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Abstract—We have studied the C3 photosynthetic carbon
metabolism centering our investigation on the following four
design principles. (1) Optimization of the photosynthetic rate
by modifying the partitioning of resources between the different
enzymes of the C3 photosynthetic carbon metabolism using
a constant amount of protein-nitrogen. (2) Identify sensitive
and less sensitive enzymes of the studied model. (3) Maximize
photosynthetic productivity rate through the choice of robust
enzyme concentrations using a new precise definition of robust-
ness. (4) Modeling photosynthetic carbon metabolism as a multi-
objective problem of two competing biological selection pressures:
light-saturated photosynthetic rate versus total protein-nitrogen
requirement. Using the designed single-objective optimization
algorithms, PAO and A-CMA-ES, we have obtained an in-
crease in photosynthetic productivity of the 135% from 15.486
µmol m−2s−1 to 36.382 µmol m−2s−1, and improving the
previous best-found photosynthetic productivity value (27.261
µmol m−2s−1, 76% of enhancement). Optimized enzyme con-
centrations express a maximal local robustness (100%) and a
high global robustness (97.2%), good properties for a possible
“in vitro” manufacturing of the optimized pathway. Morris
sensitivity analysis shows that 11 enzymes over 23 are high
sensitive enzymes, i.e., the most influential enzymes of the
carbon metabolism model. Finally, we have obtained the trade-
off between the maximization of the leaf CO2 uptake rate and
the minimization of the total protein-nitrogen concentration.
This trade-off search has been carried out for the three ci
concentrations referring to the estimate of CO2 concentration in
the atmosphere characteristic of 25 million years ago, nowadays
and in 2100 a.C. Remarkably, the three Pareto frontiers identify
the highest photosynthetic productivity rates together with the
fewest protein-nitrogen usage.

I. INTRODUCTION

Recently, a committee of the U.S. National Academy of
Engineering has detected fourteen “Grand Challenges for
Engineering” [1], 14 areas awaiting engineering solutions in
the 21st century. Implicitly, two of these “Grand Challenges
for Engineering” have been addressed in this research work:
“develop carbon sequestration methods” and “manage the
nitrogen cycle”. The growth in emissions of carbon dioxide is
a prime contributor to global warming, in practice, for carbon
dioxide (CO2) problem the challenge is to develop effective
and efficient systems for capturing the CO2 and sequestering it
safely away from the atmosphere. The optimized management
of the nitrogen cycle is crucial by all living things, in fact,
nitrogen is an essential component of proteins and DNA/RNA.

Indirectly, the maximization of the leaf CO2 uptake rate and
the minimization of the total protein-nitrogen concentration
obtained in this work go in the direction to improve CO2

capturing rate and to increase nitrogen use efficiency of
natural leaf. This result has been reached thanks to specific
optimization algorithms.

Numerous problems encountered in bioinformatics, systems
biology and bioengineering can be modeled as optimization
problems [2], [3] and, thus, lend themselves to the appli-
cation of effective heuristic search methods and derivative-
free global optimization algorithms [4]. The optimization
task is conducted with respect to a single objective function
or a set of competing, conflicting, and non-commensurate
objectives having nonlinear interdependence. It is necessary,
hence, the usage of proper heuristics and algorithms to op-
timize the objective functions while satisfying several con-
straints. Recently, in multi-objective optimization has been
found important applications in a growing number of fields,
for example, molecular biology, chemical engineering and
biomedical engineering, and shown to have significant benefits
compared to single-objective optimization, e.g., selection of
single nucleotide polymorphisms [5], protein structure pre-
diction [6], and estimation of intracellular fluxes [7]. In this
research work, we have optimized the photosynthetic carbon
metabolism in order to maximize the CO2 uptake rate, and
investigated the Pareto frontiers in the carbon metabolism in
terms of photosynthetic rate versus protein-nitrogen. Using the
Morris method [8], we have evaluated the impact of enzymes
on the model identifying the sensitive and insensitive enzymes.
Moreover, we have performed a new robustness analysis
detecting the robust and less robust enzymes in order to
keep a maximal leaf CO2 uptake rate. The overall framework
adopted to analysis photosynthetic carbon metabolism can be
used to study large-scale metabolic networks, in particular,
and biomolecular systems, in general. We believe that the
algorithms and tools designed and introduced in this study,
the derivative-free global optimization algorithms, the multi-
objective optimality analysis, the sensitivity and robustness
analysis, although general-purpose methods, could be effective
in explain key properties of biological systems.

The carbon metabolism is largely influenced by the en-
zyme concentrations [9]; changing the natural concentration



is crucial to improve the CO2 uptake rate of a plant. The
atmospheric CO2 concentration has changed during the last
100 years more than in the past 25 million years, due to large
changes in Earth environment; it seems to be reasonable that
the evolutionary process cannot re-optimize the enzyme con-
centrations in this tight period. Even if in the bioinformatics
and bioengineering era we are able to work at the enzyme
level, the exhaustive search of the optimal enzyme concentra-
tions involved in the photosynthetic metabolism, taking into
account only fixed increase and decrease steps, would require
testing more than 109 possible values. Although an in-vivo
optimization is intractable, we can effectively estimate in silico
the optimal concentration of the enzymes of this metabolic
pathway [10]. We have designed ad-hoc algorithms to optimize
the enzyme concentrations in order to maximize the CO2

uptake rate. The metabolism has been modeled as a system
of ODEs, where the inputs are the enzyme concentrations and
the output is the CO2 uptake. Firstly, we maximized the CO2

uptake rate using deterministic and stochastic optimization
algorithms; we found that the designed algorithms, Advanced
CMA-ES algorithm (A-CMA-ES) and Parallel Optimization
Algorithms (PAO), are able to increase the photosynthetic rate
of 135%, that is, the new best-known optimum. The Morris
sensitivity analysis shows the complexity and non-linearity of
the pathway; in fact Morris method unravels the insensitive and
sensitive enzymes of the C3 photosynthetic carbon metabolism
model. In order to estimate the robustness of the found solu-
tions, we have performed global and local robustness analysis
using ad-hoc designed Monte-Carlo methods. According to
which aspect or part of the dynamical system is mutated, it
is possible to define four different types of robustness [11]:
dynamical stability (mutation of initial conditions), constraint
robustness (mutation of constraint values), parametric robust-
ness (mutation of parameter values) and structural stability
(mutation of the dynamical function). The designed robustness
analysis is a parametric robustness: robustness to change of
parameter values.

Finally, using an multi-objective optimization algorithm, we
have discovered Pareto frontiers between two competing and
conflicting objectives: the CO2 uptake rate and the amount of
protein-nitrogen. We maximized the CO2 uptake rate while
minimizing the amount of used protein-nitrogen concentration.
The paper is structured as follows: Section §II describes the
framework here designed, Morris sensitivity analysis, single
and multi objective optimization, local and global robustness
analysis, for the study and optimization of carbon metabolism;
Section §III presents the results obtained, the sensitive and
insensitive parameters, nominal values, and robustness values,
and the corresponding Pareto frontiers obtained, comparing the
results with state-of-art optimization algorithms and the natural
leaf CO2 uptake rate. Discussion and concluding remarks are
presented in Section §IV.

II. THE DESIGNED FRAMEWORK

In this section we introduce the three tools adopted in
the re-optimization of the photosynthetic carbon metabolism

pathway; sensitivity analysis, derivative-free optimization al-
gorithms, and robustness analysis.

A. The method of Morris

The sensitivity analysis (SA) concerns the study of how
uncertainty in the output of a model can be apportioned to dif-
ferent sources of uncertainty in the model input. In particular,
SA tries to identify the most influential parameters of a given
model; understanding which are the most important parameters
of a model could be extremely difficult since it is common to
deal with non-linear, highly noise and computational expensive
models. It is important to remark the differences between
Robustness (RA) and SA; RA aims to evaluate which is the
probability of a system to remain in a reference state under
perturbations, while, SA perturbs a system in order to find
which is the aspect that mainly affects its behavior and to
detect the dependencies among input parameters and between
input and output. In our research work, we want to assess
which enzymes are crucial for the carbon metabolism; in
order to perform this analysis, we used the Morris method,
which is particularly suited when the number of uncertain
parameters, called factors, is high and the model could be
expensive to compute. The Morris method belongs to the
class of the one-factor-a-time (OAT) methods [12]; OAT
means that a factor is perturbed in turn while keeping all
other factors fixed at their nominal value. In particular, the
method varies one factor at time across a certain number of
levels selected in the space of the input factors; this grid-like
sampling makes the algorithm easily adaptable for discrete and
continuous variables. For each variation, a factor elementary
effect is computed as follows: ui = (Y (x1, x2, . . . , xi +
∆xi, . . . , xk) − Y (x1, x2, . . . , xi, . . . , xk))/∆xi where Y is
the model, x1, x2, . . . , xi + ∆xi, . . . , xk is the perturbed
parameters vector and x1, x2, . . . , xi, . . . , xk is the nominal
parameters vector. For each factor, at different levels, various
estimates of the elementary effect ui are performed. In order
to study the importance of the parameters, the mean µi and
the standard deviation σi are computed over the elementary
effects ui of the i−th parameter. A high value of µi denotes
a high linear effect for a given factor, while a high value of
σi denotes either non-linear or non-additive behavior. In our
experiments, we use the modulus version of µ∗

i since it is better
than µi in ranking factors in order of importance; for each
enzyme we use the five concentrations under consideration as
the nominal values of the concentrations, and successively, we
use 20 factor levels perturbed 10 times. Since the bounds on
variables are not clearly defined, we set the lower and upper
bounds using the ±100% of the nominal value of each enzyme
concentrations.

B. Derivative-Free Optimization Algorithms

One of the key points of the present research work is the
CO2 uptake optimization of the carbon metabolism pathway.

The optimization of the photosynthetic productivity rate has
been tackled using state-of-the-art derivative-free optimiza-
tion algorithms belonging to the classes of deterministic and



stochastic optimizers and a new optimization framework, Par-
allel Optimization Algorithms (PAO). Stochastic algorithms
taken into account are CMA-ES [13], Differential Evolution
[14] and the hybrid particle swarm optimizer PPSwarm [15].
The deterministic optimizers belong to three broad sub-classes;
pattern search methods are represented by the Hooke-Jeeves
method [16], the Generalized Pattern Search [17] and the Mesh
Adaptive Direct Search [18]. Finally, we use two branch-and-
bound algorithms called Direct [19] and Multilevel Coordinate
Search [20], and the Implicit Filtering [21] a line-search
method.

The ODEs system input is a partitioning of the E =
23 enzymes involved in the metabolic pathway; the out-
put is an evaluation in terms of CO2 uptake, predict-
ing then, the photosynthetic/photo-respiratory properties of a
leaf characterized by such a partitioning. This means that,
abstracting the concentration of the enzymes in a vector
x = [conc1, conc2, . . . , concE ], the value f(x) is the
CO2 uptake coming from the solution of the ODEs system
when the concentration x is adopted. To solve the system of
ODEs we used the ODE15S MATLAB function as proposed
in [22]; this ensures an acceptable accuracy with a moderated
computational cost.

In order to consider biologically meaningful concentrations,
the algorithms have to look for a partitioning of the enzymes,
meaning that the total amount of protein-nitrogen has to
remain constant among all vectors x and equal to the amount
that characterizes the vector x0 corresponding to the enzyme
concentrations measured in the natural leaf [22] (the initial
concentrations). The long run comparison of the convergence
processes of the algorithms reveals the presence of many local
optima in the solution space; for this reason the designed
algorithm, A-CMA-ES, introduces a set of cut-off criteria
to CMA-ES and ensures with a constraint, a lower bound,
for each enzyme concentration to be compatible with the
smallest concentration observed in the natural leaf (vector x0).
Parallel Optimization Algorithms (PAO) is an optimization
framework that exploits coarse-grained parallelism to let a
pool of solutions exchange promising candidate solutions in
an archipelago fashion. Using evolutionary operators such as
recombination, mutation and selection, the framework com-
pletes with migration its approach based on islands. Each
island is a virtual place where a pool of solutions is let
evolve with a specific optimization algorithm; communications
among islands in terms of solutions evolved by potentially
different algorithms are arranged through a chosen archipelago
topology. The island model outlines an optimization environ-
ment in which different niches containing different populations
are evolved by different algorithms and periodically some
candidate solutions migrate in an other niche to spread their
building block. In this archipelago approach different topolo-
gies choices can raise to completely different overall solution
introducing then another parameter that has to be chosen for
each algorithm on each island. The PAO framework actually
encloses two optimization algorithms and many archipelago
topologies but its simplest configuration has been used to have

a comprehensible comparison with the other adopted strategies
and to better understand the optimization capabilities of this
approach. The adopted configuration has two islands with 2
optimization algorithms, A-CMA-ES and DE, that exchange
candidate solutions every 200 generations with an all-to-all
(broadcast) migration scheme at a 0.5 probability rate. Even in
its simplest configuration this approach has shown enhanced
optimization capabilities and an optimal convergence. After
this phase, the NSGA-II [23] multi-objective optimization
algorithm has been used to tackle the problem relaxing the
natural constraint about the fixed amount of protein-nitrogen.
The goal is now to optimize two conflicting objectives, that
are, to maximize the CO2 uptake and at the same time to
minimize the total amount of protein-nitrogen needed for that.
Introducing then the function g(x) =

∑E
i=1

x[i]∗WMi

BKi
, where

BKi are the catalytic number or turnover number, and WMi

the molecular weight of each enzyme respectively, the problem
is now defined as finding the leaf representing the best trade-
off when maximizing CO2 uptake rate, f(x), and at the same
time minimizing the total amount of protein-nitrogen, g(x).
In other words, we are looking for the best resulting leaf in
terms of CO2 uptake that uses the smallest amount of protein-
nitrogen to gain that result. Quantitative evaluation of points
obtained facing two competing and conflicting objectives is
done using a Pareto front approach: non-dominated points are
those solutions that are not outperformed in both objectives by
other points and then represent the Pareto-optimal solutions.

C. Local and Global Robustness

The robustness is a dimensionless metric that assesses the
yield of a given system, it is the property of the system
itself to undergo mutations remaining in a reference state and
continuing to perform its tasks in a reliable way. In biology,
robustness is generally regarded as a desiderable feature. The
ability of a system to survive changes in the environment,
and/or in the system itself, is one of the main driving forces
of evolution [24]. By inspecting the photosynthesis process, it
is extremely important to evaluate how the CO2 uptake rate
changes due to perturbations in the enzyme concentrations;
perturbations can be caused by many factors, like bias in
the synthesis process and changes in the ground elements.
For instance, by mutations of the promoter sequence or on
the enzyme control sites (effector binding sites) in the case
of allosteric enzymes. It is then obvious the importance of
seeking concentrations that maximize the CO2 uptake rate and
maintain a quasi-ideal behavior in the presence of noise. In our
research work, we define Ω = {{pi}mi=1, {ϕi}ni=1} as a system
with m parameters and n properties. We called nominal value
(Nv) the value of a property for a given parameter set. A trial
τ is a perturbed system generated by an α function, also called
α-perturbation, such that τ = α(Ω, σ). The α function applies
a stochastic noise σ on the reference system Ω; without loss
of generality, we assume that the noise is defined by a random
distribution. In order to simulate a statistically meaningful
perturbation phenomenon, we have generated an ensemble, T,
of perturbed systems. A trial τ ∈ T is considered robust to a



perturbation (mutation) of the stochastic noise σ for a given
property ϕ, if the following robustness condition is verified:

ρ(Ω, τ, ϕ, ϵ) =

{
1 if | ϕ(Ω)− ϕ(τ) |≤ ϵ
0 otherwise

where Ω is the reference system and ϵ is a robustness threshold.
The robustness of a system Ω is the number of robust trials
in T (with respect to the property ϕ) over the total number
of trials (| T |); we denote this measure as the robustness of
the system. Formally, we define a robustness function Γ as
follows:

Γ(Ω, T, ϕ, ϵ) =

∑
τ∈T ρ(Ω, τ, ϕ, ϵ)

|T |

The function Γ is a dimensionless quantity that assesses the
probability that the nominal value of a property changes
at most ϵ due to perturbations; high Γ values means high
system robustness. Two kind of robustness analysis has been
performed; the global robustness analysis applies a stochastic
noise to each enzyme concentration; while, the local robust-
ness analysis applies the noise one enzyme at time (this eval-
uates the single robustness, that is, the robustness of a single
enzyme). In other words, while the global robustness analysis
studies global changes of the system, the local robustness
analysis studies the relative robustness of a single enzyme.
The ensemble T has been generated using a Monte-Carlo
algorithm; we have fixed a maximum perturbation of 10%
from the nominal value of each enzyme concentration, and
we have generated an ensemble of 5× 103 trial for the global
robustness analysis and 200 trials for each enzyme for the
local robustness.

III. Experimental Results

A. Sensitivity Analysis

Sensitivity analysis perturbs a given system in order to
discover which aspects primary affect its behavior, to detect
the dependencies among input parameters and between in-
put parameters and output functions. In Fig.1 are reported
the results of the Morris sensitivity analysis on the model
of the carbon metabolism. High mean values mean linear
enzymatic response, while high standard deviation values
assess a non-linear (or non-additive) behavior or dependencies
among enzymes. Inspecting Fig. 1 we can detect three distinct
clusters, a) eleven high sensitive enzymes (i.e., enzymes with
µ, σ > 1), b) five insensitive enzymes (µ, σ < 0.1), and
c) seven low sensitive enzymes (0.09 < µ ≤ 1). Hence,
the eleven high sensitive enzymes, Rubisco, PGA kinase,
GAP dehydrogenase, FBP aldolase, FBPase, SBP aldolase,
SBPase, Phosphoribulose kinase, ADPGPP, Phosphoglycolate
phosphatase, and GDC, are the most important enzymes in the
studied model of the carbon metabolism.

Six enzymes of the Calvin Cycle are known to be directly
regulated by light [25]; among these six are present two
enzymes (PGA Kinase and GAP dehydrogenase) responsible
of energy-converting reactions, which are coupled to the light
reactions in the thylakoids. Rubisco, Phosphoribulose kinase,
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Fig. 1. Sensitive and Insensitive Enzymes. Morris sensitivity analysis of
the carbon metabolism model. For each enzyme, we report the mean µ
and standard deviation σ of the CO2 uptake rate on the x-axis and y-axis
respectively. High mean values mean linear enzymatic response, while high
standard deviation values assess a non-linear behavior or dependencies among
enzymes.

FBPase and, with somewhat lower sensitivity values, FBPase
as well are controlled (and activated) by light [25].

This means that 5 out of 6 of the enzymes with the larger
sensitivity values (those with the largest standard deviation
in Fig. 1) are controlled by light. The sixth enzyme with
largest sensitivity value is the SBP aldolase (third position
in sensitivity value). This enzyme is not light regulated but
is responsible of two different reactions of the Calvin Cycle:
the aldolase controlled reactions leading to the formation of
SBP and FBP (SBP aldolase and FBP aldolase are the same
enzyme [26]). The fact that the same enzyme is responsible
of two reactions in the same cycle can explain its substantial
sensitivity. The many enzymes with large mean and stan-
dard deviation values reflect the complexity of the pathway
and the non-linear interactions occurring among enzymes.
For future improvements of the model we have to consider
that some of the Calvin Cycle enzymes (particularly - and
not surprisingly - those with higher sensitivity values) are
allosteric enzymes. The use of Michaelis-Menten kinetics is,
in this case, an approximation of the real situation. Moreover,
we must consider that the regulatory networks in which the
Calvin Cycle enzymes are involved, go far beyond the cycle
itself. For instance, the impairment of the photorespiratory
enzymes (one of the aim to be achieved in order to increase
photosynthetic efficiency), could cause unexpected effects on
the general efficiency since photorespiration is proposed to
be important for avoiding photoinhibition of photosystem II,
especially in C3 plants [27]. This implies that the variation
in enzyme concentration is unlikely to be completely free
(or exclusively linked to the total protein-nitrogen amount)
as assumed in our model. The large variation in sensitivity
of the Calvin Cycle enzymes could be linked not only to the



more or less important function of the cycle itself, but also to
the contemporaneous involvement of some of these enzymes
in other metabolic networks and then less influenced by the
Calvin Cycle selective pressures. On the contrary, enzymes
with high µ value of sensitivity analysis, see Fig. 1, are linked
to the Calvin Cycle. For instance, FBPase activity and even its
mRNA expression is light regulated and hence strictly linked
to photosynthesis. In order to validate the results, we executed
a preliminary bioinformatics analysis with a BLAST [28]
search on the amino acid sequences (starting from Arabidopsis
genome) of the Calvin Cycle enzymes that had the most
extreme sensitivity values. We have taken into account the
e-values calculated by BLAST as search result. The enzymes
showing the highest sensitivity values, were also those with
the lowest e-values in BLAST hits (corresponding to the most
similar sequences found in the protein sequences database). A
possible explanation of the result could be that the amino acid
sequence variation in highly sensitive enzymes is low, even in
hits less related to the query sequence.

Essentially, the e-value describes the random background
noise. The lower the e-value, or the closer it is to zero, the
more “significant” the match is (less different the sequences
are). It is likely that the protein sequence is so optimized that
the sequence variation is low, even in species scarcely related
to the query sequence.

B. Maximal and Robust Photosynthetic Productivity

Initially, a larger family of optimization algorithms has been
compared in CO2 uptake maximization at ci = 270 µmol
mol−1 (reflecting the current CO2 atmospheric concentration
of 360 parts per million, ppm) and by fixing the total protein-
nitrogen in the enzymes of carbon metabolism to 1 gm−2 of
leaf area. We allow 24000 objective function evaluations as in
[22]; in Fig. 2, we report the convergence process of the tested
derivative-free optimization algorithms. It is worth noting that
the EA proposed in [22] is outperformed by eight algorithms,
the EA seems to stack into a local optimum after 104 objective
function evaluations, while the designed algorithms, PAO and
A-CMA-ES, achieve enhanced CO2 uptake rates. The most
promising algorithms have been let continue the optimization
process until 105 objective function evaluations; our PAO and
A-CMA-ES algorithms found the best CO2 uptake and they
outperform H-J and Differential Evolution (DE, [14]). From
an optimization point of view, PAO and A-CMA-ES seem to
be the most effective algorithms. The analysis of the PAO
convergence shows that the algorithm rapidly reaches its best
solution, and it is not able to improve it even if a large number
of objective function evaluations is allowed. Surprisingly,
among the three pattern search algorithms considered (H-J
[16], GPS [17], MADS [18]), the simple H-J outperforms
the other two claimed approaches. The data in Table I show
the concentrations of the enzymes for the original leaf (the
second column), for the optimized leaf as proposed by the
evolutionary algorithm used in [22] (the third column) and
four best candidates obtained by our PAO and A-CMA-ES
algorithms. The comparison among the robust optimized leaf
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Fig. 2. Convergence process of the derivative-free global optimization
algorithms. Searching of the optimal partitioning of resources among the
enzymes of carbon metabolism to maximize light-saturated photosynthetic
rate (CO2 uptake) at ci = 270 µmol mol−1 (reflecting the current CO2

atmospheric concentration). State-of-the-art optimization algorithms have been
adopted and compared (in the legend from best to worst).

(last column) and the natural leaf (second column) can help
to detect the relevant enzymes in order to maximize the light-
saturated photosynthetic rate (see Fig. 3). In fact, the robust
optimized leaf brings coherent relative changes with respect
to the natural leaf for most of the enzymes. In order to
study the robustness of the proposed concentrations, we have
performed a global and local robustness analysis in order to
understand how the gained CO2 Uptake rate is preserved
under enzymes perturbations; the results are presented in
Table I. Two major aspects should be remarked; firstly, the
concentration that achieves the maximum CO2 uptake rate
(36.495 mg N m−1) is extremely sensitive, and its robustness
values are all below the robustness of the other solutions. In
particular, by inspecting the local robustness analysis it is pos-
sible to note that many enzyme concentrations are not robust,
and many of them lead to a completely unreliable pathway. By
inspecting the results of local robustness analysis, it is worth
noting that the Rubisco and GAP dehydrogenase are the less
robust enzymes for four over six candidate solutions. Using
the designed optimization framework PAO (last column) we
have obtained an increase in photosynthetic productivity of the
135% from 15.486 µmol m−2s−1 to 36.382 µmol m−2s−1,
improving the previous best-found photosynthetic productivity
value (27.261 µmol m−2s−1). Moreover, this new set of
enzyme concentrations has a maximal local robustness (100%)
and a high global robustness (97.2%). With respect to the
initial concentration of enzymes, increases in Rubisco, FBP
aldolase, SBPase, ADPGPP and a strong increases in Cytosolic
FBP aldolase, Cytosolic FBPase, UDP-Glc pyrophosphorylase



Enzyme Name Initial Conc.
mg N m−1 (S.
Robustness %)

Conc.
mg N m−1

found in [22] (S.
Robustness %)

Opt. without
constraints, Conc.
mg N m−1

found by A-
CMA-ES (S.
Robustness %)

Opt. with
constraints, Conc.
mg N m−1

found by A-
CMA-ES (S.
Robustness %)

Opt. with
constraints, Conc.
mg N m−1

found by A-
CMA-ES (S.
Robustness %)

Optimal and
Robust Conc.
mg N m−1

found by PAO (S.
Robustness %)

Rubisco 517.00 (100) 795.00 (87.5) 861.93 (39) 840.60 (87) 857.05 (63.0) 860.226 (100.0)
PGA kinase 12.20 (100) 5.06 (100) 3.98 (0) 4.90 (100) 4.21 (100) 3.989 (100.0)
GAP dehydrogenase 68.80 (100) 75.00 (76.5) 63.55 (17) 71.62 (87.5) 63.71 (51.0) 64.483 (100.0)
FBP aldolase 6.42 (100) 11.70 (100) 9.29 (30.5) 10.38 (100) 10.77 (100) 9.050 (100.0)
FBPase 25.50 (100) 35.90 (100) 27.03 (0) 32.07 (100) 31.78 (100) 26.889 (100.0)
Transketolase 34.90(100) 18.40 (100) 16.98 (100) 19.46 (100) 15.93 (100) 8.247 (100.0)
SBP aldolase 6.21(100) 7.43 (100) 5.94 (0) 6.95 (100) 5.58 (100) 6.661 (100.0)
SBPase 1.29 (100) 4.90 (100) 4.31 (1) 5.03 (100) 4.26 (100) 4.397 (100.0)
Phosphoribulose kinase 7.64 (100) 8.55 (100) 7.99 (22.5) 8.86 (100) 7.67 (100) 7.007 (100.0)
ADPGPP 0.49 (100) 4.88 (100) 1.22 (0) 2.45 (100) 4.75 (100) 0.721 (100.0)
Phosphoglycolate phos. 85.20 (100) 1.42 (100) 0.00 (0) 0.85 (100) 0.02 (100) 0.325 (100.0)
Glycerate kinase 6.36 (100) 1.31 (100) 0.00 (100) 0.03 (100) 0.02 (100) 0.005 (100.0)
Glycolate oxidase 4.77 (100) 1.49 (100) 0.00 (100) 1.17 (100) 0.02 (100) 0.019 (100.0)
Ser glyoxylate aminotrans. 17.30 (100) 3.03 (100) 0.00 (100) 0.14 (100) 0.02 (100) 0.027 (100.0)
Glycerate dehydrogenase 2.64 (100) 0.78 (100) 0.00 (100) 0.01(100) 0.02 (100) 0.003 (100.0)
Glu glyoxylate aminotrans. 21.80 (100) 4.47 (100) 0.00 (100) 0.21(100) 0.02 (100) 0.00005 (100.0)
GDC 179.00 (100) 18.60 (100) 0.00 (100) 1.88(100) 0.02 (100) 0.00003 (100.0)
Cytosolic FBP aldolase 0.57 (100) 0.28 (100) 2.03 (0.5) 0.75 (100) 0.89 (100) 2.127 (100.0)
Cytosolic FBPase 2.24 (100) 1.44 (100) 5.27 (30.5) 2.05 (100) 2.50 (100) 5.554 (100.0)
UDP-Glc pyrophosphorylase 0.07 (100) 0.07 (100) 0.50 (0) 0.56 (100) 0.70 (100) 0.531 (100.0)
Suc-P synthetase 0.20 (100) 0.15 (100) 0.03 (30.5) 0.09 (100) 0.03 (92.5) 0.034 (100.0)
Suc-P phosphatase 0.13 (100) 0.07 (100) 0.03 (0) 0.01(100) 0.02 (100) 0.031 (100.0)
F26BPase 0.02 (100) 0.01 (100) 0.00 (100) 0.03 (100) 0.02 (100) 0.0 (100.0)
CO2 Uptake µmol

m2s
15.486 27.621 36.495 35.146 36.290 36.382

Local robustness % 100 76.50 0 87.0 51.0 100
Global robustness % 81.80 78.44 39.18 79.42 100.0 97.2

TABLE I
CONCENTRATIONS OF THE ENZYMES, AND SINGLE ROBUSTNESS (S. ROBUSTNESS), CO2 UPTAKE, LOCAL AND GLOBAL ROBUSTNESS (IN THE LAST

THREE ROWS). THE SECOND AND THIRD COLUMNS REPORT THE INITIAL CONCENTRATIONS OF ENZYMES USED IN THE SIMULATION, (INITIAL LEAF, OR
NATURAL LEAF), AND THE OPTIMIZED LEAF AS PREDICTED BY THE EVOLUTIONARY ALGORITHM USED IN [22]. THE LAST FOUR COLUMNS SHOW THE

BEST CANDIDATE SOLUTIONS OBTAINED BY THE DESIGNED PAO AND A-CMA-ES ALGORITHMS. THIS SET OF CANDIDATE SOLUTIONS HAS BEEN
OBTAINED AT ci = 270 µmol mol−1 (REFLECTING THE CURRENT CO2 ATMOSPHERIC CONCENTRATION).
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Fig. 3. The ratio of the enzyme concentrations optimized by the PAO
algorithm (36.382 µmol m−2s−1) at a ci = 270 µmol mol−1 compared
to the initial concentrations (15.486 µmol m−2s−1).

were required to a large increase of CO2 uptake rate (see
Fig. 3). Moreover, there are four enzymes, GAPDH, FBPase,
SBP aldolase, and Phosphoribulose kinase, approximately
maintaining the same values of the initial concentrations,

while PGA kinase, Transketolase, Suc-P synthetase and Suc-P
phosphatase are under-expressed; the remaining enzymes are
switched off. The under- and over- expressed pattern of Fig. 3
is well defined, the change of concentrations of the enzymes
of carbon metabolism between optimized leaf and natural leaf
does not show ambiguities.

As noted in [29], [30] SBPase is one enzyme where an
approximately 10% increase in photosynthetic rate has been
observed in transgenic plants over-expressing SBPase enzyme.
It is crucial, hence, to verify if further gains could be obtained
in transgenic plants if, in addition, Rubisco, FBP aldolase,
ADPGPP, Cytosolic FBP aldolase, Cytosolic FBPase, and
UDP-Glc pyrophosphorylase were over-expressed.

C. Multi-objective optimization of the carbon metabolism:
CO2 uptake vs. Protein-Nitrogen

In this new optimization task, we tried to maximize the
CO2 uptake rate while minimizing the amount of used protein-
nitrogen concentration; we have performed a multi-objective
optimization by considering the actual CO2 atmospheric con-
centration, and the past and future concentrations; in Fig. 4,
the three Pareto frontiers are reported.

It is interesting to note that for increasing atmospheric CO2

it is possible to obtain a major CO2 uptake rate with a mi-
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Fig. 4. CO2 uptake and protein-nitrogen concentration trade-off. Maximizing
the CO2 uptake while minimizing the total amount of protein-nitrogen
concentration; the operative area of natural leaves is located in the checked
area.

nor protein-nitrogen concentration. To accomplish this multi-
objective optimization task, we used the algorithm NSGA-
II [23], whose main property is an elitist genetic strategy
coupled with a fast non-dominated sorting procedure and a
density estimation of individuals using the crowding distance.
The natural operative range of the CO2 uptake is highlighted
with a blue-striped pattern, while the natural operative range of
the standard total protein-nitrogen concentration is highlighted
with the yellow-striped pattern. Moving beyond these ranges,
we set up a scheme to find the best trade-off between the max-
imization of the CO2 uptake and the minimization of the total
protein-nitrogen concentration. This trade-off search has been
carried out for the three ci concentration referring to the envi-
ronmental condition in effect 25 million years ago, nowadays
and in 2100 a. C. The three Pareto frontiers represent the best
trade-offs that have been found for the three ci concentrations;
each Pareto front has been obtained selecting over all solutions
those non-dominated, that means non-outperformed in both
objectives by others. From a leaf optimization point of view,
the most interesting (and at same time difficult to reach) side of
the chart is the bottom-right corner; in fact, leaves represented
by points closer to this area have a higher CO2 uptake
and a contextually lower total protein-nitrogen concentration,
that means the best photosynthetic productivity rate with the
fewest protein-nitrogen employment. These Pareto frontiers
suggest that ad hoc manipulation of partitioning of enzymes
could greatly increase the photosynthetic rate and decrease the
total protein-nitrogen investment of the photosynthetic carbon
metabolism of plants.

IV. DISCUSSION AND CONCLUSIONS

Optimizing the CO2 uptake rate is a complex task, that has
been tackled by ad-hoc optimization algorithms, A-CMA-ES
and PAO; the found solution is robust and assure a gained CO2

uptake rate of 135%. We used a multi-objective optimization

approach in order to maximize the CO2 uptake rate and
minimizing the protein-nitrogen concentration; the analysis of
the Pareto front shows that, for increasing CO2 atmospheric
concentrations, it is possible to obtain an improved CO2

uptake rate with a decreasing protein-nitrogen concentration.
From 1850 to 2006, fossil fuel and cement derived CO2

emissions, released a cumulative total of ∼ 330 petagrams of
carbon (PgC) to the atmosphere. An approximately additional
158 PgC came from land-use-change emissions, largely de-
forestation and wood harvest [31] . The growth rate of global
average atmospheric CO2 for 2000–2006 was 1.93 ppmy−1

(parts per million per year) [31]. Primary production of world
biomass, considering both marine and terrestrial sources, ro-
bustness an estimated global net primary production of 104.9
petagrams of carbon per year [32], while Cellulose and Lignin,
the most abundant organic resources in the world, exhibit an
annual turnover rate of 4×1010 tonnes, or 40 petagrams [33].
Our results show that the potential increase in CO2 uptake
obtainable by varying enzyme concentration of the Calvin
Cycle might increase the current CO2 uptake by 135%, hence
a quantity potentially capable to counteract CO2 emission
in atmosphere by human activities. Such an increase could
be obtained partly naturally by varying gene expression of
the involved enzymes, or by selecting individuals that could
modify the expression hence increasing their Calvin Cycle
efficiency. This second mechanism would require a long time
unless we consider the hypothesis of artificially modifying of
DNA involved in gene expression control. This last possibility
would require careful evaluation of possible risks linked to
introduction in the environment of organisms capable of fast
growth in a CO2 rich atmosphere. The increase in biomass
productivity and CO2 uptake calculated by optimized enzyme
partitioning might potentially counteract the current increase
in atmospheric CO2.

From a methodological point of view, we are delighted
to report that the optimization methodologies in the systems
biology framework is a thriving field of research. It has two
immediate and important benefits: the improved understanding
of the processes that shape the evolution of energy collecting
engine at the molecular level and the improved ability to use
optimization methods to predict from molecular data directions
where experiments should go and drive the decision process
in biotechnology.

Finally, strengths of this work: 1) as far as we know it is the
first time that the overall framework, sensitivity, optimization
and robustness, is used for the study of biological pathways;
2) it is the first time that local and global robustness analysis
has been defined and used to study molecular entities, and 3)
for the first time, the C3 photosynthetic carbon metabolism
has been characterized by CO2 uptake rate versus protein-
nitrogen Pareto frontiers which we prove to be a meaningful
and effective way to address this class of bioinformatics and
bioengineering problems.

The integration of optimization methods with bioinformatics
is shaping at growing pace our comprehension of biological
processes Optimization methodologies provide an essential



tool to capture a set of assumptions and to follow them to
their precise logical conclusions. They allow us to generate
new hypotheses, suggest experiments, and measure crucial
parameters. If the scientific progress relies on asking the right
questions, we believe that the combination of optimization
methods and bioinformatics will suggest more insightful ques-
tions and answers than bioinformatics techniques alone.
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[31] J. G. Canadell, C. Le Quéré, M. R. Raupach, C. B. Field, E. T.
Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and
G. Marland. Contributions to accelerating atmospheric CO2 growth
from economic activity, carbon intensity, and efficiency of natural sinks.
Proceedings of the National Academy of Sciences, 104(47):18866–
18870, 2007.

[32] C. B. Field, M. J. Behrenfeld, J. T. Randerson, and P. Falkowski.
Primary production of the biosphere: integrating terrestrial and oceanic
components. Science, 281(5374):237–240, 1998.

[33] M. P. Coughlan. The properties of fungal and bacterial cellulases with
comment on their production and application. Biotechnology & Genetic
Engineering Reviews, 3:39–109, 1985.


	Introduction
	The Designed Framework
	The method of Morris
	Derivative-Free Optimization Algorithms
	Local and Global Robustness

	Experimental Results
	Sensitivity Analysis
	Maximal and Robust Photosynthetic Productivity
	Multi-objective optimization of the carbon metabolism: CO2 uptake vs. Protein-Nitrogen

	Discussion and Conclusions
	References

