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Abstract

In a wide-area distributed system it is often impractical to
synchronise software updates, so one must deal with many
coexisting versions. We study static typing support for mod-
ular wide-area programming, modelling separate compila-
tion/linking and execution of programs that interact along
typed channels. Interaction may involve communication of
values of abstract types; we provide the developer with fine-
grain versioning control of these types to support interop-
eration of old and new code. The system makes use of a
second-class module system with singleton kinds; we give a
novel operational semantics for separate compilation/linking
and execution and prove soundness.

1 Introduction

Background Module systems provide an important tool
for structuring large programs, both to express their con-
ceptual structure and to support separate compilation and
linking. They have been much studied – most relevant to
this paper is a line of work on ML-style modules [MTH90],
with structures (collections of named types, values and sub-
structures) and functors, which are parameterised struc-
tures. A key issue is the treatment of sharing equality
for abstract types. The original ML static semantics in-
volved explicit generation of new type names; the translu-
cent sums/manifest types of Harper and Lillibridge [HL94]
and Leroy [Ler94] showed that more type-theoretic treat-
ments were possible and could be expressed using the ma-
chinery of singleton kinds. These works treat separate
compilation and linking either implicitly or as applications
of higher-order functors. Cardelli [Car97] gives a more
explicit model of linking, though without abstract types
or parameterised modules. Various aspects of modularity
and linking have been investigated more recently, e.g. in
[BA99, Dro00, Dug00, FF98, GM99, HWC00].
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Problem The works cited above focus on development of
single sequential programs. In this paper we address issues
arising from wide-area distributed programming. There are
two key differences:

1. We must deal with whole programs that interact with
each other at arbitrary interfaces, not simply programs
that interact with the outside world at the fixed types
of library functions.

2. In wide-area distributed systems it is often impractical
to synchronise software updates, so we must deal with
many coexisting versions of programs that interact with
each other.

Further, in a wide-area system it becomes particularly im-
portant to detect errors early in the software development
process; it is therefore worth using static typing as far as
possible – and we would like to see how far. The language
described here does not involve any run-time checks (save
for the implicit equality testing of channel names that is
intrinsic to channel-based interaction).

Outline In the following two sections we develop a model
language, equipped with static and dynamic semantics, that
supports:

1. Separate compilation/linking and execution for modu-
lar programs that interact along typed channels.

2. Interaction along channels carrying abstract types.

3. Version control of those abstract types, for interopera-
tion of old and new code.

It consists of a core expression language, a module system,
and an imperative command-line language. The core lan-
guage is taken to be an asynchronous π-calculus, providing
a concise form of typed interaction between whole programs.
The module system is based on a standard second-class sys-
tem, with first-order functors and using singleton kinds. It
is extended with new channel creation and with a novel type
coercion for versioning. The command-line language allows
compiling and linking (here merged into a single step) of
a module to an object file, and executing such files with
‘main’ components. The semantics requires careful treat-
ment of new name creation, both for channel names and
type names – in brief, abstract types must be compiled to
manifest types with new-bound type names; these are used
by the versioning coercion.



C
def
= MAIN1

def
= MAIN2

def
=

module module module
export c : int chan import c : int chan import c : int chan

begin export main : proc export main : proc
newval c : int chan begin begin

end val main : proc = c!27 val main : proc = c?x->(c!(x+1))
end end

Figure 1: Flat modules with newval

New type names arise in module reduction steps such as

[T,e] as ∃X::Type.T ′
−→

New Y::EQ(T) in
[Y,e] as ∃X::EQ(Y).T ′

Here the first line is an existential package with a hidden
representation type T and an operation part e; the reduction
creates a new name Y for the representation type, recording
it in both the term and signature parts of a manifestly-typed
package. The scope of the new type name must extrude to
cover both compiled object code (as stored in files) and the
running system.

The versioning coercion allows the developer, when building
a module expression m and assigning the result to a filename
B, to declare that abstract types provided by m should be
made compatible (if possible) with the previous version of
the module stored in A. This is written B := (m with! A).

We prove subject reduction for both build-time and run-
time semantics, show the absence of run-time errors, and
(in a simple case) relate monolithic and separately-compiled
programs, giving a tight link between the singleton-kind sys-
tem and the type name generation occurring during module
reduction. Section 4 concludes with discussion of related
work and future directions. The full definitions of the typing
judgements, build-time semantics and run-time semantics
for the language are omitted. They can be found, together
with proofs, in the technical report [Sew00].

The original motivation for this paper arose from work with
Pierce, Unyapoth and Wojciechowski on Nomadic Pict

[SWP98, WS00, Woj00, US01], a distributed programming
language designed to express infrastructure algorithms for
location-independent communication between mobile com-
putations. Nomadic Pict is based on a distributed process
calculus (Nomadic π) following the concurrent Pict lan-
guage of Pierce and Turner [PT00], based on the π-calculus
[MPW92]. Our work on the language, and on distributed
infrastructures expressed in it, has shown a clear need for
the support outlined above. The problems are more general,
however – similar issues would arise in many other settings
where programs interact and have long execution lifetimes
(as compared with the development cycle). The exact form
of interaction is more-or-less orthogonal to the typing issues.
Nomadic Pict has asynchronous message passing to named
channels at located agents, but typing would be similar for
e.g. Distributed Join-style communication [FGL+96], inter-
action via persistent references, or RPC mechanisms. For
simplicity we here adopt standard π-calculus communica-
tion, omitting explicit distribution from the core language.
This is not a realistic form of wide-area interaction, but
it would be straightforward to extend the system with the

Nomadic π distribution and mobility primitives, thereby al-
lowing modularisation of our distributed infrastructures.

We are not here dealing with problems of numbered ver-
sions (some of which will be familiar to those who regularly
encounter DLLs), but regard what we do as a necessary
preliminary for a satisfactory treatment. We also do not ad-
dress dynamic linking [GM99, HWC00, Dro00, Dug00] ex-
cept in the limited sense that a program might be replaced
by another that interacts on an overlapping set of channels,
nor do we consider hot code upgrade [AWWV95, HN00],
in which new code is given access to the datastructures of
that being replaced. These are clearly sometimes required,
but inevitably lead to the possibility of late link-time or
upgrade-time errors; we are exploring how far one can go
without them.

2 Informal Discussion

This section discusses the issues and our solutions infor-
mally, leaving rigorous development to §3.

2.1 Interaction along typed channels

We begin by discussing separate compilation/linking for pro-
grams that interact by message passing along channels car-
rying values of simple types. The development is quite
straightforward, but it is interesting to see how it must di-
verge from the single-program case (e.g. as in the flat mod-
ules of [Car97]), and it is a necessary preliminary for ad-
dressing abstract types later.

To introduce our core language, consider the monolithic π-
process

new c : int chan in (c!27 | c?x->(c!(x+1)))

This declares a new channel c of type int chan (for mes-
sages of type int); it has an output c!27 of 27 along c in
parallel with an input c?x->(c!(x+1)) that receives an inte-
ger on c – binding it to x – and then outputs x+1.

In a distributed system this process might be split, with the
output c!27 in one program and the input c?x->(c!(x+1))
in another program that will be executed concurrently, per-
haps on a different machine. This is expressed in Figure 1 in
the simplest flat module system of [Car97], extended with a
newval declaration for declaring new channels. The whole
system would be built and run by compiling C, MAIN1 and
MAIN2 to give some C ′, MAIN1 ′ and MAIN2 ′, linking C ′ with
each of the other two, and executing the two resulting com-
plete programs. To ensure statically that communications
on c are well-typed, even if some other program declares c to



C := struct
newval c : int chan

end
MAIN1 := (functor(U: sig val c:int chan end) struct main = (U.c)!27 end) C
MAIN2 := (functor(U: sig val c:int chan end) struct main = (U.c)?x->((U.c)!(x+1)) end) C

Figure 2: A sequence of build commands with newval

be of type (say) (int*int*int) chan, a new internal chan-
nel identifier must be generated when C is compiled. This
can be represented by taking C ′ to be

module
export c : int chan

begin
val c : int chan = z

end

where z is fresh (in a sense made precise below). At this
level of abstraction compilation is simply intra-module type
checking and new channel name generation. Linking MAIN1 ′

and MAIN2 ′ with this will give outputs and inputs on z.

Unfortunately, to keep soundness we can only generate a
new channel name when the type it will carry is known. To
see this, suppose one compiled

D
def
=
module

import type t
export val c : t chan

begin
newval c : t chan

end

to give

D ′
def
=

module
import type t
export val c : t chan

begin
val c : t chan = z2

end

with fresh z2. One could then successfully build two pro-
grams that attempt to interact on z2 but have a run-time
error, as follows. Take

T3
def
= T1

def
=

module module
export type t export type t

begin begin
type t=int*int*int type t = int

end end

and MAIN3 to be as MAIN1 but with an output of a triple.
Write T3 ′, T1 ′ and MAIN3 ′ for the results of compiling these,
then consider interaction between the two programs built by
linking T3 ′, D ′, MAIN3 ′ and linking T1 ′, D ′, MAIN2 ′.

To avoid dealing with compilation and linking of such mod-
ules that declare new channels depending on unresolved
imported types, we force a bottom-up build order. We
take module expressions m including structures, functors and
functor application. Compiling and linking are merged into

‘build-time’ evaluation of such module expressions and as-
signment of the resulting module values to filenames. A
module being built can refer only to filenames of previously-
built modules; it is typechecked with respect to their stored
signatures (in examples we sometimes functorise to make
signature constraints explicit). Figure 2 recasts the example
into a sequence of three assignments, to filenames C, MAIN1
and MAIN2. We pun filenames and free module identifiers
(both written in an upright font). Module expressions are
reduced call-by-value, with a structure

C2
def
= struct

newval c : int chan
end

reducing to a value

struct
val c : int chan = z

end

for a fresh z.

Now, in what sense must this z be fresh? It should be dis-
tinct from all channels generated earlier, either at build-time
or at run-time, across the whole distributed system. In an
implementation a globally unique bitstring must be gener-
ated. We represent this using name binding and scope ex-
trusion, as in the π-calculus. To a first approximation, C2
above reduces to

New z : int chan in
struct

val c : int chan = z (*)
end

In more detail, we idealise the state of the whole system,
including both the running computations and the module
values stored in the various developers’ filesystems produced
by earlier builds, as a triple

N,F,e

which should be read as New N in (F,e). Here N is a type
environment of new bindings such as z : int chan, the F
models the union of all filesystems1 as a finite list of pairs
of module ids and module values (with no repeated ids –
F will often be regarded as a partial function), and e is
the running process expression. We take these triples up
to alpha-renaming of the bindings in N. Now the effect of
developers’ command-line build and load commands, and
computation steps, can all be regarded as changes of system
state. Executing a build command

C := struct newval c : int chan end

1The semantics uses a disjoint union of all filesystems, implicitly
extruding the New N of (*) to the outside, to reduce notational clutter.
It would be straightforward to give an equivalent model with explicit
extrusion that would keep distinct filesystems.



T := struct type t=int val x=27 val i=λz.z end : TSIG
C := (functor(T:TSIG) struct newval c : T.t chan end) T
MAIN1 := (functor(T:TSIG, C:CSIG(T.t)) struct main = (C.c)!(T.x) end) T C
run MAIN1
wait 6 months
T := struct type t=int*int val x=(27,3) val i=λ(z,w).z end : TSIG
MAIN2 := (functor(T:TSIG, C:CSIG(T.t)) struct main = (C.c)?y-> ... (T.i)y ... end) T C
run MAIN2

where we use abbreviations

TSIG
def
= sig type t val x:t val i:t→int end CSIG(X)

def
= sig val c : X chan end

Figure 3: Attempted communication and use of elements of a changed abstract type

(say) in the state N,F,e results in the new state N′,F′,e,
where z 6∈ dom(N) and

N′ = N,z:int chan
F′ = F⊕ (C 7→ struct val c:int chan = z end)

The new value of C in F′ is obtained by module reduction.
Note that for simplicity we are working as much as possible
at the source language level, taking a single set of names
rather than separate sets of program identifiers and internal
channel ids. The N binding ensures that code written after a
build command cannot mention any of the newly generated
names. Note also that N is kept to allow proof of soundness;
in an implementation it can be discarded.

For the load command, if U is a filename referring to a mod-
ule value struct val main : proc = e’ end then execut-
ing the command

run U

in the state N,F,e results in the new state N,F,e|e’ in which
e’ is put in parallel with the existing running computation,
allowing them to interact.

The computation reductions of a state N,F,e are simply
those of its process part e.

2.2 Interaction with Abstract Types

We now address systems that interact by communicat-
ing elements of abstract types. Similar new-name ma-
chinery will be required to ensure soundness, though now
for type names rather than channel names. We first re-
call some aspects of ML-style type abstraction, particu-
larly with translucent sums/manifest types in signatures
[HL94, Ler94, Ler96, Ler00, Lil97] (for brevity the exam-
ples will all be degenerate, without any operation parts or
field dependencies). The module

A = struct type t = int end
: sig type t end

provides a type A.t with representation int. It has an ex-
plicit signature in which no information about the repre-
sentation is visible, though, so from the outside the type is
entirely abstract. In contrast, the module

C = struct type t = int end
: sig type t = int end

reveals that its representation type is int; the equality
C.t=int may be used in typechecking the rest of the pro-
gram. Such manifest types are particularly important in
functor signatures. For example

functor(U : sig type t end)
struct type t2=U.t end
: sig type t2=U.t end

allows code using a structure, say D, created by applying
this anonymous functor to A, to depend on the fact that
D.t2 and A.t are equal types.

Translucent sums and manifest types were motivated partly
by the need to refine SML modules to provide enough type
equality information in signatures for separate compilation,
partly by concerns of higher-order functors and first-class
modules that we do not discuss here, and partly by a de-
sire to move from the generative SML static semantics to a
more flexible type-theoretic style. Intuitively, instead of the
SML semantics’ use of new type names to distinguish be-
tween otherwise-identical abstract types, they use the mod-
ule identifiers (or, more generally, paths) that occur in the
source program.

In our distributed setting, we must reintroduce type name
generation, albeit in a more controlled form. The broken
example in Figure 3 shows why. Here we have two programs,
MAIN1 and MAIN2, communicating elements of an abstract
type from module T, on a channel from C. Unfortunately
T is re-built, with a changed representation type, between
the builds of MAIN1 and MAIN2. There will be a run-time
error. To prevent this we should detect a build-time error
when typechecking the functor application in the build of
MAIN2, as the values of C and T there are not compatible.
To make this lack of compatibility evident, we generate new
type names when evaluating module expressions, reducing
an abstract type to a type which is manifestly equal to a
fresh type name. For example,

struct type t = int end (*)
: sig type t end

reduces to

New X = int in
struct type t = X end
: sig type t = X end

and the body

struct type t = X end
: sig type t = X end

of this will be a module value whereas (*) will not. Nonethe-
less, we keep the type-theoretic style as much as possible –
type checking of a module expression in any individual build
command will not involve new name generation. We need
t=X both in the structure, so that it is correctly propagated
during module substitution (when a functor is applied to



this structure), and in the signature, so that there is enough
type sharing.

The system of §3 uses singleton kinds, due independently to
Harper and Leroy, for expressing manifest type declarations
in signatures. There are kinds Type, of all types, and EQ(T)
for any type T, of all types provably equal to T. In the
example signatures above type t becomes type t::Type,
and type t=T becomes type t::EQ(T).

2.3 Abstract Type Versioning

The semantics outlined in the previous subsection guaran-
tees soundness but, because every rebuild gives incompatible
executables, it would be unusably rigid in practice. For ex-
ample, one might initially build compatible MAIN1 and MAIN2
with the first T command and the C, MAIN1 and MAIN2 com-
mands of Figure 3. Rebuilding MAIN1 from the same source
code, i.e. with the C, first T and MAIN1 commands again,
would give a version that could not interact with copies of
MAIN2 running elsewhere in the network. MAIN1 and MAIN2
would have different versions of both the type T.t and the
channel C.c.

The developer therefore needs a mechanism for forcing a
rebuild of a module that provides an abstract type t or a
channel c to produce the same abstract type or channel as
before. We address only the (more interesting) type part
of the problem; the channel part can be dealt with using
similar mechanisms. There are four cases:

1. The source code of the module (and all that it depends
upon) is syntactically unchanged.

2. The source code is changed, but the representation type
of t is unchanged and the new code has the same im-
portant invariants as the old.

3. The representation type is unchanged but the new code
has changed invariants.

4. The representation type is changed.

Naively, one might allow a rebuild to produce the same type
only in case 1. This could be entirely automatically checked,
but would be too inflexible – we must allow for changed
comments, performance improvements, minor bug fixes, and
even some changes in functionality. On the other hand, in
cases 3 and 4 a rebuild should certainly produce a new type.
Distinguishing between cases 2 and 3 clearly cannot be done
automatically, so the developer must provide some annota-
tion for the new code, asserting that it has not changed any
important invariant of the old abstract type, and hence that
values produced by the old and new code will be compat-
ible. Such an annotation should force an automatic check
that the representation type is unchanged.

We envisage that large programs will require development
environment support for managing these annotations, allow-
ing defaults such as ‘always generate a new type’, or ‘always
produce types compatible with the previous build unless the
code is syntactically changed’, or ‘always produce compati-
ble types unless the representation type has changed’ – all to
be overridden locally as needed. There is an important prag-
matic question here, of what expressiveness is really neces-
sary or useful, but we do not investigate it in this paper.
Instead, we introduce a minimal form of annotation, that
might be generated by the development environment from

higher-level defaults, and show how it can be given a sound
semantics.

In particular, we allow module expressions containing coer-
cions, e.g. as in the right hand side of the build command

A := m with! U (*)

Suppose m is statically type-checkable with signature
sig type t::Type val x:tops end, and that U is a file-
name that refers to a previously-built module of similar
shape. Executing command (*) will evaluate m to a struct,
say

struct type t=trep val x=e end
: sig type t::Type val x:tops end

check that its representation type trep is compatible with
that of U, and finally reduce it to a module value containing
the same type name as U. In more detail, if the state in which
(*) is executed has an N component with X::EQ(trep2), and
an F component mapping U to

struct type t=X val x=e2 end
: sig type t::EQ(X) val x:tops2 end

then executing (*) will check trep and trep2 are equal and
result in a state with A mapped to

struct type t=X val x=e end
: sig type t::EQ(X) val x:tops end

The notion of type equality required is complicated by the
fact that the representation types may themselves involve
other abstract types. It is made precise in §3, where it is
also shown that it is not necessary to keep the whole de-
velopment history in order to check it, but only modules
actually referred to in coercions.

Note that the coercion must involve a build-time check, dur-
ing evaluation of module expressions, as m must be reduced
to a structure to make its representation type available.

3 Formal Development

In this section the previous informal discussion is made pre-
cise by giving a language of interacting processes, modules,
and commands. It is equipped with build-time and run-time
semantics, which are proven sound. The full syntax is given
in Figure 4. We begin by discussing the choice of constructs.

Commands There are two command-line commands. Ex-
ecuting the build command U:=m type-checks and evaluates
the module expression m and assigns the resulting module
value to filename U. Executing run U, where U is a file-
name referring to a previously-built main module, loads the
process part of that module in parallel with the rest of the
running system. The grammar includes also tau – compu-
tation steps of the running system may be interleaved with
build and load commands. We have simplified the system
(in an unimportant way) by not representing source code
stored in files, and (more significantly) by not dealing with
separate builds of module interfaces.

Modules We take as simple a module language as possible:
second class, with only first-order functors, without sub-
structures, and with structures that have single type and
term parts, not general dependent records. We do include



Commands
Com ::= U := m build

run U load
tau execute a step

Structure signatures
SS ::= [X::K,T] structure sig

Module signatures
S ::= SS

ΠU:SS.S functor sig

Kinds
K ::= Type kind of all types

EQ(T) kind of types equal to T

Types
T ::= X variable

U.Type type part of a structure
[T .. T] | int tuples and integers
T chan | proc channels and processes

Module expressions
m ::= U variable

[T,e] as SS structure
λU:SS.m:S functor
m m application
m:SS seal
new x:T in m new channel
m with! m version coercion

Core expressions
e ::= x variable

U.term term part of a structure
n integer
[e .. e] tuple
new x:T in e new channel
0 | e|e nil and parallel processes
e!e | e?pat->e’ output and input processes

Core patterns
pat ::= x | [pat .. pat]

Typing environments
E ::= empty | E,x:T | E,X::K | E,U:S

U, X and x range over module, type and term variables re-
spectively. Module variables are also used as filenames. The
binding is as follows: in a structure sig X binds in T; in a
functor sig U in S; in a functor U in m and S; in a new (module
or core) x in m or e; and in an input the variables of pat in
e’. We work up to alpha conversion.

Figure 4: Syntax

singleton kinds, though – both to allow non-trivial shar-
ing between functor arguments and results, and so that the
type equality check needed for with! can be expressed. The
structure

[T,e] as [X::K,T2]

is similar to our informal

struct type t=T val x=e end
: sig type t::K val x:T2 end

It consists of a pair of a type T (of kind K) and a term e
(loosely, of type {T/X}T2). The kind K here might be Type,
making this a fully abstract structure with representation
type T hidden, or EQ(T’) for any T’=T, revealing the rep-
resentation type. The type and term parts of a structure
variable U can be projected out by U.Type and U.term (if
this can be given a type). The functor

λU:SS.m:S

is a dependent function taking structures of signature SS
and returning modules of signature S, which may mention
U.

To these standard constructs we add a module-level new
channel declaration and our with! coercion. The module-
level new allows uses of the newval of §2.1 such as
struct ... newval c : int chan end to be expressed as

new c:int chan in ([..,c] as [..,int chan])

(this is a little awkward, however – a channel carrying an
abstract type must be declared in a different structure than
the type). The module expression m with! m2, where m and
m2 both have structure signatures, attempts to evaluate m
and coerce it to provide an abstract type compatible with
m2.

Processes The core language is simply an asynchronous
π-calculus with tuples, allowing communication on newly-
generable channels between parallel outputs and inputs.

System States The state of the whole system is (exactly
as in §2.1) a triple

N,F,e

where N is a type environment of channel and type bindings
(such as z : int chan and X::EQ(T)), F models the union
of all developers’ filesystems as a finite list of pairs of mod-
ule ids and module values (with no repeated ids), and e is
the running process expression. We take state triples up to
alpha-renaming of the variables in dom(N). Module values
are simply

mval ::= [T1,e] as [X::EQ(T1’),T2]
λU:SS.m:S’

We will never need to deal with mvals that have free mod-
ule variables. Note that module variables and filenames are
punned.

3.1 Typing

The type system for modules and processes is largely stan-
dard, with judgements:

E|- K E|- S sig
E|- K <:: K ′ E|- S < S ′ sig
E|- K == K ′ E|- S == S ′ sig



E|- T::K E|- m:S
E|- T == T ′ :: K E|- ok
E|- pat : T B E ′

E|- e:T

It includes subkinding, with EQ(T) <:: Type for wellformed
types T, a subsignature relation based on this that allows
concrete type information to be forgotten, and a self-type
rule for manipulating type equalities (expressed with single-
ton kinds) in signatures.

3.1.1 Sharing

We first review the standard aspects of the type system –
the use of singleton kinds and subkinding to express ML-
style sharing; for further explanation we refer the reader to
[HL94, Ler94, Ler96, Ler00, Lil97]. The examples use alter-
nate notation T*T′ and (e,e′) for binary products [T,T′]
and pairs [e,e′]. One can write structures that are either
abstract or concrete:

A
def
= [int,6] as [X::Type, X] |-A:[X::Type,X]

C
def
= [int,6] as [X::EQ(int), X] |-C:[X::EQ(int),X]

A here provides an abstract type and a single value of that
type; C is a pair of type int and value 6 of type int. To
use a structure it must first be bound to a variable – the
language allows projections U.Type and U.term of the type
and term parts only of a structure variable U, not of an
arbitrary module expression. If U has an abstract signature,
eg in the type environment U:[X::Type,X], then we know
only

U:[X::Type,X] |- U.Type :: Type
U:[X::Type,X] |- U.term : U.Type

This suffices for typechecking a functor Fopaque that builds
a new abstract type:

Fopaque
def
= λU:[X::Type,X].

[U.Type*U.Type, (U.term,U.term)] as [Y::Type,Y]

|- Fopaque : ΠU:[X::Type,X].[Y::Type,Y]
|- Fopaque A : [Y::Type,Y]

Fopaque can also be applied to C, using the subsignature
relation to ignore the manifest type.

|- Type <:: EQ(int)
|- [X::Type,X] < [X::EQ(int),X] sig
|- C : [X::Type, X]
|- Fopaque C : [Y::Type,Y]

A more interesting variant of Fopaque involves type shar-
ing between argument and result with a dependent functor
signature, revealing that the type part of its result is the
product of the type part of its argument.

Ftrans
def
= λU:[X::Type,X].

[U.Type*U.Type,(U.term,U.term)]
as [Y::EQ(U.Type*U.Type),Y]

|- Ftrans : ΠU:[X::Type,X].[Y::EQ(U.Type*U.Type),Y]

Ftrans might be applied to a structure variable of an ab-
stract signature:

U ′ :[X::Type,X] |- Ftrans U ′

: [Y::EQ(U ′ .Type*U ′ .Type),Y]

or to a structure variable of a manifest signature (here as-
suming |- T::Type):

U ′ :[X::EQ(T),X] |- Ftrans U ′ : [Y::EQ(T*T),Y]

To derive this one can first use the subsignature relation to
make the argument signature of Ftrans match the manifest
signature of U′

|- Ftrans:ΠU:[X::EQ(T),X].[Y::EQ(U.Type*U.Type),Y]

then make use of the type equality U.Type == T in the result
signature of Ftrans

|- Ftrans : ΠU:[X::EQ(T),X].[Y::EQ(T*T),Y]

One can express binary functors that require their two ar-
guments to have equal type parts:

Fb
def
= λU1:[X::Type,X].λU2:[Y::EQ(U1.Type),Y].

(U1.Type,U2.term) as [Z::Type,Z]

so

|- (λU:[X::Type,X].Fb U U) A : [Z::Type,Z]
|- (λU:[X::Type,X].Fb U (Ftrans U)) A:[Z::Type,Z]
|-/ Fb A A : S
|-/ (λU:[X::Type,X].Fb U (Fopaque U)) A : S

More useful module examples quickly become rather ver-
bose, especially with our cut-down term language; we do
not include any here.

3.1.2 New, with!, and system states

Turning now to the new aspects, the new and with! module
constructs have rules

E,x : T chan|- m : SS
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --m.new
E|- new x : T chan in m : SS

E|- m :[X::K,T2]
E|- m ′ :[Y::EQ(T ′ ),T2 ′ ]
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --m.with
E|- (m with! m ′ ) : [X::EQ(T ′ ),T2]

The first allows new channel declaration in a structure. The
second allows m to be coerced to have the same type part as
m′ – statically it always succeeds (if m′ is a value), leaving
the build-time check to determine if the representation types
are in fact compatible. Typing for a system state N,F,e
requires that (1) all module values in the filesystem (which
may have free channel or type names created earlier) have
the signature they claim; (2) the process e is a well-typed
proc; and (3) N has only channel and type names.

∀ U∈ dom(F). N|- F(U) : sig(F(U))
N|- e : proc
N atomic
N has no module bindings
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --system
|- N,F,e ok

Here sig is the function that extracts the signature of a
module value, defined by

sig( [T,e] as [X::K,T ′ ] ) = [X::K,T ′ ]
sig( λU:SS.m:S ′ ) = ΠU:SS.S ′



N|- (λU:SS1.m:S2) mval −→ {mval/U}m m.red.beta
N|- [T1,e] as [X::EQ(T1 ′ ),T2] : SS −→ [T1,e] as SS m.red.seal
N|- new x:T in m −→ New x:T in m m.red.new
N|- [T1,e] as [X::Type,T2] −→ New Y::EQ(T1) in [Y,e] as [X::EQ(Y),T2] m.red.abstype
(for Y 6∈ dom(N))

m =[T1,e ] as [X::Type, T2 ]
m ′ =[Z, e ′ ] as [Y::EQ(Z),T2 ′ ]
N =N1,Z::EQ(TZ),N2
typify(N)|- T1==TZ::Type
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- m.red.with!
N|- m with! m ′ −→ [Z,e] as [X::EQ(Z),T2]

Figure 5: Module reduction axioms

and a type environment E is atomic if for all term variable
bindings x:T in E there exists T2 such that T=T2 chan.

3.2 Build and Run-Time Semantics

The language semantics is expressed with transitions

N,F,e
Com−→ N ′ ,F ′ ,e ′

labelled by commands U:=m, run U, and tau, expressing
how the system state can change. The run-time semantics
is straightforward, with transitions labelled by tau arising
from π-calculus reductions e −→e′. The build-time seman-
tics, for transitions labelled U:=m, is novel. It involves an
auxiliary one-step reduction relation for module expressions,
discussed in §3.3, written

N|- m −→ New N ′ in m ′

for m reducing to m′ with new channel or type names N′.
Note that the New N′ here is part of the judgement, not
module syntax. Multistep reductions will be written with
the double arrow =⇒. In addition, we identify various error
cases. Run-time errors are simply mismatched communica-
tions, e.g. x!3 | x?[y z]->e. Build-time errors arise when
trying U:=m for a badly-typed m, or when the dynamic check
of a with! coercion within m fails. Load-time errors arise
when trying run U where U is not the filename of a struc-
ture containing a process. We omit details of the error cases,
but give the main transition rules:

typify(N),env(F) |- m : S
N |- F(m) =⇒ New N ′ in mval
dom(N) disjoint from fv(m) and dom(N ′ )
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- build
N,F,e

U:=m−→ (N,N ′ ),F⊕ (U 7→ mval),e

F(U) = [T,e ′ ] as [X::K,proc]
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- load
N,F,e

run U−→ N,F,e|e ′

e −→ e ′
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- compute
N,F,e

tau−→ N,F,e ′

We discuss the key aspects of the build rule. Firstly, m
is typechecked. It may mention previously-built modules
in dom(F), so this should be with respect to their signa-
tures. These signatures may involve type variables in dom(N)
previously generated for abstract types, but the representa-
tions of those types should not be visible for typechecking.
We write env(F) for the type environment mapping each

U∈ dom(F) to sig(F(U)), and typify(N) for the type envi-
ronment mapping each X∈ dom(N) to Type. Secondly, F(m)
– m with all filenames replaced by the module values they
refer to – is reduced to mval. This may generate new type
or channel names, which are propagated to the resulting
state, and involves checking any coercions in m. Finally, the
disjointness condition, and the fact that both the N part
of N,F,e and the N′ part of N |- F(m) =⇒ New N′ in mval
are treated as binders, ensure that all previously-generated
names are alpha-converted away from the free names of m.

3.3 Module reduction

Module reduction is defined by the axioms in Figure 5, with
(roughly) evaluation contexts

C ::= _ | C m2 | mval C | C:SS
| C with! mval | m1 with! C

and rule

N|- m −→ New N ′ in m ′

dom(N ′ ) and fv(C) disjoint
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
N|- C[m] −→ New N ′ in C[m ′ ]

The substitution in m.red.beta is nonstandard – it also re-
duces any projections from structures that are introduced
by the substitution. Note the new type name generation
of m.red.abstype, and the check in m.red.with! that the
representation type T1 of m is provably equal to the repre-
sentation type TZ of the module m′ that m is being coerced
to. As in build, this must be with respect to typify(N).
(In fact, we have glossed over a subtlety – m.red.abstype
should not be used on the left of a with!; we ensure this by
splitting the reduction relation into two.)

The dynamic check does require the representation types of
any modules that are referred to to be stored (as part of a
struct that is inaccessible except to the with! check), but as
the equality check is wrt. typify(N) no other type equalities
from the development history are needed.

3.4 Examples

First, some examples of module reduction. For C as defined
in §3.1.1, the structure

[int, 6] as [X::EQ(int), X]

is already a module value. For A there is a single reduction,
creating a new type id, to a module value:



|- [int,6] as [X::Type,X] −→ New Z::EQ(int) in
[Z,6] as [X::EQ(Z),X]

Applying Fopaque to C:

|- Fopaque C

−→ {C/U}[U.Type*U.Type,[U.term,U.term]]
as [Y::Type,Y]

= [int*int,(6,6)] as [Y::Type,Y]

−→ New Z::EQ(int*int) in
[Z,(6,6)] as [Y::EQ(Z),Y]

Applying Fopaque to A, first A is reduced (creating a new
type id), then there is a beta step, then another new type
id is created.

|- Fopaque A

−→ New Z::EQ(int) in
Fopaque ([Z,6] as [X::EQ(Z),X])

−→ New Z::EQ(int) in
s([U.Type*U.Type,(U.term,U.term)]
as [Y::Type,Y])

where s = {[Z,6] as [X::EQ(Z),X]/U}

= New Z::EQ(int) in
[Z*Z,(6,6)] as [Y::Type,Y]

−→ New Z::EQ(int), W::EQ(Z*Z) in
[W,(6,6)] as [Y::EQ(W),Y]

Now consider the build commands

C := C
A := A

(here C and A are module variables, used as filenames, and C
and A are, as above, abbreviations for module expressions).
Executing these in the empty state New empty in (∅,0)
gives the state

New Z::EQ(int) in (*)
({C 7→C, A 7→ [Z,6] as [X::EQ(Z),X]},0)

Subsequent build commands can then refer to the type and
term components of A and C, eg in

B := [A.Type*C.Type,(A.term,C.term)]
as [X::EQ(A.Type*C.Type),X]

The module expression on the right-hand side of this will be
type checked in the environment

Z::Type, C:[X::EQ(int),X], A:[X::EQ(Z),X]

Rebuilding A will produce an abstract type that is different
from that of A – executing A′ := A in the state (*) above
results in

New Z::EQ(int),Z ′ ::EQ(int) in
({C 7→C, A 7→ [Z,6] as [X::EQ(Z),X],

A ′ 7→ [Z ′ ,6] as [X::EQ(Z ′ ),X]},0)
so executing U := Fb A A′ will give a type checking error.
On the other hand, executing A′ := A with! A in the state
(*) results in

New Z::EQ(int) in
({C7→C, A 7→ [Z,6] as [X::EQ(Z),X],

A ′ 7→ [Z,6] as [X::EQ(Z),X]},0)
and here U := Fb A A′ will succeed. For a more interesting
use of with!, illustrating the fact that only the representa-
tion types must be equal, executing

A ′ := [int,(7,8)] as [X::Type,X*X] with! A

in the state (*) results in

New Z::EQ(int) in
({C7→C, A 7→ [Z,6] as [X::EQ(Z),X],

A ′ 7→ [Z,(7,8)] as [X::EQ(Z),X*X]},0)
Finally, consider a module that provides an abstract type,
implementing it with a representation type that involves an
abstract type from another module, eg (again in state (*))

A2 := [A.Type*A.Type,(A.term,A.term)]
as [X::Type,X]

resulting in the state

New Z::EQ(int),W::EQ(Z*Z) in
({C7→C, A 7→ [Z,6] as [X::EQ(Z),X],

A2 7→ [W,(6,6) as [X::EQ(W),X]},0)
If one rebuilds A2

A2 ′ := m with! A2

the m.red.with! rule checks that the representation type of
m is equal to Z*Z, in an environment Z::Type,W::Type. Sim-
ply checking that the representation type of m is equal to the
underlying representation type int*int would be mistaken,
as A may have been rebuilt, either with the same invariants
(and using with!) or changed (and not using with!).

The examples above are artificial, with useless abstract
types, to illustrate the semantics. They should be enough
to see how natural examples (which would be unfortunately
lengthy) would go, however.

3.5 Soundness

We state only the key lemmas and main soundness proper-
ties of the semantics.

Lemma 1 (module substitution) If E,U:S,E′|- J
for some judgement J, and E|- mval:S, then
E,{mval/U}E′|- {mval/U}J.

Lemma 2 (term substitution) If E,E′,E′′|- e:T
and E|- σ:E′, where σ is a term substitution, then
E,E′′|- σe : T.

Lemma 3 (module subject reduction) If we have
N|- m : S and N|- m =⇒ New N′ in m′ and N,N′ disjoint
then N,N′|- m′:S. Moreover if N atomic and has no module
bindings then N,N′ is likewise.

Lemma 4 (process subject reduction) If E is atomic
and has no module bindings, E|- e:proc and e −→e′ then
E|- e′:proc.

Theorem 1 If |- N,F,e ok and N,F,e
Com−→ N′,F′,e′ then

|- N′,F′,e′ ok.



Theorem 2 If |- N,F,e ok then there is no transition

N,F,e
tau−→ err(runtime error).

There may of course be build- or load-time errors.

3.6 Relating separately-compiled and monolithic pro-
grams

A desirable property of systems for separate compilation is
that splitting a program into separate compilation units is
guaranteed not to change its type-correctness or behaviour.
For the language of this paper, a simple version of the prop-
erty is:

Theorem 3 If m1 and m2 are structure expressions

m1 = [T1,e1] as [X::K1,T1 ′ ]
m2 = [T2,e2] as [X::K2,T2 ′ ]

and

m2 ′ = (λU1:SS1.m2:SS2) [T1,e1] as [X::EQ(T1),T1 ′ ]

where SSi is the signature of mi, then

(∃ N,F,e. empty,∅,0 U1:=m1−→ U2:=m2−→ N,F,e)

iff

(∃ N,F,e. empty,∅,0 U2:=m2
′

−→ N,F,e)

Note that one cannot take m2′ to be simply
(λU1:SS1.m2:SS2) m1, as if K1=Type and U1 is used
in T2′ this cannot generally be given a useful signature.
Instead, the abstraction is enforced solely by the argument
signature of the functor. The interesting case of the proof
is the left-to-right direction for K1=Type – taking also
K2=/Type, the execution of U1:=m1 involves new type name
generation whereas the execution of U2:=m2′ does not. We
therefore have a tight link between the generative view of
abstract types, used in the separately-compiled version,
and the singleton-kind view, in typechecking m2′.

Intuitively, the two resulting module values F(U2) are syn-
tactically the same modulo certain type equalities, but we
do not make this precise here. One might also generalise
the result, giving translations between arbitrary module ex-
pressions and sequences of structure and functor build com-
mands. This could then be contrasted to the result of
Leroy [Ler96] relating the expressiveness of manifest-type-
based and stamp-based static semantics for ML-style mod-
ules. The latter involves new stamp generation during type-
checking (elaboration) of a module expression.

4 Conclusion

In summary, we have provided a solid basis for programming
wide-area systems involving interaction at abstract types. It
required new constructs – the versioning coercion and build-
time channel generation – and novel operational semantics
for module reduction and for build/load/compute-time sys-
tem state changes. We illustrated these, demonstrating how
they can be set up coherently, by giving a model language
of processes, modules and commands, equipped with build-
and run-time semantics, and proving soundness.

The work is a necessary preliminary for more refined treat-
ments of numbered versions, and for extending traditional
distributed systems programming with communication of
values of abstract types.

Further Related Work We argued in §2.3 that devel-
opers must – in a limited way – be able to break the ab-
straction boundary of an abstract type. The with! coercion
does this, allowing new types to be made compatible with
old, provided (a) their immediate representation types are
equal, and (b) the developer asserts no important invariants
have changed. The closest primitive in previous work seems
to be the partial revelations of opaque types in Modula 3
[CDG+89], allowing any opaque type to be made concrete
(to a specified subtype) within a scope. Turning to for-
mal models, Cardelli [Car97] discusses linking and separate
compilation in detail, but without module type components.
The MTAL system of Glew and Morrisett [GM99] models
linking for typed assembly language. It incorporates ab-
stract types, but has a flat namespace and does not deal
with differing versions. There is therefore no need for ex-
plicit generation of type names. Other work on separate
compilation, notably [BA99, Dro00, Dug00, FF98, HWC00],
focusses largely on name space and hierarchy issues, and on
dynamic linking.

Future Directions Firstly, it would be interesting to gen-
eralise the results of §3.6, as indicated there, to arbitrary
programs.

The idea of the module reduction semantics may have other
applications. In particular, it should permit a typed opera-
tional semantics for Cardelli and Leroy’s dot-notation calculi
[CL90]. Adding term-level annotations delimiting subterms
that originated from abstract types, building on [ZGM99],
may allow nice syntactic statements of abstractness proper-
ties.

One might hope to address first class modules [HL94, Lil97,
Rus98]. Typed semantics for dot-notation would go some
way towards this, but note that term-level execution here
may involve distributed communication, which may only
make sense with respect to a local machine state. It is
therefore desirable to be able to stratify execution (in the
extreme case of the language of this paper no core reduction
is done at build time, trivially preventing such distributed
side-effects).

As for extensions, for usability the system would have to be
extended to general dependent records and substructures,
not simply binary translucent sums. Dealing with named
interfaces would allow more direct treatment of traditional
IDLs, extended with abstract types. There are many prag-
matic issues of what development environment support is
required to make the with! coercion and its channel-name
analogue usable; they will have to be investigated by exper-
iment. Finally, to address interface evolution and numbered
versions, the system should be extended with subtyping,
with polarity on the types used for interaction (here these
are the channel types, for which polarities have been studied
eg in [PS96, Ode95]), and with a type-level representation
of a partial order.
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