to use a
polynomial regression model to predict a node’s centrality
value in the future. From a set of the node u’s centrality
values between Gi_(r_1y, . .., Gk_1, Gk, we can derive a finite
sequence of r input-output pairs, (1,ce_—1(u)), ...,
(r—1,cx_1(u)), (r,ci(u)). From these data, we find the coef-
ficients of a polynomial p(-) of degree m that fits the data,
p(i) to cx_r+i(u) where 1 <i<r, in a least squares sense.
This polynomial p(-) is used to predict the node u’s central-
ity value at the target time. We here use p(k — €) as Cq(U).
We empirically tested several € values and degrees of poly-
nomials to find the best one. Our recommendation is to se-
lect degree 3. We also recommend using a small number
for €, less than 0.2. We also used 0.05 and 0.15 as represen-
tative values in our experiments.

Periodic Intervals. In general, human activities are re-
peated periodically and as we have shown in Section 4.2,
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important nodes are also correlated with such periods;
hence an intuitive method is to use these periodic patterns
to improve the accuracy of the prediction.

For human contact networks, reasonable periods are a
day or week. Given the period p of a day or a week, we con-
sider an approximation as a special case of the weighted
average centrality. The periodic physical time difference
oPeried hetween Gy i1y and G5, where 1<i<r is com-
puted as follows:

0 _ min{(j — (k- (i~ 1))) - wmod p}. (5)
Jj=a

In practice, 5°¢"° can be efficiently computed in 0(1)
time as follows:
if gPeiod < (b —a)-w,

5period _ end

5period 5peri0d

mm{ start  Oend } otherwise,

(6)

where g5 = (a — (k- (i—1)))- wmodp and 82! =
(b—(k—({i-1))) -wmodp.

So we assign the relative weights with 5P¢"°¢ for each
ck—i—1(u) where 1 <i <rand r is the number of centrality
values used in predicting ¢,p(u) as follows: w;=
(‘arcsin cos (%ﬂ“)
(close to zero). (€ is used to avoid divide-by-zero excep-
tions when §Pe"°4 = Q)

In addition, we consider both the relative importance
of the recent temporal networks and the periodic intervals

at the same time. As an approximation, we propose
the following weight assignment function: ;=

. speriod
(‘arcsm cos <%)

ber (close to zero) and 6= (I+i—1)-w.

-1
) where € is a very small number

-1
. 6) where € is a very small num-

5.2. Evaluation of prediction functions

We analyse the performance of each approach on real
human contact datasets used in Section 3.3. For each data-
set, we calculated Error(G7,,1,m) discussed in Section 3.2
by varying I, m, w and r. We use the symbol E to denote this
value in the resulting figures. These parameters are sum-
marized in Table 4. The aim of the experiment is to evalu-
ate feasibility and usefulness of each function and to find
the optimal parameter values (e.g. r) of each prediction
function at the same time.

The performance of all prediction functions except Last
is primarily determined by the choice of r as well as [, m

Table 4
Summary of parameters in prediction functions.

Parameters Description

k The most recent observation time window for
training input G,

1 The number of the (unknown) lag time windows

m The number of future time windows to be predicted

w The size of a time window for G,

-

The number of training time windows used

and w. However, choosing a suitable r value is not easy
when some past centrality values are not strongly corre-
lated. As r increases, moreover, the cost of computation in-
creases. So we shall consider finding the optimal r by fixing
some reasonable [, m and w values.

First of all, we select the time window size w as small as
possible. We consider the finest granularity of temporal
characteristics with the smallest w (2 min or 5 min). We
will revisit the effects of the window size w later. In addi-
tion, we fix I= (48 h)/w and m = (48 h)/w hours. In many
applications such as routing protocols and epidemic mod-
elling, the centrality prediction for a larger m is more
important. It also seems reasonable to consider some
lagged time [ since it is difficult to collect human contact
traces in real time. We will discuss the effects of | and m
later.

The prediction results by varying r from (3 h)/w to
(72 h)/w are shown in Figs. 8-10. For improved visualisa-
tion, we use the same range on the y-axis between degree
and closeness only per dataset since the levels of accuracy
and precision are totally different between datasets and
centrality types (e.g. betweenness). For example, predic-
tion for the MIT dataset is capable of higher precision than
Cambridge - which may have a significant error level be-
cause of the small sample size.

In MIT (see Fig. 8), the U-period prediction function
produced the best results. This is because the periodic pat-
terns of human contact traces are clearly shown in MIT.
When around (60 h)/w is used, U-period particularly
achieved the best Error(G7,, I, m) values below 0.016 in de-
gree and closeness and 0.0013 in betweenness and
then the Error(Gy,,l,m) values increased since this time
interval. This may imply that the centrality value at a spe-
cific time of an average node was not significantly affected
by the distant past centrality values 60 h ago in MIT.

Although the performance of Uniform is not as strong
as that of the U-period function, it outperforms the other
prediction functions. Considering that its computation cost
of Uniform is also relatively cheap, we recommend using
Uniform as an alternative. However, we would not recom-
mend using Last because its relative accuracy is not en-
ough. Overall, the Error(G7,,l,m) values decreases in all
prediction functions when a larger r is used.

By contrast, in Infocom (see Fig. 9), the U-period and
W-period prediction functions are not good options when
a larger r is particularly used. Instead, our recommenda-
tions would be to use W-sqrt, W-linear or Uniform. We
already observed that there is no noticeable periodic pat-
terns while the recent past centrality values are strongly
correlated in Infocom - Fig. 5 illustrates this.

Another interesting observation in Infocom is that all of
the prediction functions for degree significantly outper-
formed those for closeness unlike the other human contact
traces from campuses. Relations among neighbours are
maintained well in the conference but the overall network
topologies change continuously over time.

In Cambridge (see Fig. 10), the accuracy of U-period
and W-period prediction functions is not good with a lar-
ger r for degree and closeness, which is similar to Infocom.
However, for betweenness, U-period outperforms the
other prediction functions. The U-period with around r =
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Degree Closeness Betweenness
0.0400 0.0400 0.0026
—6—— Last
0.0340| - = 0.03404¢ 0.0023¢¢ — e Uni
— W-sqrt
0.0280 0.0280 0.0020
E — — — W-lin.
0.0220 0.0220 0.0016 R-0.05
R-0.15
0.0160 0.0160 0.0013 U-per.
: : — — — W-per.
0.0100 0.0100 0.0010
3h 27h  51h 3h 27h  51h 3h
r r r
Fig. 8. The prediction results by varying r for MIT (I = (48 h)/w, m = (48 h)/w and w =5 min).
Degree Closeness Betweenness
0.1200 0.1200
—6—— Last
0.1020} - = 0.1020 — e Uni
0.0840 | . 0.0840 W=sart
E ~ ; ; ' \ — — — W-lin.
0.0660 | - . 0.0660 R-0.05
R-0.15
0.0480 | - = 0.0480 U-per.
- : : — — — W-per.
0.030( S=Sses=rsss ’ 0.0300
3h 27h  51h 3h 27h  51h 27h  51h
r r r
Fig. 9. The prediction results by varying r for Infocom (I = (48 h)/w, m = (48 h)/w and w = 2 min).
Degree Closeness Betweenness
0.1500 0.1500 0.0110
—=— Last
0.1400 | - = 0.1400 0.0102¢ - X — e Uni
0.1300 > 0.1300 0.0094 W=sart
E ) 2 ) — — — W-lin.
0.1200} - 0.1200 [ S2TEIEIHEET 0.0086 R-0.05
: i R-0.15
0.1100 jf 0.1100} " 0.0078 ——— U-per.
— — — W-per.
0.1000 0.1000 0.0070
3h 3h 27h  51h 3h 27h  51h
r r r

Fig. 10. The prediction results by varying r for Cambridge (I = (48 h)/w, m= (48 h)/w and w = 2 min).

(27 h)/w achieved the Error(Gfk, [, m) values below 0.00078
in betweenness. For degree and closeness, W-linear with
around r= (27 h)/w hours seems a good choice.

In order to show this more effectively, we computed the
ratio of the Best prediction function and the Last predic-
tion function. The results are shown in Table 5. We show
that the best-performing prediction functions are 25%
more accurate on average compared to Last. In particular,
in MIT, the Error(G},,l,m) value for betweenness of U-
period is only about 46.8% of Last. When we try to predict
the network centrality values in human contact traces like
MIT is a realistic dataset, this result is very encouraging.

We now discuss the effects of the time lag I (see Figs.
11-13). To demonstrate this we fix r= (24h)/w, m=
(48 h)/w and w=2 min for Infocom and Cambridge (or
5 min for MIT).

Interestingly, the Error(GY,,1,m) values generally in-
crease with the time lag [ for degree and closeness in Info-
com and Cambridge. In particular, U-period and W-
period are not effective as I increases. However, the results
were somewhat inconsistent in the other cases. We can see
that an increase in | does not significantly affect the
Error(Gy,,1,m) values of the prediction functions for all
centrality types in MIT and betweenness in Cambridge,
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Table 5
Ratio of “the results of the Best prediction function” and “the results of the Last prediction function”. Here, h represents hour (time).
Network Centrality Best Last Ratio
Function r Error Error
MIT degree U-period 63 h 0.0139 0.0298 0.4653
closeness U-period 60 h 0.0158 0.0339 0.4672
betweenness U-period 60 h 0.0011 0.0023 0.4675
Infocom degree W-sqrt 12h 0.0306 0.0319 0.9596
closeness W-sqrt 15h 0.0697 0.0733 0.9505
betweenness Uniform 72 h 0.0090 0.0101 0.8932
Cambridge degree W-linear 18 h 0.1054 0.1172 0.8991
closeness W-linear 18 h 0.1106 0.1221 0.9055
betweenness U-period 27h 0.0075 0.0098 0.7666
Degree Closeness Betweenness
0.0370 : 0.0370 0.0028
0.0328 | - - - 0.0328 - - 0.0025 —o6— Uni
?——é\( : —— W-sqrt
E 0.0286 - B 0.0286 . — — = T = ] 0.0022 Welin
- ~ - - = - .
~ —
0.0244F = 7 = ST~ 0024L =" 0.0020 R-0.05
= : R-0.15
o.ozoz‘&» 00202} . . 0.0017 — U-per.
‘ — — — W-per.
0.0160 0.0160 0.0014
1h 24h 48h 24h 48h 1h 24h 48h
I I I
Fig. 11. The prediction results by varying [ for MIT (r= (24 h)/w, m = (48 h)/w and w =5 min).
Degree Closeness Betweenness
0.1200 ‘ 0.1200 0.0200
—90— Last
0.1000 0.1000 0.0172 —e— Uni
— W-sqrt
E 0.0800 0.08004 - 0.0144 — — — Welin
0.0600 0.0600 0.0116 R-0.05
q R-0.15
0.0400¢ - - = 0.0400 0.0088 — U-—per.
;%) — — — W-per.
0.0200 0.0200 0.0060
1h 24h 48h 1h 24h 48h 1h 24h 48h
I I I
Fig. 12. The prediction results by varying [ for Infocom (r= (24 h)/w, m = (48 h)/w and w = 2 min).
Closeness Betweenness
0.1300 0.0130
—&0— Last
0.1180 0.0118 —6— Uni
— W-sqrt
E 0.1060 0.0106 — — — Welin
0.0940 0.0094 | o R-0.05
q - - = - R-0.15
0.0820 0.0082 Qé U-per.
q ‘ — — — W-per.
0.0700 0.0070
1h 24h 48h 1h 24h 48h 1h 24h 48h

Fig. 13. The prediction results by varying [ for Cambridge (r= (24 h)/w, m = (48 h)/w and w =2 min).
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which have apparent periodic patterns of human contact
traces. Intuitively, we expect that U-period (or W-period)
performs well even for a large I (e.g. [ = 48 h) if the periodic
patterns exist in human contact traces. Overall, when [ =
(1 h)/w, W-sqrt also performs well. So our recommenda-
tion would be to use W-sqrt for a small I

Turning our attention to the case of m future time inter-
vals to be predicted, see Figs. 14-16. We fix r= (24 h)/w,
I= (1h)/w and w=2min for Infocom and Cambridge
(or 5 min for MIT). We here select [ = (1 h)/w to minimise
the effects of L. As m increases, the Error(GY,, I, m) values of
Last generally increase while those of U-period, W-period,

W-sqrt and Uniform commonly decrease. In particular,
our analysis show a marginally significant change in these
values between m = (1 h)/w and m = (24 h)/w. This in fact
matches our intuition: the relative importance of the
recent centrality values is reduced as m increases. There-
fore our recommendations would be to use U-period,
W-period, W-sqrt and Uniform for a large m. However,
we recommend that Last should be used for degree and
closeness and W-linear for betweenness, respectively,
as alternatives for a small m. These results are natural
consequences since the relative importance of recent net-
work topologies decreases when m increases.

Degree Closeness Betweenness
0.0450 : 0.0450 0.0028
—<&— Last
0.0390 0.0390 0.0026 —e— Uni
0.0330 0.0330} - 0.0023 W=sart
E ' q : — — — W-lin.
0.0270 0.0270 0.0021 R-0.05
R-0.15
0.0210 0.0210 0.0018 U-per.
— — — W-per.
0.0150 0.0150 0.0016
1 24h 48h 1h 24h 48h 1h 24h 48h
m m m
Fig. 14. The prediction results by varying m for MIT (r= (24 h)/w, [= (1 h)/w and w =5 min).
Degree Closeness Betweenness
0.1200 : 0.1200 0.0170
—=&— Last
0.1000 0.1000 0.0150 —6— Uni
0.0800 0.08004 0.0130 W-sart
E e ' - — — W-lin.
0.0600 0.0600 0.0110 R-0.05
R-0.15
0.0400 [ 0.0400 0.0090 [~ U-per.
i — — — — W-per.
0.0200%F=—= 0.0200 0.0070
1h 24h 48h 1h 24h 48h 1h 24h 48h
m m m
Fig. 15. The prediction results by varying m for Infocom (r= (24 h)/w, [= (1 h)/w and w =2 min).
Degree Closeness Betweenness
0.1500 : 0.1500 0.0180
—&6— Last
0.1300 0.0158 —e— Uni
— W-sqrt
0.1100 0.0136 ;
E — — — W-lin.
0.0900 0.0114 R-0.05
R-0.15
0.0700 0.0092 U-per.
— — — W-per.
0.0500 0.0070
24h 48h 1h 24h 48h 1h
m m m

Fig. 16. The prediction results by varying m for Cambridge (r= (24 h)/w, [= (1 h)/w and w = 2 min).



994

Finally, we discuss how the performance of prediction
functions may change with the window size w. As w in-
creases, the temporal characteristics of human contacts
are underestimated, but the costs of collecting and analys-
ing traces decrease. Figs. 17-19 show the effects of varying
w from 2 min (or 5 min) to 60 min. To demonstrate this we
fix r= (24 h)/w, I= (48 h)/w and m = (48 h)/w.

Aswincreases, the Error(G?k, I, m) values of all prediction
functions (except U-period and W-period for between-
ness in Infocom) increase. It is natural; a finer granularity
may be desired to improve the accuracy. In particular, the
performance of U-period and W-period is apparently dete-
riorated. We can see this trend in MIT (see Fig. 17). So we
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recommend that Uniform should be used as alternatives
for a large w. As we already discussed in Fig. 9, the U-period
and W-period performed badly for betweenness in Info-
com. Therefore the prediction results can be rather im-
proved when we reduce the effects induced by periodic
weights.

In summary, our recommendation would be to use U-
period for human contact networks which can be assumed
a relatively stable environment with the periodic patterns
of human contacts. However, we would not recommend
using U-period when the network topology (e.g. partici-
pant contacts in a conference) is unstable and changes rap-
idly; more obvious recommendations would be to use the

Degree Closeness Betweenness
0.0550 0.0550 0.0070
—&— Last
0.0470 0.0470 0.0058 - —— Uni
W-sqrt
0.0390 0.0390 0.0046 .
E — — — W-lin.
0.0310 0.0310 0.0034 R-0.05
R-0.15
0.0230 0.0230 0.0022 U-per.
— — — W-per.
0.0150 0.0150 0.0010
5min 15min 60min 5min 15min 60min 5min 15min 60min
\'\ w w
Fig. 17. The prediction results by varying w for MIT (r = (24 h)/w, [= (48 h)/w and m = (48 h)/w).
Degree Closeness Betweenness
0.3000 : 0.3000 : 0.0200 :
—6— Last
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0.1800 0.1800 0.0152 Wosart
E ’ ’ ' — — — W-lin.
0.1200 0.1200 0.0128 R-0.05
R-0.15
0.0600 0.0600 0.0104 ——— U-per.
— — — W-per.
0.0000 0.0000 0.0080
2min 15min 60min 2min 15min 60min 2min 15min 60min
w w W
Fig. 18. The prediction results by varying w for Infocom (r = (24 h)/w, [= (48 h)/jw and m = (48 h)/w).
Degree Closeness Betweenness
0.1700 ‘ 0.1700 ‘ 0.0210
—&o— Last
0.1560 0.1560 0.0178 ——6— Uni
D
0.1420 0.1420 0.0146 W-sart
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-,
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Fig. 19. The prediction results by varying w for Cambridge (r= (24 h)/w, = (48 h)/w and m = (48 h)/w).
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average of a few previous centrality values with relative
weights. We can see that W-sqrt or W-linear performed
well even with a relatively small r in Infocom. Inherently,
the recent centrality values will become more important as
m decreases. Therefore we would recommend using W-
linear or Last when m is very small.

6. Conclusion and future work

Measuring network centrality is an important problem
for many applications. Most existing studies have focussed
on analysing static networks, while in reality this assump-
tion is not reliable since many networks are inherently
dynamic; connections are added or removed over time.
Previous writers had used ad hoc methods to predict cen-
trality; we studied this intensively using empirical data
from three human contact networks.

We presented eight prediction functions and explored
their feasibility. Our design principles were based on two
empirical observations: the relative importance of central-
ity values with elapsed time and the periodic repeatability
of human contact patterns. We analysed centrality predic-
tion functions by computing the difference between
observed and predicted values. We discussed which
prediction functions are generally recommended under
which conditions. When human contact traces are clearly
repeated, the accuracy of prediction can significantly be
improved by taking this into account.

Our approach is simple to implement and deploy since
only past centrality values are required for prediction, not
node position, and since our predictors can be computed in
time linear in the number of training time windows used.
These strategies are thus amenable for large-scale, online
and real-time computation.

As part of this ongoing study, we plan to analyse addi-
tional human contact traces to study their common char-
acteristics and also employ more advanced techniques
from signal processing, such as matched filters, to improve
centrality prediction accuracy. Another interesting prob-
lem is the question of the sensitivity of centrality values
to the underlying edge process which we intend to con-
sider in future work.
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