
Reusable Tools for Formal

Modeling of Machine Code

Gang Tan (Lehigh University)

Greg Morrisett (Harvard University)

Other contributors:

Joe Tassarotti Edward Gan

Jean-Baptiste Tristan (Oracle Labs)

@ PiP; Jan 25th, 2014

Our Need for an x86 Machine Model

� Certified Inlined-Reference Monitors (IRM)

� IRM: Integrate a reference monitor into the code

2

� Verifier: checking the monitor code is inlined

correctly (so that the proper policy is enforced)

� No need to trust the IRM-insertion phase

RewriteProgram Program

RMRM

OK
Verifier

Software-Based Fault Isolation (SFI)
3

� A special kind of IRM

� Isolate untrusted code into a “logical fault domain”

within a process’s address space

� Wahbe, Luco et al (1991) for MIPS

� McCamant & Morrisett (2006) extended it to CISC

machines (x86)

The SFI Sandboxing Policy

Fault Domain

Code Region (CR)

Data Region (DR)

CB

CL

DB

DL

All mem reads/ writes

remain in DR

1) All jumps remain in CR

2) Inlined checks not

bypassed by jumps

4

Enforcing the policy: insert checks before unsafe
instructions (memory operations, jumps, …)

The Native Client (NaCl) Verifier

x86 code

OK

Verifier

5

One Critical Issue

� A bug in the verifier could result in a security breach

� NaCl’s verifier: pile of C code with manually written partial

decoders for x86 binaries

� Google ran a security contest early on its NaCl verifier:

bugs found!

� Goal: a provably correct SFI verifier

� Correctness theorem: if some binary passes the

verifier, then the execution of the binary should obey

the SFI policy

6

RockSalt Punchline

� RockSalt: a new verifier for x86-32 NaCl

� [Morrisett, Tan, Tassarotti, Gan, Tristan PLDI 2012]

� Smaller

� Google: 600 lines of C with manually written code for
partial decoding

� RockSalt: 80 lines of C + regexps for partial decoding

� Faster: on 200Kloc of C

� Google’s: 0.9s

� RockSalt: 0.2s

� Stronger: (mostly) proven correct

� The proof is machine checked in Coq

7

RockSalt Architecture
8

Verifier Regexps for partial Regexps for partial

decoding

Driver for checking SFI

constraints

Driver for checking SFI

constraints

x86

model Decoder

Spec

Instruction

semantics

Instruction

semantics

RTL machine

~5,000

Coq

Correctness

Proof
~10,000

CoqPartial decoding

correctness

Properties of

instructions

SFI theorem and proof

The Real Challenge
9

� Building a model of the x86

� And to gain some confidence that it is correct!

Some Related Models

� CompCert’s x86 model (Coq)

� Actually an abstract machine with a notion of stack

� Code is not explicitly represented as bits

� Y86 model (ACL2)

� Tens of instructions, monolothic interpreter

� But you can extract relatively efficient code for testing!

� Cambridge x86 work (HOL)

� Inspired much of our design

� Their focus was on modeling concurrency (TSO)

� Semantics encoded with predicates (need symbolic
computation)

� MSR [Benton and Kennedy]

� …

10

Our x86 Model

� Re-usable domain-specific languages to specify the
semantics of machine models

� We have modeled about 300 different x86 instructions
(including all addressing modes and most of the
prefixes)

1. Decoder specification language

� Regular grammars for declarative specification of the
decoder

2. Register Transfer Language (RTL)

� Core RISC machine with simple operational semantics

� Translate x86 instructions into RTLs

11

Our x86 Model in Coq

Instruction Abstract Syntax

Decoder

RTL Translator

RTL: RISC-based Core

Machine States

RTL interpreter

12

Our x86 Model in Coq

Importantly, we extract

an x86 emulator in OCaml

that we use for validation.

Instruction Abstract Syntax

Decoder

RTL Translator

RTL: RISC-based Core

Machine States

RTL interpreter

13

Our x86 Model in Coq

Instruction Abstract Syntax

Decoder

RTL: RISC-based Core

Machine States

RTL interpreter

In this talk, we focus on the

discussion of the decoder.

14

RTL Translator

Our x86 Model in Coq

Instruction Abstract Syntax

Decoder

RTL: RISC-based Core

Machine States

RTL interpreter

Turns out much harder

than we thought!

15

RTL Translator

Decoding for x86

� Incredibly difficult

� Thousands of opcodes; many addressing modes

� Prefix bytes override things like size of constants

� The number of bytes for an instruction depends upon
earlier bytes seen and can range from 1 to 15

� Plus, we need to reason about decoding

� The SFI verifier uses partial decoders to recognize
classes of instructions (e.g., indirect jumps)

� Need to relate those partial decoders to the model’s
full decoder

16

Our Decoder Specification Language

� Type-indexed parsing combinators for regular
grammars

� Regular grammars: regular expressions + semantic actions

� Denotational semantics: so that we can reason about
grammars

� An operational semantics (interpreter) via derivatives

� Proven correct w.r.t the denotational semantics

� A parser generator (compiler) via efficient, table-based
parsers

� Also proven correct

17

Example Grammar for INC

Definition INC_g : grammar instr :=
"1111" $$ "111" $$ bit $ "11000" $$ reg
@ (fun (w,r) => INC w (Reg_op r))

|| "0100" $$ "0" $$ reg
@ (fun r => INC true (Reg_op r)

|| "1111" $$ "111" $$ bit $ (emodrm "000")
@ (fun (w,op1) => INC w op1).

AlternativesAlternatives

Decode patternDecode pattern

Semantic actionSemantic action

18

Regular Grammar DSL

Inductive grammar : Type -> Type
| Char : char -> grammar char
| Eps : grammar unit
| Cat : ∀T U, grammar T -> grammar U -> grammar (T*U)
| Zero : ∀T, grammar T
| Alt : ∀T U, grammar T -> grammar U -> grammar (T+U)
| Star : ∀T, grammar T -> grammar (list T)
| Map : ∀T U, grammar T -> (T -> U) -> grammar U

Infix “+” := Alt.
Infix “$” := Cat.
Infix “@” := Map.

...

Indexed by types of

semantic values returned

by the grammar

Indexed by types of

semantic values returned

by the grammar

Concatenation:

returns a pair

Concatenation:

returns a pair

Apply a semantic

action

Apply a semantic

action

Kleene star:

returns a list

Kleene star:

returns a list

19

Denotational Semantics

[[]] : grammar T -> (string * T) -> Prop.

[[Eps]] = {(nil, tt)}
[[Zero]] = {}
[[Char c]] = {(c::nil, c)}
[[Alt g 1 g2]] ={(s,inl v) | (s,v) in [[g1]] } U

{(s,inr v) | (s,v) in [[g2]] }
[[Cat g 1 g2]] =

{(s 1++s 2,(v 1,v 2)) | (s i ,v i) in [[g i]] }
[[Star g]] = {(nil, nil)} U

{(s,v) | s ≠nil /\

s in [[Cat g (Star g)]] }
[[Map g f]] = {(s, f v) | (s,v) in [[g]] }

20

Typed Grammars as Specs

� The grammar language is very attractive for

specification:

� Typed “semantic actions”

� Easy to build new combinators

� Easy transliteration from the Intel manual

� Unlike Yacc/Flex/etc., has a good semantics:

� Easy inversion principles

� Good algebraic properties

� e.g., easy to refactor or optimize grammar

21

Operational Semantics: Derivative-

Based Parsing

� Old idea due to Brzozowski (1964), revitalized by
Reppy et al., and extended by Might

� For a regexp r and char c , “deriv c r” returns a

residual regexp that matches strings after matching c
through r

� E.g., deriv c (cb*) = b*;
deriv c (c*) = c*

� For regular grammars, the semantics of derivatives is:

[[deriv c g]] =

{(s,v) | (c:: s,v) in [[g]] }

22

Derivatives for Grammars

deriv c (Char c) = Eps @ (fun _ => c)
deriv c (g 1 + g2) = deriv c g 1 + deriv c g 2

deriv c (g*) = (deriv c g $ g*) @ (::)
deriv c (g 1 $ g 2) =

(deriv c g 1 $ g 2) || (null g 1 $ deriv c g 2)
deriv c (g @ f) = (deriv c g) @ f
deriv c _ = Zero

� Similar to Brzozowski’s derivatives for regexps, but also
taking semantic actions into account

� For efficiency, we must optimize the grammars as they are
constructed. E.g.,

Eps $ g � g @ (fun x => (tt,x))
Zero $ g � Zero

23

Derivative-Based Parsing

parse g (c::s) := parse (deriv c g) s
parse g nil := extract g

[[extract g]] = {v | (nil,v) in [[g]] }

Correctness Theorem :
v ∈ (parse g cs) < -> (cs,v) in [[g]] .

Given a grammar g and an input string, a parser can be

constructed by keep calculating derivatives:

24

X86 Decoder by Computing

Derivatives Online
25

� The parser just showed calculates derivatives
online

� Can be thought of as an interpreter

� Was used in the first version of our x86 model
described in PLDI 2012

� This worked okay, but the extracted OCaml x86
emulator was slow because of the decoding

� Slowed down our model testing effort

� Still tested over 10 million instruction instances but
took over 60 hours

Speeding up the Decoder
26

� One idea: calculate a DFA table offline and use the
table for parsing

� Brzozowski showed how to construct a DFA from a
regular expression using derivatives

� Calculate (deriv c r) for each c in the alphabet

� Each unique (up to the optimizations) derivative
corresponds to a state

� Continue by calculating all reachable states’
derivatives

� Guaranteed this process will terminate!

Bad News

� The derivatives for regular expressions are finite

� But as defined, we can have an unbounded

number of derivatives for our typed, regular

grammars

27

Breaking Finite Derivatives

For regular expressions:

deriv a (a*) = a*

For regular grammars:

deriv a (a*) = a* @ (λx => a::x)

deriv a (a * @ (λx => a::x)) =

a* @ (λx => a::a ::x)

...

a*

‘a’
28

Our Solution: Use a Finite-State

Transducer

� An edge is associated with

� An input character

� And an output semantic action: the action to apply

after parsing the rest of the input

Input string

to nil to get [‘a’, ‘a’, ‘a’]

Input string: “aaa”

Output: three λx. a :: x

Parsing result:

apply the three functions

to nil to get [‘a’, ‘a’, ‘a’]

a*

‘a’

λx. a :: x

29

More Details

� Split the original grammar into a map-free

grammar and a single semantic action that applies

at the end

split: grammar T ->
{a : ast_gram & (ast_tipe a) -> T}

� As we calculate derivatives, we continue to split

� The states correspond to AST grammars

� The edges are labeled input characters and output

semantic actions

30

The Table-Driven Parser

� Lead to an easy, algebraic proof of correctness.

� We can also use the table to determine if the

grammar is ambiguous.

� Any terminal state (i.e., that accepts the empty string)

shouldn’t have alternatives.

� With more work on optimizations, we scaled up

this technique to produce a table-driven x86

decoder

� ~100-times faster than the previous decoder!

31

Lessons Learned when Building

Models at Scale
32

� Certified parsing is critical and difficult

� Windows: hundreds of parsers for different file formats;
many security-critical bugs were found [GoDefRoiD et al. CACM

2012]

� Future work: beyond regular grammars (e.g., CFGs)

� [Barthwal and Norrish 09]: verified SLR parsing

� [Jourdan, Pottier, and Leroy 12]: translation validation for LR(1)
parsing

� Validation is absolutely essential

� The parsing technique is aimed at building a faster model
so we can do more testing/validation

� Re-use is crucial

� Forced us to re-think how we do parsing and semantics

Future Directions for x86 Model

� Better validation

� Cross-validation with other x86 models

� Extending the execution model

� concurrency, system state, …

� Applications

� CFI, XFI, TAL, …; CompCert

� Break the DSLs out of coq as first-class citizens

� Connect with the Lem tool at Cambridge

33

Acknowledgements

� Support from NSF and Google Research

34

