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Many networks are dynamic in that their topology changes rapidly – on the same time-scale as
the communications of interest between network nodes. Examples are the human contact networks
involved in the transmission of disease, ad-hoc radio networks between moving vehicles, and the
transactions between principals in a market. While we have good models of static networks, so
far these have been lacking for the dynamic case. In this paper we present a simple but powerful
model, the time-ordered graph, which reduces a dynamic network to a static network with directed
flows. This enables us to extend network properties such as vertex degree, closeness and betweenness
centrality metrics in a very natural way to the dynamic case. We then demonstrate how our new
model applies to a number of interesting edge cases, such as where the network connectivity depends
on a small number of highly mobile vertices or edges, and show that our new centrality definition
allows us to graph the evolution of connectivity. Finally we apply our model and techniques to two
real-world dynamic graphs of human contact networks and then discuss the implication of temporal
centrality metrics in the real-world.

INTRODUCTION

Many important phenomena depend on networks, from
the spread of disease in a population through systems of
metabolic processes to explicit networks such as the In-
ternet and the World Wide Web. Recent advances in the
theory of networks have provided us with the mathemat-
ical and computational tools to understand them bet-
ter [1]. Often the topology of a network has distinctive
features, such as vertex order distribution, clustering and
mean path length, which can be explained in terms of its
evolution and which in turn explain some aspects of its
behaviour. For example, networks that grow by prefer-
ential attachment may acquire a power-law distribution
of vertex order which in turn makes them robust against
random node failure – yet vulnerable to attacks targeted
on high-degree nodes [2]. Insights like this can inform
activities from public health to counterterrorism [3].
So most analysis and models have assumed that net-

works are static, typically represented in graph form as a
number of nodes connected by edges. However in real life
many networks are dynamic. New nodes are added to the
graph, some existing ones are removed, and edges come
and go too. While researchers have studied these mecha-
nisms as a means of explaining graph topology, the effects
of dynamic topology have generally been ignored when
considering how topology affects connectivity. Yet there
are important networks whose topology changes rapidly,
and its dynamic aspects have a significant effect on con-
nectivity:

• In epidemiology, some possibly infective contacts
between individuals are long-term (friends, family)
but many are fleeting (people in the street or the
market place). In medieval times, infectious dis-
ease may have been largely transmitted by a small
number of merchants travelling between the mar-
kets in otherwise largely isolated towns, while in

a modern urban society the super-spreading node
may be a school. When faced with an epidemic,
it’s important to know whether you should impose
travel restrictions or close schools.

• There is interest in ad-hoc networks radio networks
set up between moving vehicles to transmit infor-
mation about congestion and to provide emergency
communications. Here oncoming vehicles offer a
shorter interaction time, but more rapid informa-
tion dissemination, than vehicles going in the same
direction.

• In military communications systems, nodes that
act as local exchanges or that provide long-distance
backhaul may become conspicuous because of the
volumes of traffic they handle, even if the opponent
cannot decrypt and understand it, so they may be
targeted. So nodes may take turns; a new exchange
may be selected frequently and at random.

Thus far, the models and analytic tools used to charac-
terise dynamic network behaviour have been somewhat
limited. It’s simple and common to look at static snap-
shots of the network independently, and use the average
characteristics of all snapshots; for example, a possible
way of estimating a node’s topological importance over
time is to use the average value on the node’s centrality
over all static snapshots. Such dynamic analyses, how-
ever, are limited since they neglect temporal paths that
can cross over multiple temporal snapshots. In terms of
dynamic graph, paths between nodes frequently exist by
sewing by sewing partial paths between temporal snap-
shots. Tang et al [4] proposed an analysis method to iden-
tify topologically important nodes in dynamic networks
based on a temporal version of shortest path. They pro-
posed temporal versions of conventional centrality met-
rics (e.g. closeness and betweenness) based on shortest
paths in terms of dynamic networks.
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We extend their work into a more generalized model:
While they simply assumed the shortest path length in
the unweighted scenario, our definitions are different and
more general. Moreover, the centrality metrics defined
by [4] can sometimes be biased since the temporal paths
during a time interval alone are considered. We show
that the proposed centrality metrics lead to more accu-
rate results since the temporal paths are additionally con-
sidered, which can be ignored in the existing definitions.

RELATED WORK

Traditional network analyses and models have used
networks which are built as the results of aggregation of
interaction between nodes during a certain time interval.
But if the rate of topological change in a network is suffi-
ciently high, simple aggregation models may not lead to
a better understanding of the network. For example, ag-
gregate networks tend to result in underestimation of the
length of the path since they do not consider the time de-
lay for constructing paths in practice. Therefore a num-
ber of studies have recently been introduced to overcome
these limitations and provide a better understanding of
dynamic characteristics of real networks.

Kempe et al. [5] proposed a model of temporal net-
works as static graphs where every edge is labelled with
the time that the interaction took place. Ferreira [6] also
views a dynamic network as a sequence of static graphs
to define the fundamental networking problems such as
routing metrics, connectivity, and spanning trees in terms
of dynamic networks. Kostakos [7] independently pre-
sented the concept of temporal graphs to compute the
shortest path length between nodes in a network over
time. Tang et al. [8] tried to develop a more generalized
model by introducing a variable representing the speed
that a message travels. However, these models do not al-
low for analysis of graphs with different edge weights; we
should assume that all connections have the same prop-
agation delay.

More recently, Tang et al. [4] proposed temporal cen-
trality metrics based on temporal paths in order to effec-
tively measure the importance of a node in a dynamic
network. They demonstrated the feasibility of time-
aware central node identification methods with several
real datasets but the performance of the proposed met-
rics may be overestimated since a priori knowledge of fu-
ture contacts, which is not available in practice, is used
in the experiments.

Our work is an extension to these proposals, with a
focus on the design more generalized and simple defini-
tions. The proposed representation allows us a concise
and general formulation of temporal properties of a dy-
namic network.

MODEL

In this study, we assume that the time during which
a network is observed is finite (from the start time tstart
until the end time tend). Without loss of generality,
we set tstart = 0 and tend = T . A dynamic network

GD
0,T = (V,E0,T ) on a time interval [0, T ] consists of a

set of vertices V and a set of temporal edges E0,T where
a temporal edge (u, v)i,j ∈ E0,T exists between vertices u
and v on a time interval [i, j] such that i ≤ T and j ≥ 0.
In the dynamic network the set of vertices V is always
the same while the set of existing edges can be changed
over time.
Most characterisations of dynamic networks discretise

time by converting temporal information into a sequence
of n network “snapshots”. We use w to denote the time
duration of each snapshot (or time window size), T/n,
expressed in some time unit (e.g., seconds or hours). In
other words, a dynamic network can be represented as a
series of static graphs G1, G2, . . ., Gn. The notation Gt

(1 ≤ t ≤ n) represents the aggregate graph which consists
of a set of vertices V and a set of edges Et where an edge
(u, v) ∈ Et exists only if a temporal edge (u, v)i,j ∈ E0,T

exists between vertices u and v on a time interval [i, j]
such that i ≤ w·t and j > w·(t−1). In other words, Gt is
the tth temporal snapshot of the dynamic network GD

0,T

during tth time window. For simplicity, we here assume
that w = 1.
We introduce the following illustrative example. When

T = 3, the dynamic network with the set of temporal
edges in Table I can be represented as the aggregated
graph where all edges are aggregated into a single graph,
GS

1,3, or the series of static networks, G1, G2 and G3

as we explained. The visual representations are shown
in Figure 1. Unlike the aggregated view of the graph
GS

1,3 in Figure 1(a), the series of static networks, G1, G2

and G3 in Figure 1(b), shows the temporal relationships
effectively.

TABLE I. Example contacts in dynamic network.

Edge Time interval
(A, C) [1, 1]
(A, D) [2, 2]
(B, D) [2, 3]
(C, D) [3, 3]

Although this time series representation of the graph
(see Figure 1(b)) is intuitive, it is not easy to directly
analyse the temporal characteristics of a dynamic net-
work from snapshots of the network. For example, when
an edge (u, v) in a dynamic network represents the com-
munication channel u and v, we may want the problem
to find the shortest possible route from u to v. In order
to find a path from A to B, we have to wait at t = 0,
use the path from A to D at t = 1 and then use the path
from D to B at t = 2. However, how can we find this
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(a) Aggregated (b) Time-varying

FIG. 1. Comparison of (a) aggregated graph representation
and (b) time series representation of the contacts in Table I.

solution more generally?
We now construct the time-ordered graph G = (V , E)

as the asymmetric directed graph shown in Figure 2.
Without loss of generality, we assume that the message
transmission time is the same as w. In other words, at
each time step, we can deliver a message along a single
edge. It has a vertex vt for each v ∈ V and for each
t ∈ {0, 1, . . . , n}; it has edges from ut−1 to vt and vice
versa for an edge (u, v) ∈ E [t]; and it has edges from
vt−1 to vt for all v ∈ V and for all t ∈ {1, . . . , n}.

FIG. 2. The corresponding time-ordered graph G of Table I.
The path consisting of red dashed edges represents a temporal
shortest path from A to B on the time interval [0, 3].

The point of this construction is that for every path
between two nodes for given start and end times in a
dynamic network, there is exactly one path between the
corresponding vertices in the corresponding time-ordered
graph, which thus captures all the connectivity informa-
tion in the network. It has much finer granularity than
an existing model [7, 8] which assumes that a message
can be delivered to the nodes within h hops at the same
window. Under this assumption, the existing model can-
not allow to use different speed of transmission. To make
matters worse, if the message transmission time between
some nodes is greater than the time window size w, these
edges cannot be represented. Unlike the existing model,
our model can represent different speed of transmission
naturally. In order to show this, we introduce the follow-
ing example with different speed of transmission. From
Figure 3, when the transmission time between A and D
is ‘2’ and the other transmission time is ‘1’, G can be
constructed as the weighted graph shown in Figure 3.
Moreover, we can apply conventional graph theory al-

gorithms to analyse the temporal characteristics of the

FIG. 3. The corresponding time-ordered graph G of Table I
when the transmission time between A and D is ‘2’. The
red dashed edges with edge weight ‘2’ represents the paths
between A and D.

dynamic network. For example, given a time-ordered
graph G, a temporal shortest path from node u to node v
on a time interval [i, j] where 0 ≤ i < j ≤ n is defined as
any path p = 〈ui, . . . , vk〉 where i < k ≤ j with the path
length |p| = mini<l≤j δ(ui, vl) where δ(u, v) is the short-
est path distance from u to v in a static graph. Thus in
Figure 2 a temporal shortest path from A to B on the
time interval [0, 3] is clearly A0, A1, D2, and B3.

Given a time-ordered graph G = (V , E) constructed
from n static networks of a dynamic network GD

i,j =
(V,Ei,j), we can now offer definitions of centrality metrics
(degree, closeness, betweenness, and etc.) to capture the
temporal characteristics of dynamic networks as follows.

Temporal degree

The temporal degreeDi,j(v) for a node v ∈ V on a time
interval [i, j] where 0 ≤ i < j ≤ n is the total number of
inbound edges to and outbound edges from v on the time
interval [i, j], disregarding the ‘self-edges’ from vt−1 to vt
for all t ∈ {i + 1, . . . , j}. This is equal to

∑j
t=i 2 · Dt(v)

where Dt(v) is the degree of v in Gt.

The temporal degree can be normalised by dividing
each node degree by 2 · (|V | − 1) · m where m = j − i.
We note that a node’s normalized temporal degree is the
same as the average value of the node’s degree values in
the time series of graphs.

Given a time-ordered graph G derived from GD
i,j =

(V,Ei,j), the temporal degree values of all nodes in V
can be computed in O(|V | + |E|) time by checking the
nodes adjacent to each edge in E .

Temporal closeness

The temporal closeness Ci,j(v) for a node v ∈ V on
a time interval [i, j] where 0 ≤ i < j ≤ n is the sum
of inversed temporal shortest path distances to all other
nodes in V \v for each time interval in {[t, j] : i ≤ t < j}.
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We define the temporal closeness by considering m
time intervals {[t, j] : i ≤ t < j} where m = j − i by
varying the starting time t of each time interval from i
to j − 1 instead of one time interval [i, j] with the start-
ing time i. We note that the time interval [i, j] con-
tributes the temporal shortest paths only when the start-
ing time is i; the temporal shortest paths from node u to
node v mean the paths from node ui to node vk which
is the first node encountered along a path from ui to a
node in {vi+1, . . . , vj}. However, the temporal shortest

paths from u to v will change as time increases. There-
fore, in addition to the case with the starting time i, we
also need to consider the temporal shortest paths from
node u to node v on the additional m− 1 time intervals
{[t, j] : i < t < j} by varying t from i + 1 to j − 1 to
analyse dynamic characteristics of the temporal shortest
paths between u and v in a more reasonable manner.
An example in Figure 4 supports our design principle

clearly. In this example, if we consider the time interval
[i, j] alone, the temporal closeness values of all nodes are
identical since all temporal shortest paths are determined
during the time interval [0, 1] when the graph is fully
connected and the subsequent interactions are ignored
in computing the temporal closeness. This is not satis-
factory; we can see that the node A is highly connected
in the network compared to the other nodes over time.
A reasonable temporal centrality metric should capture
such dynamics over time. In the existing work [4], how-
ever, temporal metrics are defined with the time interval
[i, j] alone rather than all the time intervals {[t, j] : i ≤
t < j}.

FIG. 4. An example of time-ordered graph G to explain our
design principle for the temporal closeness and betweenness.
If we consider the time interval [i, j] only, the temporal short-
est paths between all nodes are determined during the time
interval [0, 1] alone regardless of the subsequent changes. It
is not desirable to analyse the dynamic characteristics of this
graph.

Formally, the temporal closeness for a node v is

Ci,j(v) =
∑

i≤t<j

∑

u∈V \v

1

∆t,j(v, u)

where ∆t,j(v, u) is the temporal shortest path distance
from v to u on a time interval [t, j]. If there is no tem-

poral path from v to u on a time interval [t, j], ∆t,j(v, u)
is defined as ∞. Also, we note that ∆t,j(v, u) is differ-
ent from ∆t,j(u, v) since the time-ordered graph G is a
directed graph.
In order to cover the cases when ∆(v, u) is infinite, we

use the slightly modified definition for closeness which is
similar to the definition which was proposed by Opsahl [9]
for disconnected graphs. Here we assume 1/∞ = 0.
The temporal closeness can be normalised by dividing

each closeness value by (|V | − 1) ·m where m = j − i.
Given a time-ordered graph G derived from GD

i,j =
(V,Ei,j), all-pair temporal shortest path distances can

be computed in O(m · |V |
2
) time by using dynamic pro-

gramming with the recurrence ∆t,j(v, u) = ∆t+1,j(k, u)
+ 1 if (v, k) ∈ E ; otherwise, ∆t,j(v, u) = 0. With the
computed temporal shortest path distances, the tempo-
ral closeness value Ci,j(v) of a node v in V can be com-
puted in O(m · |V |), and thus the total running time of
the temporal closeness computation for all nodes in V is
O(m · |V |2).

Temporal betweenness

The temporal betweenness Bi,j(v) for a node v ∈ V on
a time interval [i, j] where 0 ≤ i < j ≤ n is the sum of the
proportion of all the temporal shortest paths through the
vertex v to the total number of temporal shortest paths
over all pairs of nodes for each time interval in {[t, j] : i ≤
t < j}. For the same reason as the temporal closeness
definition, we considerm time intervals {[t, j] : i ≤ t < j}
where m = j − i instead of one time interval [i, j].
Let Sx,y(u, v) denote the set of temporal shortest paths

from source s to destination d on the time interval [x, y]
and Sx,y(s, d, v) the subset of Sx,y(s, d) consisting of
paths that have v in their interior. Then, the tempo-
ral betweenness for a node v is

Bi,j(v) =
∑

i≤t<j

∑

s6=v 6=d∈V
σt,j(s,d)>0

σt,j(s, d, v)

σt,j(s, d)

where σt,j(s, d) ≡ |St,j(s, d)| and σt,j(s, d, v) ≡
|St,j(s, d, v)|.
The temporal betweenness can be normalised by di-

viding each betweenness value by (V v
s · V v

d · m) where
m = j− i and V v

s , V
v
d ⊆ V \ v such that σt,j(s, d) > 0 for

each s ∈ V v
s , for each d ∈ V v

d and i ≤ t < j.
Given a time-ordered graph G derived from GD

i,j =
(V,Ei,j), the temporal betweenness values for all nodes
in V can be efficiently calculated by using dynamic
programming: For each node ν ∈ V , σt,j(s, d, ν) =
σt,j(s, ν) · σt,j(ν, d) if ∆t,j(s, d) = ∆t,j(s, ν) + ∆t,j(ν, d)
where s 6= d ∈ V and i ≤ t < j. Since G = (V , E)
is a directed acyclic graph, we compute ∆t,j(ν, v) and
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σt,j(ν, v) between ν ∈ V and v ∈ V where i ≤ t < j

in O(m3 · |V |
2
+ |E|) time. We note that the worst

case running time of this computation is O(m3 · |V |2)

since |E| is O(m · |V |
2
) when all nodes are always com-

pletely connected to all nodes at each time step t where
i ≤ t < j. With the computed ∆ and σ values, for all
nodes ν ∈ V , we can compute σt,j(s, d, ν) in O(m3 · |V |

3
)

time for i ≤ t < j and thus the total running time of the
temporal betweenness computation is O(m3 · |V |

3
). Also

this algorithm requires O(m2 · |V |
2
) space to store ∆ and

σ values.

Analysis of the example

We compute the proposed metrics for the time-ordered
graph in Figure 2. For comparison, we also compute each
node’s the centrality value in the aggregated graph (see
Figure 1 (a)) and the average centrality values in G1,
G2, and G3 (see Figure 1 (b)). The results are shown
in Table II. From this table, we can see that A plays
a relatively important role compared with C in the dy-
namic network while the network centrality values of A
and C for the aggregated representation and the average
centrality value in G1, G2, and G3 are exactly identical.
Intuitively, our metric seems reasonable as the edge (A,
D) alone exists at time t = 2.

TABLE II. Comparison with static and average centrality
metrics.

Node Type degree closeness betweenness

A
Temporal 0.222 0.426 0.133
Aggregated 0.667 0.750 0.000
Average 0.222 0.259 0.000

B
Temporal 0.222 0.370 0.000
Aggregated 0.333 0.600 0.000
Average 0.222 0.296 0.000

C
Temporal 0.222 0.370 0.000
Aggregated 0.667 0.750 0.000
Average 0.222 0.259 0.000

D
Temporal 0.444 0.648 0.750
Aggregated 1.000 1.000 0.667
Average 0.444 0.444 0.222

In the next two sections we describe how our temporal
metrics effectively work.

WHY ARE TEMPORAL METRICS REALLY
NECESSARY?

In order to test the effectiveness of the temporal met-
rics, we define a dynamic network model which we call
the Travelling Merchant Graph (TMG) to model disease
transmission in a traditional society where a few mer-
chants travel but most people stay in their villages. A

TMG G(η, ν, γ, p, b, d) is defined by six parameters, the
number η of merchants, the number ν of villages, the
number γ of residents in each village, and the other three
parameters p, b, and d to control the interconnections
between residents in a village: start with ν mutually ex-
clusive random graphs Gγ,p and η merchant nodes which
are only connected to a resident node in a random graph,
respectively; At every time step, the existing edges are
removed and/or the new edges are added as follows:

• Internal Movement: For each village Gi =
(V i, Ei) where i ∈ {1, · · · , ν}, an existing edge
e ∈ Ei will die with the probability d; while, a
non-existing edge ê /∈ Ev will appear with the prob-
ability b.

• External Movement: For each merchant node vj

where j ∈ {1, · · · , η}, an existing edge (vj , vold) will
die and then a new edge (vj , vnew) will appear with
the mobility probability probmobility(v

j) where vold

and vnew are resident nodes in villages, Gold and
Gnew(6= Gnew), respectively.

We use the probability probmobility(·) to differentiate
the mobility of each merchant. In other words, merchant
u moves with the probability probmobility(u). We here
set probmobility(u) ≥ 0.5. Each merchant moves with a
probability randomly assigned between 0.5 and 1.
We show that our temporal metrics only capture the

merchants’ long-distance mobility in TMG effectively. In
order to show this, we generate 100 travelling merchant

graphs with η = 1, ν = 5, γ = 6, p = 0.4, b = 0.1,
and d = 0.1 during 100 steps. We compute the mean
values of the temporal degree, closeness and betweenness
centrality metrics, respectively, for merchant and resi-
dent nodes. For comparison, we also compute the mean
values of the centrality metrics in the aggregated graph
and the average centrality metrics in the time series of
graphs, respectively. Figure 5 demonstrates these com-
parison results.

Agg. Ave. Tem.
0

0.5

1

 

 

Resident
Merchant

Agg. Ave. Tem.
0

0.5

1

 

 

Resident
Merchant

Agg. Ave. Tem.
0

0.5

1
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Merchant

(a) Degree (b) Closeness (c) Betweenness

FIG. 5. The comparison between the centrality of the resi-
dent and merchant nodes in the aggregated graph, the average
centrality of those in the time series of graphs, and the tem-

poral centrality of those for TMGs with η = 1, ν = 5, γ = 6,
p = 0.4, b = 0.1, and d = 0.1.

If we use each node’s average centrality values to mea-
sure its relative importance then as it is computed from
snapshots, the many temporal paths through the mer-
chant nodes are ignored. Even though the centrality
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values in the aggregated graph can distinguish merchant
node from residents nodes well, these centrality values
are highly overestimated by ignoring the frequency of
interactions (or contacts). In order to show this, we
analyse the relation between merchants’ centrality val-
ues and mobility by calculating the Pearson correlation
coefficients among them. The results are shown in Ta-
ble III.

TABLE III. The correlation analysis between merchants’ cen-
trality values and mobility for each metric type.

Type degree closeness betweenness
Temporal — 0.936 0.883
Aggregated 0.645 0.653 —
Average — 0.088 —

From the 100 TMGs in the experiments, in the ag-

gregated graphs, we can see that the merchant node is
always on all shortest paths between all pairs of resident
nodes belonging to different villages regardless of its mo-
bility. In other words, the merchant node’s betweenness
value (0.828) is always fixed in the aggregated graphs.
We note that the Pearson correlation is defined only if
the standard deviations are finite and both of them are
non-zero. Thus we cannot define the Pearson correlation
coefficients between the merchant nodes’ mobility and
their betweenness values in the aggregated graphs. For
the same reason, temporal degree, average degree and
average betweenness cannot be defined. In TMGs, the
standard deviation of a merchant node’s degree is zero
since the node is always connected to only one resident
node. Also, in the time series representation of a TMG,
a merchant node’s betweenness is zero in each snapshot
since the node is always a leaf node. This result im-
plies that it is difficult to identify the merchant nodes
with high mobility from their betweenness values in the
aggregated graph. In fact, we do not recommend the
degree and closeness metrics in aggregated graphs, too
since a merchant node will be connected to all resident
nodes even though it has low mobility if enough time
has elapsed. Unlike them, the merchant nodes’ temporal

closeness and betweenness values are highly correlated
with their mobility. This is natural; a node with high
mobility has high centrality in dynamic networks since
the merchant nodes’ other conditions are all identical.
We found that the merchant node with the highest

mobility can be identified with a high probability in a
TMG with multiple merchants by computing their tem-

poral closeness or betweenness values. We generated 100
TMGs with η = 4, ν = 5, γ = 6, p = 0.4, b = 0.1, and
d = 0.1. We tried to identify the merchant node with
the highest mobility by selecting the merchant node with
the highest centrality value for each metric. When the
merchant node with the highest centrality value is not

unique, we arbitrarily choose one of the nodes with the
same highest centrality value. Table IV shows the accu-
racy of such selection based on each centrality metric. In
this table, we can see that the high mobility nodes are
identified with high probability using temporal closeness
or betweenness.

TABLE IV. The detection accuracy of the highest mobility
merchant node.

Type degree closeness betweenness
Temporal 20% 72% 80%
Aggregated 47% 47% 50%
Average 20% 19% 20%

EFFECTIVENESS OF TEMPORAL
CENTRALITY ON REAL DYNAMIC

NETWORKS

In order to discuss the effectiveness of temporal
centrality metrics in the real-world, we perform tests
whether the computed temporal centrality metrics are re-
ally meaningful in practice. When the network topology
of nodes can change over time as new edges are created or
existing ones removed, can we use the temporal central-
ity computed from the contacts history between nodes to
estimate the importance of nodes (in terms of dynamic
networks) in future? As an extreme example, if the past
human contacts information is totally independent from
their future contacts behavior, it will be useless to pro-
vide network centrality computed from the past human
contacts information. In this section we discuss the im-
plication of temporal centrality metrics in the real-world.
For brevity we will only consider the temporal closeness
and betweenness here.

TABLE V. Experimental Datasets

CAMBRIDGE MIT
Number of nodes 12 100

Start Date 25 Jan ’05 26 Jul ’04
Duration 5 Days 280 days

Avg. contacts per day 846 231
Scanning Rate 2 min 5 min

We use two traces of real mobile device contacts carried
by humans: the Bluetooth trace of students at the Uni-
versity of Cambridge, Computer Laboratory [10] and the
Bluetooth trace of students and staffs at MIT [11]. We
shall refer to these as CAMBRIDGE and MIT, respec-
tively. For MIT, we use the human contacts trace dur-
ing the first week of the Fall semester (http://web.mit.
edu/registrar/www/calendar0405.html) representing
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a typical week of activity – we note that the only 85
nodes rather than 100 nodes appeared during this period.
Table V describes some characteristics of each dataset.
These datasets were constructed from mobile device co-
location where participants were given Bluetooth enabled
mobile devices to carry around. When two devices come
into transmission range of the Bluetooth radio, the device
logs the co-location with the other device.
We evaluate the effectiveness of the proposed centrality

metrics through the computation of ‘message propaga-
tion delay’ between nodes on these datasets – we use the
first half of the each human contacts trace for training
input (i.e. a known historical human contacts trace) and
the rest for testing samples (i.e. the future ‘unknown’ hu-
man contacts trace). Formally, given a human contacts
trace on a time interval [0, T ], we use the terms of train-
ing trace to indicate the first half of the human contacts
trace on the time interval [0, ⌊T/2⌋] and testing trace to
indicate the human contacts trace on the time interval
[τ, T ] where ⌊T/2⌋ < τ < T . In other words, we com-
pute the temporal centrality values of nodes in the dy-
namic graph GD

0,⌊T/2⌋ generated from training trace and
then test whether the computed centrality values are re-
ally meaningful with a testing trace on the time interval
[τ, T ]. For example, in CAMBRIDGE, we use the human
contact trace during the first 2.5 days for training trace

and that during the later 2.5 days for testing trace.
To measure the testing performance in a quantitative

manner, given a testing trace on the time interval [τ, T ]
to be tested, we formally define the following metrics:

• PD(v,u): The message propagation delay from
node v to node u in the testing trace. The mes-
sage propagation time from v to u specifies how
much time has elapsed from the time τ to the
time when v first meets u. If there is no con-
tact between v and u, PD(v,u) is defined as ∞.
We note that PD(v,u) on the time interval [τ, T ]
is different from the temporal shortest path dis-
tance ∆τ,T (v, u); PD(v,u) can be computed in a
totally independent way, regardless of the underly-
ing dynamic graph. We use PD(v,u) rather than
∆τ,T (v, u) to discuss the effects of the time window
size w later since ∆τ,T (v, u) is generally changed
with w.

• PD-from(v): The average message propagation de-
lay from node v to all the other nodes in testing

trace. This can be computed as follows:

PD-from(v) =
1

|V | − 1
·

∑

u∈V \v

1

PD(v,u)

Here we assume 1/∞ = 0. This metric is used to
quantify in practical terms how quickly the node

u can communicate with all other nodes at time
τ . We test whether PD-from(v) computed from a
testing trace increases with v’s temporal closeness
centrality computed from training trace.

• PD-sans(v): The average message propagation de-
lay between all nodes in the testing trace except the
contacts related to node v. This can be computed
as follows:

PD-sans(v) =
1

(|V | − 1)(|V | − 2)
·

∑

u,w∈V \v
u6=w

1

PD(u,w)

This metric is used to quantify in practical terms
how much communication speeds between all pairs
of nodes are affected by the node u. We test
whether PD-sans(v) computed from the testing

trace decreases with v’s temporal betweenness cen-
trality computed from training trace.

We first compute temporal closeness and betweenness
centrality of nodes in the dynamic graph GD

0,⌊T/2⌋ gen-
erated from the training trace of each dataset where w
is set to the finest window granularity, corresponding to
the scanning rate of the devices in each dataset (for ex-
ample, 120 seconds for CAMBRIDGE) and plot them in
Figure 6. The computed values are sorted in descending
order. This figure clearly shows that there is a small num-
ber of nodes which have extremely high temporal central-
ity, and a large number of nodes that have moderate or
low centrality values, across all experiments except for
the closeness in CAMBRIDGE. This implies that there
exist nodes having high temporal centrality in practice.

(CAM.)

1st 4th 7th 10th

0.10

0.20

0.30

1st 4th 7th 10th

0.10

0.20

0.30

(MIT)

1st 21th 41th 61th 81th

0.01

0.02

0.03

1st 21th 41th 61th 81th

0.10

0.20

0.30

(a) Closeness (b) Betweenness

FIG. 6. Temporal centrality distribution of nodes. The com-
puted values are sorted in descending order. For improved
visualisation, we use the same range on the y-axis except for
the closeness centrality distribution in MIT since the central-
ity values in MIT are totally different those in the other cases.

We then analyse the correlation between PD-from (or
PD-sans) and closeness (or betweenness) centrality over
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nodes as to how much useful centrality information is
provided. We show that greater temporal centrality in
training trace is positively related to PD-from or PD-sans
in testing trace. We calculate the Kendall tau (rank) cor-
relation coefficients [12] between the PD-from (or the re-
verse of the PD-sans) ranking of nodes in testing trace

on the time interval [τ, T ] and the closeness (or between-
ness) centrality ranking in the dynamic graph GD

0,⌊T/2⌋

generated from training trace. The correlation results by
varying τ every one hour from w·(⌊T/2⌋+1) are shown in
Figure 7. For comparison purpose, we also plot the cor-
relation coefficients between PD-from (or PD-sans) and
the closeness (or betweenness) centrality in the aggre-

gated graph and the average centrality metrics discussed
as above.
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FIG. 7. Kendall tau (rank) correlation coefficients PD-from

(or PD-sans) and closeness (or betweenness) centrality.

For CAMBRIDGE, the temporal centrality metrics are
clearly more effective than the centrality in the aggregated
graph and the average centrality metrics; the closeness

centrality ranking of nodes is particularly identical to
their PD-from ranking since w · (⌊T/2⌋+1)+16 hours as
τ . In MIT, however, the overall correlation coefficients
are relatively low (< 0.5). The temporal betweenness
centrality is slightly better than the other betweenness
centrality metrics while it fails to outperform those for
closeness centrality.
Interestingly, for CAMBRIDGE, we found the fluctua-

tion patterns when τ is around w ·(⌊T/2⌋+1)+13 hours.
We conjecture these fluctuation patterns may result from
the human contacts behaviour which is characterized by
strong periodicities driven by external calendar cycles.
For example, if the network topology during day-time is
totally different from that during night-time, the tempo-
ral centrality computed from the human contacts trace
during day-time is useless to estimate the temporal cen-
trality during night-time. Surely, the use of a long-term
training interval to compute temporal centrality will off-
set this trend. Instead, node centrality is also averaged
over time regardless of external calendar cycles. In fact,

the usefulness of temporal centrality is primarily deter-
mined by the choice of training trace. Thus, given a test-

ing trace, we need to choose training trace properly so
that the temporal centraly computed from training trace

can be used to estimate PD-from or PD-sans in testing

trace well. A reasonable approach for choosing training

trace is to use the periodic repeatability of human con-
tact patterns. For example, we can use a time interval in
the last day as training trace, which is the same as the
time interval of the given testing trace. We plan to study
this topic as part of the future work.
Although the estimation of average centrality metrics

is not as strong as that of temporal centrality metrics,
they have practically achieved reasonable results com-
pared with temporal centrality metrics except for be-
tweenness in MIT. Considering that the time and space
complexities of average centrality metrics are relatively
cheap, we recommend using average closeness centrality
as an alternative for computing closeness centrality in
dynamic networks.

(CAM.)

120 1800 3600 21600 86400
−0.2

0
0.2
0.4
0.6
0.8

1

Windows time

C
or

re
la

tio
n

 

 

Agg. Ave. Tem.

120 1800 3600 21600 86400
−0.2

0
0.2
0.4
0.6
0.8

1

Windows time

C
or

re
la

tio
n

 

 

Agg. Ave. Tem.

(MIT)

300 1800 3600 21600 86400
−0.2

0
0.2
0.4
0.6
0.8

1

Windows time

C
or

re
la

tio
n

 

 

Agg. Ave. Tem.

300 1800 3600 21600 86400
−0.2

0
0.2
0.4
0.6
0.8

1

Windows time

C
or

re
la

tio
n

 

 

Agg. Ave. Tem.

(a) Closeness (b) Betweenness

FIG. 8. Kendall tau (rank) correlation coefficients PD-from

(or PD-sans) and the closeness (or betweenness) centrality by
varying w while fixing τ = w · (⌊T/2⌋+ 1).

Finally, we discuss the effects of the time window size
w which is used for generating a dynamic graph GD

0,⌊T/2⌋

from training trace. As w increases, the temporal charac-
teristics of human contacts are generally underestimated
by ignoring time ordering and frequency of contacts
within a time window, but the cost of computing cen-
trality values decrease. In particular, the time complex-
ity of the temporal closeness and betweenness centrality
computation in a dynamic network GD

i,j = (V,Ei,j) can
be dramatically improved since m generally dominates
the overall time complexity of the centrality computa-
tion where m = j − i. If m can become a constant by
increasing w sufficiently, the total running time of both
the temporal closeness and betweenness computation for
all nodes in V is O(|V |2). Figures 8 shows the effects of
varying w from 2 minutes for CAMBRIDGE (or 5 min-
utes for MIT) to 24 hours. To demonstrate this we fix
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τ = w · (⌊T/2⌋+ 1).
Unlike our expectation, the Kendall tau (rank) corre-

lation coefficients between the PD-from (or the reverse
of the PD-sans) ranking of nodes and the closeness (or
betweenness) centrality ranking are almost stable with w
although the correlation coefficients between the PD-from
ranking of nodes and the temporal closeness central-
ity ranking for CAMBRIDGE slightly decreases with w.
This is an indication that a certain rough approximation
of node centrality is comparable to that in a fine-grained
dynamic network. Moreover, the average centrality met-
rics produced results similar to the temporal centrality
metrics as w increases. In fact, in these datasets, the
effects of temporal centrality computed from a histori-
cal human contact trace may seem rather limited to deal
with identifying the topologically important nodes in fu-
ture contacts since the network topology of a human con-
tact network changes rapidly over time. So we need to
develop techniques to further improve prediction accu-
racy of centrality.

CONCLUSION

We proposed new temporal centrality metrics based
on a simple but powerful model, the time-ordered graph,
which can reduce a dynamic network to a static network
with directed flows. The proposed centrality metrics are
designed to overcome the limitation of the existing met-
rics which require a priori knowledge of future contracts
which is not available in practice – the temporal central-
ity measure should be defined to represent an average
of all time aspects in order to avoid the bias observed
during a specific time interval.
We demonstrated the feasibility of the proposed tem-

poral centrality metrics by applying them to a number
of interesting edge cases, such as where the network con-
nectivity depends on a small number of highly mobile
vertices or edges. This intensive simulation results show
the concept of temporal centrality is necessary theoreti-
cally.
Finally we applied the proposed centrality and tech-

niques to two real-world dynamic graphs of human con-
tact networks and then discuss the implication of tempo-
ral centrality metrics in the real-world. However, in prac-
tice, the effects of temporal centrality derived from a his-
torical human contact trace may seem rather limited to

deal with identifying the topologically important nodes in
future contacts although temporal centrality still better
than the other static centrality metrics. We found that
it is very hard to estimate node centrality in the human
contact network since the network topology of a human
contact network changes rapidly over time. As part of
the future work, we plan to perform a more comprehen-
sive analysis of the choice of training samples to provide
better results of temporal centrality in future network
topology.
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