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Abstract

Multiprocessors and high-level languages generally provide
only relaxed (non-sequentially-consistent) memory models,
to permit performance optimisations. One has to understand
these models to program reliable concurrent systems — but
they are typically ambiguous and incomplete informal-prose
documents, sometimes give guarantees that are too weak
to be useful, and are sometimes simply unsound. Based on
our previous work, we review various problems with some
current specifications, for x86 (Intel 64/IA32 and AMD64),
and Power and ARM processors, and for the Java and
C++ languages. We argue that such specifications should
be rigorously defined and tested.

The Black Magic of Multiprocessor Programming

Parallelism is finally going mainstream, but, despite 40 years
of research on concurrency, programming and reasoning
about concurrent systems remains very challenging.

A key issue is that most programmers (and most re-
searchers) assume that memory is sequentially consistent:
that accesses by multiple threads to a shared memory oc-
cur in a global-time linear order. Real multiprocessors and
compilers, however, incorporate many performance optimi-
sations. These are typically unobservable by single-threaded
programs, but some have observable consequences for the be-
haviour of concurrent code. For example, on standard Intel
or AMD x86 processors, given two memory locations x and
y (initially holding 0), if two processors proc:0 and proc:1
respectively write 1 to x and y and then read from y and x,
as in the program below, it is possible for both to read 0 in
the same execution.

iwp2.3.a/amd4 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$1
poi:1 MOV EAX←[y] MOV EBX←[x]
Allow: 0:EAX=0 ∧ 1:EBX=0

One can view this as a visible consequence of write buffer-
ing : each processor effectively has a FIFO buffer of pending
memory writes (to avoid the need to block while a write com-
pletes), so the reads from y and x can occur before the writes
have propagated from the buffers to main memory. Such op-
timisations (of which this is a particularly simple example)
destroy the illusion of sequential consistency, making it im-
possible (at this level of abstraction) to reason in terms of
an intuitive notion of global time.

To describe what programmers can rely on, processor
vendors document architectures. These are loose specifica-
tions, claimed to cover a range of past and future actual
processors, which should reveal enough for effective pro-
gramming, but without unduly constraining future processor
designs. In practice, however, they are typically informal-
prose documents, e.g. the Intel 64 and IA-32 Architec-
tures SDM [Int09], the AMD64 Architecture Programmer’s

Manual [AMD07], or the Power ISA specification [Pow07]
(SPARC and Itanium have somewhat clearer semi-formal
memory models). Informal prose is a poor medium for loose
specification of subtle properties, and, as we shall see, such
documents are often ambiguous, sometimes incomplete (too
weak to program above), and sometimes unsound (forbid-
ding behaviour that the actual processors allow). Moreover,
one cannot test programs above such a vague specification
(one can only run programs on particular actual processors),
and one cannot use them as criteria for testing processor im-
plementations.

Further, different processor families (Intel 64/IA-32 and
AMD64, PowerPC, SPARC, Alpha, Itanium, ARM, etc.) al-
low very different reorderings, and an algorithm that behaves
correctly above one may be incorrect above another.

Using standard high-level languages to program multi-
processor systems does not give immunity to these prob-
lems. High-level language statements may require several
accesses to main memory to complete, and the hardware can
reorder these as above, with unexpected results. Even worse,
compiler optimisations, which are semantically invisible for
single-threaded programs, may become observable for multi-
threaded code. There have been attempts at definining mem-
ory models at the language level for Java [Pug00, JSR] and,
more recently, C++ [BA08, cpp08]. Unfortunately, these
also suffer from ambiguities and cannot be used for testing,
and those for Java have been shown to be unsound.

A Short Tour of Some Real-World Memory Models

We review the specifications of the memory models of some
recent, widely used, processors and high-level programming
languages, based on our previous work [SSZN+09, AFI+09,
OSS09, vA08]. As we shall see, for now, programming correct
concurrent algorithms is really black magic.

Intel 64/IA32 and AMD64 There have been several
versions of the Intel and AMD documentation, some dif-
fering radically; we contrast them with each other, and with
our knowledge of the behaviour of the actual processors.

Pre-IWP (before Aug. 2007) Early revisions of the Intel
SDM (e.g. rev-22, Nov. 2006) gave an informal-prose model
called ‘processor ordering’, unsupported by any litmus-test
examples. It is hard to give a precise interpretation of this de-
scription, as illustrated by the animated discussion between
Linux kernel developers on how to correctly implement spin-
locks [Lin99].

IWP/AMD64-3.14/x86-CC In August 2007, an Intel
White Paper (IWP) [Int07] gave a somewhat more precise
model, with 8 informal-prose principles supported by 10 lit-
mus tests. This was incorporated, essentially unchanged,
into later revisions of the Intel SDM (including rev.26–
28), and AMD gave similar, though not identical, prose
and tests [AMD07]. These are essentially causal-consistency
models. They allow independent readers to see independent
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writes (by different processors to different addresses) in dif-
ferent orders, as in the IRIW example below [BA08]),

proc:0 proc:1 proc:2 proc:3
MOV [x]←$1 MOV [y]←$1 MOV EAX←[x] MOV ECX←[y]

MOV EBX←[y] MOV EDX←[x]
Final: 2:EAX=1 ∧ 2:EBX=0 ∧ 3:ECX=1 ∧ 3:EDX=0

but require that, in some sense, causality is respected: “P5.
In a multiprocessor system, memory ordering obeys causality
(memory ordering respects transitive visibility)”. These were
the basis for our x86-CC model [SSZN+09], for which a
key issue was giving a reasonable interpretation to this
“causality”. Apart from that, the informal specifications were
reasonably unambiguous — but they turned out to have two
serious flaws.

First, they are arguably rather weak for programmers.
In particular, they admit the IRIW behaviour above but,
under reasonable assumptions on the strongest x86 memory
barrier, MFENCE, adding MFENCEs would not suffice to
recover sequential consistency [SSZN+09, §2.12]. Here the
specifications seem to be much looser than the behaviour of
implemented processors: to the best of our knowledge, and
following some testing, IRIW is not observable in practice.
It appears that some JVM implementations depend on this
fact, and would not be correct if one assumed only the
IWP/AMD64-3.14/x86-CC architecture [Dic08].

Second, more seriously, they are unsound with respect to
current processors. The following n6 example, due to Paul
Loewenstein [Loe08], shows a behaviour that is observable
(e.g. on an Intel Core 2 duo), but that is disallowed by x86-
CC, and by any interpretation we can make of IWP and
AMD64-3.14.

n6 proc:0 proc:1
poi:0 MOV [x]←$1 MOV [y]←$2
poi:1 MOV EAX←[x] MOV [x]←$2
poi:2 MOV EBX←[y]
Final: 0:EAX=1 ∧ 0:EBX=0 ∧ [x]=1
cc : Forbid; tso : Allow

To see why this may be allowed by multiprocessors with
FIFO write buffers, suppose that first the proc:1 write of
[y]=2 is buffered, then proc:0 buffers its write of [x]=1,
reads [x]=1 from its own write buffer, and reads [y]=0 from
main memory, then proc:1 buffers its [x]=2 write and flushes
its buffered [y]=2 and [x]=2 writes to memory, then finally
proc:0 flushes its [x]=1 write to memory.

Intel SDM rev-29 (Nov. 2008) and rev-30 (Mar. 2009)
The most recent x86 vendor specifications, at the time of
writing, are revisions 29 and 30 of the Intel SDM (these are
essentially identical, and we are told that there will be a
future revision of the AMD specification on similar lines).
They are in a similar informal-prose style to previous ver-
sions, again supported by litmus tests, but are significantly
different to IWP/AMD64-3.14/x86-CC. First, the IRIW fi-
nal state above is forbidden [Example 7-7, rev-29], and the
previous coherence condition: “P6. In a multiprocessor sys-
tem, stores to the same location have a total order”has been
replaced by: “P9. Any two stores are seen in a consistent
order by processors other than those performing the stores”.

Second, the memory barrier instructions are now in-
cluded, with“P11. Reads cannot pass LFENCE and MFENCE
instructions” and “P12. Writes cannot pass SFENCE and
MFENCE instructions”.

Third, same-processor writes are now explicitly ordered
(we regarded this as implicit in the IWP “P2. Stores are

not reordered with other stores”): “P10. Writes by a single
processor are observed in the same order by all processors”.

This specification appears to deal with the unsoundness,
admitting the n6 behaviour above, but, unfortunately, it is
still problematic. The first issue is, again, how to interpret
“causality” as used in P5. The second issue is one of weak-
ness: the new P9 says nothing about observations of two
stores by those two processors themselves (or by one of those
processors and one other). This is illustrated by our n5 and
n4 examples [OSS09]. These have final states that were not
allowed in x86-CC, and we would be surprised if they were
allowed by any reasonable implementation (they are not al-
lowed in a pure write-buffer implementation). We have not
observed them on actual processors, and programming above
a model that permitted them would be problematic. How-
ever, rev-29 appears to allow them.

Following this, we proposed an x86-TSO model [OSS09],
with equivalent operational and axiomatic definitions for-
malised in the HOL4 proof assistant [HOL]. Summarising
the key litmus-test differences, we have:

IWP/x86-CC rev-29 x86-TSO actual processors
IRIW allowed forbidden forbidden not observed
n6 forbidden allowed allowed observed
n4/5 forbidden allowed forbidden not observed

Power and ARM Power and ARM have weaker mod-
els than x86, but are similar to each other. The following
discussion is based on the Power ISA Version 2.05 specifica-
tion [Pow07] (applicable to POWER6 and POWER5 proces-
sors) and the ARM Architecture Reference Manual [ARM08]
(applicable to ARMv7 processors).

A key concept in these informal-prose architecture spec-
ifications is that of accesses being “performed” (Power) or
“observed” (ARM) with respect to processors. “Performed”
is defined as follows [Pow07, p.408]:

A load or instruction fetch by a processor or mecha-
nism (P1) is performed with respect to any processor or
mechanism (P2) when the value to be returned by the
load or instruction fetch can no longer be changed by
a store by P2. A store by P1 is performed with respect
to P2 when a load by P2 from the location accessed by
the store will return the value stored (or a value stored
subsequently).

This is used in the informal semantics of barriers (sync,
lwsync, eieio, DMB, DSB), and of dependencies, e.g. [Pow07,
Book II,§1.7.1,p.413]:

If a Load instruction depends on the value returned by
a preceding Load instruction, the corresponding storage
accesses are performed in program order with respect to
any processor or mechanism.

Such a definition of “performed” does not lend itself to a
direct formalisation. First, it implicitly refers to a notion
of global time. That can be easily solved, as we are only
concerned with whether one access is performed before or
after another. Second, more seriously, it is subjunctive: the
first clause refers to a hypothetical store by P2, and the
second to a hypothetical load by P2. A memory model
should define whether a particular execution is allowed, and
it would be awkward in the extreme to define this in terms
of executions modified by adding such hypothetical accesses.

Several initially-plausible interpretations turn out to be
too weak or unsound. One could adopt view orders, per-
processor orders capturing when events become visible to
each processor in its local view of time, and consider an
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access to be “performed” from the point where it appears
in the view order. Intuitively, the visible events are those
that influence the processor’s behaviour, and we defined
a preliminary such model [AFI+09] in which we do not
include other processors’ loads in view orders. Doing this
naively gives too weak a semantics for barriers, though it
can be improved by considering the stores that write to
the memory location read by foreign loads. Alternatively,
one can include other processor’s read events. Again, doing
so naively would be wrong: the Load/Load dependency
text above suggests that the program order of two loads
performed on the same processor is preserved even if they
are not interleaved with a barrier instruction, but we have
observed non-sequentially consistent behaviour in a variant
of the IRIW example above if there is an address dependency
between each pair of loads, but not if there is a barrier
between each pair of loads. Adir et al. [AAS03] give a more
complex model including some foreign loads in view orders,
for an earlier PowerPC specification. However, none of these
models accounts completely for the Power 2.05 barriers,
capturing the rather subtle differences between sync and
its lighter alternative lwsync, and identifying exactly what
barriers are required to regain sequential consistency.

If it is this hard to give a consistent interpretation to
the architecture documentation, one has to wonder whether
correct low-level code could be written based on it, without
additional knowledge of the processor implementations.

The Java Memory Model Java has integrated multi-
threading, and much effort has been devoted to the spec-
ification of the precise behaviour of concurrent Java pro-
grams. By the year 2000, the initial specification was shown
to allow unexpected behaviours, prohibit common compiler
optimisations, and was challenging to implement on top of a
weakly-consistent multiprocessor [Pug00]. It was superseded
around 2004 by the JSR-133 memory model [JSR]. JSR-133
attempts to solve a difficult challenge. It deals with the full
complexity of the Java language, including object finalisa-
tion and final fields, and aims to satisfy several competing
criteria: first, programs which are data-race free, should ex-
hibit only sequentially consistent behaviour; second, arbi-
trary programs, possibly with data-races, should still satisfy
some memory safety and security requirement (for instance
“out of thin air” reads are forbidden, that is programs may
not observe values not written anywhere); third, a range of
common compiler optimisations should be sound.

The resulting model is quite intricate and, unfortunately,
poorly understood. For instance it turned out that, despite
the efforts, standard optimisations as common subexpres-
sion elimination were illegal in the model [CKS07, vA08].
Such optimisations were claimed to be permitted, and are
implemented by typical compilers including Sun’s reference
HotSpot compiler. For example, consider the following trans-
formation

x = y = 0

r1=x r2=y
y=r1 x=(r2==1)?y:1

−→

x = y = 0

r1=x x=1
y=r1 r2=y

where x and y are shared variables and r1 and r2 are local
variables. For the program on the left, the JMM forbids
the outcome r2 = 1. However, Sun’s HotSpot compiler
reuses the value of y in r2 and rewrites x=(r2==1)?y:1 −→
x=(r2==1)?r2:1, which is equivalent to x=1. Swapping the
independent statements r2=y and x=1 yields the program on
the right, which can result in r2 = 1 even on a sequentially
consistent architecture.

The following table (from Ševč́ık and Aspinall [vA08])
lists some basic transformations used by compiler optimisa-
tions, and shows their legality in sequential consistency and
in the JSR-133 model:

Transformation SC JMM
Trace-preserving transformations

√ √

Reordering normal memory accesses × ×
Redundant read after read elimination

√
×

Redundant read after write elimination
√ √

Irrelevant read elimination
√ √

Irrelevant read introduction
√

×
Redundant write before write elimination

√ √

Redundant write after read elimination
√

×
Roach-motel reordering × ×

(for locks) (
√

)
External action reordering × ×

The C++ Memory Model The C++ language was orig-
inally designed without thread support and relied on an ex-
ternal library of threading primitives. It is now clear that
an optimising compiler designed independently of thread-
ing issues cannot guarantee correctness of the resulting
code [Boe05], and an ongoing effort, currently nearing com-
pletion, attempts to explicitely provide semantics for threads
in the next revision of the C++ standard [BA08, cpp08].
Partially following the Java experience, the revised stan-
dard gives semantics only to well-synchronised (data-race
free) programs but does not attempt to provide safety guar-
antees about racy programs.

At a first glance the non-expert programmer’s concur-
rency model [BA08] appears simpler and more comprehen-
sible than the Java one. However, a close look reveals some
ambiguities, and there is an extensive framework for low-
level synchronisation with intricate semantics. Some techni-
cal ambiguities would be easily fixed: the specification refers
to sets of memory actions, but in a literal reading of the text
there is no way to distinguish memory actions that arise from
the same program point and have the same operation and
value. The model mentions several kinds of memory accesses,
including normal reads and writes, lock/unlock of locks, and
atomic accesses, but does not specify whether accesses of dif-
ferent kinds to the same location are permitted. Also, the
model does not fully deal with loads from the initial state.

For the specialised “low-level atomics”, intended for high-
performance code, the semantics appear complex. Memory
operations and fences are parameterised by one of six mem-
ory ordering constraints, with semantics for interactions
between such operations specified informally in the stan-
dard [cpp08].

As for other existing models, ambiguities are hidden in
the informal prose, but become manifest as soon as the
model is formalised mathematically.

Towards Rigorous Memory Models

What, then, is the way forward? Existing real-world memory
models cannot be completely trusted, and, although there
exists an extensive literature on relaxed memory models,
most of it does not address real processor semantics, or is
not based on rigorous mathematical models. In this position
paper we argue that a specification for a multiprocessor or
programming-language memory model should satisfy several
stringent criteria.

First, it should be precise. It should state unambigously
what is and is not permitted. This must be with mathemati-
cal precision, not in informal prose — experience shows that
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the latter, even when written with great care, is prone to am-
biguity and omission. The mathematical definitions should
be normative parts of the architecture or language standard.
Ideally, these mathematical definitions should be expressed
and mechanised in a proof assistant, supporting mechanical
type-checking and independently machine-checked proofs of
metatheoretic results.

Second, it should be testable. Given a program, it should
be possible to compute (a) whether some particular candi-
date execution is admitted by the memory model, and (b)
the set of all such admissible executions (up to a certain
length). Ideally, the algorithms for these should be derived
automatically from the statement of the model, or from some
provably-equivalent alternative characterisation thereof, to
reduce the possibility of translation error.

Third, it should be accurate with respect to implemen-
tations (of processors or compilers). Given the above, this
can be tested empirically, as it is easy to run programs on
real hardware or a real compiler-and-hardware combination.
The model should allow all the behaviours observed in prac-
tice. This testing, of the behaviour of the real implementa-
tions against the published rigorous specification, should be
part of the normal development process of the processors or
compilers. In principle, accuracy can also be established by
proof, showing that the semantics is an accurate abstraction
of a microarchitectural model or compiler. That would be
highly desirable, but very challenging: for modern multipro-
cessors and compilers, such a model would be very large,
and typically also proprietary.

Fourth, it should be loose enough for future implemen-
tations: the range of permitted behaviour should be wide
enough to allow reasonable developments in implementa-
tions. However, this point should not be over-emphasised at
the expense of the others, as seems to have often happened
in the past.

Fifth, it should be strong enough for programmers. A well-
specified model should constrain the behaviours enough that
reasonable programs can be shown (by informal reasoning,
proof, or exhaustive symbolic emulation) to have their in-
tended behaviour, without relying on any other knowledge
of the implementations. A different and complementary ap-
proach is to formally prove metatheoretic results about the
model, including data-race-freedom properties; these proofs
are subtle and should be mechanised.

Sixth, it should be integrated with the semantics of the
rest of the system (describing the behaviour of the processor
instructions or of the phrases of the programming language).
Memory models are typically presented in isolation, and this
makes it all too easy to gloss over important details.

Lastly, it should be accessible, to concurrent program-
mers, hardware architects, language designers and imple-
mentors, and builders of verification tools, as the interface
between these four groups. For that it should be expressed
in straightforward logic, not some exotic specialised formal-
ism, and should be extensively annotated so that it can be
read by non-mathematicians. Having a precise mathemati-
cal specification will make it easier to write self-consistent
tutorial documents. For processors, where possible, it seems
desirable to have both an operational (or abstract machine)
model and a provably equivalent axiomatic model; the for-
mer are often more comprehensible and the latter more use-
ful for some metatheory, and an equivalence proof may de-
tect errors and inconsistencies. However, operational mod-
els should not involve more microarchitectural detail than
is necessary: it should be clearly understood that these are

specifications of the programmer-visible behaviour, not de-
scriptions of any actual microarchitecture.

We are not the first to make some of these points,
but we aim, starting with our preliminary investigations
on x86 [SSZN+09, OSS09], Power/ARM [AFI+09], and
Java [vA08], towards satisfying all the criteria simultane-
ously. Such work seems to be a necessary precondition for
exploiting concurrency efficiently and correctly.
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