
Anderson-44022 Book February 20, 2001 12:40

CHAPTER

18

Network Attack and Defense

Whoever thinks his problem can be solved using
cryptography, doesn’t understand his problem and doesn’t

understand cryptography.

---ATTRIBUTED BY ROGER NEEDHAM AND BUTLER LAMPSON
TO EACH OTHER

18.1 Introduction

Internet security is a fashionable and fast-moving field; the attacks that are catching the
headlines can change significantly from one year to the next. Regardless of whether
they’re directly relevant to the work you do, network-based attacks are so high-profile
that they are likely to have some impact, even if you only use hacker stories to get your
client to allocate increased budgets to counter the more serious threats. The point is,
some knowledge of the subject is essential for the working security engineer.

There are several fashionable ideas, such as that networks can be secured by encryp-
tion and that networks can be secured by firewalls. The best place to start debunking
these notions may be to look at the most common attacks. (Of course, many attacks
are presented in the media as network hacking when they are actually done in more
traditional ways. A topical example is the leak of embarrassing emails that appeared to
come from the office of the U.K. prime minister, and were initially blamed on hackers.
As it turned out, the emails had been fished out of the trash at the home of his personal
pollster by a private detective called Benji the Binman, who achieved instant celebrity
status [520].)

18.1.1 The Most Common Attacks
Many actual attacks involve combinations of vulnerabilities. Examples of vulnerabili-
ties we’ve seen in earlier chapters include stack overflow attacks (where you pass an

367

Anderson-44022 Book February 20, 2001 12:40

368 Security Engineering: A Guide to Building Dependable Distributed Systems

over-long parameter to a program that carelessly executes part of it) and password
guessing, both of which were used by the Internet worm. A common strategy is to
get an account on any machine on a target network, then install a password sniffer to
get an account on the target machine, then use a stack overflow to upgrade to a root
account.

The exact vulnerabilities in use change from one year to the next, as bugs in old
software get fixed and new software releases a new crop of them. Still, there are some
patterns, and some old favorites that keep coming back in new guises. Here’s a list of
the top 10 vulnerabilities, as of June 2000 [670].

1. A stack overflow attack on the BIND program, used by many Unix and Linux
hosts for DNS, giving immediate account access.

2. Vulnerable CGI programs on Web servers, often supplied by the vendor as
sample programs and not removed. CGI program flaws are the common means of
taking over and defacing Web servers.

3. A stack overflow attack on the remote procedure call (RPC) mechanism, used by
many Unix and Linux hosts to support local networking, and which allows
intruders immediate account access (this was used by most of the distributed
denial of service attacks launched during 1999 and early 2000).

4. A bug in Microsoft’s Internet Information Server (IIS) Web server software,

which allowed immediate access to an administrator account on the
server.

5. A bug in sendmail, the most common mail program on Unix and Linux

computers. Many bugs have been found in sendmail over the years, going back
to the very first advisory issued by CERT in 1988. One of the recent flaws can be
used to instruct the victim machine to mail its password file to the attacker, who
can then try to crack it.

6. A stack overflow attack on Sun’s Solaris operating system, which allows
intruders immediate root access.

7. Attacks on NFS (which I’ll describe shortly) and their equivalents on Windows

NT and Macintosh operating systems. These mechanisms are used to share files
on a local network.

8. Guesses of usernames and passwords, especially where the root or
administrator password is weak, or where a system is shipped with default
passwords that people don’t bother to change.

9. The IMAP and POP protocols, which allow remote access to email but are often
misconfigured to allow intruder access.

10. Weak authentication in the SNMP protocol, used by network administrators to
manage all types of network-connected devices. SNMP uses a default password
of “public” (which a few “clever” vendors have changed to “private”).

Observe that none of these attacks is stopped by encryption, and not all of them by
firewalls. For example, vulnerable Web servers can be kept away from back-end business
systems by putting them outside the firewall, but they will still be open to vandalism;

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 369

and if the firewall runs on top of an operating system with a vulnerability, then the bad
guy may simply take it over.

Although some of these attacks may have been fixed by the time this book is published,
the underlying pattern is fairly constant. Most of the exploits make use of program bugs,
of which the majority are stack overflow vulnerabilities. The exploitation of protocol
vulnerabilities (such as NFS) vies with weak passwords for second place.

In effect, there is a race between the attackers, who try to find loopholes, and the
vendors, who develop patches for them. Capable motivated attackers may find exploits
for themselves and keep quiet about them, but most reported attacks involve exploits
that are not only well known but for which tools are available on the Net.

18.1.2 Skill Issues: Script Kiddies
and Packaged Defense

One of the main culture changes brought by the Net is that, until recently, sophisti-
cated attacks on communications (such as middleperson attacks) were essentially the
preserve of national governments. Today, we find not just password-snooping attacks
but also more subtle routing attacks being done by kids, for fun. The critical change
here is that people write the necessary exploit software, then post it on sites such as
www.rootshell.com, from which script kiddies can download it and use it. This term
refers primarily to young pranksters who use attack scripts prepared by others, but it
also refers to any unskilled people who download and launch tools they don’t fully un-
derstand. As systems become ever more complicated, even sophisticated attackers are
heading this way; no individual can keep up with all the vulnerabilities that are discovered
in operating systems and network protocols. In effect, hacking is being progressively
deskilled, while defence is becoming unmanageably complex.

As discussed in Chapter 4, the Internet protocol suite was designed for a world in
which trusted hosts at universities and research labs cooperated to manage networking
in a cooperative way. That world has passed away. Instead of users being mostly honest
and competent, we have a huge user population that’s completely incompetent (many of
whom have high-speed always-on connections), a (small) minority that’s competent and
honest, a (smaller) minority that’s competent and malicious, and a (less small) minority
that’s malicious but uses available tools opportunistically.

Deskilling is also a critical factor in defense. There are a few organizations, such as
computer companies, major universities, and military intelligence agencies, that have
people who know how to track what’s going on and tune the defenses appropriately.
But most companies rely on a combination of standard products and services. The
products include firewalls, virus scanners, and intrusion detection systems; the services
are often delivered in the form of new configuration files for these products. In these
ways, vulnerabilities become concentrated. An attacker who can work out a defeat of a
widely sold system has a wide range of targets to aim at.

We’ll now look at a number of specific attack and defense mechanisms. Keep in mind
here that the most important attack is the stack overwriting attack, and the second most
important is password guessing; but because I already covered the first in Chapter 4 and
the second in Chapters 2–3, we’ll move down to number three: vulnerabilities in network
protocols.

Anderson-44022 Book February 20, 2001 12:40

370 Security Engineering: A Guide to Building Dependable Distributed Systems

18.2 Vulnerabilities in Network Protocols

Commodity operating systems such as Unix and NT are shipped with a very large
range of network services, many of which are enabled by default, and/or shipped with
configurations that make “plug and play” easy—for the attacker as well as the legit-
imate user. We will look at both local area and Internet issues; a common theme is
that mapping methods (between addresses, filenames, etc.) provide many of the weak
points.

This book isn’t an appropriate place to explain network protocols, so I offer a tele-
graphic summary, as follows: the Internet Protocol (IP) is a stateless protocol that trans-
fers packet data from one machine to another; it uses 32-bit IP addresses, often written
as four decimal numbers in the range 0–255, such as 172.16.8.93. Most Internet services
use a protocol called Transmission Control Protocol (TCP), which is layered on top
of IP, and provides virtual circuits by splitting up the data stream into IP packets and
reassembling it at the far end, asking for repeats of any lost packets. IP addresses are
translated into the familiar Internet host addresses using the Domain Name System

(DNS), a worldwide distributed service in which higher-level name servers point to
local name servers for particular domains. Local networks mostly use Ethernet, in which
devices have unique Ethernet addresses, which are mapped to IP addresses using the
Address Resolution Protocol (ARP).

There are many other components in the protocol suite for managing communications
and providing higher-level services. Most of them were developed in the days when the
Net had only trusted hosts, and security wasn’t a concern. So there is little authentication
built in; and attempts to remedy this defect with the introduction of the next generation
of IP (IPv6) are likely to take many years.

18.2.1 Attacks on Local Networks
Let’s suppose that the attacker is one of your employees; he has a machine attached to
your LAN, and he wants to take over an account in someone else’s name to commit a
fraud. Given physical access to the network, he can install packet sniffer software to
harvest passwords, get the root password, and create a suitable account. However, if
your staff use challenge-response password generators, or are careful enough to only
use a root password at the keyboard of the machine it applies to, then he has to be more
subtle.

One approach is to try to masquerade as a machine where the target user has already
logged on. ARP is one possible target; by running suitable code, the attacker can give
wrong answers to ARP messages and claim to be the victim. The victim machine might
notice if alert, but the attacker can always wait until it is down—or take it down by using
another attack. One possibility is to use subnet masks.

Originally, IP addresses used the first 3 bits to specify the split between the network
address and the host address. Now they are interpreted as addressing network, subnet-
work, and host, with a variable network mask. Diskless workstations, when booting,
broadcast a request for a subnet mask; many of them will apply any subnet mask they
receive at any time. So by sending a suitable subnet mask, a workstation can be made
to vanish.

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 371

Another approach, if the company uses Unix systems, is to target Sun’s Network

File System (NFS), the de facto standard for Unix file sharing. This allows a number
of workstations to use a network disk drive as if it were a local disk; it has a number
of well-known vulnerabilities to attackers who’re on the same LAN. When a volume
is first mounted, the client requests from the server a root filehandle, which refers to
the root directory of the mounted filesystem. This doesn’t depend on the time, or the
server generation number, and it can’t be revoked. There is no mechanism for per-
user authentication; the server must trust a client completely or not at all. Also, NFS
servers often reply to requests from a different network interface to the one on which
the request arrived. So it’s possible to wait until an administrator is logged in at a file
server, then masquerade as her to overwrite the password file. For this reason, many
sites use alternative file systems, such as ANFS.

18.2.2 Attacks Using Internet
Protocols and Mechanisms

Moving up to the Internet protocol suite, the fundamental problem is similar: there is no
real authenticity or confidentiality protection in most mechanisms. This is particularly
manifest at the lower-level TCP/IP protocols.

Consider, for example, the three-way handshake used by Alice to initiate a TCP con-
nection to Bob and to set up sequence numbers, shown in Figure 18.1.

This protocol can be exploited in a surprising number of different ways. Now that
service denial is becoming really important, let’s start off with the simplest service denial
attack: the SYN flood.

18.2.2.1 SYN Flooding

The SYN flood attack is, simply, to send a large number of SYN packets and never ac-
knowledge any of the replies. This leads the recipient (Bob, in Figure 18.1) to accumulate
more records of SYN packets than his software can handle. This attack had been known
to be theoretically possible since the 1980s, but came to public attention when it was
used to bring down Panix, a New York ISP, for several days in 1996.

A technical fix, the so-called SYNcookie, has been found and incorporated in Linux
and some other systems. Rather than keeping a copy of the incoming SYN packet, B

simply sends out as Y an encrypted version of X. That way, it’s not necessary to retain
state about sessions that are half-open.

A → B: SYN; my number is X
B → A: ACK; now X+1

SYN; my number is Y
A → B: ACK; now Y+1

(start talking)

Figure 18.1 TCP/IP handshake.

Anderson-44022 Book February 20, 2001 12:40

372 Security Engineering: A Guide to Building Dependable Distributed Systems

18.2.2.2 Smurfing

Another common way of bringing down a host is known as smurfing. This exploits the
Internet Control Message Protocol (ICMP), which enables users to send an echo packet
to a remote host to check whether it’s alive. The problem arises with broadcast addresses
that are shared by a number of hosts. Some implementations of the Internet protocols
respond to pings to both the broadcast address and their local address (the idea was to
test a LAN to see what’s alive). So the protocol allowed both sorts of behavior in routers.
A collection of hosts at a broadcast address that responds in this way is called a smurf

amplifier.
The attack is to construct a packet with the source address forged to be that of

the victim, and send it to a number of smurf amplifiers. The machines there will each
respond (if alive) by sending a packet to the target, and this can swamp the target with
more packets than it can cope with. Smurfing is typically used by someone who wants
to take over an Internet relay chat (IRC) server, so they can assume control of the
chatroom. The innovation was to automatically harness a large number of “innocent”
machines on the network to attack the victim.

Part of the countermeasure is technical: a change to the protocol standards in August
1999 so that ping packets sent to a broadcast address are no longer answered [691].
As this gets implemented, the number of smurf amplifiers on the Net is steadily going
down. The other part is socioeconomic: sites such as www.netscan.org produce lists
of smurf amplifiers. Diligent administrators will spot their networks on there and fix
them; the lazy ones will find that the bad guys utilize their bandwidth more and more;
and thus will be pressured into fixing the problem.

18.2.2.3 Distributed Denial-of-service
Attacks

A more recent development along the same lines made its appearance in October 1999.
This is the distributed denial of service (DDoS) attack. Rather than just exploiting a com-
mon misconfiguration as in smurfing, an attacker subverts a large number of machines
over a period of time, and installs custom attack software in them. At a predetermined
time, or on a given signal, these machines all start to bombard the target site with mes-
sages [253]. The subversion may be automated using methods similar to those in the
Morris worm.

So far, DDoS attacks have been launched at a number of high-profile Web sites, in-
cluding Amazon and Yahoo. They could be even more disruptive, as they could target
services such as DNS and thus take down the entire Internet. Such an attack might be
expected in the event of information warfare; it might also be an act of vandalism by an
individual. Curiously, the machines most commonly used as hosts for attack software in
early 2000 were U.S. medical sites. They were particularly vulnerable because the FDA
insisted that medical Unix machines, when certified for certain purposes, had a known
configuration. Once bugs had been discovered in this, there was a guaranteed supply of
automatically hackable machines to host the attack software (another example of the
dangers of software monoculture).

At the time of writing, the initiative being taken against DDoS attacks is to add ICMP

traceback messages to the infrastructure. The idea is that whenever a router forwards

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 373

an IP packet, it will also send an ICMP packet to the destination with a probability of
about 1 in 20,000. The packet will contain details of the previous hop, the next hop, and
as much of the packet as will fit. System administrators will then be able to trace large-
scale flooding attacks back to the responsible machines, even when the attackers use
forged source IP addresses to cover their tracks [93]. It may also help catch large-scale
spammers who abuse open relays, relays that do not add audit information to email
message headers.

18.2.2.4 Spam and Address Forgery

Services such as email and the Web (SMTP and HTTP) assume that the lower levels
are secure. The most that’s commonly done is a look-up of the hostname against an IP
address using DNS. So someone who can forge IP addresses can abuse the facilities.
The most common example is mail forgery by spammers; there are many others. For
example, if an attacker can give DNS incorrect information about the whereabouts of
your company’s Web page, the page can be redirected to another site—regardless of
anything you do, or don’t do, at your end. As this often involves feeding false information
to locally cached DNS tables, it’s called DNS cache poisoning.

18.2.2.5 Spoofing Attacks

We can combine some of the preceding ideas into spoofing attacks that work at long
range (that is, from outside the local network or domain).

Say that Charlie knows that Alice and Bob are hosts on the target LAN, and wants
to masquerade as Alice to Bob. He can take Alice down with a service denial attack of
some kind, then initiate a new connection with Bob [559, 90]. This entails guessing the
sequence number Y , which Bob will assign to the session, under the protocol shown in
Figure 18.1. A simple way of guessing Y , which worked for a long time, was for Charlie
to make a real connection to Alice shortly beforehand and use the fact that the value of Y

changed in a predictable way between one connection and the next. Modern stacks use
random number generators and other techniques to avoid this predictability, but random
number generators are often less random than expected—a source of large numbers of
security failures [774].

If sequence number guessing is feasible, then Charlie will be able to send messages
to Bob, which Bob will believe come from Alice (though Charlie won’t be able to read
Bob’s replies to her). In some cases, Charlie won’t even have to attack Alice, just arrange
things so that she discards Bob’s replies to her as unexpected junk. This is quite a complex
attack, but no matter; there are scripts available on the Web that do it.

18.2.2.6 Routing Attacks

Routing attacks come in a variety of flavors. The basic attack involves Charlie telling
Alice and Bob that a convenient route between their sites passes through his. Source-level
routing was originally introduced into TCP to help get around bad routers. The under-
lying assumptions—that “hosts are honest” and that the best return path is the best

Anderson-44022 Book February 20, 2001 12:40

374 Security Engineering: A Guide to Building Dependable Distributed Systems

source route—no longer hold, and the only short-term solution is to block source
routing. However, it continues to be used for network diagnosis.

Another approach involves redirect messages, which are based on the same false
assumption. These effectively say, “You should have sent this message to the other
gateway instead,” and are generally applied without checking. They can be used to do
the same subversion as source-level routing.

Spammers have taught almost everyone that mail forgery is often trivial. Rerouting
is harder, since mail routing is based on DNS; but it is getting easier as the number of
service providers goes up and their competence goes down. DNS cache poisoning is only
one of the tricks that can be used.

18.3 Defense against Network Attack

It might seen reasonable to hope that most attacks—at least those launched by script
kiddies—can be thwarted by a system administrator who diligently monitors the security
bulletins and applies all the vendors’ patches promptly to his software. This is part of
the broader topic of configuration management.

18.3.1 Configuration Management
Tight configuration management is the most critical aspect of a secure network. If you
can be sure that all the machines in your organization are running up-to-date copies of
the operating system, that all patches are applied as they’re shipped, that the service
and configuration files don’t have any serious holes (such as world-writeable password
files), that known default passwords are removed from products as they’re installed, and
that all this is backed up by suitable organizational discipline, then you can deal with
nine and a half of the top ten attacks. (You will still have to take care with application
code vulnerabilities such as CGI scripts, but by not running them with administrator
privileges you can greatly limit the harm that they might do.)

Configuration management is at least as important as having a reasonable firewall;
in fact, given the choice of one of the two, you should forget the firewall. However, it’s
the harder option for many companies, because it takes real effort as opposed to buying
and installing an off-the-shelf product. Doing configuration management by numbers
can even make things worse. As noted in Section 18, U.S. hospitals had to use a known
configuration, which gave the bad guys a large supply of identically mismanaged targets.

Several tools are available to help the systems administrator keep things tight. Some
enable you to do centralized version control, so that patches can be applied overnight,
and everything can be kept in synch; others, such as Satan, will try to break into the
machines on your network by using a set of common vulnerabilities [320]. Some famil-
iarity with these penetration tools is a very good idea, as they can also be used by the
opposition to try to hack you.

The details of the products that are available and what they do change from one year
to the next, so it is not appropriate to go into details here. What is appropriate is to say
that adhering to a philosophy of having system administrators stop all vulnerabilities at
the source requires skill and care; even diligent organizations may find that it is just too
expensive to fix all the security holes that were tolerable on a local network but not with

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 375

an Internet connection. Another problem is that, often, an organisation’s most critical
applications run on the least secure machines, as administrators have not dared to apply
operating system upgrades and patches for fear of losing service.

This leads us to the use of firewalls.

18.3.2 Firewalls
The most widely sold solution to the problems of Internet security is the firewall. This
is a machine that stands between a local network and the Internet, and filters out traffic
that might be harmful. The idea of a “solution in a box” has great appeal to many orga-
nizations, and is now so widely accepted that it’s seen as an essential part of corporate
due diligence. (Many purchasers prefer expensive firewalls to good ones.)

Firewalls come in basically three flavors, depending on whether they filter at the IP
packet level, at the TCP session level, or at the application level.

18.3.2.1 Packet Filtering

The simplest kind of firewall merely filters packet addresses and port numbers. This
functionality is also available in routers and in Linux. It can block the kind of IP spoof-
ing attack discussed earlier by ensuring that no packet that appears to come from a
host on the local network is allowed to enter from outside. It can also stop denial-
of-service attacks in which malformed packets are sent to a host, or the host is per-
suaded to connect to itself (both of which can be a problem for people still running
Windows 95).

Basic packet filtering is available as standard in Linux, but, as far as incoming attacks
are concerned, it can be defeated by a number of tricks. For example, a packet can be
fragmented in such a way that the initial fragment (which passes the firewall’s inspection)
is overwritten by a subsequent fragment, thereby replacing an address with one that
violates the firewall’s security policy.

18.3.2.2 Circuit Gateways

More complex firewalls, called circuit gateways, reassemble and examine all the packets
in each TCP circuit. This is more expensive than simple packet filtering, and can also
provide added functionality, such as providing a virtual private network over the Internet
by doing encryption from firewall to firewall, and screening out black-listed Web sites or
newsgroups (there have been reports of Asian governments building national firewalls
for this purpose).

However, circuit-level protection can’t prevent attacks at the application level, such
as malicious code.

18.3.2.3 Application Relays

The third type of firewall is the application relay, which acts as a proxy for one or more
services, such as mail, telnet, and Web. It’s at this level that you can enforce rules such
as stripping out macros from incoming Word documents, and removing active content

Anderson-44022 Book February 20, 2001 12:40

376 Security Engineering: A Guide to Building Dependable Distributed Systems

from Web pages. These can provide very comprehensive protection against a wide range
of threats.

The downside is that application relays can turn out to be serious bottlenecks. They
can also get in the way of users who want to run the latest applications.

18.3.2.4 Ingress versus Egress Filtering

At present, almost all firewalls point outwards and try to keep bad things out, though
there are a few military systems that monitor outgoing traffic to ensure that nothing
classified goes out in the clear.

That said, some commercial organizations are starting to monitor outgoing traffic, too.
If companies whose machines get used in service denial attacks start getting sued (as
has been proposed in [771]), egress packet filtering might at least in principle be used to
detect and stop such attacks. Also, as there is a growing trend toward snitchware,

technology that collects and forwards information about an online subscriber without
their authorization. Software that “phones home,” ostensibly for copyright enforcement
and marketing purposes, can disclose highly sensitive material such as local hard disk
directories. I expect that prudent organizations will increasingly want to monitor and
control this kind of traffic, too.

18.3.2.5 Combinations

At really paranoid sites, multiple firewalls may be used. There may be a choke, or packet
filter, connecting the outside world to a screened subnet, also known as a demilitarized

zone (DMZ), which contains a number of application servers or proxies to filter mail and
other services. The DMZ may then be connected to the internal network via a further fil-
ter that does network address translation. Within the organization, there may be further
boundary control devices, including pumps to separate departments, or networks oper-
ating at different clearance levels to ensure that classified information doesn’t escape
either outward or downward (Figure 18.2).

Such elaborate installations can impose significant operational costs, as many routine
messages need to be inspected and passed by hand. This can get in the way so much
that people install unauthorized back doors, such as dial-up standalone machines, to
get their work done. And if your main controls are aimed at preventing information
leaking outward, there may be little to stop a virus getting in. Once in a place it wasn’t
expected, it can cause serious havoc. I’ll discuss this sort of problem in Section 18.4.6
later.

18.3.3 Strengths and Limitations
of Firewalls

Since firewalls do only a small number of things, it’s possible to make them very simple,
and to remove many of the complex components from the underlying operating system
(such as the RPC and sendmail facilities in Unix). This eliminates a lot of vulnerabilities

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 377

Mail
proxy

Filter

Web
server Mail

guard

Other
proxies

 . . .

Filter

Internet

Intranet

Classified
intranet

Figure 18.2 Multiple firewalls.

and sources of error. Organizations are also attracted by the idea of having only a small
number of boxes to manage, rather than having to do proper system administration for
a large, heterogeneous population of machines.

Conversely, the appeal of simplicity can be seductive and treacherous. A firewall can
only be as good as its configuration, and many organizations don’t learn enough to do this
properly. They hope that by getting the thing out of the box and plugged it in, the problem
will be solved. It won’t be. It may not require as much effort to manage a firewall as to
configure every machine on your network properly in the first place, but it still needs
some. In [203], there is a case study of how a firewall was deployed at Hanscom Air
Force Base. The work involved the following: surveying the user community to find
which network services were needed; devising a network security policy; using network
monitors to discover unexpected services that were in use; and lab testing prior to
installation. Once it was up and running, the problems included ongoing maintenance
(due to personnel turnover), the presence of (unmonitored) communications to other
military bases, and the presence of modem pools. Few nonmilitary organizations are
likely to take this much care.

A secondary concern, at least during the late 1990s, was that many of the prod-
ucts crowding into the market simply weren’t much good. The business had grown
so quickly, and so many vendors had climbed in, that the available expertise was spread
too thinly.

The big trade-off remains security versus performance. Do you install a simple fil-
tering router, which won’t need much maintenance, or do you go for a full-fledged set
of application relays on a DMZ, which not only will need constant reconfiguration—as
your users demand lots of new services that must pass through it—but will also act as
a bottleneck?

Anderson-44022 Book February 20, 2001 12:40

378 Security Engineering: A Guide to Building Dependable Distributed Systems

An example in Britain was the NHS Network, a private intranet intended for all health
service users (family doctors, hospitals, and clinics—a total of 11,000 organizations
employing about a million staff in total). Initially, this had a single firewall to the outside
world. The designers thought this would be enough, as they expected most traffic to be
local (as most of the previous data flows in the health service had been). What they didn’t
anticipate was that, as the Internet took off in the mid-1990’s, 40% of traffic at every level
became international. Doctors and nurses found it very convenient to consult medical
reference sites, most of which were in America. Trying to squeeze all this traffic through
a single orifice was unrealistic. Also, since almost all attacks on healthcare systems come
from people who’re already inside the system, it was unclear what this central firewall
was ever likely to achieve.

Another issue with firewalls (and boundary control devices in general) is that they
get in the way of what people want to do, and so ways are found round them. As most
firewalls will pass traffic that appears to be Web pages and requests (typically because
it’s for port 80), more and more applications use port 80, as it’s the way to get things to
work through the firewall. Where this isn’t possible, the solution is for whole services
to be reimplemented as Web services (webmail being a good example). These pressures
continually erode the effectiveness of firewalls, and bring to mind John Gilmore’s famous
saying that ’the Internet interprets censorship as damage, and routes around it.’

Finally, it’s worth going back down the list of top ten attacks and asking how many of
them a firewall can stop. Depending on how it’s configured, the realistic answer might
be about four.

18.3.4 Encryption
In the context of preventing network attacks, many people have been conditioned to
think of encryption. Certainly, it can sometimes be useful. For example, on the network
at the lab I work in, we use a product called secure shell (SSH), which provides encrypted
links between Unix and Windows hosts [817, 1, 597]. When I dial in from home, my traffic
is protected; and when I log on from the PC at my desk to another machine in the lab,
the password I use doesn’t go across the LAN in the clear.

Let’s stop and analyze what protection this gives me. Novices and policymakers think
in terms of wiretaps, but tapping a dial-up modem line is hard now that modems use
adaptive echo cancellation. It essentially involves the attacker inserting two back-to-
back modems into the link from my house to the lab. So this is a low-probability threat.
The risk of password sniffing on our LAN is much higher; it has happened in the past
to other departments. Thus, our network encryption is really providing a lower-cost
alternative to the use of handheld password generators.

Another approach is to do encryption and/or authentication at the IP layer, which is
to be provided in IPv6, and is available as a retrofit for the current IP protocol as IPsec.
An assessment of the protocol can be found in [290]; an implementation is described
in [782]. IPsec has the potential to stop some network attacks, and to be a useful compo-
nent in designing robust distributed systems, but it won’t be a panacea. Many machines
will have to connect to all comers, and if I can become the administrator of your Web
server by smashing the stack, then no amount of encryption or authentication is likely to

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 379

help you very much. Many other machines will be vulnerable to attacks from inside the
network, where computers have been suborned somehow or are operated by dishonest
insiders. There will still be problems such as service denial attacks. Also, deployment is
likely to take some years.

A third idea is the virtual private network (VPN). The idea here is that a number of
branches of a company, or a number of companies that trade with each other, arrange
for traffic between their sites to be encrypted at their firewalls. This way the Internet can
link up their local networks, but without their traffic being exposed to eavesdropping.
VPNs also don’t stop the bad guys trying to smash the stack of your Web server or sniff
passwords from your LAN, but for companies that might be the target of adversarial
interest by developed-country governments, it can reduce the exposure to interception
of international network traffic. (It must be said, though, that intercepting bulk packet
traffic is much harder than many encryption companies claim; and less well-funded
adversaries are likely to use different attacks.)

Encryption can also have a downside. One of the more obvious problems is that if
encrypted mail and Web pages can get through your firewall, then they can bring all sorts
of unpleasant things with them. This brings us to the problem of malicious code.

18.4 Trojans, Viruses, and Worms

If this book had been written even five years earlier, malicious code would have merited
its own chapter.

Computer security experts have long been aware of the threat from malicious code,
or malware. The first such programs were Trojan horses, named after the horse the
Greeks ostensibly left as a gift for the Trojans but that hid soldiers who subsequently
opened the gates of Troy to the Greek army. The use of the term for malicious code goes
back many years (see the discussion in [493, p. 7].)

There are also viruses and worms, which are self-propagating malicious programs,
and to which I have referred repeatedly in earlier chapters. There is debate about the
precise definitions of these three terms: the common usage is that a Trojan horse is a
program that does something malicious (such as capturing passwords) when run by
an unsuspecting user; a worm is something that replicates; and a virus is a worm that
replicates by attaching itself to other programs.

18.4.1 Early History of Malicious Code
Malware seems likely to appear whenever a large enough number of users share a com-
puting platform. It goes back at least to the early 1960s. The machines of that era were
slow, and their CPU cycles were carefully rationed among different groups of users. Be-
cause students were often at the tail of the queue—they invented tricks such as writing
computer games with a Trojan horse inside to check whether the program was running
as root, and if so to create an additional privileged account with a known password. By
the 1970s, large time-sharing systems at universities were the target of more and more
pranks involving Trojans. All sorts of tricks were developed.

Anderson-44022 Book February 20, 2001 12:40

380 Security Engineering: A Guide to Building Dependable Distributed Systems

In 1984, there appeared a classic paper by Thompson in which he showed that even
if the source code for a system were carefully inspected, and known to be free of vul-
nerabilities, a trapdoor could still be inserted. His trick was to build the trapdoor into
the compiler. If this recognized that it was compiling the login program, it would in-
sert a trapdoor such as a master password that would work on any account. Of course,
someone might try to stop this by examining the source code for the compiler, and then
compiling it again from scratch. So the next step is to see to it that, if the compiler rec-
ognizes that it’s compiling itself, it inserts the vulnerability even if it’s not present in the
source. So even if you can buy a system with verifiably secure software for the operating
system, applications and tools, the compiler binary can still contain a Trojan. The moral
is that you can’t trust a system you didn’t build completely yourself; vulnerabilities can
be inserted at any point in the tool chain [746].

Computer viruses also burst on the scene in 1984, thanks to the thesis work of Fred
Cohen. He performed a series of experiments with different operating systems that
showed how code could propagate itself from one machine to another, and (as mentioned
in Chapter 7) from one compartment of a multilevel system to another. This caused
alarm and consternation; and within about three years, the first real, live viruses began
to appear “in the wild.” Almost all of them were PC viruses, as DOS was the predominant
operating system. They spread from one user to another when users shared programs
on diskettes or via bulletin boards.

One of the more newsworthy exceptions was the Christmas Card virus, which spread
through IBM mainframes in 1987. Like the more recent Love Bug virus, it spread by
email, but that was ahead of its time. The next year brought the Internet worm, which
alerted the press and the general public to the problem.

18.4.2 The Internet Worm
The most famous case of a service denial attack was the Internet worm of November
1988 [263]. This was a program written by Robert Morris Jr which exploited a number
of vulnerabilities to spread from one machine to another. Some of these were general
(e.g., 432 common passwords were used in a guessing attack, and opportunistic use was
made of .rhosts files), and others were system specific (problems with sendmail,
and the fingerd bug mentioned in Section 4.4.1). The worm took steps to camouflage
itself; it was called sh and it encrypted its data strings (albeit with a Caesar cipher).

Morris claimed that this code was not a deliberate attack on the Internet, merely
an experiment to see whether his code could replicate from one machine to another.
It could. It also had a bug. It should have recognized already infected machines, and
not infected them again, but this feature didn’t work. The result was a huge volume of
communications traffic that completely clogged up the Internet.

Given that the Internet (or, more accurately, its predecessor the ARPANET) had been
designed to provide a very high degree of resilience against attacks—up to and including
a strategic nuclear strike—it was remarkable that a program written by a student could
disable it completely.

What’s less often remarked on is that the mess was cleaned up, and normal service was
restored within a day or two; that it only affected Berkeley Unix and its derivatives (which

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 381

may say something about the dangers of the creeping Microsoft monoculture today); and
that people who stayed calm and didn’t pull their network connection recovered more
quickly, because they could find out what was happening and get the fixes.

18.4.3 How Viruses and Worms Work
A virus or worm will typically have two components: a replication mechanism and a
payload. A worm simply makes a copy of itself somewhere else when it’s run, per-
haps by breaking into another system (as the Internet worm did) or by mailing itself
as an attachment to the addresses on the infected system’s address list (as a num-
ber of more recent worms have done). In the days of DOS viruses, the most common
way for a virus to replicate was to append itself to an executable file, then patch it-
self in, so that the execution path jumped to the virus code, then back to the original
program.

Among the simplest common viruses were those that infected .com type executables
under DOS. This file format always had code starting at address 0x100, so it was simple
for the virus to attach itself to the end of the file and replace the instruction at 0x100 with
a jump to its start address. Thus, the viral code would execute whenever the file was
run; it would typically look for other, uninfected, .com files and infect them. After the
virus had done its work, the missing instruction would be executed and control would
be returned to the host program.

Given a specific platform, such as DOS, there are usually additional tricks available
to the virus writer. For example, if the target system has a file called accounts.exe,
it is possible to introduce a file called accounts.com, which DOS will execute first.
This is called a companion virus. DOS viruses may also attack the boot sector or the
partition table; there are even printable viruses, all of whose opcodes are printable ASCII
characters, meaning they can even propagate on paper. A number of DOS viruses are
examined in detail in [512].

The second component of a virus is the payload. This will usually be activated by a
trigger, such as a date, and may then do one or more of a number of bad things:

■■ Make selective or random changes to the machine’s protection state (this is what
we worried about with multilevel secure systems).

■■ Make selective or random changes to user data (e.g., trash the disk).

■■ Lock the network (e.g., start replicating at maximum speed).

■■ Steal resources for some nefarious task (e.g., use the CPU for DES keysearch).

■■ Get your modem to phone a premium-rate number in order to make money from
you for a telephone scamster.

■■ Steal or even publish your data, including your crypto keys.

■■ Create a backdoor through which its creator can take over your system later,
perhaps to launch a distributed denial of service attack.

Until recently, the most damaging payloads were those that leave backdoors for later
use, and those that do their damage slowly and imperceptibly. An example of the second

Anderson-44022 Book February 20, 2001 12:40

382 Security Engineering: A Guide to Building Dependable Distributed Systems

are viruses that occasionally swap words in documents or blocks in files; by the time this
kind of damage comes to the administrator’s attention, all extant generations of backup
may be corrupted. Finally, on September 21st 2000 came a report of a virus with a payload
that had long been awaited. Swiss bank UBS warned its customers of a virus that, if it
infected their machines, would try to steal the passwords used to access its electronic
home banking system.

Various writers have also proposed “benevolent” payloads, such as to perform soft-
ware upgrades in a company, to enforce licensing terms, or even to roam the world
looking for cheap airline tickets (so-called intelligent agents)—though the idea that a
commercial Web site owner would enable alien code to execute on their Web server with
a view to driving down their prices was always somewhat of a pious hope.

18.4.4 The Arms Race
Once viruses and antivirus software companies had both appeared, there was an arms
race in which each tried to outwit the other.

As a virus will usually have some means of recognizing itself, so that it does not in-
fect the same file twice, some early antivirus software immunized files, by patching
in enough of the virus to fool it into thinking that the file was already infected. How-
ever, this is not efficient, and won’t work at all against a large virus population. The
next generation were scanners, programs that searched through the early part of each
executable file’s execution path for a string of bytes known to be from an identified
virus.

Virus writers responded in various ways, such as by delaying the entry point of the
virus in the host file code, thereby forcing scanners to check the entire filespace for
infection; and by specific counterattacks on popular antivirus programs. The most recent
evolution was polymorphic viruses. These change their code each time they replicate,
to make it harder to write effective scanners. Typically, they are encrypted, but have
a small header that contains code to decrypt them. With each replication, the virus
re-encrypts itself under a different key; it may also insert a few irrelevant operations
into the decryption code, or change the order of instructions where this doesn’t matter.
The encryption algorithm is often simple and easy to break, but even so is enough to
greatly slow down the scanner.

The other main technical approach to virus prevention is the checksummer. This is
a piece of software that keeps a list of all the authorized executables on the system,
together with checksums of the original versions of these files. However, one leading
commercial product merely calculates cyclic redundancy checks using two different
polynomials—a technique that could easily be defeated by a smart virus writer. Where
the checksummer does use a decent algorithm, the main countermeasure is stealth,

which in this context means that the virus watches out for operating system calls of the
kind used by the checksummer and hides itself whenever a check is being done.

18.4.5 Recent History
By the late 1980s and early 1990s, PC viruses had become such a problem that they
gave rise to a whole industry of antivirus software writers and consultants. Many people

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 383

thought that this wouldn’t last, as the move from DOS to “proper” operating systems
like Windows would solve the problem. Some of the antivirus pioneers even sold their
companies: one of them tells his story in [720].

But the spread of interpreted languages has provided even more fertile soil for mis-
chief. There was a brief flurry of publicity about bad Java applets in the late 1990s, as
people found ways of penetrating Java implementations in browsers; this raised secu-
rity awareness considerably [537]. But the main sources of infection at the start of the
twenty-first century are the macro languages in Microsoft products such as Word, and
the main transmission mechanism is the Internet. An industry analysis claims that the
Net “saved” the antivirus industry [423]. Another view is that it was never really under
threat, that users will always want to share code and data, and that, in the absence of
trustworthy computing platforms, we can expect malware to exploit whichever sharing
mechanisms they use. Still another view is that Microsoft is responsible, as it was reck-
less in incorporating such powerful scripting capabilities in applications such as word
processing. As they say, your mileage may vary.

In any case, Word viruses took over as the main source of infection in the United
States in 1996, and in other countries shortly afterward [57]. By 2000, macro viruses
accounted for almost all incidents of mobile malicious code. A typical macro virus is
a macro that copies itself into uninfected word processing documents on the victim’s
hard disk, and waits to be propagated as users share documents. Some variants also take
more active steps to replicate, such as by causing the infected document to be mailed
to people in the victim’s address book. (There’s a discussion of macro viruses in [128],
which also points out that stopping them is harder than was the case for DOS viruses, as
the Microsoft programming environment is now much less open, less well documented,
and complex.)

In passing, it’s worth noting that malicious data can also be a problem. An interesting
example is related by David Mazières and Frans Kaashoek, who operate an anonymous
remailer at MIT. This device decrypts incoming messages from anywhere on the Net,
uncompresses them, and acts on them. Someone sent them a series of 25 Mb messages
consisting of a single line of text repeated over and over; these compressed very well
and so were only small ciphertexts when input; but when uncompressed, they quickly
filled up the spool file and crashed the system [531]. There are also attacks on other
programs that do decompression such as MPEG decoders. However, the most egregious
cases involve not malicious data but malicious code.

18.4.6 Antivirus Measures
In theory, defense has become simple: if you filter out Microsoft executables at your
firewall, you can stop most of the bad things out there. In practice, life isn’t so simple.
A large Canadian company with 85,000 staff did just that, but many of their staff had
personal accounts at Web-based email services, so when the Love Bug virus came along
it got into the company as Web pages, without going through the mail filter at the firewall.
The company had configured its mail clients so that each of them had the entire corporate
directory in their personal address book. The result was meltdown as 85,000 mail clients
all tried to send an email to each of 85,000 addresses.

Anderson-44022 Book February 20, 2001 12:40

384 Security Engineering: A Guide to Building Dependable Distributed Systems

For a virus infestation to be self-sustaining, it needs to pass an epidemic threshold,

at which its rate of replication exceeds the rate at which it’s removed [452]. This de-
pends not just on the infectivity of the virus itself, but on the number (and proportion)
of connected machines that are vulnerable. Epidemic models from medicine can be
applied to some extent, though they are limited by the different topology of software
intercourse (sharing of software is highly localized), and so predict higher infection rates
than are actually observed. One medical lesson that does seem to apply is that the most
effective organizational countermeasures are centralized reporting, and response using
selective vaccination [453].

In the practical world, this comes down to managerial discipline. In the days of DOS-
based file viruses, this meant controlling all software loaded on the organization’s ma-
chines, and providing a central reporting point for all incidents. Now that viruses arrive
primarily in email attachments or as active content in Web pages, it may involve filtering
these things out at the firewall, and, seeing to it that users have prudent default settings
on their systems—such as disabling active content on browsers and macros in word
processing documents.

The nature of the things that users need to be trained to do, or to not do, will change
over time as systems and threats evolve. For example, in the mid-1990s, the main tasks
were to stop infections coming in via PCs used at home, both for work and for other
things (such as kids playing games), and to get staff to “sweep” all incoming email and
diskettes for viruses, using standalone scanning software. (An effective way of doing
the latter, adopted at a London law firm, was to reward whoever found a virus with a
box of chocolates—which would then be invoiced to the company that had sent the
infected file). Now that typical antivirus software includes automatic screening and cen-
tral reporting, the issues are more diffuse, such as training people not to open suspicious
email attachments, and having procedures to deal with infected backups. But as with
the organic kind of disease, prevention is better than cure; and software hygiene can
be integrated with controls on illegal software copying and unauthorized private use of
equipment.

18.5 Intrusion Detection

The typical antivirus software product is an example of an intrusion detection system.
In general, it’s a good idea to assume that attacks will happen, and it’s often cheaper
to prevent some attacks and detect the rest than it is to try to prevent everything. The
systems used to detect bad things happening are referred to generically as intrusion
detection systems. Other examples from earlier chapters are the application-specific
mechanisms for detecting mobile phone cloning and fraud by bank tellers. Certain
stock markets have installed systems to try to detect insider trading by looking for
suspicious patterns of activity. Although they are all performing very similar tasks, their
developers don’t talk to each other much, and we see the same old wheels being rein-
vented again and again.

Intrusion detection in corporate and government networks is a fast-growing field
of security research; for example, U.S. military funding grew from almost nothing to
millions in the last few years of the twentieth century. This growth has been prompted
by the realization that many systems make no effective use of log and audit data. In

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 385

the case of Sun’s operating system Solaris, for example, we found in 1996 that the audit
formats were not documented, and tools to read them were not available. The audit
facility seemed to have been installed to satisfy the formal checklist requirements of
government systems buyers, rather than to perform any useful function. There was the
hope that improving this would help system administrators detect attacks, whether after
the fact or even when they were still in progress.

18.5.1 Types of Intrusion Detection
The simplest intrusion detection methods involve sounding an alarm when a threshold
is passed. Three or more failed logons, a credit card expenditure of more than twice the
moving average of the last three months, or a mobile phone call lasting more than six
hours, might all flag the account in question for attention. More sophisticated systems
generally fall into two categories.

The first, misuse detection systems, use a model of the likely behavior of an intruder.
An example would be a banking system that alarms if a user draws the maximum per-
mitted amount from a cash machine on three successive days. Another would be a Unix
intrusion detection system that looked for a user’s account being taken over by someone
who used the system in a much more sophisticated way; thus an account whose user
previously used only simple commands would alarm if the log showed use of a compiler.
An alarm might also be triggered by specific actions such as an attempt to download the
password file. In general, most misuse detection systems, like antivirus scanners, look
for a signature, a known characteristic of some particular attack. One of the most gen-
eral misuse detection signatures is interest in a honey trap—something enticing left to
attract attention. I mentioned, for example, that some hospitals maintain dummy records
with celebrities’ names to entrap staff who don’t respect medical confidentiality.

The second type of intrusion detection strategy is anomaly detection. Such systems
attempt the much harder job of looking for anomalous patterns of behavior in the absence
of a clear model of the attacker’s modus operandi. The hope is to detect attacks that have
not been previously recognized and catalogued. Systems of this type often use artificial
intelligence techniques—neural networks are particularly fashionable.

The dividing line between misuse and anomaly detection is somewhat blurred. A par-
ticularly good borderline case is given by Benford’s law, which describes the distribution
of digits in random numbers. One might expect that numbers beginning with the digits
1, 2, . . . 9 would be equally common. But, in fact, numbers that come from random nat-
ural sources, so that their distribution is independent of the number system in which
they’re expressed, have a logarithmic distribution: about 30% of decimal numbers start
with 1. (In fact, all binary numbers start with 1, if initial zeroes are suppressed.) Crooked
clerks who think up numbers to cook the books, or even use random number generators
without knowing Benford’s law, are often caught using it [529].

18.5.2 General Limitations
of Intrusion Detection

Some intrusions are really obvious. If what you’re worried about is a script kiddie van-
dalizing your corporate Web site, then the obvious thing to do is to have a machine in

Anderson-44022 Book February 20, 2001 12:40

386 Security Engineering: A Guide to Building Dependable Distributed Systems

your operations room that fetches the page once a second, displays it, and rings a really
loud alarm when it changes. (Make sure you do this via an outside proxy; and don’t forget
that it’s not just your own systems at risk. The kiddie could replace your advertisers’
pictures with porn, for example, in which case you’d want to pull the links to them pretty
fast.)

In general however, intrusion detection is a difficult problem. Fred Cohen proved
that detecting viruses (in the sense of deciding whether a program is going to do some-
thing bad) is as hard as the halting problem, meaning we can’t ever expect a complete
solution [192].

Another fundamental limitation comes from the fact that there are basically two
different types of security failure: those that cause an error (which I defined in Section 6.2
to be an incorrect state) and those that don’t. An example of the former is a theft from
a bank that leaves traces on the audit trail. An example of the latter is an undetected
confidentiality failure caused by a radio microphone placed by a foreign intelligence
service in your room. The former can be detected (at least in principle, and forgetting
for now about the halting problem) by suitable processing of the data available to you.
But the latter can’t be. It’s a good idea to design systems so that as many failures as
possible fall into the former category, but it’s not always practicable [182].

There’s also the matter of definitions. Some intrusion detection systems are configured
to block any instances of suspicious behavior, and, in extreme cases, to take down the
affected systems. Apart from opening the door to service denial attacks, this turns the
intrusion detection system into an access control mechanism. As we’ve already seen,
access control is in general a hard problem, that incorporates all sorts of issues of
security policy which people often disagree on or simply get wrong. (The common
misconceptions that you can do access control with intrusion detection mechanisms
and that all intrusion detection can be done with neural networks together would imply
that some neural network bolted on to a LAN could be trained to enforce something like
Bell-LaPadula. This seems fatuous.)

I prefer to define an intrusion detection system as one that monitors the logs and
draws the attention of authority to suspicious occurrences. This is closer to the way
mobile phone operators work. It’s also critical in financial investigations; see [658] for a
discussion, by a special agent with the U.S. Internal Revenue Service, of what he looks
for when trying to trace hidden assets and income streams. A lot hangs on educated
suspicion, based on long experience. For example, a $25 utility bill may lead to a $250,000
second house hidden behind a nominee. Building an effective system means having the
people, and the machines, each do the part of the job they’re best at; and this means
getting the machine to do the preliminary filtering.

Then there’s the cost of false alarms. For example, I used to go to San Francisco every
May, and I got used to the fact that after I’d used my U.K. debit card in an ATM five days in
a row, it would stop working. Not only does this upset the customer, but villains quickly
learn to exploit it (as do the customers—I just started making sure I got enough dollars
out in the first five days to last me the whole trip). As in so many security engineering
problems, the trade-off between the fraud rate and the insult rate is the critical one;
And, as I noted in Chapter 13, “Biometrics,” Section 13.8, we can’t expect to improve
this trade-off simply by looking at lots of different indicators. In general, we must expect
that an opponent will always get past the threshold if he or she is patient enough, and
either does the attack very slowly or does a large number of small attacks.

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 387

A particularly intractable problem with commercial intrusion detection systems is
redlining. When insurance companies used claim statistics on postcodes to decide the
level of premiums to charge, it was found that many poor and minority areas suffered
high premiums or were excluded altogether from coverage. In a number of jurisdictions,
this is now illegal. But the problem is much broader. For example, Washington is pushing
airlines to bring in systems to profile passengers for terrorism risk, so they can be
subjected to more stringent security checks. The American-Arab Anti-Discrimination
Committee has reported many incidents where innocent passengers have been harassed
by airlines that have implemented some of these recommendations [516].

In general, if you build an intrusion detection system based on data-mining techniques,
you are at serious risk of discriminating. If you use neural network techniques, you’ll
have no way of explaining to a court what the rules underlying your decisions are, so
defending yourself could be hard. Opaque rules can also contravene European data
protection law, which entitles citizens to know the algorithms used to process their
personal data.

In general, most fielded intrusion detection systems use a number of different tech-
niques [661]. They tend to draw heavily on knowledge of the application, and to be
developed by slow evolution.

18.5.3 Specific Problems Detecting
Network Attacks

Turning now to the specific problem of detecting network intrusion, the problem is
much harder than, say, detecting mobile phone cloning, for a number of reasons. For
starters, the available products still don’t work very well, with success rates of perhaps
60–80% in laboratory tests and a high false alarm rate. For example, at the time of writing,
the U.S. Air Force has so far not detected an intrusion using the systems it has deployed
on local networks—although once one is detected by other means, the traces can be
found on the logs.

The reasons for the poor performance include the following, in no particular order.

■■ The Internet is a very “noisy” environment, not just at the level of content but

also at the packet level. A large amount of random crud arrives at any substantial
site, and enough of it can be interpreted as hostile to generate a significant false
alarm rate. A survey by Bellovin [89] reports that many bad packets result from
software bugs; others are the fault of out-of-date or corrupt DNS data; and some
are local packets that escaped, travelled the world, and returned.

■■ There are too few attacks. If there are ten real attacks per million
sessions—which is almost certainly an overestimate—then even if the system
has a false alarm rate as low as 0.1%, the ratio of false to real alarms will be 100. I
talked about similar problems with burglar alarms in Chapter 10; it’s also a well
known issue for medics running screening programs for diseases such as HIV
where the test error exceeds the organism’s prevalence in the population. In
general, where the signal is so far below the noise, an alarm system is likely to so
fatigue the guards that even the geuine alarms get missed.

Anderson-44022 Book February 20, 2001 12:40

388 Security Engineering: A Guide to Building Dependable Distributed Systems

■■ Many network attacks are specific to particular versions of software, so most of

them concern vulnerabilities in old versions. Thus, a general misuse detection
tool must have a large, and constantly changing, library of attack signatures.

■■ In many cases, commercial organizations appear to buy intrusion detection

systems simply to tick a “due diligence” box. This is done to satisfy insurers or
consultants.

■■ Encrypted traffic, such as SSL-encrypted Web sessions, can’t easily be

subjected to content analysis or filtered for malicious code. It’s theoretically
possible to stop the encryption at your firewall, or install a monitoring device
with which your users share their confidentiality keys. However, in practice, this
can be an absolute tar-pit [3].

■■ The issues raised in the context of firewalls largely apply to intrusion

detection, too. You can filter at the packet layer, which is fast but can be defeated
by packet fragmentation; you can reconstruct each session, which takes more
computation and so is not really suitable for network backbones; or you can
examine application data, which is more expensive still, and needs to be
constantly updated to cope with the arrival of new applications.

Although the USAF has so far not found an attack using local intrusion detection sys-
tems, attacks have been found using network statistics. Histograms are kept of packets
by source and destination address and by port. This is a powerful means of detecting
stealthy attacks, in which the opponent sends one or two packets per day to each of
maybe 100,000 hosts. Such attacks would probably never be found using local statis-
tics, and they’d be lost in the noise floor. But when data collection is done over a large
network, the suspect source addresses stick out like the proverbial sore thumb.

For all these reasons, it appears unlikely that a single-product solution will do the
trick. Future intrusion detection systems are likely to involve the coordination of a
number of monitoring mechanisms at different levels, both in the network (backbone,
LAN, individual machine) and in the protocol stack (packet, session, and application).
This doesn’t mean a clean partition in which packet filtering is done in the backbone
and application level stuff at proxies; bulk keyword searching might be done on the
backbone (as long as IPsec doesn’t cause all the traffic to vanish behind a fog of crypto).

18.6 Summary

Preventing and detecting attacks that are launched over networks, and particularly over
the Internet, is probably the most newsworthy aspect of security engineering. The prob-
lem is unlikely to be solved any time soon, as so many different kinds of vulnerability
contribute to the attacker’s toolkit. Ideally, people would run carefully written code on
secure platforms; in real life, this won’t always happen. But there is some hope that
firewalls can keep out the worst of the attacks, that careful configuration management
can block most of the rest, and that intrusion detection can catch most of the residue
that make it through.

Because hacking techniques depend so heavily on the opportunistic exploitation of
vulnerabilities introduced accidentally by the major software vendors, they are con-

Anderson-44022 Book February 20, 2001 12:40

Chapter 18: Network Attack and Defense 389

stantly changing. In this chapter, I concentrated on explaining the basic underlying sci-
ence (of which there’s surprisingly little). Although the Internet has connected hundreds
of millions of machines that are running insecure software, and often with no admin-
istration to speak of, and scripts to attack common software products have started to
be widely distributed, most of the bad things that happen are the same as those that
happened a generation ago. The one new thing to have emerged is the distributed denial-
of-service attack, which is made possible by the target system’s being connected to many
hackable machines. Despite all this, the Internet is not a disaster.

Perhaps a suitable analogy for the millions of insecure computers is given by the herds
of millions of gnu which once roamed the plains of Africa. The lions could make life hard
for any one gnu, but most of them survived for years by taking shelter in numbers. Things
were a bit more tense for the very young, the very old, and those who went for the lusher
grazing ahead of the herd. The Internet’s much the same. There are analogues of the
White Hunter, who’ll carefully stalk a prime trophy animal; so you need to take special
care if anyone might see you in these terms. (If you think that the alarms in the press
about ‘Evil Hackers Bringing Down the Internet’ are somehow equivalent to the hungry
peasant with a Kalashnikov, then it may well be worth bearing in mind the even greater
destruction done by colonial ranching companies with the capital to fence off the veld
in 100,000-acre lots.)

Of course, if you are going for the lusher grazing, or will have to protect high-profile
business-critical systems against network attack, then you should read all the hacker
Web pages, examine all the hacker software worth looking at, subscribe to the mailing
lists, read the advisories, and install the patches. Although hacking has, to a great extent,
been deskilled, a similar approach to defense cannot be expected to work more than
some of the time, and box-ticking driven by due-diligence concerns isn’t likely to achieve
more than a modest amount of operational risk reduction.

Research Problems

In the academic world, research is starting to center on intrusion detection. One in-
teresting theme is to make smarter antivirus products by exploiting analogies with bi-
ology. IBM is automating its techniques for identifying and culturing viruses, with a
view to shipping its corporate clients a complete “path lab” [452]; Stephanie Forrest
and colleagues at the University of New Mexico mimic the immune system by gener-
ating a lot of random “antibodies,” then removing those that try to “kill” the system’s
own tissue [302]. How appropriate are such biological analogies? How far can we take
them?

Further Reading

The classic on Internet security was written by Steve Bellovin and Bill Cheswick [94].
Another solid book is by Simson Garfinkel and Eugene Spafford [331], which is a good
reference for the detail of many of the network attacks and system administration
issues. An update on firewalls, and a survey of intrusion detection technology, has been

Anderson-44022 Book February 20, 2001 12:40

390 Security Engineering: A Guide to Building Dependable Distributed Systems

written recently by Terry Escamilla [275]. The seminal work on viruses is by Fred Co-
hen [192], though it was written before macro viruses became the main problem. Java
security is discussed by Gary McGraw and Ed Felten [537] and by Li Gong (its quondam
architect) [346]. A survey of security incidents on the Internet appears in a thesis by John
Howard [392]. Advisories from CERT [199] and bugtraq [144] are also essential reading
if you want to keep up with events; and hacker sites such as www.phrack.com and
(especially) www.rootshell.com bear watching.

