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Our Need for an x86 Machine Model

� Certified Inlined-Reference Monitors (IRM)

� IRM: Integrate a reference monitor into the code
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� Verifier: checking the monitor code is inlined

correctly (so that the proper policy is enforced)

� No need to trust the IRM-insertion phase

RewriteProgram Program

RMRM

OK
Verifier



Software-Based Fault Isolation (SFI)
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� A special kind of IRM

� Isolate untrusted code into a “logical fault domain” 

within a process’s address space

� Wahbe, Luco et al (1991) for MIPS

� McCamant & Morrisett (2006) extended it to CISC 

machines (x86)



The SFI Sandboxing Policy

Fault Domain

Code Region (CR)

Data Region (DR)

CB

CL

DB

DL

All mem reads/ writes 

remain in DR

1) All jumps remain in CR

2) Inlined checks not 

bypassed by jumps
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Enforcing the policy: insert checks before unsafe 
instructions (memory operations, jumps, …)



The Native Client (NaCl) Verifier

x86 code

OK

Verifier

5



One Critical Issue

� A bug in the verifier could result in a security breach

� NaCl’s verifier: pile of C code with manually written partial 

decoders for x86 binaries

� Google ran a security contest early on its NaCl verifier:  

bugs found!

� Goal: a provably correct SFI verifier

� Correctness theorem: if some binary passes the 

verifier, then the execution of the binary should obey 

the SFI policy
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RockSalt Punchline

� RockSalt: a new verifier for x86-32 NaCl

� [Morrisett, Tan, Tassarotti, Gan, Tristan PLDI 2012]

� Smaller

� Google: 600 lines of C with manually written code for 
partial decoding

� RockSalt: 80 lines of C + regexps for partial decoding

� Faster: on 200Kloc of C

� Google’s:  0.9s

� RockSalt:  0.2s

� Stronger: (mostly) proven correct

� The proof is machine checked in Coq
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RockSalt Architecture
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Verifier Regexps for partial Regexps for partial 

decoding

Driver for checking SFI 

constraints

Driver for checking SFI 

constraints

x86 

model Decoder 

Spec

Instruction 

semantics 

Instruction 

semantics 

RTL machine

~5,000 

Coq

Correctness 

Proof
~10,000 

CoqPartial decoding 

correctness

Properties of 

instructions

SFI theorem and proof



The Real Challenge
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� Building a model of the x86

� And to gain some confidence that it is correct!



Some Related Models

� CompCert’s x86 model (Coq)

� Actually an abstract machine with a notion of stack 

� Code is not explicitly represented as bits

� Y86 model (ACL2)

� Tens of instructions, monolothic interpreter

� But you can extract relatively efficient code for testing!

� Cambridge x86 work (HOL)

� Inspired much of our design

� Their focus was on modeling concurrency (TSO)

� Semantics encoded with predicates (need symbolic 
computation)

� MSR [Benton and Kennedy]

� …
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Our x86 Model

� Re-usable domain-specific languages to specify the 
semantics of machine models

� We have modeled about 300 different x86 instructions 
(including all addressing modes and most of the 
prefixes)

1. Decoder specification language

� Regular grammars for declarative specification of the 
decoder

2. Register Transfer Language (RTL)

� Core RISC machine with simple operational semantics

� Translate x86 instructions into RTLs
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Our x86 Model in Coq

Instruction Abstract Syntax

Decoder

RTL Translator

RTL: RISC-based Core

Machine States

RTL interpreter
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Our x86 Model in Coq

Importantly, we extract 

an x86 emulator in OCaml

that we use for validation.

Instruction Abstract Syntax

Decoder

RTL Translator

RTL: RISC-based Core

Machine States

RTL interpreter
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Our x86 Model in Coq

Instruction Abstract Syntax

Decoder

RTL: RISC-based Core

Machine States

RTL interpreter

In this talk, we focus on the 

discussion of the decoder.
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RTL Translator



Our x86 Model in Coq

Instruction Abstract Syntax

Decoder

RTL: RISC-based Core

Machine States

RTL interpreter

Turns out much harder 

than we thought!
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RTL Translator



Decoding for x86

� Incredibly difficult

� Thousands of opcodes; many addressing modes

� Prefix bytes override things like size of constants

� The number of bytes for an instruction depends upon 
earlier bytes seen and can range from 1 to 15

� Plus, we need to reason about decoding

� The SFI verifier uses partial decoders to recognize 
classes of instructions (e.g., indirect jumps)

� Need to relate those partial decoders to the model’s 
full decoder
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Our Decoder Specification Language

� Type-indexed parsing combinators for regular 
grammars

� Regular grammars: regular expressions + semantic actions

� Denotational semantics: so that we can reason about 
grammars

� An operational semantics (interpreter) via derivatives 

� Proven correct w.r.t the denotational semantics

� A parser generator (compiler) via efficient, table-based 
parsers

� Also proven correct
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Example Grammar for INC

Definition INC_g : grammar instr := 
"1111" $$ "111" $$ bit $ "11000" $$ reg
@ (fun (w,r) => INC w (Reg_op r)) 

|| "0100" $$ "0" $$ reg
@ (fun r => INC true (Reg_op r) 

|| "1111" $$ "111" $$ bit $ (emodrm "000")
@ (fun (w,op1) => INC w op1). 

AlternativesAlternatives

Decode patternDecode pattern

Semantic actionSemantic action
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Regular Grammar DSL

Inductive grammar : Type -> Type 
| Char : char -> grammar char 
| Eps : grammar unit 
| Cat : ∀T U, grammar T -> grammar U -> grammar (T*U) 
| Zero : ∀T, grammar T 
| Alt : ∀T U, grammar T -> grammar U -> grammar (T+U) 
| Star : ∀T, grammar T -> grammar (list T) 
| Map : ∀T U, grammar T -> (T -> U) -> grammar U

Infix “+” := Alt.
Infix “$” := Cat.  
Infix “@” := Map.

...

Indexed by types of 

semantic values returned 

by the grammar

Indexed by types of 

semantic values returned 

by the grammar

Concatenation: 

returns a pair

Concatenation: 

returns a pair

Apply a semantic 

action

Apply a semantic 

action

Kleene star: 

returns a list

Kleene star: 

returns a list
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Denotational Semantics

[[ ]] : grammar T -> (string * T) -> Prop.

[[ Eps]] = {(nil, tt)}
[[ Zero ]] = {}
[[ Char c ]] = {(c::nil, c)}
[[ Alt g 1 g2]] ={(s,inl v) | (s,v) in [[ g1]] } U

{(s,inr v) | (s,v) in [[ g2]] }
[[ Cat g 1 g2]] = 

{(s 1++s 2,(v 1,v 2)) | (s i ,v i ) in [[ g i ]] }
[[ Star g ]] = {(nil, nil)} U

{(s,v) | s ≠nil /\

s in [[ Cat g (Star g) ]] }
[[ Map g f ]] = {(s, f v) | (s,v) in [[ g]] } 
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Typed Grammars as Specs

� The grammar language is very attractive for 

specification:

� Typed “semantic actions”

� Easy to build new combinators

� Easy transliteration from the Intel manual

� Unlike Yacc/Flex/etc., has a good semantics:

� Easy inversion principles

� Good algebraic properties

� e.g., easy to refactor or optimize grammar
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Operational Semantics: Derivative-

Based Parsing

� Old idea due to Brzozowski (1964), revitalized by 
Reppy et al., and extended by Might

� For a regexp r and char c , “deriv c r” returns a 

residual regexp that matches strings after matching c 
through r

� E.g., deriv c (cb*) = b*; 
deriv c (c*) = c*

� For regular grammars, the semantics of derivatives is:

[[ deriv c g ]] = 

{( s,v ) | (c:: s,v ) in [[ g]] }
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Derivatives for Grammars

deriv c (Char c) = Eps @ (fun _ => c)
deriv c (g 1 + g2) = deriv c g 1 + deriv c g 2

deriv c (g*) = (deriv c g $ g*) @ (::)
deriv c (g 1 $ g 2) = 

(deriv c g 1 $ g 2) || (null g 1 $ deriv c g 2)
deriv c (g @ f) = (deriv c g) @ f
deriv c _ = Zero

� Similar to Brzozowski’s derivatives for regexps, but also 
taking semantic actions into account

� For efficiency, we must optimize the grammars as they are 
constructed. E.g.,

Eps $ g � g @ (fun x => (tt,x))
Zero $ g � Zero
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Derivative-Based Parsing

parse g (c::s) := parse ( deriv c g) s
parse g nil := extract g

[[ extract g ]] = {v | ( nil,v ) in [[ g]] }

Correctness Theorem : 
v ∈ (parse g cs ) < -> ( cs,v ) in [[ g]] .

Given a grammar g and an input string, a parser can be 

constructed by keep calculating derivatives:
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X86 Decoder by Computing 

Derivatives Online
25

� The parser just showed calculates derivatives 
online

� Can be thought of as an interpreter

� Was used in the first version of our x86 model 
described in PLDI 2012

� This worked okay, but the extracted OCaml x86 
emulator was slow because of the decoding

� Slowed down our model testing effort

� Still tested over 10 million instruction instances but 
took over 60 hours 



Speeding up the Decoder
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� One idea: calculate a DFA table offline and use the 
table for parsing

� Brzozowski showed how to construct a DFA from a 
regular expression using derivatives

� Calculate (deriv c r) for each c in the alphabet

� Each unique (up to the optimizations) derivative 
corresponds to a state

� Continue by calculating all reachable states’ 
derivatives

� Guaranteed this process will terminate!



Bad News

� The derivatives for regular expressions are finite

� But as defined, we can have an unbounded 

number of derivatives for our typed, regular 

grammars 
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Breaking Finite Derivatives

For regular expressions:

deriv a (a*) = a*

For regular grammars:

deriv a (a*) = a* @ ( λx => a::x)

deriv a (a * @ ( λx => a::x) ) = 

a* @ ( λx => a::a ::x )

...

a*

‘a’
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Our Solution: Use a Finite-State 

Transducer

� An edge is associated with

� An input character

� And an output semantic action: the action to apply 

after parsing the rest of the input

Input string

to nil to get [‘a’, ‘a’, ‘a’]

Input string: “aaa”

Output:  three λx. a :: x

Parsing result: 

apply the three functions 

to nil to get [‘a’, ‘a’, ‘a’]

a*

‘a’

λx. a :: x
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More Details

� Split the original grammar into a map-free 

grammar and a single semantic action that applies 

at the end

split: grammar T -> 
{a : ast_gram & (ast_tipe a) -> T}

� As we calculate derivatives, we continue to split

� The states correspond to AST grammars

� The edges are labeled input characters and output 

semantic actions
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The Table-Driven Parser

� Lead to an easy, algebraic proof of correctness.

� We can also use the table to determine if the 

grammar is ambiguous.

� Any terminal state (i.e., that accepts the empty string) 

shouldn’t have alternatives.

� With more work on optimizations, we scaled up 

this technique to produce a table-driven x86 

decoder

� ~100-times faster than the previous decoder!
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Lessons Learned when Building 

Models at Scale
32

� Certified parsing is critical and difficult

� Windows: hundreds of parsers for different file formats; 
many security-critical bugs were found [GoDefRoiD et al. CACM 

2012]

� Future work: beyond regular grammars (e.g., CFGs)

� [Barthwal and Norrish 09]: verified SLR parsing

� [Jourdan, Pottier, and Leroy 12]: translation validation for LR(1) 
parsing

� Validation is absolutely essential

� The parsing technique is aimed at building a faster model 
so we can do more testing/validation

� Re-use is crucial

� Forced us to re-think how we do parsing and semantics



Future Directions for x86 Model

� Better validation

� Cross-validation with other x86 models

� Extending the execution model

� concurrency, system state, …

� Applications

� CFI, XFI, TAL, …; CompCert

� Break the DSLs out of coq as first-class citizens

� Connect with the Lem tool at Cambridge
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