
Formalizing EXE’s, DLL’s
and all that

Nick Benton, Andrew Kennedy
(Microsoft Research Cambridge)

Interns: Jonas Jensen (ITU), Valentin Robert (UCSD),
Pierre-Evariste Dagand (INRIA), Jan Hoffman (Yale)

25th January 2014PiP 2014 1

Highest assurance software correctness
for

machine code programs
through

machine-assisted proof

Our dream

“Prove what you run”
25th January 2014PiP 2014 2

 Model (sequential, 32-bit, subset of) x86 in Coq:
bits, bytes, memory, instruction decoding, execution

 Generate x86 programs from Coq:
assembly syntax in Coq, with macros, run assembler
in Coq to produce machine code, even EXEs and DLLs

 Specify x86 programs in Coq:
separation logic for low-level code

 Prove x86 programs in Coq:
tactics and manual proof for showing that programs
meet their specifications

One tool: Coq

25th January 2014PiP 2014 3

25th January 2014PiP 2014 4

x86 assembly code

Macro for local
procedure

Intel instruction
syntax

Macro for while
loop

Scoped labels

Macro for calling
external C code

Inline byte dataInline string data

25th January 2014PiP 2014 5

X86 assembly code, in Coq

Actually, “just” a
definition in Coq

Assembler syntax is
“just” user-defined

Coq notation

Macros are “just”
parameterized Coq

definitions

Scoped labels “just”
use Coq binding

25th January 2014PiP 2014 6

In previous work…

Simple macros (if, while);
User macros;

DSLs (e.g. regexps)

Assembly-code representation;
assembler; proof of correctness

Model of x86 machine:
binary reps, memory, instruction
decoding, instruction execution

Program specifications; program logic
tactics; proofs of correctness for

assembly programs

Higher-level languages;
compilers;

compiler correctness

Low-level program logic for assembly;
proof of soundness wrt machine model

POPL 2013

PPDP 2013

Extend generation, specification and verification of x86
machine code to

 Generate binary link formats: EXEs and DLLs for
Windows (i.e. practice)

 Specify and verify behaviour of EXEs and DLLs

 (Future work) Specify and verify loading and dynamic
linking of EXEs and DLLs

But first, a quick overview of our x86 machine model.

25th January 2014PiP 2014 7

Today’s talk

 Use Coq to construct a “reference implementation”
of sequential x86 instruction decoding and execution

Model x86

Example fragment:
semantics of call

and return.

25th January 2014PiP 2014 9

Design an assembly language

 Define datatype of programs, with sequencing, labels,
and scoping of labels

 Use Coq variables for object-level ‘variables’ (labels),
à la higher-order abstract syntax

 First implement instruction encoder:

25th January 2014PiP 2014 10

Build an assembler (1)

 Using instruction encoder, implement multi-pass
assembler that determines a consistent assignment
for scoped labels

 Prove “round-trip” lemma stating that instruction
decoding is inverse wrt instruction encoding

 Extend this to a full round-trip theorem for the
assembler

25th January 2014PiP 2014 11

Build an assembler (2)

 It’s usual to use a program logic such as Hoare logic to specify
and reason about programs

 Recent invention of separation logic makes reasoning about
pointers tractable

Design a logic

{P} C {Q} Postcondition
Precondition

Command

 But still not appropriate for machine code

 Machine code programs don’t “finish” (what postcondition?)

 Code and data are all mixed up (“command” is just bytes in
memory), also code can be “higher-order” with code pointers

 We have devised a new separation logic that solves all these
problems, embedded it in Coq, and proved it sound with respect
to the machine model

Example:
Specifying memory allocation

If it is safe to exit through failLabel or j…

…then it is safe to enter at i

…under the assumption that memory at i..j decodes to allocator code,
ESI and flags are arbitrary, and a data invariant is maintained

…such that (at j), EDI
points just beyond
accessible memory

block of size bytes…

Trivial implementation of allocator

 We have developed Coq tactics to help prove that programs
behave as specified

 Sometimes routine, sometimes careful reasoning required.
Example proof fragment:

Prove some theorems

25th January 2014PiP 2014 16

Put it all together

1. Use Coq to produce raw bytes, link with a small boot loader, to
produce a bootable image

2. Under assumptions about state of machine following boot
loading, prove that program meets spec

3. Run!

Game of life, written in
assembler using Coq,

running on bare metal!

 That’s all well and good but

 We’d like to formalize the process of loading programs,
and support dynamic linking, and

 Rather than booting the machine (or a VM) it would be
nice to experiment on an existing OS e.g. Windows

 Also good to test our ideas on linking and loading using
existing formats

 So: model EXE’s, DLL’s, loading and dynamic linking

25th January 2014PiP 2014 17

Executables

Some machine code, with an entry point, preferred base address,
and…

 Several sections (code, data, r/o data, thread local data, etc.)

 Relocation information (if not loaded at preferred base address)

 Imports, by name or number

 Exports (if executable is a DLL)

 A lot of metadata

 Legacy cruft (e.g. MSDOS stub!)

 Informally documented in a ~100 page spec

25th January 2014PiP 2014 18

What’s in an executable?

25th January 2014PiP 2014 19

What’s in an executable?
Let’s look inside

compile & link

dumpbin /all

25th January 2014PiP 2014 20

Example .EXE, in Coq

Import a
Dynamic Link Library

Import a named
function from the DLL

Declare a code section
containing our
factorial code

Generate the bytes of
the .EXE at a given

load address!

…and run!

Compile…

25th January 2014PiP 2014 21

Example DLL
counter.dll

Export module-level
labels by name

Declare a module-level
label without exporting it

Read/write data section

25th January 2014PiP 2014 22

Example client
usecounter.exe

Call indirect through
Get’s “slot”

Import Get from
counter.dll

 Our assembly datatype and assembler give us all the
mechanisms we need to generate the structures found in EXE’s
and DLL’s
 Byte, word, string representations
 RVAs (Relative Virtual Address)
 Padding
 Alignment constraints
 Bitfields
 Multi-pass fixed-point iteration to deal with forward references

 One small annoyance: file image not identical to in-memory
image (e.g. alignment of sections); RVAs wrt in-memory image
 Hack: add “skip” primitive in our writer monad to advance the

assembler’s “cursor” without producing any bytes

25th January 2014PiP 2014 23

The messy details

Exports
Logically: a list of 〈name,address〉 pairs

Imports
Logically: for each imported DLL,
 Its name
 A list of imported symbols (by name or ordinal)
 A list of slots, one for each imported symbol: the Import Address

Table or IAT

In binary format, this is all somewhat messier!

25th January 2014PiP 2014 24

Exports and imports

 Some x86 code is position independent e.g. makes
use of PC-relative offsets (jumps)

 But much is not: especially on 32-bit, it’s hard to refer
to global data in position independent way

 So: executables have a “preferred base address”

 If not loaded at this address, absolute addresses
embedded in code and data must be rebased i.e.
patched at load-time

 The executable lists these in a special “.reloc” section

25th January 2014PiP 2014 25

Relocateable code

25th January 2014PiP 2014 26

What does the OS loader do?
Before: in-file

Code for Inc

Code for Get

“Inc” 0x100

“Get” 0x230

counter.dll

Export
table

Code
section

usecounter.exe

Code for main

Base = 0x3000 Base = 0x9000

“Inc”

“Get”

MOV EDX, [0x9570]

Slot at RVA 0x570

Import
table

Code
section

Code at RVA 0x230

25th January 2014PiP 2014 27

What does the OS loader do?
After loading: in-memory

Code for Inc

Code for Get

“Inc” 0x100

“Get” 0x230

counter.dll

Export
table

Code
section

usecounter.exe

Code for main

Base = 0x3000 Base = 0x9000

“Inc”

“Get”

MOV EDX, [0x9570]

Import
table

Code
section

0x3100

0x3230

Starting at address
0x9000

Starting at address
0x3000

 We want to relocate addresses (“rebasing”) and perhaps
link modules (in some non-Windows loader) by in-place
update of instructions

 Encodings matter. Prove lemmas such as

25th January 2014PiP 2014 28

Patching of instructions

 “fastcall” calling convention for function of one argument
(passed in ECX) and one result (in EAX)

25th January 2014PiP 2014 29

(Towards)
Specifying calling conventions

 Separately specify different modules; prove
correctness of combination, already loaded and with
imports resolved

 Model the loading process itself

 Implement a small loader, in machine code using Coq,
with export/import resolution

 Prove its correctness

25th January 2014PiP 2014 30

What’s to do?

