
Security Engineering: A Guide to Building Dependable Distributed Systems

185

CHAPTER

9

Banking and Bookkeeping

Computers are not (yet?) capable of being reasonable

any more than is a Second Lieutenant.

—CASEY SCHAUFLER

Against stupidity, the Gods themselves contend in vain.

—J.C. FRIEDRICH VON SCHILLER

9.1 Introduction

Banking systems include the back-end bookkeeping systems that record customers’
account details and transaction processing systems such as cash machine networks and
high-value interbank money transfer systems that feed them with data. They are im-
portant for a number of reasons.

First, bookkeeping was for many years the main business of the computer industry,
and banking was its most intensive area of application. Personal applications such as
Netscape and Powerpoint might now run on more machines, but accounting is still the
critical application for the average business. So the protection of bookkeeping systems
is of great practical importance. It also gives us a well-understood model of protection
in which confidentiality plays almost no role, but where the integrity of records (and
their immutability once made) is of paramount importance.

Second, transaction processing systems—whether for small debits such as $50 cash
machine withdrawals or multimillion-dollar wire transfers—were the applications that
launched commercial cryptography. Banking applications drove the development not
just of encryption algorithms and protocols, but also of the supporting technologies,
such as tamper-resistant cryptographic processors. These processors provide an im-
portant and interesting example of a trusted computing base that is quite different from

Chapter 9: banking and Bookkeeping

186

the hardened operating systems discussed in the context of multilevel security. Many
instructive mistakes were first made (or at least publicly documented) in the area of
commercial cryptography. The problem of how to interface crypto with access control
was studied by financial cryptographers before any others in the open research com-
munity.

Third, an understanding of basic electronic banking technology is a prerequisite for
tackling the more advanced problems of electronic commerce in an intelligent way. In
fact, many dot-coms fall down badly on basic bookkeeping, which is easy to overlook
in the rush to raise money and build a Web site.

Finally, banking systems provide another example of multilateral security, but aimed
at authenticity rather than confidentiality. A banking system should prevent customers
from cheating each other or the bank; it should prevent bank employees from cheating
the bank or its customers; and the evidence it provides should be sufficiently strong
that none of these principals can get away with falsely accusing another principal of
cheating.

9.1.1 The Origins of Bookkeeping

Figure 9.1 Clay envelope and its content of tokens from Susa, Iran, ca. 3300 BC (courtesy
Denise Schmandt-Besserat and The Louvre Museum).

Bookkeeping appears to have started in the Neolithic Middle East in about 8500 BC,
just after the invention of agriculture [678]. When people started to store and trade the
food they had produced, they needed a way to keep track of which village member had
put how much in the communal warehouse. To start with, each unit of food (sheep,
wheat, oil, . . .) was represented by a clay token, or bulla, which was placed inside a

Security Engineering: A Guide to Building Dependable Distributed Systems

187

clay envelope and sealed by rolling it with the pattern of the warehouse keeper (see
Figure 9.1). When the farmer wanted to get his food back, the seal was broken by the
keeper in the presence of a witness. (This is may be the oldest known security proto-
col.) By about 3000 BC, this had led to the invention of writing [609]; after another
thousand years, we find equivalents of promissory notes, bills of lading, and so on. At
about the same time, metal ingots started to be used as an intermediate commodity,
often sealed inside a bulla by an assayer. In 700 BC, Lydia’s King Croesus started
stamping the metal directly, and thus invented coins [625]; by the Athens of Pericles,
there were a number of wealthy individuals in business as bankers [338].

The next significant innovation dates to the time of the Crusades. As the Dark Ages
came to a close and trade started to spread, some businesses became too large for a
single family to manage. The earliest of the recognizably modern banks date to this
period; by having branches in a number of cities, they could finance trade efficiently.
But as the economy grew, it was necessary to hire managers from outside, and the
owner’s family could not supervise them closely. This brought with it an increased risk
of fraud, and the mechanism that evolved to control it was double-entry bookkeeping.
This appears to have been invented sometime in the 1300s, though the first book on it
did not appear until 1494, after the invention of the printing press [222].

9.1.2 Double-entry Bookkeeping

The idea behind double-entry bookkeeping is, like most hugely influential ideas, ex-
tremely simple. Each transaction is posted to two separate books, as a credit in one and
a debit in the other. For example, when a firm sells a customer $100 of goods on credit,
it posts a $100 credit on the Sales account, and a $100 debit on the Receivables ac-
count. When the customer pays the money, it will credit the Receivables account
(thereby reducing the asset of money receivable) and credit the Cash account. (The
principle taught in accountancy school is ‘debit the receiver, credit the giver’.) At the
end of the day, the books should balance, that is, add up to zero; the assets and the li-
abilities should be equal. (Any profit the firm has made is a liability to the sharehold-
ers.) In all but the smallest firms, the books will be kept by different clerks, and have
to balance at the end of every month (at banks, every day). By suitable design of the
ledger system, we can see to it that each shop, or branch, can be balanced separately.
Thus most frauds will need the collusion of two or more members of staff; and this
principle of split responsibility, also known as dual control, is complemented by audit.

Many computer systems are used for bookkeeping tasks, and implement variations
on the double-entry theme. However, the control is often illusory. The double-entry
features may be implemented only in the user interface, while the underlying file for-
mats have no integrity controls. And even if the ledgers are kept on the same system,
someone with root access—or with physical access and a debugging tool—may be able
to change two or more records so that the balancing controls are bypassed. It may also
be possible to evade the balancing controls in various ways; staff may notice bugs in
the software and take advantage of them.

So how can we organize and formalize our protection goals?

Chapter 9: banking and Bookkeeping

188

9.2 How Bank Computer Systems Work

Banks were among the first large organizations to use computers for bookkeeping.
They began to do so in the late 1950s and early 1960s, with applications such as check
processing, and once they found that even the slow and expensive computers of that
era were much cheaper than armies of clerks, they proceeded to automate most of the
rest of their operations during the 1960s and 1970s.

A typical banking system has a number of data structures. There is an account mas-
ter file, which contains each customer’s current balance together with previous trans-
actions for a period of perhaps 90 days; a number of ledgers, which track cash and
other assets on their way through the system; various journals, which hold transactions
that have been received from teller stations, cash machines, check sorters, and so on,
but not yet entered in the ledgers; and an audit trail that records which staff member
did what and when.

The processing software that acts on these data structures will include a suite of
overnight batch-processing programs, which apply the transactions from the journals to
the various ledgers and the account master file. The online processing will include a
number of modules that post transactions to the relevant combinations of ledgers. For
example, when a customer pays $100 into a savings account, the teller will make a
transaction that records a credit to the customer’s savings account ledger of $100,
while debiting the same amount to the cash ledger recording the amount of money in
the drawer. The fact that all the ledgers should always add up to zero provides an im-
portant check; if the bank (or one of its branches) is ever out of balance, an alarm will
go off and people will start looking for the cause.

The invariant provided by the ledger system is checked daily during the overnight
batch run; this means that a programmer who wants to add to his own account balance
will have to take the money from some other account, rather than just create it out of
thin air by tweaking the account master file. Just as in a traditional business one has
different ledgers managed by different clerks, so in a banking data processing shop
there are different programmers in charge of them. In addition, all code is subjected to
scrutiny by an internal auditor and to testing by a separate test department. Once the
code has been approved, it will be run on a production machine that does not have a
development environment, but only approved object code and data.

9.2.1 The Clark-Wilson Security Policy Model

Although such systems have been in the field since the 1960s, a formal model of their
security policy was only introduced in 1987, by David Clark and David Wilson (the
former was a computer scientist, and the latter an accountant) [187]. In their model,
some data items are constrained so that they can be acted on only by a certain set of
transformation procedures.

More formally, there are special procedures whereby data can be input—turned from
an unconstrained data item, or UDI, into a constrained data item, or CDI; integrity
verification procedures (IVPs) to check the validity of any CDI (e.g., that the books
balance); and transformation procedures (TPs), which may be thought of in the bank-
ing case as transactions that preserve balance. In the general formulation, they maintain
the integrity of CDIs; they also write enough information to an append-only CDI (the

Security Engineering: A Guide to Building Dependable Distributed Systems

189

audit trail) for transactions to be reconstructed. Access control is by means of triples
(subject, TP, CDI), which are so structured that a shared control policy is enforced. In
the formulation in Amoroso [15]:

1. The system will have an IVP for validating the integrity of any CDI.

2. The application of a TP to any CDI must maintain its integrity.

3. A CDI can only be changed by a TP.

4. Subjects can only initiate certain TPs on certain CDIs.

5. Triples must enforce an appropriate separation of duty policy on subjects.

6. Certain special TPs on UDIs can produce CDIs as output.

7. Each application of a TP must cause enough information to reconstruct it to
be written to a special append-only CDI.

8. The system must authenticate subjects attempting to initiate a TP.

9. The system must let only special subjects (i.e., security officers) make
changes to authorization-related lists.

A number of things bear saying about Clark-Wilson.
First, unlike Bell-LaPadula, Clark-Wilson involves maintaining state. Quite apart

from the audit trail, this is usually necessary for dual control as you have to keep track
of which transactions have been partially approved—such as those approved by only
one manager when two are needed. If dual control is implemented using access control
mechanisms, it typically means holding partially approved transactions in a special
journal file. This then means that some of the user state is actually security state, which
in turn makes the trusted computing base harder to define. If it is implemented using
crypto instead, such as by having managers attach digital signatures to transactions of
which they approve, there can be problems managing all the partially approved trans-
actions so that they get to a second approver in time.

Second, the model doesn’t do everything. It captures the idea that state transitions
should preserve an invariant, such as balance, but not that state transitions should be
correct. Incorrect transitions, such as paying into the wrong bank account, are still al-
lowed.

Third, Clark-Wilson ducks the hardest question, namely: how do we control the risks
from dishonest staff? Rule 5 says that “an appropriate separation of duty policy” must
be supported, but nothing about what this means.

9.2.2 Separation of Duties

There are basically two kinds of separation of duty policy: dual control and functional
separation.

In dual control, two or more different staff members must act together to authorize a
transaction. The classic military example is in nuclear command systems, which may
require two or three officers to turn their keys simultaneously in consoles that are too
far apart for a single person to operate. (I discuss nuclear matters further in Chapter 11,
“Nuclear Command and Control.”) The classic civilian example is when a bank issues
a letter of guarantee, which will typically undertake to carry the losses should a loan
made by another bank go sour. If a single manager could issue such an instrument, then

Chapter 9: banking and Bookkeeping

190

an accomplice could plunder the guaranteed loan account at the other bank, and the
alarm might not be raised for months. I discuss this further in Section 9.3.2.

With functional separation of duties, two or more different staff members act on a
transaction at different points in its path. The classic example is corporate purchasing.
A manager makes a purchase decision and tells the purchasing department; a clerk
there writes a purchase order; the store clerk records the arrival of goods; an invoice
arrives at accounts; the accounts clerk correlates it with the purchase order and the
stores receipt, and cuts a check; the accounts manager signs the check.

However, it doesn’t stop there. The manager now gets a debit on her monthly state-
ment for that internal account; her boss reviews the accounts to make sure the divi-
sion’s profit targets are likely to be met; the internal audit department can descend at
any time to audit the division’s books; and when the external auditors come in once a
year, they will check the books of a randomly selected sample of departments. Finally,
when frauds are discovered, the company’s lawyers may make vigorous efforts to get
the money back.

The model can be described as prevent-detect-recover. The level of reliance placed
on each of these three legs will depend on the application. Where detection may be
delayed for months or years, and recovery may therefore be very difficult—as with
bogus bank guarantees—it is prudent to put extra effort into prevention, using tech-
niques such as dual control. Where prevention is difficult to enforce, it is essential that
detection be fast enough, and recovery vigorous enough, to provide a deterrent effect.
The classic example here is that bank tellers can quite easily take cash, so you need to
count the money every day and catch any shortfall by close of business.

Bookkeeping and management control systems are not only one of the earliest secu-
rity systems, they also have given rise to much of management science and civil law.
They are entwined with a company’s business processes, and exist in its cultural con-
text. In Swiss banks, two managers’ signatures appear on almost everything, while
Americans are much more relaxed. In most countries’ banks, staff get background
checks, can be moved randomly from one task to another, and are required to take
holidays at least once a year. But this would be excessive in the typical university de-
partment where the opportunities for fraud are much less.

Designing a good bookkeeping system is hard because it’s such an interdisciplinary
problem. The financial controllers, the personnel department, the lawyers, the auditors,
and the systems people all come at the problem from different directions, offer partial
solutions, fail to understand each other’s control objectives, and things fall down the
hole in the middle. Human factors are very often neglected, and systems end up being
vulnerable to helpful subordinates or authoritarian managers who can cause dual con-
trol to fail. It’s important not just to match the controls to the culture, but also to moti-
vate people to use them. For example, in the better-run banks, management controls are
marketed to staff as a means of protecting them against blackmail and kidnapping.

Security researchers have so far focused on the small part of the problem, which
pertains to creating dual control (or in general, where there are more than two princi-
pals, shared control) systems. Even this is not at all easy. For example, rule 9 in Clark-
Wilson says that security officers can change access rights, so what’s to stop a security
officer creating logons for two managers and using them to send all the bank’s money
to Switzerland?

Security Engineering: A Guide to Building Dependable Distributed Systems

191

One possible answer is to use cryptography, and split the relevant signing key be-
tween two or more principals. In an NT network, the obvious way to manage things is
to put users in separately administered domains. With a traditional banking system,
using the mainframe operating system MVS, we can separate duties between the sys-
tem administrator (sysadmin) and the auditor; the former can do anything he wishes,
except find out which of his activities the latter is monitoring [95]. But in real life, dual
control is hard to do end to end because there are many system interfaces that provide
single points of failure; and, in any case, split-responsibility systems administration is
tedious.

The practical answer, then, is that most bank sysadmins could do just this type of
fraud. Some have tried—where they fall down is that the back-office balancing con-
trols set off the alarm after a day or two, and money laundering controls stop them
from getting away with very much. I discuss this further in Section 9.3.2. The point to
bear in mind here is that serial controls in the prevent-detect-recover model are usually
more important than shared control. They depend ultimately on some persistent state in
the system, and are in tension with programmers’ desire to keep things simple by
making transactions atomic.

There are also tranquility issues. For example, could an accountant, knowing that he
was due to be promoted to manager tomorrow, end up doing both authorizations on a
large transfer? A technical fix for this might involve a Chinese Wall mechanism sup-
porting a primitive “X may do Y but not Z” (“a manager can confirm a payment only if
her name doesn’t appear on it as the creator”). In this way, we would end up with a
number of exclusion rules involving individuals, groups, and object labels; once the
number of rules became large (as it will in a real bank) we would need a systematic
way of examining this rule set and verifying that it didn’t have any loopholes.

In the medium term, banking security policy—just like medical security pol-
icy—may end up finding its most convenient expression using role-based access con-
trol; platforms such as Win2K may be heading in this direction. This offers the
potential for managing separation of duty policies that involve both parallel elements,
such as dual control, and serial elements, such as functional separation along a trans-
action’s path.

A final remark on dual control is that it’s often inadequate for transactions involving
more than one organization, because of the difficulties of dispute resolution: “My two
managers say the money was sent!” “But my two say it wasn’t!”

9.2.3 What Goes Wrong

Theft can take a variety of forms, from the purely opportunist to clever insider frauds;
but regardless of size most thefts from the average company are due to insiders. There
are many surveys. A recent one, by accountants Ernst and Young, reports that 82 per-
cent of the worst frauds in 1999–2000 were committed by employees; nearly half of
the perpetrators had been there over five years, and a third of them were managers
[697].

Typical computer crime cases include:

• A bank had a system of suspense accounts, which would be used temporarily if
one of the parties to a transaction could not be identified (such as when an ac-
count number was entered wrongly on a funds transfer). This was a work-

Chapter 9: banking and Bookkeeping

192

around added to the dual control system to deal with transactions that got lost
or otherwise couldn’t be balanced immediately. As it was a potential vulner-
ability, the bank had a rule that suspense accounts would be investigated if
they were not cleared within three days. One of the clerks exploited this by
setting up a scheme whereby she would post a debit to a suspense account and
an equal credit to her boyfriend’s account; after three days, she would raise
another debit to pay off the first. In almost two years, she netted hundreds of
thousands of dollars. (The bank negligently ignored a regulatory requirement
that all staff take at least 10 consecutive days’ vacation no more than 15
months from the last such vacation.) In the end, she was caught when she
could no longer keep track of the growing mountain of bogus transactions.

• A clerk at the Inner London Education Authority wanted to visit relatives in
Australia, and to get some money, she created a fictitious school, complete
with staff whose salaries were paid into her own bank account. It was discov-
ered only by accident when someone noticed that different records gave the
authority different numbers of schools.

• A bank clerk in Hastings, England, noticed that the branch computer system
did not audit address changes. He picked a customer who had a lot of money
in her account and got a statement only once a year; he then changed her ad-
dress to his, issued a new ATM card and personal identification number (PIN),
and changed her address back to its original value. In total, he stole £8,600
from her account. When she complained, she was not believed: the bank
maintained that its computer systems were infallible, and so the withdrawals
must have been her fault. The matter was cleared up only when the clerk got
an attack of conscience and started stuffing the cash in brown envelopes
through the branch’s letter box at night. The branch manager finally realized
that something was seriously wrong.

All the really large frauds—the cases over a billion dollars—have involved lax in-
ternal controls. The collapse of Barings Bank is a good example; there, managers failed
to control rogue trader Nick Leeson, as they were blinded by greed for the bonuses his
apparent trading profits earned them. The same holds true for other big financial sector
frauds, such as the Equity Funding scandal, in which an insurance company’s man-
agement created thousands of fake people on their computer system, insured them, and
sold the policies on to reinsurers; and frauds in other sectors such as Robert Maxwell’s
looting of the Daily Mirror newspaper pension funds in Britain. (For a collection of
computer crime case histories, see Parker [602].) Either the victim’s top managers
were grossly negligent, as in the case of Barings, or were the perpetrators, as with Eq-
uity Funding and Maxwell. As a result, a number of standards have been put forward
by the accountancy profession, by stock markets, and by banking regulators, about how
bookkeeping and internal control systems should be designed. In the United States, for
example, there is the Committee of Sponsoring Organizations (COSO), a group of U.S.
accounting and auditing bodies [196]. I’ll return to COSO and explore how to go about
designing an internal control system in Chapter 22, “Management Issues,” Section
22.4.1.2.

But changing technology also has a habit of eroding controls, which therefore need
constant attention and maintenance. For example, thanks to new systems for high-
speed processing of bank checks, banks in California will no longer honor requests by

Security Engineering: A Guide to Building Dependable Distributed Systems

193

depositors that checks have two signatures. Even when a check has printed on it “Two
Signatures Required,” banks will honor that check with only one signature [651]. This
might seem to be a problem for the customer’s security rather than the bank’s, but bank
checks can also be at risk and if something goes wrong even with a merchant transac-
tion, the bank might still get sued. The vulnerability of shared control to technical at-
tacks continues to grow. Most major accounting packages do not use double-entry
bookkeeping internally, but rather create an appearance of it at the presentation layer;
and the current trend appears to be toward event databases in which all transactions in
an accounting period are accumulated, with reports being generated directly as re-
quired. New control strategies may be needed. One possible technical approach is to
maintain separate logs of all original events (purchase orders, invoices, payments, etc.)
and have programs that constantly cross-check. People-based measures are also highly
advisable. Accounts software should empower line managers so that they can monitor
their departments’ income, expenditure and commitments. Making the technical and
managerial controls overlap, so that they cover each others’ weaknesses, is the goal;
unfortunately, the common outcome is that the technical controls merely duplicate the
managerial ones, resulting in common failure modes that fraudsters can exploit.

The lessons to be learned include the following.

• It’s not always obvious which transactions are security-sensitive.

• It’s hard to maintain a working security system in a changing environment.

• If you rely on customer complaints to alert you to fraud, you had better listen
to them.

• There will always be people in positions of relative trust who can get away
with a scam—for a while.

• No security policy will ever be completely rigid; there will always have to be
workarounds for people to cope with real life, and some of these workarounds
will create vulnerabilities.

• It’s often hard to tell at first sight whether an exception is due to fraud or to
error. So the lower the transaction error rate, the better.

There will always be residual risks. Managing these remains one of the hardest and
most neglected of jobs. It requires not just technical measures, such as involving
knowledgeable industry experts, auditors, and insurance people in the detailed design,
and iterating the design once some loss history is available. It also means training
managers, auditors, and others to detect problems and react to them appropriately. I’ll
revisit this topic in Chapter 22.

The banking industry has gone a long way along this learning curve. The general
experience of banks in the English-speaking world is that some 1 percent of staff are
fired each year. The typical offense is minor embezzlement, incurring a loss of a few
thousand dollars. No one has found an effective way of predicting which staff will go
bad; previously loyal staff can be thrown off the rails by shocks such as divorce, or
may over time develop a gambling or alcohol habit.

Chapter 9: banking and Bookkeeping

194

9.3 Wholesale Payment Systems

Systems for transferring money electronically were one of the first applications of the
telegraph when it was introduced in the middle of the nineteenth century; and I ex-
plained in Chapter 5, “Cryptography,” Section 5.2.4 how the system of test keys was
developed to compute authentication codes on the messages manually. By the early
1970s, bankers started to realize that a better system was needed:

• The cryptographic vulnerability of the system became apparent.

• Although the test key tables were kept in the safe, it was at least theoretically
possible for a bank employee to memorize one of the simpler schemes. With
the more complex schemes, even an employee working under close supervi-
sion could mentally compute the test on an unauthorized message, while
overtly computing the test on an authorized one.

• The schemes didn’t support dual control. Although tests were computed by
one staff member and checked by another, this doubled the risk rather than
halving it. (There are ways to do dual control with manual authenticators, and
these had been developed extensively for use in the control of nuclear weap-
ons—I discuss them in Chapter 11, Section 11.4—but this technology was still
classified at the time.)

• The major concern was cost and efficiency. There seemed little point in having
the bank’s computer print out a transaction in the telex room, having a test
computed manually, composing a telex to the other bank, checking the test,
and then entering it into the other bank’s computer. Surely the payments could
flow directly from one bank’s computer to another?

Clearly, a fresh design was needed.

9.3.1 SWIFT

The Society for Worldwide Interbank Financial Telecommunications (SWIFT) was set
up in the 1970s by a consortium of banks to provide a more secure and efficient means
of sending payment instructions between member banks. It can be thought of as an
email system with built-in encryption, authentication, and nonrepudiation services.

The SWIFT design constraints are interesting. The banks did not wish to trust
SWIFT, in the sense of enabling some combination of dishonest employees there to
forge transactions. The authenticity mechanisms had to be independent of the confi-
dentiality mechanisms, since at the time a number of countries (such as France) for-
bade the civilian use of cryptography for confidentiality. The nonrepudiation functions
had to be provided without the use of digital signatures, as these hadn’t been invented
yet. Finally, the banks had to be able to enforce Clark-Wilson type controls over inter-
bank transactions. (Clark-Wilson also hadn’t been invented yet, but its compo-
nents—dual control, balancing, audit, and so on—were well enough established.)

The SWIFT design is summarized in Figure 9.2. Authenticity of messages was as-
sured by computing a message authentication code (MAC) at the sending bank and
checking it at the receiving bank. Formerly, the keys for this MAC were managed end-
to-end: whenever a bank set up a relationship overseas, the senior manager who nego-
tiated it would exchange keys with her opposite number, whether in a face-to-face

Security Engineering: A Guide to Building Dependable Distributed Systems

195

meeting or afterward by post to each other’s private addresses. There would typically
be two key components to minimize the risk of compromise, with one sent in each di-
rection (on the grounds that even if a bank manager’s mail is stolen from her mailbox
by a criminal at one end, it’s not likely to happen at the other end as well). The key
would not be enabled until both banks confirmed that it had been safely received and
installed.

Figure 9.2 Architecture of SWIFT.

This way, SWIFT had no part in the message authentication. As long as the authen-
tication algorithm SWIFT chose was sound, none of their staff could forge a transac-
tion. (The authentication algorithm used is supposed to be a trade secret; but because
banks like their security mechanisms to be international standards, a natural place to
look might be the algorithm described in ISO 8731 [657].) In this way, they got the
worst of all possible worlds: the algorithm was fielded without the benefit of public
analysis but got it later once it was expensive to change. (An attack was found on the
ISO 8731 message authentication algorithm and published in [621], but the number of
messages required to break it is too large for a practical attack on a typical system that
is used prudently.)

Although SWIFT itself was largely outside the trust perimeter for message authenti-
cation, it did provide a nonrepudiation service. Banks in each country sent their mes-
sages to a regional general processor (RGP), which logged them and forwarded them
to SWIFT, which also logged them and sent them on to the recipient bank via the RGP
in its country, which also logged them. The RGPs were generally run by different fa-
cilities management firms. Thus, a bank (or a crooked bank employee) wishing to dis-
honestly repudiate a done transaction—or claim that one had been done when it
hadn’t—would have to subvert not just SWIFT itself, but also two independent local
contractors (in order to alter their log entries). Logs can be a powerful evidential re-
source, and are much easier for judges to understand than cryptography.

Confidentiality depended on line encryption devices between the banks and the RGP
node, and between these nodes and the main SWIFT processing sites. Key management
was straightforward. Keys were hand-carried in EEPROM cartridges between the de-
vices at either end of a leased line. In countries where confidentiality was illegal, these
devices could be omitted without impairing the authenticity and nonrepudiation
mechanisms.

Chapter 9: banking and Bookkeeping

196

Dual control was provided either by the use of specialized terminals (in small banks)
or by mainframe software packages that could be integrated with a bank’s main pro-
duction system. The usual method of operation is to have three separate staff to do a
SWIFT transaction: one to enter it, one to check it, and one to authorize it. (As the
checker can modify any aspect of the message, this really gives only dual control, not
triple control; and the programmers who maintain the interface can always attack the
system there). Reconciliation was provided by checking transactions against daily
statements received electronically from correspondent banks. This meant that someone
who managed to get a bogus message into the system would sound an alarm within two
or three days.

9.3.2 What Goes Wrong

SWIFT I ran for 20 years without a single report of external fraud. In the mid-1990s, it
was enhanced by the addition of public key mechanisms. MAC keys are now shared
between correspondent banks using public key cryptography, and the MACs them-
selves may be further protected by a digital signature. The key management mecha-
nisms have been ensconced as ISO standard 11166, which in turn has been used in
other systems (such as CREST, which is used by banks and stockbrokers to register
and transfer U.K. stocks and shares). There has been some debate over the security of
this architecture [47, 657]: Quite apart from the centralization of trust brought about by
the adoption of public key cryptography—in that the central certification authority can
falsely certify a key as belonging to a bank when it doesn’t—CREST (at least) adopted
public keys that are too short (512 bits). At least one RSA public key of this length has
been factored surreptitiously by a group of students.

However, the main practical attacks on such systems have not involved the payment
system mechanisms themselves. The typical attack comes from a bank programmer
inserting a bogus message into the processing queue. It usually fails because he does
not understand the other controls in the system or the procedural controls surrounding
large transfers. For example, banks typically keep mutual overdraft limits of perhaps a
million dollars, so transfers of larger amounts need the prior involvement of the foreign
exchange dealers; there’s the daily back-office reconciliation; money-laundering laws
require staff to report large cash withdrawals; and anyone who opens a bank account,
receives a large incoming wire transfer, then starts frantically moving money out again
will need a very convincing excuse. Consequently, the programmer who inserts a bo-
gus transaction into the system usually gets arrested when he turns up to collect the
cash.

Other possible technical attacks—such as inserting Trojan software into the PCs
used by bank managers to initiate transactions, wiretapping the link from the branch to
the bank mainframe, subverting the authentication protocol used by bank managers to
log on, and even inserting a bogus transaction in the branch LAN to appear on the rele-
vant printer—would also run up against these controls.

In fact, most large-scale bank frauds that “worked” have not used technical attacks
but exploited procedural vulnerabilities, such as the following:

• The classic example is a letter of guarantee. It is common enough for a com-
pany in one country to guarantee a loan to a company in another. This can be
set up as a SWIFT message or even a paper letter. But as no cash changes

Security Engineering: A Guide to Building Dependable Distributed Systems

197

hands at the time, the balancing controls are inoperative. If a forged guarantee
is accepted as genuine, the “beneficiary” can take his time borrowing money
from the accepting bank, laundering it, and disappearing. Only when the vic-
tim bank realizes that the loan has gone sour, and tries to call in the guarantee,
is the forgery discovered.

• An interesting fraud of a slightly different type took place in 1986 between
London and Johannesburg. At that time, the South African government oper-
ated two exchange rates, and in one bank the manager responsible for deciding
which rate applied to each transaction conspired with a rich man in London.
They sent money out to Johannesburg at an exchange rate of seven Rand to the
Pound, and back again the following day at four. After two weeks of this, the
authorities became suspicious, and the police came round. On seeing them in
the dealing room, the manager fled without stopping to collect his jacket,
drove over the border to Swaziland, and flew via Nairobi to London. There, he
boasted to the press about how he had defrauded the wicked apartheid system.
As Britain has no exchange control, exchange control fraud isn’t an offense, so
he couldn’t be extradited. The conspirators got away with millions, and the
bank couldn’t even sue them.

• Perhaps the best-known funds transfer fraud occurred in 1979 when Stanley
Rifkin, a computer consultant, embezzled over $10 million from Security Pa-
cific National Bank. He circumvented the money-laundering controls by
agreeing to buy a large shipment of diamonds from a Russian government
agency in Switzerland. He got the transfer into the system by observing an
authorization code used internally when dictating transfers to the wire transfer
department, and simply used it over the telephone (a classic example of dual
control breakdown at a system interface). He even gave himself extra time to
escape by doing the deal just before a U.S. bank holiday. Where he went
wrong was in not planning what to do after he collected the stones. If he had
hidden them in Europe, gone back to the United States, and helped investigate
the fraud, he might well have got away with it; as it was, he ended up on the
run and got caught.

The moral is that we must always be alert to things which defeat separation-of-duty
controls by introducing a single point of failure. Even if we can solve the technical
problems of systems administration, interfaces, and so on, there’s still the business
system analysis problem of what we control—quite often, critical transactions aren’t
obvious to a casual inspection.

9.4 Automatic Teller Machines

Another reason that dual control—although necessary—is not sufficient, emerges from
the study of “phantom withdrawals”—complaints of unauthorized cash withdrawals
from automatic teller machines (ATMs).

ATMs, also known as cash machines, have been one of the most influential techno-
logical innovations of the twentieth century. Quite apart from their social and eco-
nomic impact, they are just as important to the security engineer both as a source of
technology and as a case study.

Chapter 9: banking and Bookkeeping

198

ATMs were the first large-scale retail transaction processing systems. They have
been around since 1968; the world installed base is now about 500,000 machines. The
technology developed for them is now also used in terminals for electronic funds
transfer at the point of sale (EFTPOS, or just POS) in shops. Modern block ciphers
were first used on a large scale in ATM networks, to generate and verify PINs in se-
cure hardware devices located within the ATMs and at bank computer centers. This
technology, including block ciphers, tamper-resistant hardware, and the supporting
protocols, ended up being used in many other applications, from postal franking ma-
chines to lottery ticket terminals. ATMs were the “killer app” that got modern com-
mercial cryptology off the ground.

9.4.1 ATM Basics

Many ATMs operate using some variant of a system developed by IBM for its 3614
series cash machines in the mid-1970s. This uses a secret key, called the PIN key, to
encrypt the account number, then decimalize it and truncate it. The result of this op-
eration is called the natural PIN; an offset can be added to it to give the PIN the cus-
tomer must enter. The offset has no real cryptographic function; it just enables
customers to choose their own PIN. An example of the process is shown in Figure 9.3.

Dual control is implemented in this system using tamper-resistant hardware. A
cryptographic processor, often called a security module, is kept in the bank’s central
computer room. It will perform a number of defined operations on customer PINs and
on related keys in such a way that:

• Operations on the clear values of customer PINs, and on the keys or other ma-
terial needed to compute them or used to protect them, are all done in tamper-
resistant hardware and the clear values are never made available to any single
member of the bank’s staff.

• Thus, for example, the cards and PINs are sent to the customer via separate
channels. The cards are personalized in a facility with embossing and mag-
strip printing machinery; the PIN mailers are printed in a separate facility
containing a printer attached to a security module.

• A terminal master key is supplied to each ATM in the form of two printed
components, which are carried to the branch by two separate officials, input at
the ATM keyboard, and combined to form the key. Similar procedures are
used to set up keys between banks and network switches such as VISA.

• If ATMs are to perform PIN verification, the PIN key is encrypted under the
terminal master key, then sent to the ATM.

• If the PIN verification is to be done centrally over the network, the PIN is en-
crypted under a key that is set up using the terminal master key, and sent from
the ATM to the security module for checking.

• If the bank’s ATMs are to be networked with other banks’, then one uses
transactions that will take an encrypted PIN from one source (such as en-
crypted under an ATM key), decrypt it, and re-encrypt it for its destination
(such as using a key shared with VISA). This PIN translation function is done
entirely within the hardware security module, so that clear values of PINs are
never available to the bank’s programmers.

Security Engineering: A Guide to Building Dependable Distributed Systems

199

Figure 9.3 IBM method for generating bank card PINs.

During the 1980s and 1990s, the hardware security modules became more and more
complex, as ever more functionality got added. An example of a leading product in
2000 is the IBM 4758, this also has the virtue of having its documentation available
publicly online for study (see [397] for the command set, and [718] for the architecture
and hardware design). I’ll discuss this in Chapter 14, “Physical Tamper Resistance.”

But extending the dual control security policy from a single bank to tens of thou-
sands of banks worldwide, as modern ATM networks do, proved not to be completely
straightforward:

• When people started building ATM networks in the mid-1980s, many banks
used software encryption rather than hardware security modules to support the
machines. So in theory, any bank’s programmers might get access to the PINs
of any other bank’s customers. The remedy was to push through standards for
security module use. In many countries (such as the United States), these stan-
dards were largely ignored; but even where they were respected, some banks
continued using software for transactions involving their own customers. So
some keys (such as those used to communicate with ATMs) had to be avail-
able in software, too, and knowledge of these keys could be used to compro-
mise the PINs of other banks’ customers. Consequently, the protection given
by the hardware TCB was rarely complete.

• It is not feasible for 10,000 banks to share keys in pairs, so each bank connects
to a switch provided by an organization such as VISA or Cirrus, and the secu-
rity modules in these switches translate the traffic. The switches also do ac-
counting, and enable banks to settle their accounts for each day’s transactions
with all the other banks in the system, by means of a single electronic debit or
credit. The switch is highly trusted; if something goes wrong, the conse-
quences could be severe. In one case, there turned out to be not just security
problems but also dishonest staff. The switch manager ended up a fugitive
from justice, and the bill for remediation was in the millions.

• Corners are cut to reduce the cost of dealing with huge transaction volumes.
For example, it is common for authentication of authorization responses to be
turned off. The effect is that anyone with access to the network can cause a
given ATM to accept any card presented to it, simply by replaying a positive
authorization response. Network managers claim that should a fraud ever start,
the authentication can always be turned back on. This might seem reasonable;
attacks involving manipulated authorization responses are very rare. But such
shortcuts—even when reasonable on grounds of risk and cost—mean that a

Chapter 9: banking and Bookkeeping

200

bank that claims, in response to a customer dispute, that its ATM network can-
not possibly be attacked, and so the transaction must be the customer’s fault, is
not telling the truth. What’s more, turning on the message authentication codes
suddenly in response to a fraud could be difficult. Some banks’ implementa-
tions might not support them properly or at all, and performance degradation
might result unless more encryption devices are installed rapidly. One is re-
minded of the saying that ‘optimization is the process of taking something
which works, and replacing it by something which doesn’t quite but is
cheaper’.

There are many other ways in which ATM networks can be attacked in theory. For
example, they mostly use single-key DES encryption, even for top-level keys, and DES
can now be broken by exhaustive keysearch. However, one of the interesting things
about these systems is that they have now been around long enough, and have been
attacked enough by both insiders and outsiders, to give us a lot of data points on how
such systems fail in practice.

9.4.2 What Goes Wrong

ATM fraud is an interesting study, as the ATM system is mature, with huge volumes
and a wide diversity of operators. An extensive survey can be found in [19], and fur-
ther material in [20]. Here, I’ll summarize the more important and interesting points.

The engineers who designed ATM security systems in the 1970s and 1980s (of
whom I was one) assumed that criminals would be relatively sophisticated, fairly well
informed about the system design, and rational in their choice of attack methods. In
addition to worrying about the many banks that were slow to buy security modules,
and about the implementation loopholes such as omitting authentication codes on
authorization responses, we agonized over whether the encryption algorithms were
strong enough, and whether the tamper-resistant boxes were resistant enough. We were
afraid that a maintenance engineer could disable the tamper sensing circuitry on one
visit, and extract the keys on the next. We worried whether the random-number gen-
erators used to manufacture keys were random enough. And a very serious concern was
that we just couldn’t enforce dual control properly. Bank managers considered it be-
neath their dignity to touch a keyboard, so rather than entering the ATM master key
components themselves after a maintenance visit, most of them would just give both
key components to the ATM engineer. We believed that sooner or later a repairman
would get his hands on a bank’s PIN key, forge cards in industrial quantities, close
down the whole system, and wreck public confidence in electronic banking.

The bulk of the actual phantom withdrawals, however, have one of the following
three simple causes:

• Simple processing errors account for a lot of disputes. With U.S. customers
making something like 5 billion ATM withdrawals a year, even a system that
makes only one error per 100,000 transactions will give rise to 50,000 disputes
a year. In practice, the error rate seems to lie somewhere between 1 in 10,000
and 1 in 100,000. One source of errors we tracked down was that a large
bank’s ATMs would send a transaction again if the network went down before
a confirmation message was received from the mainframe; periodically, the

Security Engineering: A Guide to Building Dependable Distributed Systems

201

mainframe itself crashed, and “forgot” about open transactions. We also found
customers whose accounts were debited with other customers’ transactions,
and other customers who were never debited at all for their card transactions.
(We used to call these cards “directors’ cards,” and joked that they were issued
to bank directors.)

• Thefts from the mail are also huge. They are reckoned to account for 30 per-
cent of all U.K. payment card losses, but most banks’ postal control proce-
dures are dismal. For example, in February 1992, I asked my bank for an
increased card limit: the bank sent not one, but two, cards and PINs through
the post. These cards arrived only a few days after intruders had got hold of
our apartment block’s mail and torn it up looking for valuables. It turned out
that this bank did not have the systems to deliver a card by registered post. (I’d
asked them to send the card to the branch for me to pick up, but someone at
the branch had simply readdressed the envelope to me.) Since then, many
banks have found that better postal controls are the one way they can make
enough of a dent in their fraud rates to affect their bottom line.

• Frauds by bank staff appear to be the third major cause of phantoms. I men-
tioned the Hastings case in Section 9.2.3; there are many others. For example,
in Paisley, Scotland, an ATM repairman installed a portable computer inside
an ATM to record customer card and PIN data, then went on a spending spree
with forged cards. In London, England, a bank stupidly used the same crypto-
graphic keys in its live and test systems; maintenance staff found out that they
could work out customer PINs using their test equipment, and started offering
this as a service to local criminals at £50 a card. Such frauds are particularly
common in countries such as Britain, where banks had for many years a policy
of denying that their cash machines could possibly make an error. Bank staff
knew that customer complaints would be stonewalled rather than investigated.

These failures are all very much simpler and more straightforward than the ones we
engineers had worried about. In fact, the only fraud we had anticipated, and that hap-
pened to any great extent, came from the practice (common in the 1980s) of letting
ATMs process transactions while the network was down or the central mainframe was
offline. Though this was convenient—it meant 24-hour service—criminals, especially
in Italy and England, learned to open bank accounts, duplicate the cards, then use them
to withdraw money simultaneously from a large number of ATMs overnight when the
network was down [494]. Such frauds led most banks to make ATM operation online-
only by the mid-1990s.

However, there were numerous frauds that happened in quite unexpected ways. We
already mentioned the Utrecht case in Section 2.8, where a tap on a garage point-of-
sale terminal was used to harvest card and PIN data; and the “encryption replacement”
trick by which banks that just encrypted the customer PIN and wrote it on the customer
card enabled crooks to change the account number on their own card to somebody
else’s. There were many more.

• A favorite modus operandi was for villains to stand in ATM queues, observe
customers’ PINs, pick up the discarded ATM tickets, copy the account num-
bers from the tickets to blank cards, and use these to loot the customers’ ac-
counts. This trick was first reported in New York in the mid-1980s; it was still
working in the San Francisco Bay Area in the mid-1990s. Yet there are many

Chapter 9: banking and Bookkeeping

202

simple countermeasures, such as incorporating extra data on the mag strip, or
just not printing the full account number on the ticket.

• One bank’s systems had this feature: when a telephone card was entered at an
ATM, it believed that the previous card had been inserted again. Crooks stood
in line, observed customers’ PINs, and helped themselves. This seems to have
been an obscure programming error involving the card reader’s error handler;
one can’t expect all such errors to be found during testing.

• One make of ATM would output 10 banknotes from the lowest-denomination
nonempty cash drawer whenever a certain 14-digit sequence was entered at the
keyboard. One bank printed this sequence in its branch manual, and three
years later there was a sudden spate of losses. These went on until all the
banks using the machine put in a software patch to disable the transaction.

• One small institution issued the same PIN to all its customers, as a result of a
simple programming error.

• Several banks thought up check-digit schemes to enable PINs to be checked by
offline ATMs and point-of-sale devices without these devices having a full en-
cryption capability. For example, customers of one British bank would get a
credit card PIN with digit 1 plus digit 4 equal to digit 2 plus digit 3, and a
debit card PIN with 1 plus 3 equals 2 plus 4. This meant that crooks could use
stolen cards in offline devices by entering a PIN such as 4455.

• Some banks show a complete disregard for prudent procedure. In August 1993,
my wife went into a branch of our bank with a witness and said that she’d for-
gotten her PIN. The teller helpfully printed her a new PIN mailer from a
printer attached to a PC behind the counter. There were no visible dual con-
trols. Worse, this was not the branch where our account is kept. Nobody knew
her and the only identification she offered was our bank card and her check-
book. When procedural controls are so lax that anyone can walk in off the
street and get a PIN for a random customer account, no amount of encryption
technology will do much good. (The bank in question has since fallen victim
to a takeover.)

• A rapidly growing modus operandi is to use false terminals to collect customer
card and PIN data. Attacks of this kind were first reported from the United
States in 1988; there, crooks built a vending machine that would accept any
card and PIN, and dispense a packet of cigarettes. They put their invention in a
shopping mall, and harvested PINs and magnetic strip data by modem. In
1993, two villains installed a bogus ATM in the Buckland Hills Mall in Con-
necticut [421, 590]. They had managed to get a proper ATM and a software
development kit for it—all bought on credit. Unfortunately for them, they de-
cided to use the forged cards in New York, where cash machines have hidden
video cameras; they ended up getting long stretches in Club Fed. The largest
and most recent case to date took place in 1999 in Canada. This involved doc-
tored point-of-sale terminals, and led to the arrest of dozens of alleged Eastern
European organized-crime figures in the Toronto area and elsewhere [54, 91].

Security Engineering: A Guide to Building Dependable Distributed Systems

203

In conclusion, the main thing we did wrong when designing ATM security systems
in the early to mid-1980s was to worry about criminals being clever; we should rather
have worried about our customers—the banks’ system designers, implementers, and
testers—being stupid.

Crypto is usually only part of a very much larger system. It gets a lot of attention
because it is mathematically interesting; but as correspondingly little attention is paid
to the “boring” bits such as training, usability, standards, and audit, it’s rare that the
bad guys have to break the crypto to compromise a system. It’s also worth bearing in
mind that there are so many users for large systems, such as ATM networks, that we
must expect the chance discovery and exploitation of accidental vulnerabilities that
were simply too obscure to be caught in testing.

9.4.3 Practical Implications

In some countries (including the United States), the banks have to carry the risks asso-
ciated with new technology. Following a legal precedent, in which a bank customer’s
word that she had not made a withdrawal was found to outweigh the banks’ experts’
word that she must have done so [427], the U.S. Federal Reserve passed Regulation E,
which requires banks to refund all disputed transactions unless they can prove fraud by
the customer [276]. This has led to some minor abuse—misrepresentations by custom-
ers are estimated to cost the average U.S. bank about $15,000 a year—but this is an
acceptable cost (especially as losses from vandalism are typically three times as much)
[813].

In other countries—such as Britain and Norway—the banks got away for many years
with claiming that their ATM systems were infallible. Phantom withdrawals, they
maintained, could not possibly occur, and a customer who complained of one must be
mistaken or lying. This position was finally demolished (in the Britain at least) when
significant numbers of criminals were jailed for ATM fraud, and the problem couldn’t
plausibly be denied any more. (A number of these cases are described in [19, 20].) Un-
til that happened, however, there were some rather unpleasant incidents that got banks
a lot of bad publicity. Perhaps the worst was the Munden case.

John Munden was one of our local police constables, based in Bottisham, Cam-
bridgeshire; his beat included the village of Lode where I lived at the time. He came
home from holiday in September 1992 to find his bank account empty. He asked for a
statement, found six unexpected withdrawals for a total of £460 (then about $700), and
complained. His bank responded by having him prosecuted for attempting to obtain
money by deception. It came out during the trial that the bank’s system had been im-
plemented and managed in a ramshackle way; the disputed transactions had not been
properly investigated; and all sorts of wild claims were made by the bank, such as that
its ATM system couldn’t suffer from bugs as its software was written in Assembler.
Nonetheless, it was basically the constable’s word against the bank’s. He was con-
victed in February 1994 and fired from the police force.

This miscarriage of justice was overturned on appeal, and in an interesting way. Just
before the appeal was due to be heard, the prosecution served up a fat report from the
bank’s auditors claiming that the system was secure. The defense demanded equal ac-
cess to the bank’s systems for its own expert. The bank refused, and the court therefore
disallowed all the bank’s computer evidence—including its bank statements. The ap-

Chapter 9: banking and Bookkeeping

204

peal succeeded, and Munden got reinstated. But this was only in July 1996—he’d spent
the better part of four years in limbo, and his family had suffered terrible stress. Had
the incident happened in California, he could have won enormous punitive damages, a
point bankers should ponder as their systems become global and their customers can be
anywhere.

The lesson to be drawn from such cases is that dual control is not enough. If a sys-
tem is to provide evidence, it must be able to withstand examination by hostile experts.
In effect, the bank in the Munden case had used the wrong security policy. What it
really needed wasn’t dual control, but nonrepudiation: the ability for the principals in a
transaction to prove afterward what happened. This could have been provided by in-
stalling ATM cameras; although these were available (and are used in some U.S.
states), they were not being used in Britain.

The issue of nonrepudiation arises in a number of other applications. Often, the right
question to ask is not about the mechanism (cameras, biometrics, digital signatures, . .
.) but about the motive. Why should a U.K. bank have spent money on ATM cameras
that would have undermined its infallibility policy? (One English bank did install ATM
cameras during the spate of phantom withdrawals, but took them out again under pres-
sure from the other banks.) And why for that matter should people shopping on the Net
use digital signatures, if these will just make it harder to deny a transaction when
things go wrong? We will revisit this issue again and again in later chapters.

9.5 Summary

Banking systems are interesting in a number of ways.
Bookkeeping applications give us a mature example of systems whose security is

oriented toward authenticity and accountability rather than confidentiality. Their pro-
tection goal is to prevent and detect frauds being committed by dishonest insiders. The
Clark-Wilson security policy provides a model of how they operate. It can be summa-
rized as:

All transactions must preserve an invariant of the system, namely that the books must
balance (so a negative entry in one ledger must be balanced by a positive entry in
another one); some transactions must be performed by two or more staff members; and
records of transactions must not be destroyed after they are committed.

This was based on time-honored bookkeeping procedures, and led the research
community to consider systems other than variants of Bell-LaPadula.

But manual bookkeeping systems use more than just dual control. Although some
systems do need transactions to be authorized in parallel by two or more staff, a sepa-
ration of duty policy more often works in series, in that different people do different
things to each transaction as it passes through the system. Designing bookkeeping sys-
tems that do this effectively is a major problem which is often neglected and which
involves input from many disciplines. Another common requirement is nonrepudia-
tion—that principals should be able to generate, retain, and use evidence about the
relevant actions of other principals.

Security Engineering: A Guide to Building Dependable Distributed Systems

205

The other major banking application, remote payment, is increasingly critical to e-
commerce. In fact, wire transfers of money go back to the middle of the Victorian era.
Because there is an obvious motive to attack these systems, and villains who steal large
amounts and get caught are generally prosecuted, payment systems are a valuable
source of information about what goes wrong. Their loss history teaches us the impor-
tance of minimizing the background error rate, preventing procedural attacks that de-
feat technical controls (such as thefts of ATM cards from the mail), and having
adequate controls to deter and detect internal fraud.

Payment systems have also played a significant role in the development and appli-
cation of cryptology. One innovation was the idea that cryptography could be used to
confine a critical part of the application to a trusted computing base consisting of tam-
per-resistant processors—an approach since used in many other applications.

Research Problems

Designing transaction sets for bookkeeping applications is still pre-scientific; we could
do with tools to help us do it in a more systematic, less error-prone way. Accountants,
lawyers, financial market regulators, and system engineers all seem to feel that this is
someone else’s responsibility. This is a striking opportunity to do multidisciplinary
research that might actually be useful.

At an even more basic level, we don’t even fully understand stateful access control
systems, such as Clark-Wilson and Chinese Wall. To what extent does one do more
than the other on the separation-of-duty front? How should dual control systems be
designed anyway? How much of the authorization logic can we abstract out of appli-
cation code into middleware? Can we separate policy and implementation to make en-
terprise-wide policies easier to administer?

There are some useful distinctions, such as policy versus mechanism versus man-
agement, push versus pull, and specification versus runtime controls. There are some
prototype engines for enforcing an arbitrary policy—such as HP’s authorization server
product [772] and AT&T’s Policymaker [115]. Developing such engines to deal with
the full generality of possible security policies is still an open problem.

As for robustness of cryptographic systems, the usability of security mechanisms,
and assurance generally, these are huge topics that are still only partially mapped. Ro-
bustness and assurance are partially understood, but usability is still a very gray area.
There are many more mathematicians active in security research than applied psy-
chologists, and it shows.

Further Reading

I don’t know of a comprehensive book on banking computer systems, although there
are many papers on specific payment systems available from the Bank for International
Settlements [72]. When it comes to developing robust management controls and busi-
ness processes that limit the amount of damage that any one staff member can do, there
is a striking lack of hard material (especially given the need that new e-businesses have
for such systems). There was one academic conference in 1997 [416]; but the business

Chapter 9: banking and Bookkeeping

206

books that touch on these issues all seem to focus on financial management and on the
soft aspects of management control such as “tone at the top.” I’ll revisit this in Chapter
22.

For the specifics of financial transaction processing systems, the cited articles [19,
20] provide a basic introduction. More comprehensive, if somewhat dated, is [221],
while [336] describes the CIRRUS network as of the mid-’80s. The most informative
public domain source—though somewhat heavy going—is probably the huge online
manuals for the equipment in question, such as the IBM 4758 and CCA [397].

