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ABSTRACT
The popular social networking website Facebook exposes a
“public view” of user profiles to search engines which in-
cludes eight of the user’s friendship links. We examine what
interesting properties of the complete social graph can be
inferred from this public view. In experiments on real social
network data, we were able to accurately approximate the
degree and centrality of nodes, compute small dominating
sets, find short paths between users, and detect commu-
nity structure. This work demonstrates that it is difficult to
safely reveal limited information about a social network.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues —
Privacy; E.1 [Data Structures]: Graphs and networks;
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems; K.6.5 [Manage-
ment of Computing and Information Systems]: Secu-
rity and Protection

General Terms
Security, Algorithms, Experimentation, Measurement, The-
ory, Legal Aspects

Keywords
Social networks, Privacy, Web crawling, Data breaches, Graph
theory

1. INTRODUCTION
The proliferation of online social networking services has

entrusted massive silos of sensitive personal information to
social network operators. Privacy concerns have attracted
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considerable attention from the media, privacy advocates
and the research community. Most of the focus has been
on personal data privacy: researchers and operators have
attempted to fine-tune access control mechanisms to pre-
vent the accidental leakage of embarrassing or incriminating
information to third parties.

A less studied problem is that of social graph privacy : pre-
venting data aggregators from reconstructing large portions
of the social graph, composed of users and their friendship
links. Knowing who a person’s friends are is valuable in-
formation to marketers, employers, credit rating agencies,
insurers, spammers, phishers, police, and intelligence agen-
cies, but protecting the social graph is more difficult than
protecting personal data. Personal data privacy can be man-
aged individually by users, while information about a user’s
place in the social graph can be revealed by any of the user’s
friends.

1.1 Facebook and Public Listings
Facebook is the world’s largest social network, claiming

over 175 million active users, making it an interesting case
study for privacy. Compared to other social networking plat-
forms, Facebook is known for having relatively accurate user
profiles, as people primarily use Facebook to represent their
real-world persona [10]. Thus, Facebook is often at the fore-
front of criticism about online privacy [2, 17]. In September
2007, Facebook started making“public search listings”avail-
able to those not logged in to the site – an example is shown
in Figure 1. These listings are designed to encourage visitors
to join by showcasing that many of their friends are already
members.

Originally, public listings included a user’s name, photo-
graph, and 10 friends. Showing a new random set of friends
on each request is clearly a privacy issue, as this allows a web
spider to repeatedly fetch a user’s page until it has viewed all
of that user’s friends1. In January 2009, public listings were
reduced to 8 friends, and the selection of users now appears
to be a deterministic function of the requestin IP address2.

1Retrieving n friends by repeatedly fetching a random sam-
ple of size k is an instance of the coupon collector’s problem.
It will take an average of n·Hn

k
= Θ( n

k
logn) queries to re-

trieve the complete set of friends. A set of 100 friends, for
example, would require 65 queries to retrieve with k = 8.
2Using the anonymity network Tor, we were able retrieve dif-
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Figure 1: An author’s public Facebook profile

Facebook has also added public listings for groups, listing 8
members in a similar fashion.

Critically, public listings are designed to be indexed by
search engines, and are not defended technically against spi-
dering. Members-only portions of social networks, in con-
trast, are typically defended by rate-limiting or legally by
terms of use. We have experimentally confirme the ease of
collecting public listings, writing a spidering script which
retrieved ∼250,000 listings per day from a desktop com-
puter. This suggests roughly 800 machine-days of effort are
required to retrieve the public listing of every user on Face-
book, easily within the ability of a serious aggregator. Thus
the complete collection of public listings can be considered
available to motivated parties.

1.2 Privacy Implications
Our goal is to analyse the privacy implications of easily

available public listings. The existence of friendship infor-
mation in public listings is troublesome in that it is not men-
tioned in Facebook’s privacy policy, which states only that:
“Your name, network names, and profile picture thumbnail
will be made available to third party search engines” [1]. Fur-
thermore, public listings are shown by default for all users.
Experimenting with users in the Cambridge network, we
have found that fewer than 1% of users opt out. We feel this
reflects a combination of user ignorance and poorly designed
privacy controls, as most users don’t want public listings –
the primary purpose is to encourage new members to join.
Users who joined prior to the deployment of public listings
may be unaware that the feature exists, as it is never encoun-
tered by members of the site whose browsers store cookies
for automatic log-in.

Leaking friendship information leads to obvious privacy
concerns. “Social”phishing attacks, in which phishing emails
are forged to appear to come from a victim’s friend, have
been shown to be significantly more effective than traditional

ferent sets of friends for the same user by sending requests
from different IP addresses around the globe. We noticed
a correlation between the set of friends shown and the ge-
ographic location of the requesting IP address. We suspect
this is a marketing feature and not a security feature – show-
ing a visitor a group of nearby people makes the site more
appealing.

Network #Users Mean d Median d Max d

Stanford 15,043 125 90 1,246
Harvard 18,273 116 76 1,213

Table 1: Summary of Datasets used. d = degree

“cold” phishing [12]. Private information can be inferred
directly from one’s friend list if, for example, it contains
multiple friends with Icelandic names. A friend list may
also be checked against data retrieved from other sources,
such as known supporters of a fringe political party [19].

In this work though, we evaluate how much social graph
structure is leaked by public search listings. While we are
motivated by the question of what data aggregators can ex-
tract from Facebook, we consider the general question of
what interesting properties of a graph one can compute from
a limited view. We start with an undirected social graph
G =< V,E >, where V is the set of vertices (users) and
E is the set of edges (friendships). We produce a “publicly
sampled” graph Gk =< V,Ek >, where Ek ∈ E is produced
by randomly choosing k outgoing friendship edges for each
node v ∈ V . We then compute some function of interest
f(G) and attempt to approximate it using another function
fapprox (Gk). If f (G) ≈ fapprox (Gk), we say that the pub-
lic view of the graph leaks the property calculated by f . As
k →∞, all information leaks, so we are most concerned with
low values of k such as the current Facebook value k = 8.

It is important to note that we assume Ek is a uniformly
random sample of E. This may not be the case if Facebook
is specifically showing friends for marketing purposes. An
interesting question for future work is if there are public dis-
play strategies which would make it harder to approximate
useful functions of the graph.

2. EXPERIMENTAL DATA
In order to obtain a complete subgraph to perform experi-

ments on, we crawled data from a large social-network using
a special application to repeatedly query user data using the
network’s developer API. On the social network in question,
we found that more than 99% of users had their information
exposed to our application, making this approach superior
to crawling all profiles visible to a public network, which is
typically only 70-90% [14]. We crawled two sub-networks
consisting of students from Stanford and Harvard universi-
ties, summarised in Table 1.

We note that our crawling method is impractical for crawl-
ing significant portions of the graph, because we were sub-
ject to rate-limiting and the number of friendship queries
required was O(n2) as n, the number of users crawled, in-
creased. Crawling public listings, as search engines are en-
couraged to do, is a much easier task.

3. STATISTICS
We studied five common graph metrics – vertex degree,

dominating sets, betweenness centrality, shortest paths, and
community detection – and found that even with a limited
public view, an attacker is able to approximate them all with
some success.

3.1 Degree
Information about the degree d of nodes in the network

is exposed in the sampled graph, particularly for low-degree
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nodes. This is not surprising, because nodes with d < k
must be shown with fewer than k links in their public list-
ing, leaking their precise degree. For most social networks,
however, finding the set of users with few friends is less inter-
esting than finding the most popular users in the network,
who are useful for marketing purposes.

Degree information is leaked for users with d ≥ k because
they will likely be displayed in some of their friends’ listings,
meaning that there will be ≥ k edges for most nodes in the
sampled graph. We can consider the sampled graph to be a
directed graph with edges originating from the user whose
public listing they were found in. The out-degree dout(n) of a
node n is the number of edges learned from its public listing,
and the in-degree din(n) is the number of edges learned from
other public friend listings which include n. Note that we
always have dout(n) ≤ k, but for a high degree node in the
complete graph, we expect din(n) > k. We can make a naive
approximation of n’s degree in the complete graph:

d∗(n) ≈ max[dout(n), din(n) · d̄
k

] (1)

where d̄ is the average degree of all nodes in the complete
graph (we assume this can be found from public statistics).
This method works because, for a node n with d(n) friends,
n will show up in each friend m’s listings with probability

k
d(m)

. Since we don’t know d(m), we can approximate with

the average degree for the complete graph. This approxi-
mation, however, has an intrinsic bias, as nodes with many
relatively low-degree friends will have an artificially high es-
timated degree. In a sampled graph, it is more meaning-
ful for a node to have in-edges from a higher-degree node,
conceptually similar to the PageRank algorithm [6]. Thus,
we can improve our estimates by implementing an iterative
algorithm: first initialise all estimates d0(n) to the naive
estimate of equation 1, and then iteratively update:

di(n)← max[dout(n),
X

m∈in-sample(n)

k

di−1(m)
] (2)

In order to keep the degree estimates bounded, it is nec-
essary to normalise after each iteration. We found it works
well to force the average of all estimated degrees to be our
estimated average d̄ for the complete graph.

To evaluate the performance of this approach, we define
a cumulative degree function D(x), which is the sum of the
degrees of the x highest-degree nodes. This is motivated by
the likely use of degree information, to locate a set of very
high-degree nodes in a network. In in Figure 2, there is a
comparison of the growth of D(x) when selecting the high-
est degree nodes given complete graph knowledge against
our naive and iterated estimation algorithms. We also plot
the growth of D(x) if nodes are selected uniformly at ran-
dom, which is the best possible approach with no graph
information.

With k = 8, the iterative estimation method works very
well; for the Harvard data set the highest-degree 1,000 nodes
identified by this method have a cumulative degree of 407,746,
compared with 452,886 using the complete graph, making
our approximation 90% of optimal. We similarly found 89%
accuracy in the Stanford network.

3.2 Dominating Sets
A more powerful concept than simply finding high-degree

Figure 2: Degree estimation methods

nodes is to compute a minimal dominating set for the graph.
A dominating set is a set of nodes N , such that its domi-
nated set N ∪ friends(N) is the complete set of users V .
In the case of a social network, this is a set of people who
are, collectively, friends with every person in the network.
Marketers can target a small dominating set to indirectly
reach the entire network. If an attacker can compromise a
small dominating set of accounts, then the entire network is
visible.

Even given the complete graph, computing the minimum
dominating set is an NP-complete problem [13]. The simple
strategy of picking the highest-degree nodes can perform
poorly in social networks, as many high-degree users with
overlapping groups of friends will be selected which add rel-
atively little coverage. However, a greedy algorithm which
repeatedly selects the node which brings the most new nodes
into the dominated set has been shown to perform well in
practice [7].

To evaluate this greedy approach, we measured the growth
of the dominated set as additional nodes are added to the
dominating set, if nodes are selected using the complete
graph or the sampled graph. The greedy algorithm per-
forms very well given the sampled view. In Figure 3 we
compared these two selection strategies against a “degree
selection” strategy of always picking the next highest-degree
node (given complete graph knowledge). The greedy algo-
rithm outperforms this approach even with only sampled
data, demonstrating that significant network information is
leaked beyond an approximation of degrees3.

Our experiments showed that very small sets exist which
dominate most of the network, followed by a long tail of di-
minishing returns to dominate the entire network, consistent
with previous research [9]. With complete graph knowledge,
we found a set of 100 nodes which dominate 65.2% of the
Harvard network, while we were able to find a set of 100
nodes giving 62.1% coverage using only the sampled graph,

3In fact, we were surprised to find that selecting the highest-
degree nodes based on our naive degree-estimates from the
sampled graph outperformed selecting based on actual de-
gree! This is because a bias in favor of nodes with low-degree
friends is useful for finding a dominating set, as the graph’s
fringes are reached more quickly.
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Figure 3: Dominating set estimation

for 95% accuracy. Similarly, for Stanford, our computed
100-node dominating set had 94% of the optimal coverage.

3.3 Centrality and Message Interception
Another important metric used in the analysis of social

networks is centrality, which is a measure of the importance
of members of the network based on their position in the
graph. We use the betweenness centrality metric, for which
an efficient algorithm is described in [5]. Betweenness cen-
trality is defined as:

CB (v) =
X

s 6=v 6=t∈V

σst (v)

σst
(3)

where σst is the number of shortest paths from node s
to node t and σst (v) is the number of such paths which
contain the node v. Thus, the higher a node’s betweenness
centrality, the more communication paths it is a part of.

A node with high betweenness centrality, therefore, is one
which could intercept many messages travelling through the
network. We simulated such interception occurring on the
Stanford sub-network to determine the probability that an
attacker controlling N nodes could intercept a message sent
from any node to any other node in the network via shortest-
path social routes. The nodes designated as compromised
are selected according to one of three policies: maximum
centrality, maximum centrality for a sampled graph with
k = 8, or random selection.

4 shows that, while randomly selecting nodes to compro-
mise leads to a linear increase in intercepted traffic, a selec-
tive targeting of highly central nodes yields much better re-
sults. After compromising 10% of nodes in this sub-network,
an attacker could intercept 15.2% of messages if she used
random selection, but using centrality to direct the choice
of nodes, the attacker can intercept as much as 51.9% of
messages. Even if the attacker uses only the information
available from a k = 8 public listing, she can still success-
fully intercept 49.8% of all messages – just 4% less than she
could do with full centrality information.

3.4 Shortest Paths
We tested the extent that the small world property is

Figure 4: Message interception

Figure 5: Reachable nodes

maintained in a sampled graph by computing the minimum
path length between every pair of nodes, using the Floyd-
Warshall shortest path algorithm [11]. As this algorithm has
a complexity of O

`
|V |3

´
, where V is the set of vertices in a

graph, we only calculated shortest paths a subset of our ex-
ample data. Within the 2,000 most popular Stanford users,
the minimum-length shortest path was a single edge and the
maximum-length path was just three edges. Figure 5 shows
the effect of limiting friendship knowledge on reachability of
nodes in the graph.

The maximum-length shortest path increases from 3 to
7 as we reduce visible friendships to 2 per person, but the
graph remains fully connected. The average path length for
Stanford was 1.94 edges, and with k = 8, it increased to just
3.09.

3.5 Community Detection
Given a complete graph, it is possible to automatically

cluster the users into highly-connected subgroups which sig-
nify natural social groupings. Community structure in social
graphs could be used to market products that other mem-
bers of one’s social clique have purchased, or to identify dis-
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Figure 6: Community Detection

sident groups, among other applications. For our purposes,
we will use attempt find communities with maximal modu-
larity [16], a clustering metric for which efficient algorithms
can partition realistically-sized social graphs with thousands
of nodes.

Modularity is defined to be the number of edges which ex-
ist within communities beyond those that would be expected
to occur randomly:

Q =
1

2m

X
v,w

»
Avw −

d(v)d(w)

2m

–
(4)

where m is the total number of edges in the graph, and
Avw = 1 if and only if v and w are connected. We im-
plemented the greedy algorithm for community detection in
large graphs described in [8]. The results on our sample
graph were striking, as shown in Figure 6. With a sampling
parameter of k = 8, we were able to divide the graph into
communities nearly as well as using complete graph knowl-
edge. Using sampled data, we divided the graph into 18,150
communities with a modularity of 0.341, 92% as high as the
optimal 18,205 communities with a modularity of 0.369.

The algorithm produced a slightly different set of com-
munities using the sampled graph, because a well-connected
social network like a college campus contains many overlap-
ping communities, but using modularity as our metric, the
communities identified were almost as significant. Commu-
nity detection worked nearly as well with k=5, but perfor-
mance deteriorated significantly for k=2 and below.

4. RELATED WORK
Graph theory is a well-studied mathematical field; a good

overview is available in [3]. Sociologists have long been inter-
ested in applying graph theory to social networks, the defini-
tive work is [18]. Approximating information from a social
graph when presented with incomplete knowledge, however
is far less studied. The closest example we could find in the
literature was a study which evaluated community detection
given only the edges from a small subset of nodes [15]. This
work used a different sampling strategy, however, and only
aimed to classify nodes into one of two communities in a
simulated graph. Another set of experiments [9] examined

strategies for placing a small set of nodes under surveillance
to gain coverage of a larger network, similar to our calcula-
tion of dominating sets. Related to our problem of limiting
the usefulness of observable graph data is anonymising a so-
cial network for research purposes. It has been shown that,
due to the unique structure of groups withing a social graph,
it is often easy to de-anonymise a social graph by correlating
it with known data [4].

5. CONCLUSIONS
We have examined the difficulty of computing graph statis-

tics given a random sample of k edges from each node, and
found that many interesting properties can be accurately
approximated. This has disturbing implications for online
privacy, since leaking graph information enables transitive
privacy loss: insecure friends’ profiles can be correlated to a
user with a private profile. Social network operators should
be aware of the importance of protecting not just user profile
data, but the structure of the social graph. In particular,
they shouldn’t assist data aggregators by giving away public
listings.
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