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CHAPTER

22

Management Issues

My own experience is that developers with a clean, expressive set

 of specific security requirements can build a very tight machine. They

 don’t have to be security gurus, but they have to understand what

 they’re trying to build and how it should work.

—RICK SMITH

One of the most important problems we face today, as techniques

 and systems become more and more pervasive, is the risk of missing

 that fine, human point that may well make the difference between

 success and failure, fair and unfair, right and wrong ... no IBM

 computer has an education in the humanities.

—TOM WATSON

Management is that for which there is no algorithm. Where there

 is an algorithm, it’s administration.

—ROGER NEEDHAM

22.1 Introduction

To this point, I’ve outlined a variety of security applications, techniques, and concerns.
If you’re a working IT manager, paid to build a secure system, you will by now be
looking for a systematic way to select protection aims and mechanisms. This brings us
to the topics of system engineering, risk analysis, and threat assessment.

The experience of the business schools is that management training should be con-
ducted largely through the study of case histories, stiffened with focused courses on
basic topics such as law, economics, and accounting. I have followed this model in this
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book. We went over the fundamentals, such as protocols, access control and crypto,
and then looked at a lot of different applications. Now we have to pull the threads to-
gether and discuss how a security engineering problem should be tackled. Organiza-
tional issues matter here as well as technical ones. It’s important to understand the
capabilities of the staff who’ll operate your control systems, such as guards and audi-
tors, to take account of the managerial and work-group pressures on them, and get
feedback from them as the system evolves.

22.2 Managing a Security Project

The core of the security project manager’s job is usually requirements engineer-
ing—figuring out what to protect and how. When doing this, it is critical to understand
the trade-off between risk and reward. Security people have a distinct tendency to fo-
cus too much on the former and neglect the latter. If the client has a turnover of $10
million, profits of $1 million and theft losses of $150,000, the security consultant may
make a pitch about “how to increase your profits by 15%” when often what’s really in
the shareholders’ interests is to double the turnover to $20 million, even if this triples
the losses to $450,000. Assuming the margins remain the same, the profit is now $1.85
million, an increase of 85%. The point is, don’t fall into the trap of believing that the
only possible response to a vulnerability is to fix it; and distrust the sort of consultant
who can talk only about “tightening security.” Often, it’s too tight already.

22.2.1 A Tale of Three Supermarkets

My thumbnail case history to illustrate this point concerns three supermarkets. Among
the large operational costs of running a supermarket are the salaries of the checkout
and security staff, and the stock shrinkage due to theft. Checkout delays are also a sig-
nificant source of aggravation: just cutting the number of staff isn’t an option, and
working them harder might mean more shrinkage. What might technology do to help?

One supermarket in South Africa decided to automate completely. All produce
would carry an RF tag, so that an entire shopping cart could be scanned automatically.
If this had worked, it would have killed both birds with one stone: the same RF tags
could have been used to make theft very much harder. Though there was a pilot, the
idea couldn’t compete with barcodes. Customers had to use a special cart, which was
large and ugly, and the RF tags also cost money.

Another supermarket in a European country believed that much of their losses were
due to a hard core of professional thieves, and thought of building a face recognition
system to alert the guards whenever one of these habitual villains came into a store.
But current technology can’t do that with low enough error rates to be useful. In the
end, the chosen route was civil recovery. When a shoplifter is caught, then even after
the local magistrates have fined him about the price of a lunch, the supermarket goes
after him in the civil courts for wasted time, lost earnings, attorneys’ fees and every-
thing else they can think of; and then armed with a judgment for about the price of a
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car they go round to his house and seize all his furniture. So far so good. But their
management got too focused on cutting losses rather than increasing sales. In the end,
they started losing market share and saw their stock price slide. Diverting effort into
looking for a security-based solution was probably a symptom of their decline rather
than a cause, but may well have contributed to it.

The supermarket that appears to be doing best is Waitrose in England which has in-
troduced self-service scanning. When you go into the store you swipe your store card
in a machine that dispenses a portable barcode scanner. You scan the goods as you pick
them off the shelves and put them into your shopping bag. At the checkout, you hand
back the scanner, get a printed list of everything you bought, swipe your credit card,
and head for the parking lot. This might seem rather risky—but then so did the self-
service supermarket back in the days when traditional grocers’ shops stocked all the
goods behind the counter, in fact, there are a number of subtle control mechanisms at
work. Limiting the service to store cardholders not only enables the managers to ex-
clude known shoplifters, but also helps market the store card. By having a card, you
acquire a trusted status visible to any neighbors you meet while shopping; conversely,
losing your card (whether by getting caught stealing, or, more likely, falling behind on
your payments) could be embarrassing. And trusting people removes much of the mo-
tive for cheating, as there’s no kudos in beating the system. Of course, should the
guard at the video screen see a customer lingering suspiciously near the racks of hun-
dred-pound wines, it can always be arranged for the system to “break” as the suspect
gets to the checkout, which gives the staff a non-confrontational way to recheck the
bag’s contents.

22.2.2 Balancing Risk and Reward

The purpose of business is profit, and profit is the reward for risk. Security mecha-
nisms can often make a significant difference to the risk/reward equation, but, ulti-
mately, it’s the duty of a company’s board of directors to get the balance right. In this
risk management task, they may draw on all sorts of advice—lawyers, actuaries, secu-
rity engineers—as well as listen to their marketing, operations, and financial teams. A
sound corporate risk management strategy involves much more than the operational
risks from attacks on information systems; there are non-IT operational risks (such as
fires and floods) as well as legal risks, exchange rate risks, political risks, and many
more. Company bosses need the big picture view to make sensible decisions, and a
difficult part of their task is to see to it that advisers from different disciplines work
together just closely enough, but no more.

Advisers need to understand each others’ roles, and work together rather than try to
undermine each other; but if the company boss doesn’t ask hard questions and stir the
cauldron a bit, then the advisers may cosy up with each other and entrench a consensus
view that steadily drifts away from reality. One of the most valuable tasks the security
engineer is called on to perform (and the one needing the most diplomatic skill) is
when you’re brought in to contribute, as an independent outsider, to challenging this
sort of groupthink. In fact, on perhaps a third of the consulting assignments I’ve done,
there’s at least one person at the client company who knows exactly what the problem
is and how to fix it—they just need a credible mercenary to beat up on the majority of
colleagues who’re averse to change. (This is one reason why famous consulting firms
that exude an air of quality and certainty often have a competitive advantage over spe-
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cialists; however, in the cases where specialists are needed, but the work is given to
“suits,” some fairly spectacular things can go wrong.)

Although the goals and management structures in government may be slightly dif-
ferent, exactly the same principles apply. Risk management is often harder because
people are more used to an approach based on compliance with a set of standards (such
as the Orange Book) rather than case-by-case requirements engineering. James Coyne
and Norman Kluksdahl present in [208] a classic case study of information security run
amok at NASA. There, the end of military involvement in Space Shuttle operations led
to a security team being set up at the Mission Control Center in Houston to fill the
vacuum left by the DoD’s departure. This team was given an ambitious charter; it be-
came independent of both the development and operations teams; its impositions be-
came increasingly unrelated to budget and operational constraints; and its relations
with the rest of the organization became increasingly adversarial. In the end, it had to
be overthrown or nothing would have got done.

22.2.3 Organizational Issues

Although this chapter is about management, I’m not so much concerned with how you
train and grade the guards as with how you build a usable system. However, you need
to understand the guards (and the auditors, and the checkout staff, and ...) or you won’t
be able to do even a halfway passable job. Many systems fail because their designers
make unrealistic assumptions about the ability, motivation, and discipline of the people
who will operate it. This isn’t just a matter of one-off analysis. For example, an ini-
tially low rate of fraud can cause people to get complacent and careless, until suddenly
things explode. Also, an externally induced change in the organization—such as a
merger or acquisition—can undermine control.

A surprising number of human frailties express themselves through the way people
behave in organizations, and for which you have to make allowance in your designs.

22.2.3.1 The Complacency Cycle and the Risk Thermostat

The effects of organizational complacency are well illustrated by phone fraud in the
United States. There is a seven-year cycle: in any one year there will be one of the
“Baby Bells” that is getting badly hurt. This causes its managers to hire experts, clean
things up, and get everything under control, at which point another of them becomes
the favored target. Over the next six years, things gradually slacken off, then it’s back
to square one.

Some interesting and relevant work has been done on how people manage their ex-
posure to risk. Adams studied the effect of mandatory seat belt laws, and established
that these laws don’t actually save lives: they just transfer casualties from vehicle oc-
cupants to pedestrians and cyclists. Seat belts make drivers feel safer, so they drive
faster to bring their perceived risk back up to its previous level. Adams calls this a risk
thermostat and the model is borne out in other applications too [8,9]. The complacency
cycle can be thought of as the risk thermostat’s corporate manifestation. No matter
how these phenomena are described, risk management remains an interactive business
that involves the operation of all sorts of feedback and compensating behavior. The
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resulting system may be stable, as with road traffic fatalities; or it may oscillate, as
with the Baby Bells.

The feedback mechanisms may provide a systemic limit on the performance of some
risk reduction systems. The incidence of attacks, or accidents, or whatever the organi-
zation is trying to prevent, will be reduced to the point at which “there are not enough
attacks”—as with the alarm systems described in Chapter 10 and the intrusion detec-
tion systems discussed in Section 18.5.3. Perhaps systems will always reach an equilib-
rium at which the sentries fall asleep, or real alarms are swamped by false ones, or
organizational budgets are eroded to (and past) the point of danger. It is not at all obvi-
ous how to use technology to shift this equilibrium point.

Risk management may be one of the world’s largest industries. It includes not just
security engineers but also fire and casualty services, insurers, the road safety industry
and much of the legal profession. Yet it is startling how little is really known about the
subject. Engineers, economists, actuaries and lawyers all come at the problem from
different directions, use different language and arrive at quite incompatible conclu-
sions. There are also strong cultural factors at work. For example, if we distinguish risk
as being where the odds are known but the outcome isn’t, from uncertainty where even
the odds are unknown, then most people appear to be more uncertainty-averse than
risk-averse. Where the odds are directly perceptible, a risk is often dealt with intui-
tively; but where the science is unknown or inconclusive, people are liberated to pro-
ject all sorts of fears and prejudices. So perhaps the best medicine is education.
Nonetheless, there are some specific things that the security engineer should either do,
or avoid.

22.2.3.2 Interaction with Reliability

A significant cause of poor internal control in organizations is that the systems are in-
sufficiently reliable, so lots of transactions are always going wrong and have to be cor-
rected manually. A high tolerance of chaos undermines control, as it creates a high
false alarm rate for many of the protection mechanisms. It also tempts staff: when they
see that errors aren’t spotted, they conclude that theft won’t be either.

A recurring theme is the correlation between quality and security. For example, it
has been shown that investment in software quality will reduce the incidence of com-
puter security problems, regardless of whether security was a target of the quality pro-
gram or not; and that the most effective quality measure from the security point of
view is the code walk-through [292]. It seems that the knowledge that one’s output will
be read and criticized has a salutary effect on many programmers.

Reliability can be one of your biggest selling points when trying to get a client’s
board of directors to agree on protective measures. Mistakes cost business a lot of
money; no one really understands what software does; if mistakes are found, the frauds
should be much more obvious; and all this can be communicated to top management
without embarrassment on either side.

22.2.3.3 Solving the Wrong Problem

Faced with an intractable problem, it is common for people to furiously attack a related
but easier one. We saw the effects of this in the public policy context in 21.2.5.3. Dis-
placement activity is also common in the private sector. An example comes from the
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smartcard industry. As discussed in Section 14.7.2, the difficulty of protecting smart-
cards against microprobing attacks has led the industry to concentrate on securing
other things instead. Even programming manuals are available only under nondisclo-
sure agreements (NDA) even plant visitors have to sign an NDA at reception; much
technical material isn’t available at all; and vendor facilities have almost nuclear-grade
physical security. Physical security overkill may impress naive customers—but almost
all of the real attacks on fielded smartcard systems used probing attacks rather than any
kind of inside information.

One organizational driver for this is an inability to deal with uncertainty. Managers
prefer approaches that can be implemented by box-ticking their way down a checklist,
and if an organization needs to deal with an ongoing risk, then some way must be
found to keep it as a process and to stop it turning into a due-diligence checklist item.
But there will be constant pressure to replace processes with checklists, as they de-
mand less management attention and effort. I noted in Section 7.6.6 that bureaucratic
guidelines for military systems had a strong tendency to displace critical thought; in-
stead of thinking through a system’s security requirements, designers just reached for
their checklists. Commercial systems are not much different.

Another organizational issue is that when exposures are politically sensitive, some
camouflage may be used. The classic example is the question of whether attacks come
from insiders or outsiders. We’ve seen in system after system that the insiders are the
main problem, whether because some of them are malicious or because most of them
are careless. But it’s imprudent to enforce controls too overtly against line managers
and IT staff, as this will alienate them and it’s often hard to get them to manage the
controls themselves. It’s also hard to sell a typical company’s board of directors on the
need for proper defenses against insider attack, as this means impugning the integrity
and reliability of the staff who report to them.

Thus, a security manager will often ask for, and get, lots of money to defend against
nonexistent “evil hackers” so that she can spend most of it on controls to manage the
real threat, namely dishonest or careless staff. I would be cautious about this strategy,
because protection mechanisms without clear justifications are likely to be eroded un-
der operational pressure—especially if they are seen as bureaucratic impositions. Of-
ten, it will take a certain amount of subtlety and negotiating skill, and controls will
have to be marketed as a way of reducing errors and protecting staff. Bank managers
love dual-control safe locks because they understand that it reduces the risk that their
families will be taken hostage; and requiring two signatures on transactions over a
certain limit means that there are extra shoulders to take the burden when something
goes wrong. But such consensus on the need for protective measures is usually lacking
elsewhere.

22.2.3.4 Incompetent or Inexperienced Security Managers

The situation is bad enough even with a competent IT security manager, who has to use
all sorts of guile to raise money for an activity that many of her management col-
leagues will tend to regard as a pure cost. In real life, the situation is even worse. In
many traditional companies, promotions to top management jobs are a matter of sen-
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iority and contacts; so if you want to get to be the CEO, you’ll have to spend maybe 20
or 30 years in the company without offending too many people. Being a security man-
ager is absolutely the last thing you want to do, as it will mean saying no to people all
the time. It’s hardly surprising that the average tenure of computer security managers
at U.S. government agencies is only seven months [384].

Things are complicated by reorganizations, in which central computer security de-
partments may be created and destroyed every few years, while the IT audit function
oscillates between the IT department, the internal audit department, and outside audi-
tors or consultants. The security function is even less likely than other business proc-
esses to receive sustained attention and analytic thought, and more likely to succumb to
a box-ticking due diligence mentality.

22.2.3.5 Moral Hazard

Companies often design systems so that the risk gets dumped on third parties. I men-
tioned in Chapter 21 that one of the attractions of digital signatures is that they can
allow the risk associated with a forged signature to be transferred from the relying
party to the alleged signer; thus, for example, transferring much of the risk associated
with online banking from the bank to the customer. I also discussed in Chapter 9, how
banks in some countries claimed that their automatic teller machines could not possibly
make mistakes, so that any disputes must be the customer’s fault.

In addition to the public policy aspects, and macroeconomic effects which I’ll come
to in Section 22.6, this has effects on the dumping company internally. It creates a
moral hazard, by removing the incentives for people to take care, and for the company
to invest in appropriate risk management techniques. Worse, a company whose policy
is to deny vigorously that some particular type of fraud is possible leaves itself open to
staff who defraud it knowing that a prosecution would be too embarrassing.

A slightly different kind of moral hazard is created when people who make system
design decisions are unlikely to be held accountable for their actions. There are many
possible causes. IT staff turnover could be high, with much reliance placed on contract
staff; a rising management star with whom nobody wishes to argue can be involved as
a user in the design team; or imminent business process re-engineering may turn loyal
staff into surreptitious job seekers. In any case, when you design a secure system, it’s a
good idea to look at your colleagues and ask yourself which of them will shoulder the
blame three years later when things go wrong. Another common incentive failure oc-
curs when one part of an organization takes the credit for the profit generated by some
process, while another part picks up the bills when things go wrong. Very often the
marketing department gets the praise for increased sales, while the finance department
is left with the bad debts. One might think that they would between them strike a bal-
ance between risk and reward, but this is very often not so. The case of the three su-
permarkets, mentioned above, is just one example of many. Companies may swing
wildly over a period of years from being risk takers to being excessively risk averse,
and (less often) back again. Adams documents in [9] that risk taking and risk aversion
are strongly associated with different personality types: the former tend to be individu-
alists, a company’s entrepreneurs, while the latter tend to be hierarchists. As the latter
usually come to dominate bureaucracies, it is not surprising that stable, established or-
ganizations tend to be much more risk averse than rational economics would dictate.
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Which tools and concepts can help cut through the fog of bureaucratic infighting and
determine a system’s protection requirements from first principles?

The rest of this chapter will be organized as follows. The next section will look at
basic methodological issues, such as top-down versus iterative development. After that,
I’ll explain how these apply to the specific problem of security requirements engi-
neering. Having set the scene, I’ll then return to risk management and look at technical
tools. Then I’ll talk about some of the economic issues, and finally discuss the things
that go wrong.

22.3 Methodology

Large software projects usually take longer than planned, cost more than budgeted for,
and have more bugs than expected. (This is sometimes known as “Cheops’ law” after
the builder of the Great Pyramid.) By the 1960s, people had started talking about the
software crisis, although the word crisis is hardly appropriate for a starte of affairs that
has now lasted (like computer insecurity) for two generations. Anyway, the term soft-
ware engineering was proposed by Brian Randell in 1968, and defined to be:

Software engineering is the establishment and use of sound engineering principles in
order to obtain economically software that is reliable and works efficiently on real
machines.

This encompassed the hope that the problem could be solved in the same way that
one builds ships and aircraft, with a proven scientific foundation and a set of design
rules [583]. Since then, much progress has been made, though never as much as one
would like.

Software engineering is about managing complexity, of which there are two kinds.
One is the incidental complexity involved in programming using inappropriate tools,
such as the assembly languages that were all that some early machines supported; pro-
gramming a modern application with a graphical user interface in such a language
would be impossibly tedious and error-prone. The other is the intrinsic complexity of
dealing with large and complex problems. A bank’s administrative systems, for exam-
ple, may involve tens of millions of lines of code and be too complex for any one per-
son to understand.

Incidental complexity is largely dealt with using technical tools. The most important
of these are high-level languages that hide much of the drudgery of dealing with ma-
chine-specific detail and enable the programmer to develop code at an appropriate
level of abstraction. There are also formal methods that enable particularly error-prone
design and programming tasks to be checked. The obvious security engineering exam-
ple is provided by the BAN logic for verifying cryptographic protocols, which I de-
scribed in Section 2.7.

Intrinsic complexity usually requires methodological tools that focus on dividing up
the problem into manageable subproblems, and restricting the extent to which these
subproblems can interact. Many tools are available on the market to help you do this;
which you use may well be a matter of your client’s policy. But there are basically two
approaches: top-down and iterative.
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22.3.1 Top-Down Design

The classical model of system development is the waterfall model developed by
Winston Royce in 1970 for the U.S. Air Force [653]. The idea is that you start from a
concise statement of the system’s requirements, elaborate this into a specification, im-
plement and test the system’s components, integrate and test them as a system, then
roll out the system for live operation (see Figure 22.1).

The idea is that the requirements are written in the user language, and the specifica-
tion in technical language; the unit testing checks the units against the specification,
and the system testing checks whether the requirements are met. At the first two steps
in this chain there is feedback on whether you’re building the right system (validation)
and at the next two on whether you’re building it right (verification). There may be
more than four steps; a common elaboration is to have a sequence of refinement steps
as the requirements are developed into ever more detailed specifications. But that’s by
the way.

The critical thing about the waterfall model is that development flows inexorably
downward from the first statement of the requirements to the deployment of the system
in the field. Although there is feedback from each stage to its predecessor, there is no
system-level feedback from, say, system testing to the requirements. Therein lie the
waterfall model’s strengths, and also its weaknesses.

The strengths of the waterfall model are that it compels early clarification of system
goals, architecture, and interfaces; it makes the project manager’s task easier by pro-
viding definite milestones to aim at; it increases cost transparency by enabling separate
charges to be made for each step, and for any late specification changes; and it’s com-
patible with a wide range of tools. Where it can be made to work, it’s usually the best
approach. The critical question is whether the requirements are known in detail in ad-
vance of any development or prototyping work. Sometimes, this is the case, such as
when writing a compiler or (in the security world) designing a tamper-resistant crypto-
graphic processor to implement a known transaction set and pass a certain level of
FIPS evaluation.

Figure 22.1 The waterfall model.
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But, often, the detailed requirements aren’t known in advance, so an iterative ap-
proach is necessary. There are quite a few possible reasons for this. Perhaps the re-
quirements aren’t understood yet by the customer, and a prototype is necessary to
clarify them rather than more discussion; the technology may be changing; the envi-
ronment could be changing; or a critical part of the project may involve the design of a
feature, such as a human-computer interface, which we know from experience will in-
volve several prototypes. (No matter how well engineered the internals of a protection
system, user interface problems are to be expected, and a pilot is advisable if the busi-
ness model allows it.)

22.3.2 Iterative Design

Many development projects just need an iterative approach to development, but the
iteration might never terminate satisfactorily. You could build a prototype for the client
who would play with it, then say, “No, I want it this way instead.” Then you would
build another one, come up against another objection, and never get anything fielded at
all.

There are two common ways to deal with this. The first is Barry Boehm’s spiral
model in which development proceeds through a pre-agreed number of iterations. In
each of these, a prototype is built and tested, with managers being able to evaluate the
risk at each stage so they can decide whether to proceed with the next iteration or to
cut their losses. It’s called the spiral model because the process is often depicted as
shown in Figure 22.2.

Figure 22.2 The spiral model.
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The other common model is evolutionary development. This has become increas-
ingly important, because it’s how the packaged software industry works, and has re-
cently been popularized under the name of “extreme programming.” Unfortunately, it
tends to be neglected in academic courses and books on software engineering.

As the world moves from bespoke software developed in formal projects to pack-
ages whose owners put in more and more features to appeal to ever wider markets,
software products become so complex that they cannot be economically developed (or
redeveloped) from scratch. Indeed, Microsoft has tried more than once to rewrite
Word, but gave up each time. (Perhaps the best book on the evolutionary development
model is by Steve Maguire, a Microsoft manager [521].) In this view of the world,
products aren’t the result of a project but of a process, which involves continually
modifying previous versions.

The critical point about evolutionary development is that just as each generation of a
biological species has to be viable for the species to continue, so each generation of an
evolving software product must be viable. The core technology for this is regression
testing. At regular intervals—perhaps once a day—all the teams working on different
features of a product upgrade check in their code, and it gets compiled to a build,
which is then tested automatically against a large set of inputs. This step checks
whether things that used to work still work, and that old bugs that had been removed
haven’t found their way back in. Of course, it’s always possible that a build just
doesn’t work at all, and there may be quite long disruptions as a major change is im-
plemented. Thus, we consider the current “generation” of the product to be the last
build that worked. One way or another, we always have viable code that we can ship
for beta testing or whatever our next stage is.

The technology of testing is probably the biggest practical improvement in software
engineering during the 1990s. Before automated regression tests were widely used,
engineers reckoned that 15% of bug fixes either introduced new bugs or reintroduced
old ones [7]. But automated testing is less useful for the security engineer, for a num-
ber of reasons. Security properties are more diverse, and security engineers are fewer
in number, so we haven’t had as much investment in tools; moreover, the available
tools are much more fragmentary and primitive than those available to the general
software engineering community. Many of the flaws that we want to find and
fix—such as stack overflow attacks—tend to appear in new features rather than to re-
appear in old ones. Specific types of attack are also often easier to fix using specific
remedies, such as the canary mentioned in Section 4.4.5 in the case of stack overflow.
And many security flaws result from subtle bugs that cross a system’s levels of ab-
straction, such as when specification errors interact with user interface features—the
sort of problem for which it’s difficult to devise automated tests. But regression testing
is still important. It finds functionality that has been affected by a change but that is
not fully understood.

Much the same applies to safety-critical systems, which are similar in many respects
to secure systems. Some useful lessons can be drawn from them.

22.3.3 Lessons from Safety-Critical Systems

Critical computer systems can be defined as those in which a certain class of failure is
to be avoided if at all possible. Depending on the class of failure, they may be safety-
critical, business-critical, security-critical, critical to the environment, or whatever.
Obvious examples of the safety-critical variety include flight controls and automatic
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braking systems. There is a large literature on this subject, and a lot of methodologies
have been developed to help manage risk intelligently.

Overall, these methodologies tend to follow the waterfall view of the universe. The
usual procedure is to identify hazards and assess risks; decide on a strategy to cope
with them (avoidance, constraint, redundancy...); trace the hazards down to hardware
and software components which are thereby identified as critical; identify the operator
procedures which are also critical and study the various applied psychology and opera-
tions research issues; and, finally, decide on a test plan and get on with the task of
testing. The outcome of the testing is not just a system you’re confident to run live, but
a safety case to justify running it.

The safety case will provide the evidence, if something does go wrong that you ex-
ercised due care; it will typically consist of the hazard analysis, the documentation
linking this to component reliability and human factor issues, and the results of tests
(both at component and system levels), which show that the required failure rates have
been achieved.

The ideal system design avoids hazards entirely. A good illustration comes from the
motor-reversing circuits shown in Figure 22.3. In the first design on the left, a double-
pole, double-throw switch reverses the current passing from the battery through the
motor. However, this has a potential problem: if only one of the two poles of the
switch moves, the battery will be short-circuited, and a fire may result. The solution is
to exchange the battery and the motor, as in the modified circuit on the right. There, a
switch failure will short out only the motor, not the battery.

Hazard elimination is useful in security engineering, too. Recall the example in the
early design of SWIFT in Section 9.3.1: there, the keys used to authenticate transac-
tions between one bank and another were exchanged between the banks directly. In this
way, SWIFT personnel and systems did not have the means to forge a valid transac-
tion, and had to be trusted much less. In general, minimizing the trusted computing
base is, to a large extent, an exercise in hazard elimination.

Once as many hazards as possible have been eliminated, the next step is to identify
failures that could cause accidents. A common top-down way of identifying the things
that can go wrong is to conduct a fault tree analysis: a tree is constructed whose root is
the undesired behavior and whose successive nodes are its possible causes. This carries
over in a fairly obvious way to security engineering; Figure 22.4 shows an example of
a fault tree (or threat tree, as it’s often called in security engineering) for fraud from
automatic teller machines. Threat trees are standard practice in the U.S. Department of
Defense.

Figure 22.3 Hazard elimination in motor-reversing circuit.
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Figure 22.4 A threat tree.

Here’s how a threat tree works. You start out from each undesirable outcome, and
work backward by writing down each possible immediate cause. You work backward
from there by adding each precursor condition, and recurse. Then, working around the
tree’s leaves, you should be able to see each combination of technical attack, opera-
tional blunder, physical penetration, and so on, which would break security. Note that
this can amount to an attack manual for the system, and so it may be highly classified.
Nonetheless, it must exist; and if the system evaluators or accreditors can find any sig-
nificant other attacks, they may fail the product.

Returning to the safety-critical world, another way of doing the hazard analysis is
failure modes and effects analysis (FMEA), pioneered by NASA, which is bottom-up
rather than top-down. This involves tracing the consequences of a failure of each of the
system’s components all the way up to the effect on the mission. This is often useful in
security engineering; it’s a good idea to have a clear picture of the consequences of a
failure of any one of your protection mechanisms.

A really thorough analysis of failure modes may combine top-down and bottom-up
approaches, and there are various ways to manage the resulting mass of data. For ex-
ample, you can construct a matrix of hazards against safety mechanisms; and if the
safety policy is that each serious hazard must be constrained by at least two independ-
ent mechanisms, then you can check that there are two entries in each of the relevant
columns. In this way, you can demonstrate graphically that, in the presence of the haz-
ard in question, at least two failures will be required to cause an accident. This meth-
odology goes across unchanged to security engineering, as I’ll explain below.

The safety-critical systems community has a number of techniques for dealing with
failure and error rates. Component failure rates can be measured statistically; the num-
ber of bugs in software can be tracked by various techniques, which I describe in the
next chapter; and there is a lot of experience with the probability of operator error at
different types of activity. The telegraphic summary is that the error rate depends on
the familiarity and complexity of the task, the amount of pressure, and the number of
cues to success. Where a task is simple, performed often, and there are strong cues to
success, the error rate might be 1 in 100,000 operations. However, when a task is per-
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formed for the first time in a confusing environment, where logical thought is required
and the operator is under pressure, then the odds can be against successful completion
of the task. Designers of systems such as nuclear reactors are well aware (at least since
Three Mile Island) that it’s when the red lights go on for the first time that the worst
mistakes get made. Similarly, in security systems, it tends to be the important but
rarely performed tasks, such as getting senior managers to set up master crypto keys,
where the most egregious blunders can be expected.

A classic example was when a bank wanted to create a set of three master keys to
link its cash machine network to VISA, and needed a terminal to drive the security
module [20]. A contractor obligingly lent the bank a laptop PC, together with software
that emulated the desired type of terminal. With this, the senior managers duly created
the required keys and sent them off to VISA. None of them realized that most PC ter-
minal emulation software packages can be set to log all the transactions passing
through, and this is precisely what the contractor did. He captured the clear zone key as
it was created, and later used it to decrypt the bank’s master PIN key.

When doing security requirements engineering, special care has to be paid to the
skill level of the staff who will perform each critical task, and estimates must be made
of the likelihood of error. Be cautious here: an airplane designer can rely on a fairly
predictable skill level from anyone with a commercial pilot’s licence; and a shipbuilder
knows the strengths and weaknesses of a sailor in the Navy. The security engineer usu-
ally has no such luck. Many security failures remind me of a remark made by a ranger
at Yosemite National Park about the devices provided to prevent bears from getting at
campers’ food supplies: that it’s an impossible engineering problem because the
brighter bears are smarter than the dumber campers.

There are also testability issues. A common problem with redundant systems is fault
masking: if the output is determined by majority voting between three processors, and
one of them fails, then the system will continue to work fine, but its safety margin will
have been eroded. Several airplane crashes have resulted from flying a craft with one
of the navigation or flight control systems dysfunctional; although pilots may be intel-
lectually aware that their display is unreliable, their reaction under pressure will be to
rely on it rather than to check it against other instruments. A further failure can then be
catastrophic. A security example is the ATM problem mentioned in Section 9.4.2
where a bank issued all its customers with the same PIN. In that cases, the fault got
masked by the handling precautions applied to PINs, which ensured that even the
bank’s security and audit staff get hold of only the PIN mailer for their own personal
account. Clearly, some thought is needed about how faults can remain visible and test-
able even when their immediate effects are masked.

The final lesson from safety-critical systems is that, although there will be a safety
requirements specification and safety test criteria as part of the safety case for the law-
yers or regulators, it is good practice to integrate the safety case with the general re-
quirements and test documentation. If the safety case is a separate set of documents,
then it’s easy to sideline it after approval is obtained, and thus fail to maintain it prop-
erly. If, on the other hand, it’s an integral part of the product’s management, not only
will it likely get upgraded as the product is, but it is also much more likely to be taken
heed of by experts from other domains who might be designing features with possible
interactions.
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As a general rule, safety must be built in as a system is developed, not retrofitted;
the same goes for security. The main difference is in the failure model. Rather than the
effects of random failure, we’re dealing with a hostile opponent who can cause some of
the components of our system to fail at the least convenient time and in the most dam-
aging way possible. In effect, our task is to program a computer which gives answers
that are subtly and maliciously wrong at the most inconvenient moment possible. This
has been referred to as “programming Satan’s computer,” to distinguish it from the
more common problem of programming Murphy’s [48]. This provides an insight into
one of the reasons security engineering is hard: Satan’s computer is hard to test [682].

22.4 Security Requirements Engineering

In Chapter 7, I defined a security policy model to be a concise statement of the protec-
tion properties that a system, or generic type of system, must have. This was driven by
the threat model, which I introduced in Chapter 3 and sets out the attacks and failures
with which the system should be able to cope. The security policy model is further re-
fined into a security target, which is a more detailed description of the protection
mechanisms that a specific implementation provides, and how they relate to the control
objectives. The security target forms the basis for testing and evaluation of a product.
The policy model and the target together may be referred to loosely as the security
policy, and the process of developing a security policy and obtaining agreement on it
from the system owner is the process of requirements engineering.

Requirements engineering is the most critical task of managing secure system devel-
opment, and is also the hardest. It’s where “the rubber hits the road.” It’s at the inter-
section of the most difficult technical issues, the most acute bureaucratic power
struggles, and the most determined efforts at blame avoidance. The available method-
ologies have consistently lagged behind those available to the rest of the system engi-
neering world [77].

In my view, the critical insight is that the process of generating a security policy and
a security target is not essentially different from the process of producing code. De-
pending on the application, you can use a top-down, waterfall approach, a limited it-
erative approach such as the spiral model, or a continuing iterative process such as the
evolutionary model. In each case, we need to build in the means to manage risk and
have the risk assessment drive the policy development or evolution.

Risk management must also continue once the system has been deployed. It’s noto-
riously hard to tell what a new invention will be useful for; attacks are just as difficult
to predict. Phone companies spent the 1970s figuring out ways to stop phone phreaks
getting free calls; as it turned out, the real problem was crooks abusing the system to
make calls that would be hard for the police to trace. Some people worried about
crooks hacking bank smartcards, and put in lots of back-end protection for the early
electronic purses; but the attacks came on pay-TV smartcards instead. Other people
worried about the security of credit card numbers used in transactions on the Net, only
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to learn that the real threat to online businesses was not hackers but refunds and dis-
putes. As they say, “The street finds its own uses for things.” The point is, don’t expect
to get the protection requirements completely right at the first attempt. In many cases,
the policy and mechanisms were set when a system was first built, then undermined as
the environment (and the product) evolved, but the protection did not. There must be a
mechanism for monitoring, and acting on, changing protection requirements.

In this section, unlike in the previous one, I’ll describe the case of evolving protec-
tion requirements first, as it is both more common and easier to manage.

22.4.1 Managing Requirements Evolution

Most of the time, security requirements have to be tweaked for one of four reasons.
First, we might need to fix a bug. Second, we may want to improve the system; as we
get more experience of the kind of attacks that happen, we will want to tune the con-
trols. Third, we may want to deal with an evolving environment; for example, if an
online ordering system that was previously limited to a handful of major suppliers is to
be extended to all of a firm’s suppliers, then the controls are likely to need review. Fi-
nally, there may be a change in the organization; firms are continually undergoing
mergers, management buyouts, business process re-engineering, you name it.

Of course, any of these could result in such a radical change that we would consider
it to be a redevelopment rather than an evolution. The dividing line between the two is
inevitably vague, but as I’ll explain, many evolutionary ideas carry over into one-off
projects.

22.4.1.1 Bug Fixing

Most security enhancements fall into the category of bug fixes or product tuning. For-
tunately, they are usually the easiest to cope with, provided that the right structures are
in place.

If you sell software that’s at all security-critical—and most anything that can com-
municate with the outside world is potentially so—then the day will come when you
get a report of a vulnerability or even an attack. In the old days, vendors could take
months to respond with a new version of the product, or would do nothing at all but
issue a warning (or even a denial). Public expectations are higher nowadays. With
mass-market products, you can expect press publicity; even with more specialized
products there is a risk of press coverage. In short, you had better have a plan to deal
with it. This will have four components: monitoring, repair, distribution, and reassur-
ance.

First, be sure to learn of vulnerabilities as soon as you can—and preferably no later
than the press (or the bad guys) do. Listening to customers is important; provide an
efficient way for them to report bugs. Consider offering an incentive, such as points
toward their next upgrade, lottery tickets, or even cash. Then make someone responsi-
ble for monitoring these reports, and for reading relevant mailing lists, such as bugtraq
[144].

Second, be able to respond appropriately. In organizations such as banks with time-
critical processing requirements, it’s normal for one member of each product team to
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be on call via a pager in case something goes wrong at three in the morning and needs
fixing immediately. This might be excessive for a small software company, but you
should still know the home phone numbers of people whose skills might be needed
urgently; see to it that there’s more than one person with each critical skill; and have
supporting procedures. For example, emergency bug fixes must be run through the full
testing process as soon as possible. And the documentation must be upgraded, too; this
is critical for evolutionary security improvement, but too often ignored. When the bug
fix changes the requirements, you need to fix their documentation, too (and perhaps
your threat model, and even top-level risk management paperwork).

Third, be able to distribute the patch or other repair to your customers rapidly. This
must be planned in advance. The details will vary depending on your product: if you
have only a few dozen customers running your code on servers at data centers that are
staffed 24/7, then it may be very easy, but if it involves patching millions of copies of
consumer software a lot of care will be needed. It may seem simple enough to get your
customers to visit your Web site once a day and check for upgrades, but to do this
safely there are a surprising number of details you have to get right. Will the server be
able to cope with the increased traffic? Have you given your customers adequate legal
notification that their software might be changed under their feet? Could an oppo-
nent—such as a disgruntled former employee—hijack the mechanism and trash your
entire customer base?

Finally, have a plan for dealing with the press. The last thing you need is for dozens
of journalists to call and be stonewalled by your switchboard operator as you struggle
madly to fix the bug. Have a set of press release templates for incidents of varying se-
verity on file in your word processor, so that all you have to do is pick the right one
and fill in the details. The release can then ship as soon as the first (or perhaps the sec-
ond) journalist calls.

22.4.1.2 Control Tuning and Corporate Governance

The main process by which organizations such as banks develop their bookkeeping
systems and their other internal controls is by tuning them in the light of experience. A
bank with 25,000 employees might be firing about one staff member a day for petty
theft or embezzlement, and, traditionally, it’s the internal audit department that will
review the loss reports and recommend system changes to reduce the incidence of the
most common scams. I gave some examples in 9.2.3.

It is important for the security engineer to have some knowledge of internal controls.
There is a shortage of books on this subject: audit is largely learned on the job, but
know-how is also available via courses and through accounting standards documents.
There is a survey of internal audit standards by Janet Colbert and Paul Bowen [193];
the most influential is the Risk Management Framework from the Committee of Spon-
soring Organizations (COSO), a group of U.S. accounting and auditing bodies [196].
This is the yardstick by which your system will be judged if it’s used in the U.S. public
sector or by companies quoted on U.S. equity markets.

The COSO model is targeted not just on internal control but on the reliability of fi-
nancial reporting and compliance with laws and regulations. Its basic process is an
evolutionary cycle: in a given environment, you assess the risks, design controls,
monitor their performance, and then go round the loop again. COSO emphasizes soft
aspects of corporate culture more than hard system design issues, and may be seen as a
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guide to managing and documenting the process by which your system evolves. How-
ever, its core consists of the internal control procedures whereby senior management
check that their control policies are being implemented and achieving their objectives,
and modify them if not.

It is also worthwhile for the security engineer to learn about the more specialized in-
formation systems audit function. The IS auditor should not have line responsibility for
security, or there will be a conflict of interest: she should not be asked to assess sys-
tems that she designed or for whose operation she is responsible. Rather, she should
monitor how things are done, look into things that are substandard or appear suspi-
cious, and suggest improvements. Much of the technical material is common with se-
curity engineering; if you have read and understood this book so far, you should be
able to get well over 50% on the Certified Information Systems Auditor (CISA) exam
(details are at [408]). The Information Systems Audit and Control Association, which
administers CISA, has a refinement of COSO known as the Control OBjectives for In-
formation and related Technology (COBIT) which is more attuned to IT needs, more
international, and more accessible than COSO (it can be downloaded from [407]).
COBIT covers much more than engineering requirements, as issues such as personnel
management, change control, and project management are also the internal auditor’s
staples. (The working security engineer needs to be familiar with this material, too.)

These general standards are necessarily rather vague. They provide the engineer
with a context and a top-level checklist, but rarely offer any clear guidance on specific
measures. For example, COBIT 5.19 states: ‘Regarding malicious software, such as
computer viruses or trojan horses, management should establish a framework of ade-
quate preventative, detective and corrective control measures’. More concrete stan-
dards are often developed to apply such general principles to specific application areas.
For example, when I was working in banking security in the 1980s, I relied on guide-
lines from the Bank for International Settlements [71]. Where such standards exist,
they are often the ultimate fulcrum of security evolutionary activity.

It’s a good idea to have high-bandwidth channels of communication to your client’s
internal audit department. But it’s not a good idea to rely on them completely for feed-
back. Usually, the people who know most about how to break the system are the staff
who actually use it. Ask them.

22.4.1.3 Evolving Environments and the Tragedy of the Commons

I’ve described a number of systems that broke after their environment changed, and
where appropriate changes to the protection mechanisms were skimped, avoided, or
forgotten. Card-and-PIN technology that worked fine with ATMs became vulnerable to
false terminal attacks when used with retail point-of-sale terminals; smartcards that
were perfectly good for managing credit card numbers and PINs in point-of-sale appli-
cations were inadequate to keep out the pay-TV pirates; and even very basic mecha-
nisms such as authentication protocols had to be redesigned for systems where the
main threat was internal rather than external. Military environments evolve particularly
rapidly in wartime, as attack and defense co-evolve; R.V. Jones attributes much of the
Allies’ relative success in electronic warfare in World War II to the fact that the Ger-
mans used a rigid top-down development methodology, which resulted in beautifully
engineered equipment, but six months too late [424].
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Changes in the application aren’t the only problem. An operating system upgrade
may introduce a whole new set of bugs into the underlying platform. Changes of scale
as business become ‘e-’ can alter the cost-benefit equation, as can the fact that many
system users may be in foreign jurisdictions with ineffective computer crime laws (or
none at all). Also, attacks that were known by experts for many years to be possible,
but that were ignored because they didn’t happen in practice, can suddenly start to
happen—a good example being the distributed denial-of-service attack.

When you own the system, things are merely difficult. You manage risk by ensuring
that someone in the organization has responsibility for maintaining its security rating;
this may involve an annual review driven by your internal audit bureaucracy, or be an
aspect of change control. Maintaining organizational memory is hard, thanks to the
high turnover of both IT and security staff, which I discussed in Section 22.2.3.4.

That’s tough enough, but where many of the really intractable problems arise is
where no one owns the system at all. The responsibility for established standards, such
as how ATMs check PINs, is diffuse. In that case, the company that developed most of
the standards (IBM) lost its leading industry role; its successor, Microsoft, is not inter-
ested in that market. Cryptographic equipment is sold by a number of specialist firms.
Although VISA used to certify equipment, it stopped in about 1990, and Mastercard
never got into that business, so there was no one person or company in charge. Each
player—equipment maker or bank—had a motive to push the boundaries just a little bit
further, in the expectation that when eventually something did go wrong, it would hap-
pen to somebody else.

This problem is familiar to economists, who call it the tragedy of the commons
[507]. If a hundred peasants are allowed to graze their sheep on the village common,
where the grass is finite, then whenever another sheep is added, its owner gets almost
the full benefit while the other ninety-nine suffer only a very small disadvantage from
the decline in the quality of the grazing. Thus, they aren’t motivated to object, but
rather to add another sheep of their own to get as much of the declining resource as
they can. The result is a dustbowl. In the world of agriculture, this problem is tackled
by community mechanisms, such as getting the parish council set up a grazing control
committee. The cowherds in tenth-century Saxon villages were already well-enough
organized to do this; one of the challenges facing us is to devise some mix of technical
and organizational controls that will give us a comparable result, only on the larger
scale of the Internet.

22.4.1.4 Organizational Change

Organizational issues are not just a contributory factor in security failure, as with the
loss of organizational memory and the lack of community mechanisms for monitoring
changing threat environments. They can often be a primary cause.

In the early 1990s, management fashion was for business process re-engineering,
which often meant using changes in business computer systems to compel changes in
the way people worked. There have been some well-documented cases in which poorly
designed systems interacted with resentful staff to cause a disaster.



508

Perhaps the best known case is that of the London Ambulance Service. It had a
manual system whereby incoming emergency calls were written on forms and sent by
conveyer belt to three controllers, who allocated vehicles and passed the form to a ra-
dio dispatcher. Industrial relations were poor, and there was pressure to cut costs; man-
agers got the idea of solving all these problems by automating. Lots of things went
wrong, and as the system was phased in it became clear that it couldn’t cope with es-
tablished working practices, such as crew taking the “wrong” ambulance (staff had fa-
vorite vehicles with senior members getting the better ones). Managers didn’t want to
know, and forced the new system into use on October 26, 1992, by reorganizing the
room so that controllers and dispatchers had to use terminals rather than paper.

The result was meltdown. A number of positive feedback loops became established
that caused the system progressively to lose track of vehicles. Exception messages
built up, scrolled off screen, and were lost; incidents were held as allocators searched
for vehicles; as the response time stretched, callbacks from patients increased (the av-
erage ring time for emergency callers went over 10 minutes); as congestion increased,
the ambulance crews got frustrated, pressed the wrong buttons on their new data termi-
nals, couldn’t get a result, tried calling on the voice channel, and increased the conges-
tion; as more and more crews fell back on the methods they understood, they took the
wrong vehicles even more often; many vehicles were sent to an emergency, or none;
and, finally, the whole service collapsed. It’s estimated that perhaps 20 people died as
a direct result of not getting paramedic assistance in time. By the afternoon on the
26th, it was the major news item; the government intervened, and on the following day
the system was switched back to semi-manual operation.

This is only one of many such disasters, but it’s particularly valuable to the engineer
as it was extremely well documented by the resulting public inquiry [723]. In my own
professional experience, I’ve seen cases where similar attempts to force through
changes in corporate culture by replacing computer systems have so undermined mo-
rale that honesty became a concern. (Much of my consulting work has had to do with
environments placed under stress by corporate reorganization or even by national po-
litical crises.)

In extreme cases, a step change in the environment brought on by a savage corporate
restructuring will be more like a one-off project than an evolutionary change. There
will often be some useful base to fall back on, such as an understanding of external
threats; but the internal threat environment may become radically different. This is
particularly clear in banking. Fifteen years ago, bank branches were run by avuncular
managers and staffed by respectable middle-aged ladies who expected to spend their
entire working lives there. Today, the managers have been replaced by product sales
specialists, and the teller staff are youngsters earning near-minimum wages who turn
over every year or so. It’s simply not the same business.

22.4.2 Managing Project Requirements

This brings us to the much more difficult problem of how to do security requirements
engineering for a one-off project. The most common example might be building an e-
commerce application from scratch, whether for a start-up or for an established busi-
ness that wants to create new distribution channels.
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Building things from scratch is an accident-prone business and there are many cases
in which large software projects crashed and burned. The problems appear to be very
much the same whether the disaster is a matter of safety, of security, or of the software
simply never working at all; so security people can learn a lot from the general soft-
ware engineering literature.

The classic study of large software project disasters was written by Bill Curtis, Herb
Krasner, and Neil Iscoe [212]. They found that failure to understand the requirements
was mostly to blame: a thin spread of application domain knowledge typically led to
fluctuating and conflicting requirements, which in turn caused a breakdown in commu-
nication. They suggested that the solution was to find an “exceptional designer” with a
thorough understanding of the problem who would assume overall responsibility.

The millennium bug gives another useful data point, which many writers on software
engineering still have to digest. If one accepts that many large commercial and gov-
ernment systems actually needed extensive repair work, and the conventional wisdom
that a significant proportion of large development projects are late or never delivered at
all, then the prediction of widespread chaos at the end of 1999 was inescapable. But it
didn’t happen. Certainly, the risks to the systems used by small and medium-sized
firms were overstated [37]; nevertheless, the systems of some large firms whose op-
erations are critical to the economy, such as banks and utilities, did need substantial
fixing. But despite the conventional wisdom, there have been no reports of significant
organizations going belly-up. This appears to support Curtis, Krasner, and Iscoe’s the-
sis. The requirement for Y2K bug fixes was known completely: “I want this system to
keep on working, just as it is now, through into 2000 and beyond.”

As a requirements engineer, you need to acquire a comprehensive knowledge of the
application, as well as of the people who might attack it and the kind of tools they
might use. If domain experts are available, well and good. When interviewing them, try
to distinguish tasks that are done for a purpose, as opposed to those that are just “how
things are done around here.” Probe constantly for the reasons why things are done as
they are, and be sensitive to after-the-fact rationalizations. Focus particularly on the
things that are going to change. For example, if dealing with customer complaints de-
pends on whether the customer is presentable or not, and your job is to take this busi-
ness online, then ask the experts what alternative controls might work in a world where
it’s much harder to tell a customer’s age, sex, and social class. (This should probably
have been done round about the time of the civil rights movement in the 1960s, but
better late than never.)

When tackling a new application, dig into its history. I’ve tried to do that throughout
this book, and bring out the way in which problems repeat. To find out what electronic
banking will be like in the twenty-first century, it’s a good idea to know what it was
like in the nineteenth; human nature doesn’t change much. Historical parallels will also
make it much easier for you to sell your proposal to your client’s board of directors.

You will likely find that a security requirements specification for a new project re-
quires iteration, so it’s more likely to be spiral model than waterfall model. In the first
pass, you’ll describe the new application and how it differs from any existing applica-
tions for which loss histories are available, set out a model of the risks as you perceive
them, and draft a security policy (I’ll have more to say on risk analysis and manage-
ment in the next section). In the second pass, you might get comments from your cli-
ent’s middle management and internal auditors, while meantime you scour the
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literature—from internal audit guidelines to books like this one—for useful checklist
items and ideas you can recycle. The outcome of this will be a revised, more quantita-
tive risk model, a security policy, and a security target that sketches how the policy
will be implemented in real life. It will also set out how a system can be evaluated
against these criteria. In the third pass, the documentation will circulate to a wider
group of people, including your client’s senior management, external auditors, insurers
and perhaps an external evaluator.

22.4.3 Parallelizing the Process

Often, there isn’t an expert to hand, as when something is being done for the first time,
or when you’re building a competitor to a proprietary system whose owners won’t
share their loss history with you. An interesting question to ask is how to brainstorm a
specification just by trying to think of all the things that could go wrong. The common
industry practice is to hire a single consulting firm to draw up a security target; but the
experience I described in Section 10.3.3 suggested that using several experts in parallel
would be better. People with backgrounds in crypto, access control, internal audit, and
so on will see a problem from different angles. There is also an interesting analogy
with the world of software testing, where it is more cost-efficient to test in parallel
rather than in series: each tester has a different focus in the testing space, and will find
some subset of flaws faster than the others. (I’ll introduce a more quantitative model of
this in the next chapter.)

The preceding motivated me to carry out an experiment in 1999 to see if a high-
quality requirements specification could be assembled quickly by getting a lot of dif-
ferent people to contribute drafts. The idea was that most of the possible attacks would
be considered in at least one of them. Thus, in one of our university exam questions, I
asked what would be a suitable security policy for a company planning to bid for the
license for a public lottery.

The results are described in [36]. The model answer was that attackers, possibly in
cahoots with insiders, would try to place bets once the result of the draw was known,
whether by altering bet records or forging tickets; or would place bets without paying
for them; or would operate bogus vending stations that would pay small claims but dis-
appear if a client won a big prize. The security policy that follows logically from this is
that bets should be registered online with a server that is secured prior to the draw,
both against tampering and against the extraction of sufficient information to forge a
winning ticket; that there should be credit limits for genuine vendors; and that there
should be ways of identifying bogus vendors.

Valuable and original contributions from the students came at a number of levels,
including policy goal statements, discussions of particular attacks, and arguments
about the merits of particular protection mechanisms. At the policy level, there were a
number of shrewd observations on the need to maintain public confidence and the
threat from senior managers in the operating company. At the level of technical detail,
one student discussed threats from refund mechanisms, while another looked at attacks
on secure time mechanisms, and observed that the use of the radio time signal in lot-
tery terminals would be vulnerable to jamming (this turned out to be a real vulnerabil-
ity in one existing lottery).

The students also came up with quite a number of routine checklist items of the kind
that designers often overlook, such as “tickets must be associated with a particular
draw.” This might seem obvious, but a protocol design that used a purchase date, ticket
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serial number, and server-supplied random challenge as input to a MAC computation
might appear plausible to a superficial inspection. Experienced designers appreciate
the value of such checklists.

The lesson to be learned from this case study is that requirements engineering, like
software testing, is susceptible to a useful degree of parallelization. If your target sys-
tem is something novel, then instead of paying a single consultant to think about it for
twenty days, consider getting fifteen people with diverse backgrounds to think about it
for a day each, then have a consultant spend a week hammering their ideas into a single
coherent document.

22.5 Risk Management

Whether a threat model and security policy evolve or are developed in a one-off pro-
ject, at their heart lie business decisions about priorities—how much to spend on pro-
tection against what. This is risk management, and it should be done within the broader
framework of managing non-IT risks.

A number of firms sell methodologies for this. Some come in the form of do-it-
yourself PC software, while others are part of a package of consultancy services.
Which one you use may be determined by your client’s policies; for example, if you’re
selling anything to the U.K. government, you’re likely to have to use a system called
CRAMM. The basic purpose of such systems is to prioritize security expenditure,
while at the same time provide a financial case for it to senior management.

The most common technique is to calculate the annual loss expectancy (ALE) for
each possible loss scenario. This is the expected loss multiplied by the number of inci-
dents expected in an average year. A typical ALE analysis for a bank’s computer sys-
tems might consist of several hundred entries, including items such as those listed in
Figure 22.5. Note that accurate figures are likely to be available for common losses
(such as “Teller takes cash”), while for the uncommon, high-risk losses such as a large
funds transfer fraud, the incidence is largely guesswork.

Figure 22.5 Example of Annual Loss Expectancies.

ALEs have been standardized by NIST as the technique to use in U.S. government
procurements [602]. But in real life, the process of producing such a table is all too
often just iterative guesswork. The consultant lists all the threats she can think of, at-
taches notional probabilities, works out the ALEs, adds them all up, and gets a ludi-
crous result, such as that the bank’s ALE is greater than all its non-interest income. She
then tweaks the total down to the amount that will justify the largest security budget
she thinks the board of directors will stand for (or which her client, the chief internal
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auditor, has told her is politically possible). The loss probabilities are then massaged to
give the right answer. (Great invention, the spreadsheet.) I’m sorry if this sounds a bit
cynical, but it’s what happens more often than not. The point is, ALEs may be of some
value, but they shouldn’t be elevated into a religion.

Insurance can be of some help in managing large but unlikely risks. But the insur-
ance business is not completely scientific either. For years, the annual premium for
bankers’ bond insurance, which covered both computer crime and employee disloyalty,
was 0.5% of the sum insured. This represented pure profit for Lloyds of London, the
firm that wrote the policies. Then there was a large claim, and the premium doubled to
1% per annum. Such policies may have a deductible of between $50,000 and
$10,000,000 per incident, so they remove only a small number of very large risks from
the equation. There is a substantial benefit in having an experienced insurance assessor
check out the computer system and suggest security enhancements; but this can be ar-
ranged for much less than the six-figure sum that a typical bank might pay for cover-
age.

The main reason that large companies take out computer crime coverage—and do
many other things—is due diligence. The risks being tackled may seem on the surface
to be operational, but are often actually legal, regulatory, and PR risks. Usually, they
are managed by “following the herd”—being just another one of the millions of gnu on
the African veld, to reuse my metaphor for Internet security. This is one reason that
computer security is such a fashion-driven business. During the mid-1980s, hackers
were the main concern, and firms selling dial-back modems did a booming business.
From the late 1980s, viruses took over the corporate imagination, and antivirus soft-
ware made some people rich. Recently, with all the fanfare about e-business, the
firewall has become the new star product. These are the threats, and the products, that
are seen by corporate CEOs on TV and in the financial press. Amidst all this noise, the
security professional must retain a healthy scepticism and strive to understand what the
real threats are.

Ultimately, knowing what computer and communications security is appropriate in a
particular application comes down to judgment. Sooner or later, the client’s CEO must
choose one of the options, and the best you can do is to give a competent and honest
assessment of the pros and cons.

22.6 Economic Issues

Many of the problems that confront the security engineer have their origin in econom-
ics. Consultants often explain that the reason a design, for which they were responsible
failed was that “the client didn’t want a secure system, but just the most security I
could fit on the product in one week on a budget of $10,000.” It’s important to realize
that this isn’t just management stupidity.

I first discussed network effects in Section 19.6. Networks with more users are more
valuable to each user, leading to strong positive feedback and, very often, a huge first-
mover advantage. This is the origin of the philosophy of, “We’ll ship it on Tuesday and
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get it right by version 3.” Although often attributed by cynics to Microsoft, this is often
perfectly rational economic behavior in markets where network economics apply.

Network economics has many other effects on the security management process.
Rather than using a standard, well-analyzed, and tested solution, companies often pre-
fer a proprietary, obscure one to increase customer lock-in and to increase the prob-
lems for competitors who try to create compatible products. Where possible, they will
use patented algorithms (even if these are not much good) as a means of imposing li-
censing conditions on manufacturers—recall from Section 20.2.5 how the DVD Con-
tent Scrambling System was used as a means of requiring manufacturers of compatible
equipment to agree to a whole list of copyright protection measures (and how this ap-
pears to have failed because it would have prevented the Linux operating system from
running on next-generation PCs). Network owners and builders will appeal to the de-
velopers of the next generation of applications by arranging for the bulk of the support
costs to fall on users rather than developers—even if this makes effective security ad-
ministration impractical. Security engineers need to study network economics texts,
such as Shapiro and Varian [696], to understand how the various plays that companies
make to entrench monopolies, or to overturn them, interact with protection mecha-
nisms.

There are also local economic issues. Security is about power, and a design will usu-
ally serve the perceived interests of whoever pays for the design work to be done. I
described, in Chapter 8, how medical payment systems that are designed by insurers
rather then by healthcare providers fail to protect patient privacy whenever this con-
flicts with the insurer’s wish to maximize information about its clients. Chapter 9 de-
scribed how banks in many countries managed for years to get their customers to bear
the risk and cost of fraud; and Chapter 21 explained how some digital signature laws
transfer the risk of forged signatures from the person who relies on the signature to the
person alleged to have made it. Section 22.4.1.3 in this chapter explained the tragedy
of the commons, where many players can dump their risks into a common pool, so that
each gets a large benefit from taking a shortcut but suffers only a small share of the
loss when something goes wrong; the result is that standards can decline rapidly.

A particularly topical case of the tragedy of the commons comes from the recent
spate of distributed denial-of-service attacks whose technical aspects I discussed in
Section 18.2.2.3. In these attacks, vandals hack a number of PCs and install attack
software that bombards the target with more message traffic than it can handle. The
probability of becoming a victim of such an attack is so low that most normal users
quite rationally ignore it, so they don’t bother to protect their PCs properly. Then, just
as a common pasture gets overgrazed, so the Internet becomes increasingly inse-
cure—and with more and more people installing high-bandwidth, always-on Internet
connections, the insecurity will get worse. Jean Camp and Catherine Wolfram have
drawn an interesting parallel between Internet insecurity and environmental pollution
in [156].

The best way to manage such situations would be for the risks to fall on the parties
most able to manage them. This is an established general principle in tort law, but
enough industries and applications manage to escape it one way or another. In the case
of distributed denial-of-service attacks, there would be little point in victims suing
whichever random users had been hacked, as most home PC users are clueless about
security; and, in any case, the risk of being the unlucky individual who got hacked and
then sued would be low. Hal Varian has suggested that the hacked users’ Internet
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service provider should carry much of the risk [771]. This would create the needed in-
centive for firewalls to police not just incoming traffic, but outgoing traffic as well.
This is the thinking behind a strategy, which I described in passing in Section 6.2.4, of
responding to a service denial attack on a Web site by replicating the site to a more
capable, distributed server. As the use of such services can be rented, the necessary
economic incentives can be implemented in a more-or-less transparent way. (For fur-
ther details, see [816].)

In practice the driving forces behind security design usually have nothing to do with
an altruistic desire to protect the end-users’ privacy and to reduce the risk that they will
be defrauded. The motives are much more likely to be the desire to grab a monopoly,
to charge different prices to different users for essentially the same service, and to
dump risk. Often, this is perfectly rational. Sometimes it isn’t; British banks that
dumped the risk of ATM fraud on their customers installed many security mechanisms
so that in case of dispute they could argue in court that they had exercised due dili-
gence; they ended up spending more on ATM security than U.S. banks, which had al-
ways borne the liability and for which security was a rational matter of risk
management [19].

In an ideal world, the removal of perverse economic incentives to create insecure
systems would depoliticize most issues. Security engineering would then be a matter of
rational risk management rather than risk dumping. But don’t hold your breath.

22.7 Summary

Developing a security requirements specification is often the most difficult part of the
entire engineering process. Like developing the system itself, it can involve a one-off
project, be a limited iterative process, or be a matter of continuous evolution. Evolu-
tion is easiest to manage, though it is complicated by changes of scale, environment,
and business structures. Doing it from scratch for a completely new system is hardest
and most error-prone, but there are still some useful techniques and lessons that can be
borrowed from elsewhere.

In the absence of anything better, I suggest to the project manager engaged in
building an application with some nontrivial protection requirements that you make a
best effort to understand precisely what these properties are, build them into the speci-
fication, and then use whatever methodology you would use normally to follow them
through implementation, testing, and deployment. But assume that you won’t get it
right first time. Make sure that you have some institutional means of capturing feed-
back on what goes wrong and how the environment is changing, so that you can feed
this back into the process of enhancing and maintaining the system. Security must be
an integral part of how you manage the system lifecycle.

Research Problems

The issues discussed in this chapter are among the most important—and most diffi-
cult—of any in our field. Ironically, they tend to receive little attention, because they
lie at the boundaries with software engineering, applied psychology, economics, and
management. Each of these interfaces appears to be a potentially very productive area
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of research—if you have the necessary background. When building systems to be ro-
bust in the face of malice, you must also build them so that they remain robust in the
face of normal human behavior, and hopefully are able to tell the difference between
the two often enough to do something useful.

Further Reading

Literature on managing the development of information systems is large, diffuse, and
multidisciplinary. There are classics that everyone should read, such as Fred Brooks’
Mythical Man-Month [140] and Nancy Leveson’s Safeware [498]. Standard textbooks
on software engineering, such as those by Roger Pressman [622] and Hans van Vliet
[767] cover the basics of project management and requirements engineering. The eco-
nomics of the software lifecycle are discussed by Fred Brooks and Barry Boehm [123].
The Microsoft approach to managing software evolution is described by Steve
McGuire [521]. There are useful parallels to other engineering disciplines. An inter-
esting book by Henry Petroski discusses the history of bridge building, why bridges
fall down, and how civil engineers learned to learn from the collapses: what tends to
happen is that an established design paradigm is stretched and stretched until it sud-
denly fails for some unforeseen reason [612]. For a survey of risk management meth-
ods and tools, see Richard Baskerville [77] or Donn Parker [602]; there are some
interesting case histories at IFCI [402]. Computer system failures are another necessary
subject of study; the best source is the comp.risks newsgroup, of which a selection has
been collated and published in print by Peter Neumann [590].

Organizational aspects are discussed at length in the business school literature, but
this can be bewildering to the outsider. A critical guide to the literature is provided by
John Micklethwait and Adrion Wooldridge, who draw out a number of highly relevant
tensions, such as the illogicality of management gurus who tell managers to make their
organizations more flexible by firing people, while at the same time preaching the vir-
tues of trust [550]. Familiarity with this material is useful for predicting the protection
consequences of your client’s latest reorganizational fashion. Finally, the best books I
know for material on the underlying economics are a popular synopsis by Carl Shapiro
and Hal Varian [696], and a standard textbook by Hal Varian [770].


