
Mathematizing C++ Concurrency

Mark Batty Scott Owens Susmit Sarkar Peter Sewell Tjark Weber
University of Cambridge

Abstract
Shared-memory concurrency in C and C++ is pervasive in systems
programming, but has long been poorly defined. This motivated
an ongoing shared effort by the standards committees to specify
concurrent behaviour in the next versions of both languages. They
aim to provide strong guarantees for race-free programs, together
with new (but subtle) relaxed-memory atomic primitives for high-
performance concurrent code. However, the current draft standards,
while the result of careful deliberation, are not yet clear and rigor-
ous definitions, and harbour substantial problems in their details.

In this paper we establish a mathematical (yet readable) seman-
tics for C++ concurrency. We aim to capture the intent of the cur-
rent (‘Final Committee’) Draft as closely as possible, but discuss
changes that fix many of its problems. We prove that a proposed
x86 implementation of the concurrency primitives is correct with
respect to the x86-TSO model, and describe our CPPMEM tool for
exploring the semantics of examples, using code generated from
our Isabelle/HOL definitions.

Having already motivated changes to the draft standard, this
work will aid discussion of any further changes, provide a cor-
rectness condition for compilers, and give a much-needed basis for
analysis and verification of concurrent C and C++ programs.

Categories and Subject DescriptorsC.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]: Parallel processors; D.1.3 [Con-
current Programming]: Parallel programming; F.3.1 [Specifying
and Verifying and Reasoning about Programs]

General Terms Documentation, Languages, Reliability, Stan-
dardization, Theory, Verification

Keywords Relaxed Memory Models, Semantics

1. Introduction
Context Systems programming, of OS kernels, language run-
times, etc., commonly rests on shared-memory concurrency in C
or C++. These languages are defined by informal-prose standards,
but those standards have historically not covered the behaviour of
concurrent programs, motivating an ongoing effort to specify con-
current behaviour in a forthcoming revision of C++ (unofficially,
C++0x) [AB10, BA08, Bec10]. The next C standard (unofficially,
C1X) is expected to follow suit [C1X].

The key issue here is the multiprocessor relaxed-memory be-
haviour induced by hardware and compiler optimisations. The de-
sign of such a language involves a tension between usability and
performance: choosing a very strong memory model, such as se-

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

quential consistency (SC) [Lam79], simplifies reasoning about pro-
grams but at the cost of invalidating many compiler optimisa-
tions, and of requiring expensive hardware synchronisation instruc-
tions (e.g. fences). The C++0x design resolves this by providing
a relatively strong guarantee for typical application code together
with variousatomicprimitives, with weaker semantics, for high-
performance concurrent algorithms. Application code that does not
use atomics and which is race-free (with shared state properly pro-
tected by locks) can rely on sequentially consistent behaviour; in
an intermediate regime where one needs concurrent accesses but
performance is not critical one can useSC atomics; and where
performance is critical there arelow-level atomics. It is expected
that only a small fraction of code (and of programmers) will use
the latter, but that code —concurrent data structures, OS kernel
code, language runtimes, GC algorithms, etc.— may have a large
effect on system performance. Low-level atomics provide a com-
mon abstraction above widely varying underlying hardware: x86
and Sparc provide relatively strong TSO memory [SSO+10, Spa];
Power and ARM provide a weak model with cumulative barri-
ers [Pow09, ARM08, AMSS10]; and Itanium provides a weak
model with release/acquire primitives [Int02]. Low-level atomics
should be efficiently implementable above all of these, and proto-
type implementations have been proposed, e.g. [Ter08].

The current draft standard covers all of C++ and is rather large
(1357 pages), but the concurrency specification is mostly contained
within three chapters [Bec10, Chs.1, 29, 30]. As is usual for indus-
trial specifications, it is a prose document. Mathematical specifi-
cations of relaxed memory models are usually either operational
(in terms of an abstract machine or operational semantics, typically
involving explicit buffers etc.) or axiomatic, defining constraints
on the relationships between the memory accesses in a complete
candidate execution, e.g. with a happens-before relation over them.
The draft concurrency standard is in the style of a prose description
of an axiomatic model: it introduces various relationships, identify-
ing when one threadsynchronizes withanother, what avisible side
effectis, and so on (we explain these in§2), and uses them to define
a happens-before relation. It is obviously the result of extensive and
careful deliberation. However, when one looks more closely, it is
still rather far from a clear and rigorous definition: there are points
where the text is unclear, places where it does not capture the in-
tent of its authors, points where a literal reading of the text gives
a broken semantics, several substantial omissions, and some open
questions. Moreover, the draft is very subtle. For example, driven
by the complexities of the intended hardware targets, the happens-
before relation it defines is intentionally non-transitive. The bottom
line is that, given just the draft standard text, the basic question for
a language definition, of what behaviour is allowed for a specific
program, can be a matter for debate.

Given previous experience with language and hardware mem-
ory models, e.g. for the Java Memory Model [Pug00, MPA05,
CKS07, SA08, TVD10] and for x86 multiprocessors [SSZN+09,
OSS09, SSO+10], this should be no surprise. Prose language defi-
nitions leave much to be desired even for sequential languages; for
relaxed-memory concurrency, they almost inevitably lead to ambi-
guity, error and confusion. Instead, we need rigorous (but readable)

mathematical semantics, with tool support to explore the conse-
quences of the definitions on examples, proofs of theoretical re-
sults, and support for testing implementations. Interestingly, the
style of semantics needed is quite different from that for conven-
tional sequential languages, as are the tools and theorems.

Contributions In this paper we establish a mathematically rig-
orous semantics for C++ concurrency, described in Section 2 and
with further examples in Section 3. It isprecise, formalised in
Isabelle/HOL [Isa], and iscomplete, covering essentially all the
concurrency-related semantics from the draft standard, without
significant idealisation or abstraction. It includes the data-race-
freedom (DRF) guarantee of SC behaviour for race-free code,
locks, SC atomics, the various flavours of low-level atomics, and
fences. It covers initialisation but not allocation, and does not ad-
dress the non-concurrent aspects of C++. Our model builds on the
informal-mathematics treatment of the DRF guarantee by Boehm
and Adve [BA08]. We have tried to make it asreadableas possi-
ble, using only minimal mathematical machinery (mostly just sets,
relations and first-order logic with transitive closure) and introduc-
ing it with a series of examples. Finally, wherever possible it is a
faithful representation of the draft standard and of the intentions of
its authors, as far as we understand them.

In developing our semantics, we identified a number of issues in
several drafts of the C++0x standard, discussed these with members
of the concurrency subgroup, and made suggestions for changes.
These are of various kinds, including editorial clarifications, sub-
stantive changes, and some open questions. We discuss a selection
of these in Section 4. The standards process for C++0x is ongoing:
the current version is at the time of writing the ‘final committee
draft’, leaving a small window for further improvements. That for
C1X is at an earlier stage, though the two should be compatible.

As a theoretical test of our semantics, we prove a correctness
result (§5) for the proposed prototype x86 implementation of the
C++ concurrency primitives [Ter08] with respect to our x86-TSO
memory model [SSO+10, OSS09]. We show that any x86-TSO
execution of a translated C++ candidate execution gives behaviour
that the C++ semantics would admit, which involves delicate issues
about initialisation. This result establishes some confidence in the
model and is a key step towards a verified compilation result about
translation of programs.

Experience shows that tool support is needed to work with an
axiomatic relaxed memory model, to develop an intuition for what
behaviour it admits and forbids, and to explore the consequences of
proposed changes to the definitions. At the least, such a tool should
take an example program, perhaps annotated with constraints on
the final state or on the values read from memory, and find and
display all the executions allowed by the model. This can be com-
binatorially challenging, but for C++ it turns out to be feasible, for
typical test examples, to enumerate the possible witnesses. We have
therefore built a CPPMEM tool (§6) that exhaustively considers all
the possible witnesses, checking each one with code automatically
generated from the Isabelle/HOL axiomatic model (§6). The front-
end of the tool takes a program in a fragment of C++ and runs a
symbolic operational semantics to calculate possible memory ac-
cesses and constraints. We have also explored the use of a model
generator (the SAT-solver-based Kodkod [TJ07], via the Isabelle
Nitpick interface [BN10]) to find executions more efficiently, al-
beit with less assurance. All of the examples in this paper have
been checked (and their executions drawn) using CPPMEM.

Our work provides a basis for improving both standards, both by
the specific points we raise and by giving a precisely defined check-
point, together with our CPPMEM tool for exploring the behaviour
of examples in our model and in variants thereof. The C and C++
language standards are a central interface in today’s computational
infrastructure, between what a compiler (and hardware) should im-

plement, on the one hand, and what programmers can rely on, on
the other. Clarity is essential for both sides, and a mathematically
precise semantics is a necessary foundation for any reasoning about
concurrent C and C++ programs, whether it be by dynamic analy-
sis, model-checking, static analysis and abstract interpretation, pro-
gram logics, or interactive proof. It is also a necessary precondition
for work on compositional semantics of such programs.

2. C++0x Concurrency, as Formalised
Here we describe C++ concurrency incrementally, starting with
single-threaded programs and then adding threads and locks, SC
atomics, and low-level atomics (release/acquire, relaxed, and re-
lease/consume). Our model also covers fences, but we omit the de-
tails here. In this section we do not distinguish between the C++
draft standard, which is the work of the Concurrency subcommit-
tee of WG21, and our formal model, but in fact there are substantial
differences between them. We highlight some of these (and our ra-
tionale for various choices) in Section 4. Our memory model is ex-
pressed as a standalone Isabelle/HOL file and the complete model
is available online [BOS]; here we give the main definitions, auto-
matically typeset (and lightly hand-edited in a few cases) from the
Isabelle/HOL source.

The semantics of a programp will be a set of allowedexecu-
tions X. Some C++ programs are deemed to haveundefined be-
haviour, meaning that an implementation is unconstrained, e.g. if
any execution contains a data race. Accordingly, we define the se-
mantics in two phases: first we calculate a set of pre-executions
which are admitted by the operational semantics and areconsis-
tent (defined in the course of this section). Then, if there is a pre-
execution in that set with a race of some kind, the semantics indi-
cates undefined behaviour by giving NONE, otherwise it gives all
the pre-executions. In more detail, a candidate executionX is a pair
(Xopsem, Xwitness), where the first component is given by the op-
erational semantics and the second is an existential witness of some
further data; we introduce the components of both as we go along.
The top-level definition of the memory model, then, is:

cpp memory model opsem (p : program) =
let pre executions = {(Xopsem, Xwitness).

opsem p Xopsem ∧
consistent execution (Xopsem, Xwitness)} in

if ∃X ∈ pre executions .

(indeterminate reads X 6= {}) ∨
(unsequenced races X 6= {}) ∨
(data races X 6= {})

then NONE

else SOME pre executions

2.1 Single-threaded programs

We begin with the fragment of the model that deals with single-
threaded programs, which serves to introduce the basic concepts
and notation we use later.

As usual for a relaxed memory model, different threads can
have quite different views of memory, so the semantics cannot
be expressed in terms of changes to a monolithic memory (e.g. a
function from locations to values). Instead, an execution consists
of a set ofmemory actionsand various relations over them, and the
memory model axiomatises constraints on those.

For example, consider the program on the left below. This has
only one execution, shown on the right. There are five actions,
labelled (a)–(e), all by the same thread (their thread ids are elided).
These are all non-atomic memory reads (Rna) or writes (Wna), with
their address (x or y) and value (0,1, or 2). Actions (a) and (b) are
the initialisation writes, (c) and (d) are the reads of the operands of
the== operator, and (e) is a write of the result of==. The evaluations
of the arguments to== areunsequencedin C++ (as are arguments

to functions), meaning that they could be in either order, or even
overlapping. Evaluation order is expressed by thesequenced-before
(sb) relation, a strict preorder over the actions, that here does not
order (c) and (d). The two reads bothread fromthe same write (a),
indicated by therf relation.

int main() {
int x = 2;
int y = 0;
y = (x==x);
return 0; }

a:Wna x=2

b:Wna y=0

c:Rna x=2 d:Rna x=2

e:Wna y=1

sb

rf rf

sb sb

sb sb

The set of actions and the sequenced-before relation are given
by the operational semantics (so are part of theXopsem); therf re-
lation is existentially quantified (part of theXwitness), as in general
there may be many writes that each read might read from.

In a non-SC semantics, the constraint on reads cannot be sim-
ply that they read from the ‘most recent’ write, as there is no
global linear time. Instead, they are constrained here using a
happens-beforerelation, which in the single-threaded case coin-
cides with sequenced-before. Non-atomic reads have to read from
avisible side effect, a write to the same location that happens-before
the read but is not happens-before-hidden, i.e., one for which there
is no intervening write to the location in happens-before. We de-
fine the visible-side-effect relation below, writing it with an arrow.
The auxiliary functionsis write and is read pick out all actions
(including atomic actions and read-modify-writes but not lock or
unlock actions) that write or read memory.

a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c. (c 6= a) ∧ (c 6= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

The constraint on the values read by nonatomic reads is in two
parts: the reads-from map must satisfy a well-formedness condition
(not shown here), saying that reads cannot read from multiple
writes, that they must be at the same location and have the same
value as the write they read from, and so on. More interestingly, it
must respect the visible side effects, in the following sense.

consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

[. . .]

If a read has no visible side effects (e.g. reading an uninitialised
variable), there can be norf edge. This is anindeterminate read,
and the program is deemed to have undefined behaviour.

indeterminate reads = {b. is read b ∧ ¬(∃a. a
rf
−→ b)}

A pre-execution has anunsequenced-raceif there is a write and
another access to the same location, on the same thread that are
unsequenced.

unsequenced races = {(a, b).
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

Programs with an execution that contains an unsequenced
race (ur), like the one below, have undefined behaviour.

int main() {
int x = 2;
int y = 0;
y = (x == (x=3));
return 0; }

a:Wna x=2

c:Wna x=3d:Rna x=2

b:Wna y=0

e:Wna y=0

sb

dummy

sb

dummy

sbsb

rf

sb
ur

2.2 Threads, Data Races, and Locks

We now integrate C++-0x threads into the model. The following
program spawns a thread that writes 3 to x and concurrently writes
3 into y in the original thread.

void foo(int* p) {*p = 3;}
int main() {

int x = 2;
int y;
thread t1(foo, &x);
y = 3;
t1.join();
return 0; }

a:Wna x=2

b:Wna t1=thrd1 e:Wna p=x

c:Wna y=3

d:Rna t1=thrd1

f:Rna p=x

g:Wna x=3

sb asw

sb

rf

sb

sb,rf

sb

The thread creation gives rise toadditional-synchronizes-with
(asw) edges (herea

asw
−−→ e) from sequenced-before-maximal ac-

tions of the parent thread before the thread creation to sequenced-
before-minimal edges of the child. As we shall see, these edges are
also incorporated, indirectly, into happens-before. They are gener-
ated by the operational semantics, so are another component of an
Xopsem.

Thread creation gives rise to many memory actions (for passing
function arguments and writing and reading the thread id) which
clutter examples, so for this paper we usually use a more concise
parallel composition, written{{{ ... ||| ... }}}:

int main() {
int x = 2;
int y;
{{{ x = 3;
||| y = (x==3);
}}};
return 0; }

a:Wna x=2

b:Wna x=3 c:Rna x=2

d:Wna y=0

dr

asw,rf
asw

sb

This example exhibits adata race(dr): two actions at the same
location, on different threads, not related by happens-before, at
least one of which is a write.

data races = {(a, b).
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

If there is a pre-execution of a program that has a data-race,
then, as with unsequenced-races, that program has undefined be-
haviour.

Data races can be prevented by using mutexes, as usual. These
give rise tolock andunlockmemory actions on the mutex location,
and a pre-execution has a relation,sc, as part ofXwitness that totally
orders such actions. Aconsistent locks predicate checks that lock
and unlock actions are appropriately alternating. Moreover, these
actions on each mutex createsynchronizes-withedges from every

unlock to every lock that is ordered after it insc. The synchronizes-
with relation is a derived relation, calculated from a candidate ex-
ecution, which contains mutex edges, the additional-synchronizes-
with edges (e.g. from thread creation), and other edges that we will
come to.

a
synchronizes-with
−−−−−−−−−→ b =
(* – additional synchronisation, from thread create etc. – *)

a
additional-synchronizes-with
−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)
(is unlock a ∧ is lock b ∧ a

sc
−→ b) ∨

[. . .]))

For multi-threaded programs with locks but without atom-
ics, happens-before is the transitive closure of the union of the
sequenced-before and synchronizes-with relations. The definition
of a visible side effect and the conditions on the reads-from rela-
tion are unchanged from the single-threaded case.

2.3 SC Atomics

For simple concurrent accesses to shared memory that are not pro-
tected by locks, C++0x providessequentially consistent atomics.
Altering the racy example from above to use an atomic objectx and
SC atomic operations, we have the following, in which the concur-
rent access tox is not considered a data race, and so the program
does not have undefined behaviour.

int main() {
atomic_int x;
x.store(2);
int y = 0;
{{{ x.store(3);
||| y = ((x.load())==3);
}}};
return 0; }

a:WSC x=2

b:Wna y=0

d:RSC x=2c:WSC x=3

e:Wna y=0

sb

sc

sb

aswasw

rf,sc

Semantically, this is because SC atomic operations are totally or-
dered bysc, and so can be thought of as interleaving with each
other in a global time-line. Their semantics are covered in de-
tail in [BA08] and we will describe their precise integration into
happens-before in the following section.

Initialisation of an atomic object is by non-atomic stores (to
avoid the need for a hardware fence for every such initialisa-
tion), and those non-atomic storescan race with other actions at
the location unless the program has some synchronisation. Non-
initialisation SC-atomic accesses are made with atomic read, write
and read-modify-write actions that do not race with each other.

2.4 Low-level Atomics

SC atomics are expensive to implement on most multiprocessors,
e.g. with the suggested implementations for an SC atomic load be-
ing LOCK XADD(0) on x86 [Ter08] andhwsync; ld; cmp; bc;
isync on Power [MS10]; the LOCK’d instruction and thehwsync
may take 100s of cycles. They also provide more synchronisation
than needed for many concurrent idioms. Accordingly, C++0x in-
cludes several weaker variants: atomic actions are parametrised
by a memory order, mo, that specifies how much synchronisa-
tion and ordering is required. The strongest ordering is required
for MO SEQ CST actions (which is the default, as used above),
and the weakest for MO RELAXED actions. In between there are
MO RELEASE/MO ACQUIRE and MO RELEASE/MO CONSUME
pairs, and MO ACQ REL with both acquire and release semantics.

2.5 Types and Relations

Before giving the semantics of low-level atomics, we summarise
the types and relations of the model. There are base types of action
ids aid , thread idstid , locationsl , and valuesv . As we have seen
already, actions can be non-atomic reads or writes, or mutex locks
or unlocks. Additionally, there are atomic reads, writes, and read-
modify-writes (with a memory order parametermo) and fences
(also with anmo parameter). We often elide the thread ids.

action =
aid , tid :Rnal = v non-atomic read

| aid , tid :Wnal = v non-atomic write
| aid , tid :Rmo l = v atomic read
| aid , tid :Wmo l = v atomic write
| aid , tid :RMWmo l = v1/v2 atomic read-modify-write
| aid , tid :L l lock
| aid , tid :U l unlock
| aid , tid :Fmo fence

The is read predicate picks out non-atomic and atomic reads and
atomic read-modify-writes; theis write predicate picks out non-
atomic and atomic writes and atomic read-modify-writes.

Locations are subject to a very weak type system: each location
stores a particular kind of object, as determined by alocation-kind
map. The atomic actions can only be performed on ATOMIC lo-
cations. The non-atomic reads and writes can be performed on
either ATOMIC or NON ATOMIC locations. Locks and unlocks
are mutexactions and can only be performed on MUTEX loca-
tions. These are enforced (among other sanity properties) by a
well formed threads predicate; we elide the details here.

The Xopsem part of a candidate executionX consists of
a set of thread ids, a set of actions, a location typing, and
three binary relations over its actions:sequenced-before(sb),
additional-synchronized-with(asw), anddata-dependency(dd).
We have already seen the first two:sequenced-beforecontains
the intra-thread edges imposed by the C++ evaluation order,
and additional-synchronized-withcontains additional edges from
thread creation and thread join (among others). Data dependence
will be used for release/consume atomics (in§2.8). These are all re-
lations that are decided by the syntactic structure of the source code
and the path of control flow, and so the set of possible choices for
anXopsem can be calculated by the operational semantics without
reference to the memory model (with reads taking unconstrained
values).

TheXwitness part of a candidate executionX consists of a fur-
ther three binary relations over its actions:rf, sc, andmodification
order (mo). Therf reads-from map is a relation containing edges
to read actions from the write actions whose values they take, and
edges to each lock action from the last unlock of its mutex. The
sequentially consistent ordersc is a total order over all actions that
are MO SEQ CST and all mutex actions. The modification order
(mo) is a total order over all writes at each atomic location (leaving
writes at different locations unrelated), and will be used to express
coherence conditions. These relations are existentially quantified
in the definition ofcpp memory model, and for eachXopsem ad-
mitted by the operational semantics there may be many choices of
anXwitness that give a consistent execution (each of which may or
may not have a data race, unsequenced race, or indeterminate read).

The happens-before relation, along with several others, are de-
rived from those inXopsem andXwitness.

2.6 Release/Acquire Synchronization

An atomic write or fence is areleaseif it has the memory order
MO RELEASE, MO ACQ REL or MO SEQ CST. Atomic reads or
fences with order MO ACQUIRE, MO ACQ REL or MO SEQ CST,
and fences with order MO CONSUME, areacquireactions.

Pairs of a write-release and a read-acquire support the following
programming idiom. Here one thread writes some datax (perhaps
spanning multiple words) and then sets a flagy while the other spins
until the flag is set and then reads the data.

// sender
x = ...
y = 1;

// receiver
while (0 == y);
r = x;

The desired guarantee here is that the receiver must see the data
writes of the sender (in more detail, that the receiver cannot see
any values of data that precede those writes in modification or-
der). This can be achieved with an atomic store ofy, annotated
MO RELEASE, and an atomic load ofy annotated MO ACQUIRE.
The reads and writes ofx can be nonatomic.

In the model, any instance of a read-acquire that reads from a
write-release gives rise to asynchronizes-withedge, e.g. as on the
left below (where therf edges are suppressed).

a:Wna x=1

b:WREL y=1

c:RACQ y=1

d:Rna x=1

sb

sb

sw

a:Wna x=1

b:WREL y=1

c:WRLX y=2

d:RACQ y=2

e:Rna x=1

sb

sb

sw
sb,mo,rs

rf

For such programs (in fact for any program without re-
lease/consume atomics), happens-before is still the transitive clo-
sure of the union of the sequenced-before and synchronizes-with

relations, so herea
happens-before
−−−−−−−→ d and (d) is obliged to read from

(a).
In this case, the read-acquire synchronizes with the write-

release that it reads from. More generally, the read-acquire can syn-
chronize with a write-release (to the same location) that is before
the write that it reads from. To define this precisely, we need to use
the modification order of a candidate execution and to introduce the
derived notion of arelease sequence, of writes that follow (in some
sense) a write-acquire.

For example, in the fragment of an execution on the right above,
the read-acquire (d) synchronizes with the write-release (b) by
virtue of the fact that (d) reads from another write to the same
location, (c), and (b) precedes (c) in the modification order (mo)
for that location.

The modification order of a candidate execution (here

b
modification-order
−−−−−−−−−→ c) totally orders all of the write actions on each

atomic location, in this casey. It must also be consistent with
happens-before, in the sense below.

consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kindl of
ATOMIC → (

let actions at l = {a. (location a = SOME l)} in
let writes at l = {a ∈ actions at l . (is store a ∨

is atomic store a ∨ is atomic rmw a)} in
strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧

(* happens-before at the writes ofl is a subset of mo forl *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

[. . .])
‖ → (

let actions at l = {a. (location a = SOME l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

In the example, the release action (b) has a release sequence
[(b),(c)], a contiguous sub-sequence of modification order on the
location of the write-release. The release sequence is headed by
the release and can be followed by writes from the same thread or
read-modify-writes from any thread; other writes by other threads
break the sequence. We represent a release sequence not by the list
of actions but by a relation from the head to all the elements, as the
order is given by modification order. In figures we usually suppress
the reflexive edge from the head to itself.

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (

(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c. arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

A write-releasesynchronizes-witha read-acquire if both act on
the same location and the release sequence of the release contains

the write that the acquire reads from. In the exampleb
release-sequence
−−−−−−−−→

c
rf
−→ d , so we haveb

synchronizes-with
−−−−−−−−→ d . The definition below covers

mutexes and thread creation (in additional-synchronizes-with) but
elides the effects of fences.

a
synchronizes-with
−−−−−−−−−→ b =
(* – additional synchronization, from thread create etc. – *)

a
additional-synchronizes-with
−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)
(is unlock a ∧ is lock b ∧ a

sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c. a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

[. . .]))

The modification order and the sc order we saw earlier must also
be consistent, in the following sense:

consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−−→ ⊆

sc
−→

2.7 Constraining Atomic Read Values

The values that can be read by an atomic action depend on happens-
before, derived from sequenced-before and synchronizes-with. We
return to the execution fragment shown on the right in the previous
subsection, showing a transitive reduction of happens-before that
coincides with its constituent orderings.

a:Wna x=1

b:WREL y=1

c:WRLX y=2

d:RACQ y=2

e:Rna x=1

hb

hb

hb
hb

An atomic action must read a write that is in one of itsvisible
sequences of side effects; in this case (d) either reads (b) or (c).

A visible sequence of side effects of a read is a contiguous sub-
sequence of modification order, headed by a visible side effect of
the read, where the read does not happen before any member of the
sequence. We represent a visible sequence of side effects not as a
list but as a set of actions in the tail of the sequence (we are not
concerned with their order).

visible sequence of side effects tail vsse head b =

{c. vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

We definevisible-sequences-of-side-effectsto be the binary re-
lation relating atomic reads to their visible-side-effect sets (now in-
cluding the visible side effects themselves). The atomic read must
read from a write in one of these sets.

We can now extend the previous definition of the consistent
reads-from predicate to be the conjunction of the read-restrictions
on nonatomic and atomic actions, and a constraint ensuring read-
modify-write atomicity.

consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

[. . .]

A candidate execution is also required to be free of the following
four execution fragments. This property is called coherence.

CoRR

a:W x=1

b:W x=2 d:R x=2

c:R x=1
rfmo

rf

hb

CoWR

b:W x=2 c:W x=1

d:R x=2

hb
mo

rf

CoWW

a:W x=1

b:W x=2

hb mo

CoRW

a:W x=1 c:R x=1

d:W x=2
mo

rf
hb

CoRR Two reads ordered by happens-before may not read two
writes that are modification ordered in the other direction.

CoWR It is forbidden to read from a write that is happens-before-
hidden by a later write in modification order.

CoWW Happens-before and modification-order may not disagree.

CoRW The union of the reads-from map, happens-before and
modification-order must be acyclic.

Finally, we restrict SC reads: If there is no preceding write in sc
order, then there is no extra restriction. Otherwise, they must read
from the last prior write in sc order, from a non-atomic write that
follows it in modification order, or from any non-SC atomic write.

2.8 Release/Consume Atomics

On multiprocessors with weak memory orders, notably Power,
release/acquire pairs are cheaper to implement than sequentially

consistent atomics but still significantly more expensive than
plain stores and loads. For example, the proposed Power im-
plementation of load-acquire,ld; cmp; bc; isync, involves an
isync [MS10]. However, Power (and also ARM) does guarantee
that certain dependencies in an assembly program are respected,
and in many cases those suffice, making theisync sequence un-
necessary. As we understand it, this is the motivation for introduc-
ing a read-consumevariant of read-acquire atomics. On a stronger
processor (e.g. a TSO x86 or Sparc), or one where those dependen-
cies are not respected, read-consume would be implemented just as
read-acquire.

Read-consume enables efficient implementations of algorithms
that use pointer reassignment for commits of their data, e.g. read-
copy-update [MW]. For example, suppose one thread writes some
data (perhaps spanning multiple words) then writes the address of
that data to a shared atomic pointer, while the other thread reads the
shared pointer, dereferences it and reads the data.

// sender
data = ...
p = &data;

// receiver
r1 = p
r2 = *r1; // data

Here there is a dependency at the receiver from the read ofp to the
read ofdata. This can be expressed using a write-release and an
atomic load ofp annotated MO CONSUME:

int main() {
int data; atomic_address p;
{{{ { data=1;

p.store(&data, mo_release); }
||| printf("%d\n", *(p.load(mo_consume)));
}}};
return 0; }

As we saw in§2.6, the semantics of release/acquire pairs intro-
duced synchronizes-with edges, and happens-before includes the
transitive closure of synchronizes-with and sequenced-before —
for a release/acquire version of this example, we would have the

edges on the left below, and hencea
happens-before
−−−−−−−→ d .

a:WSC data=1

b:WREL p=data

c:RACQ p=data

d:RSC data=1

sw

sb

sb,dd

a:WSC data=1

b:WREL p=data

c:RCON p=data

d:RSC data=1

sb

dob

dob

sb,dd,cad

For release/consume, the key fact is that there is adata dependency
(dd) from (c) to (d), as shown on the right. The (dd) edge is
provided by the operational semantics and gives rise to acarries-
a-dependency-to(cad) edge, which extends data dependency with
thread-local reads-from relationships:

a
carries-a-dependency-to
−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

In turn, this gives rise to adependency-ordered-before(dob)
edge, which is the release/consume analogue of the release/acquire
synchronizes-with edge. This involves release sequences as before
(in the example just the singleton [(b)]):

a
dependency-ordered-before
−−−−−−−−−−−−−−→ d =
a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−→ d ∨ (b = d)))

2.9 Happens-before

Finally, we can define the complete happens-before relation. To
accommodate MO CONSUME, and specifically the fact that re-
lease/consume pairs only introduce happens-before relations to
dependency-successors of the consume,not to all actions that are
sequenced-after it, the definition is in two steps. First, we de-
fine inter-thread-happens-before, which combines synchronizes-
with and dependency-ordered-before, allowing transitivity with
sequenced-before on the left for both and on the right only for
synchronizes-with:

inter-thread-happens-before
−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

In any execution, this must be acyclic:

consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−→)

Happens-before (which is thereby also acyclic) is then just the
union with sequenced-before:

happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−→

2.10 Putting it together

Given a candidate executionX = (Xopsem, Xwitness), we can
now calculate the derived relations:

release-sequence(§2.6), hypothetical-release-sequence(a variant of
release-sequenceused in the fence semantics),synchronizes-with(§2.2,
§2.6), carries-a-dependency-to(§2.8), dependency-ordered-before(§2.8),
inter-thread-happens-before(§2.8),happens-before(§2.1,§2.2,§2.3,§2.8),
visible-side-effect(§2.1), andvisible-sequences-of-side-effects(§2.7).

The definition ofconsistent execution used at the start of Sec-
tion 2 is then simply the conjunction of the predicates we have de-
fined:

consistent execution =
well formed threads∧ (§2.5, defn. elided)
consistent locks∧ (§2.2, defn. elided)
consistent inter thread happens before∧ (§2.8)
consistent sc order∧ (§2.6)
consistent modification order∧ (§2.6)
well formed reads from mapping ∧ (§2.1, defn. elided)
consistent reads from mapping (§2.1,§2.7)

The acyclicity check on inter-thread-happens-before, and the
subtlety of the non-transitive happens-before relation, are needed
only for release/consume pairs:

Theorem 1. For an execution with no consume opera-
tions, theconsistent inter thread happens before condition of
consistent execution is redundant.

Theorem 2. If a consistent execution has no consume operations,
happens-before is transitive.

The proofs are by case analysis and induction on the size of possible
cycles.

3. Examples
We now illustrate the varying strength of the different memory
orders by showing the semantics of some ‘classic’ examples. In

all cases, variants of the examples with SC atomics do not have the
weak-memory behaviour. As in our other diagrams, to avoid clutter
we only show selected edges, and we omit the C++ sources for
these examples, which are available on-line [BOS].

Store Buffering (SB) Here two threads write to separate loca-
tions and then each reads from the other location. In Total Store
Order (TSO) models both can read from before (w.r.t. coherence)
the other write in the same execution. In C++0x this behaviour is
allowed if those four actions are relaxed, for release/consume pairs
and for release/acquire pairs. This behaviour is not allowed for
the same program using sequentially consistent consistent atomics
(with non-atomic initialisation).

Message Passing (MP) Here one thread (non-atomically) writes
data and then an atomic flag while a second thread waits for the
flag and then (non-atomically) reads data; the question is whether
it is guaranteed to see the data written by the first. As we saw in
§2.6, with a release/acquire pair it is. A release/consume pair gives
the same guarantee iff there is a dependency between the reads,
otherwise there is a consistent execution (on the left) in which there
is a data race (here the second thread sees the initial value of x; the
candidate execution in which the second thread sees the write x=1
is ruled out as that does not happen-before the read and so is not a
visible side effect).

b:Wna x=1

c:WREL y=1 e:Rna x=0

d:RCON y=1

sb dr sb

c:WRLX x=1

d:WRLX y=1

e:RRLX x=1 g:RRLX y=1

f:RRLX y=0 h:RRLX x=0

rf

sb sb
rf

sb

The same holds with relaxed flag operations.
In a variant in which all writes and reads are release/consumes

or relaxed atomics, eliminating the race, and there are two copies of
the reading thread, the two reading threads can see the two writes
of the writing thread in opposite orders (as on the right above) —
consistent with what one might see on Power, for example.

Load Buffering (LB) In this dual of the SB example the ques-
tion is whether the two reads can both see the (sequenced-before)
later write of the other thread in the same execution. With relaxed
atomics this is allowed, as on the left:

c:RRLX x=1

d:WRLX y=1

e:RRLX y=1

f:WRLX x=1

sb
rf

sb
rf

c:RCON x=1

d:WREL y=1

e:RCON y=1

f:WREL x=1

hb

sb,hb sb,hbdobdob

but with release/consumes (with dependencies) it is not (as on
the right above), because inter-thread-happens-before would be
cyclic. It is not allowed for release/acquire and sequentially con-
sistent atomics (which are stronger than release/consumes with de-
pendencies), because of the cyclic inter-thread-happens-before and
stronger inter-thread ordering.

Write-to-Read Causality (WRC) Here the first thread writes
to x; the second reads from that and then (w.r.t. sequenced-before)
writes to y; the third reads from that and then (w.r.t. sequenced-
before) reads x. The question is whether it is guaranteed to see the
first thread’s write.

c:WRLX x=1 d:RRLX x=1

e:WRLX y=1

f:RRLX y=1

g:RRLX x=0

rf

sb
rf

sb

With relaxed atomics, this is not guaranteed, as shown above,
while with release/acquires it is, as thesynchronizes-withedges in
the inter-thread-happens-before relation interfere with the required
read-from map.

Independent Reads of Independent Writes (IRIW) Here the
first two threads write to different locations; the question is whether
the second two threads can see those writes in different orders. With
relaxed, release/acquire, or release/consume atomics, they can.

c:WREL x=1 e:RACQ x=1d:WREL y=1 g:RACQ y=1

f:RACQ y=0 h:RACQ x=0

rf rf

sbsb

4. From standard to formalisation and back
We developed the model presented in Section 2 by a lengthy iter-
ative process: building formalisations of various drafts of the stan-
dard, and of Boehm and Adve’s model without low-level atom-
ics [BA08]; considering the behaviour of examples, both by hand
and with our tool; trying to prove properties of the formalisations;
and discussing issues with members of the Concurrency subcom-
mittee of the C++ Standards Committee (TC1/SC22/WG21). To
give a flavour of this process, and to explain how our formalisation
differs from the current draft (the final committee draft, N3092) of
the standard, we describe a selection of debatable issues. This also
serves to bring out the delicacy of the standard, and the pitfalls of
prose specification, even when carried out with great care. We have
made suggestions for technical or editorial changes to the draft for
many of these points and it seems likely that they will be incorpo-
rated.

We begin with two straightforward drafting issues, easily fixed.
Then there are three substantial semantic problems in N3092 where
we have proposed solutions. Finally, there is an outstanding ques-
tion that warrants further investigation.

‘Subsequent’ in visible sequences of side effects N3092 de-
fines:The visible sequence of side effects on an atomic objectM ,
with respect to a value computationB of M , is a maximal contigu-
ous sub-sequence of side effects in the modification order ofM ,
where the first side effect is visible with respect toB, and for ev-
ery subsequent side effect, it is not the case thatB happens before
it. However, if every element in a vsse happens-before a read, the
read should not take the value of the visible side effect. Following
discussion, we formalise this without thesubsequent.

Additional happens-before edges There are 6 places where
N3092 adds happens-before relationships explicitly (in addition
to those from sequenced-before and inter-thread-happens-before),
e.g. between the invocation of a thread constructor and the function
that the thread runs. As happens-before is carefullynot transitively
closed, such edges would not be transitive with (e.g.) sequenced-
before. Accordingly, we instead add them to the synchronizes-
with relation; for those within our C++ fragment, our operational
semantics introduces them into additional-synchronizes-with.

Acyclicity of happens-before N3092 defines happens-before,
making plain that it is not necessarily transitive, but does not state
whether it is required to be acyclic (or whether, perhaps, a pro-
gram with a cyclic execution is deemed to have undefined be-
haviour). The release/consume LB example of§3 has a cyclic inter-
thread-happens-before, as shown there, but is otherwise a con-
sistent execution. After discussion, it seems clear that executions
with cyclic inter-thread-happens-before (or, equivalently, cyclic
happens-before) should not be considered, so we impose that ex-
plicitly.

Coherence requirements The draft standard enforced only two
of the four coherence requirements presented in§2.7, CoRR and
CoWW. In the absence of CoRW and CoWR, the following execu-
tions were allowed.

b:WREL x=1 c:RCON x=1

d:WREL x=2

mo

sb

rf,dob
a:RMWREL x=0/1

b:WSC x=2

c:RSC x=1

d:WREL x=0
mo,rs

sw,vse

sb,vse

sb,mo

rf

The execution on the left violates CoRW by containing a cycle
of happens-before and modification order edges, allowed only due
to the lack of transitivity of happens-before. The execution on the
right violates CoWR by having a read from a write (the read-
modify-write (a)) that is sequenced-before-hidden by (c). Actions
(b) and (c) are shown as SC atomics for emphasis.

Furthermore, the draft standard refers to‘the’ visible sequence
of side-effects, suggesting uniqueness. Nevertheless, it allows valid
executions that have more than one, relying on the lack of transitiv-
ity of happens-before as in the CoRW execution above.

These behaviours are surprising and were not intended by the
designers.

Sequential consistency for SC atomics The promise of sequen-
tial consistency to the non-expert programmer is a central design
choice of C++0x and is stated directly by N3092:memory order

seq cst ensures sequential consistency [...] for a program that
is free of data races and uses exclusivelymemory order seq

cst operations.Unfortunately N3092 allows the following non-
sequentially consistent execution of the SB example with SC atom-
ics (initialisation writes, such as (a) and (b), are non-atomic so that
they need not be compiled with memory fences):

a:Wna x=0

b:Wna y=0

d:RSC x=0

c:WSC y=1 e:WSC x=1

f:RSC y=0

sb
rf

aswasw
rf

sc
sb,sc

sb,sc

We devised a stronger restriction on the values that may be
read by SC atomics, stated in§2.7, that does provide sequential
consistency here.

Overlapping executions and thin-air reads In a C++0x pro-
gram that gives rise to the relaxed LB example in§3, the written
value 1 might have been concrete in the program source. Alterna-
tively, one might imagine athin-air read: the program below has
the same execution, and here there isnooccurrence of 1 in the pro-
gram source.
int main() {

int r1, r2;
atomic_int x = 0;
atomic_int y = 0;
{{{ { r1 = x.load(mo_relaxed));

y.store(r1,mo_relaxed); }
||| { r2 = y.load(mo_relaxed));

x.store(r2,mo_relaxed); }
}}}
return 0; }

c:RRLX x=1

d:WRLX y=1

e:RRLX y=1

f:WRLX x=1

sb
rf

sb
rf

This would be surprising, and in fact would not happen with typical
hardware and compilers. In the Java Memory Model [MPA05],
much of the complexity of the model arises from the desire to
outlaw thin-air reads, which there is essential to prevent forging
of pointers. N3092 also attempts to forbid thin air reads, with:

An atomic store shall only store a value that has been computed
from constants and program input values by a finite sequence
of program evaluations, such that each evaluation observes the
values of variables as computed by the last prior assignment in the
sequence.This seems to be overly constraining. For example, two
subexpression evaluations (in separate threads) can overlap (e.g. if
they are the arguments of a function call) and can contain multiple
actions. With relaxed atomics there can be consistent executions in
which it is impossible to disentangle the two into any sequence, for
example as below, where the SC-write of x must be between the
two reads of x. In our formalisation we currently do not impose
any thin-air condition.

int main() {
atomic_int x = 0;
int y;
{{{ x.store(1);
||| { y = (x.load()==x.load()); }
}}};
return 0; }

a:Wna x=0

c:RSC x=0

b:WSC x=1

d:RSC x=1

e:Wna y=0

rf

rf,sc

sc

sb

sb

5. Correctness of a Proposed x86 Implementation
The C++0x memory model has been designed with compilation to
the various target architectures in mind, and prototype implemen-
tations of the atomic primitives have been proposed. For example,
the following table presents an x86 prototype by Terekhov [Ter08]:

Operation x86 Implementation
Load non-SC mov
Load Seqcst lock xadd(0) OR:mfence, mov
Store non-SC mov
Store Seqcst lock xchg OR:mov , mfence
Fence non-SC no-op
Fence Seqcst mfence

This is a simple mapping from individual source-level atomic op-
erations to small fragments of assembly code, abstracting from the
vast and unrelated complexities of compilation of a full C++ lan-
guage (argument evaluation order, object layout, control flow, etc.).
Proposals for the Power [MS10] and other architectures follow the
same structure, although, as they have more complex memory mod-
els than the x86, the assembly code for some of the operations is
more intricate.

Verifying that these prototypes are indeed correct implementa-
tions of the model is a crucial part of validating the design. Further-
more, as they represent the atomic-operation parts of efficient com-
pilers (albeit without fence optimisations), they can directly form
an important part of a verified C++ compiler, or inform the design
and verification of a compiler with memory-model-aware optimi-
sations.

Here, we prove a version of the above prototype x86 imple-
mentation [Ter08] correct with respect to our x86-TSO seman-
tics [SSZN+09, OSS09, SSO+10]. Following the prototype, we
ignore lock and unlock operations, as well as forks and joins, all
of which require significant runtime or operating system support in
addition to the x86 hardware. We also ignore sequentially consis-
tent fences, but cover all other fences. We do consider read-modify-
write actions, implementing them with x86 LOCK’d read-modify-
writes; and we include non-atomic loads and stores, which can map
to multiple x86 loads and stores, respectively. The prototype map-
ping is simple, and x86-TSO is reasonably well-understood, so this
should be seen as a test of the C++ memory model.

In x86-TSO, an operational semantics gives meaning to an as-
sembly program by creating anx86 event structureEx86 (analo-

gous toXopsem) comprising a set of events and an intra-thread
program-orderrelation (analogous to sequenced-before) that or-
ders events according to the program text. Events can be reads,
writes, or fences, and certain instructions (e.g. CMPXCHG) cre-
atelockedsets of events that execute atomically. Corresponding to
Xwitness, there arex86 execution witnessesXx86 which comprise
a reads-from mapping and a memory order, which is a partial order
over reads and writes that is total on the writes. The remainder of
the axiomatisations are very different: x86-TSO has no concept of
release, acquire, visible side effect, etc.

Abstracting out the rest of the compiler To discuss the correct-
ness of the proposed mapping in isolation, without embarking on
a verification of some particular full compiler, we work solely in
terms of candidate executions and memory models.

First, we lift the mapping between instructions to a nondeter-
ministic translationaction comp from C++ actions to small x86
event structures, e.g. relating an atomic read-modify-write action to
the events of the corresponding x86 LOCK’d instruction.

To define what it means for the mapping to be correct, suppose
we have a C++ programp with no undefined behaviour and an
Xopsem which is allowed by its operational semantics. We regard
an abstract compilerevt comp as taking such anXopsem and
giving an x86 event structureEx86, respecting theaction comp
mapping but with some freedom in the resulting x86 program order.

We say the mapping is correct if given such an abstract com-
piler, the existence of a valid x86-TSO execution witness for
Ex86 implies the existence of a consistent C++ execution witness
Xwitness for the original actionsXopsem. We prove this by lifting
such an x86 execution witness to a C++ consistent execution, as
illustrated below.

Xopsem
consistent execution

evt comp

Xwitness

Ex86
valid execution

Xx86

evt comp−1

Below we show anXopsem andEx86 that could be related by
evt comp. The dotted lines indicate some of the x86 program or-
dering decisions that the compiler must make, but whichevt comp
does not constrain.

a:W x=1 d:R y=1

b:W w2=0

b:W w1=1

c:R y=0

c:W y=1

e:mfence

e:W z=1

a:Wna x=1 d:RACQ y=1

b:Wna w=1

c:RMWREL y=0/1

e:WSC z=1

sb

po po

sb
po po

po

locked

x86 eventsC++0x actions

In more detail, we use two existentially quantified helper func-
tionslocn comp andtid comp to encapsulate the details of a C++
compiler’s data layout, its mapping of C++ locations to x86 ad-
dresses, and the mapping of C++ threads to x86 threads.

Given a C++ location and value,locn comp produces a finite
mapping from x86 addresses to x86 values. The domain of the
finite map is the set of x86 addresses that corresponds to the C++
location, and the mapping itself indicates how a C++ value is
laid out across the x86 addresses. A well-formedlocn comp has
the following properties: it is injective; the address calculation

cannot depend on the value; each C++ location has an x86 address;
different C++ locations have non-overlapping x86 address sets; and
an atomic C++ location has a single x86 address, although a non-
atomic location can have several addresses (e.g. for a multi-word
object).

Finally, theevt comp relation specifies valid translations, ap-
plying action comp with a well-formedlocn comp and also con-
straining how events from different actions relate: no single x86
instruction instance can be used by multiple C++ actions, and the
x86 program-orderrelation must respect C++’ssequenced-before.
The detailed definitions, and the proof of the following theorem,
are available online [BOS].

Theorem 3. Let p be a C++ program that has no undefined
behaviour. Suppose also thatp contains no SC fences, forks, joins,
locks, or unlocks. Then the x86 mapping is correct in the sense
above. That is, ifactions, sequenced-before, and location-kind are
members of theXopsem part of a candidate execution resulting
from the operational semantics ofp, then the following holds:

∀comp locn comp tid comp Xx86.
evt comp comp locn comp tid comp actions

sequenced-before location-kind∧
valid execution (∪a∈actions(comp a)) Xx86 ⇒
∃Xwitness. consistent execution (Xopsem, Xwitness)

Proof outline.Xx86 includes a reads-from map and a memory
ordering relation that is total on all memory writes. To build
Xwitness, we lift a C++ reads-from map and modification order

from these throughcomp (e.g.,a
rf
−→ b iff ∃(e1 ∈ comp a)(e2 ∈

comp b). e1
x86-rf
−−−→ e2). We create ansc ordering by restricting

theXx86 memory ordering to the events that originate in sequen-
tially consistent atomics, and linearising it using the proof tech-
nique from our previous triangular-race freedom work for x86-
TSO [Owe10]. We then lift that throughcomp. The proof now pro-
ceeds in three steps:

1) We first show that ifa
happens-before
−−−−−−−→ b and there are x86 events

e1 and e2 such thate1 ∈ comp a and e2 ∈ comp b, then e1

precedese2 in eitherXx86’s memory order or program order. We
have machine-checked this step in HOL-4 [HOL].1

This property establishes that, in some sense, x86-TSO has a
stronger memory model than C++, and so any behaviour allowed
by the former should be allowed by the latter. However, things are
not quite so straightforward.

2) Check thatXwitness is a consistent execution. Most cases
are machine checked in HOL; some are only pencil-and-paper.
Many rely upon the property from 1. For example, in showing that

(at a non-atomic location) ifa
rf
−→ b thena

visible-side-effect
−−−−−−−−→ b, we

note that if there were a writec to the same location such that
a

happens-before
−−−−−−−→ c

happens-before
−−−−−−−→ b, then using the property from 1,

there is an x86 write event incomp c that would come between
the events ofcomp a and comp b in Xx86, thus meaning that
they would not be inXx86’s reads-from map, contradicting the
construction ofXwitness’s reads from map.

3) In some cases, some of the properties required for 2 might be

false. For example, in showing thata
rf
−→ b impliesa

visible-side-effect
−−−−−−−−→

b, we need to show thata
happens-before
−−−−−−−→ b. Even though there is

such a relationship at the x86 level, it does not necessarily exist in
C++. In general, x86 executions can establish reads-from relations

1 The C++ model is in Isabelle/HOL, but x86-TSO is in HOL-4. We support
the proof with a semi-automated translation from Isabelle/HOL to HOL-4.

that are prohibited in C++. Similarly, for non-atomic accesses that
span multiple x86 addresses, the lifted reads from-map might not
be well-formed.

We show that if one of these violations of 2 arises, then the
original C++ program has a data race. We find a minimum violation
in Xx86, again using techniques from our previous work [Owe10].
Next we can remove the violation, resulting in a consistentXwitness

for a prefix of the execution, then we add the bad action, note that it
creates a data race, and allow the program to complete in any way.
The details of this part are by pencil-and-paper proof.

Sequentially consistent atomicsThe proposal above includes
two implementations of sequentially consistent atomic reads and
writes; one with the x86 locked instructions, and the other with
fence instructions on both the reads and writes. However, we can
prove that it suffices either to place anmfence before every sc read,
or after every sc write, but that it is not necessary to do both. In
practice, placing the fence after the sc writes is expected to yield
higher performance.

This optimisation is a direct result of using triangular-race free-
dom (TRF) [Owe10] to construct thesc ordering in proving The-
orem 3. Roughly, our TRF theorem characterises when x86-TSO
executions are not sequentially consistent; it uses a pattern, called
a triangular race, involving an x86-level data race combined with a
write followed, on the same thread, by a read without a fence (or
locked instruction) in between. If no such pattern exists, then an
executionXx86 can be linearised such that each read reads from
the most recent preceding write.

Although the entirety of an execution witnessXx86 might con-
tain triangular races and therefore not be linearisable, by restricting
attention to only sc reads and writes we get a subset of the execu-
tion that is TRF, as long as there is a fence between each sc read
and write on the same thread. Linearising this subset guarantees
the relevant property ofXwitness’s scordering: that ifa andb are

sequentially consistent atomics anda
rf
−→ b, thena immediately

precedesb in screstricted to that address.

Compiler correctness Although we translate executions instead
of source code, Theorem 3 could be applied to full source-to-
assembly compilers that follow the prototype implementation. The
following diagram presents the overall correctness property.

p
w.f. threads

compiler

Xopsem
consistentexecution

Xwitness

p′
w.f. events

Ex86

f

valid execution
Xx86

g

If, once we usef , we can then applyevt comp to get the same
event set back, i.e., informally,evt comp(f(E)) = E, then The-
orem 3 ensures that the compiler respects the memory model, and
so we only need to verify that it respects the operational semantics.
Thus, our result applies to compilers that do not optimise away any
instructions thatevt comp will produce. These restrictions apply
to the code generation phase; the compiler can perform any valid
source-to-source optimisations before generating x86 code.

6. Tool support for exploring the model
Given a relatively complex axiomatic memory model, as we pre-
sented in Section 2, it is often hard to immediately see the con-
sequences of the axioms, or what behaviour they allow for partic-
ular programs. Our CPPMEM tool takes a program in a fragment
of C++0x and calculates the set of its executions allowed by the
memory model, displaying them graphically.

The tool has three main components: an executable symbolic
operational semantics to build theXopsem parts of the candidate
executionsX of a program; a search procedure to enumerate the
possibleXwitness for each of those; and a checking procedure
to calculate the derived relations and predicates of the model for
each(Xopsem, Xwitness) pair, to check whether it is consistent
and whether it has data races, unsequenced races or indeterminate
reads.

Of these, the checker is the most subtle, since the only way to
intuitively understand it is to understand the model itself (which is
what the tool is intended to aid with), and thus bugs are hard to
catch. It also has to be adapted often as the model is developed.
We therefore use Isabelle/HOL code generation [Haf09] to build
the checker directly from our Isabelle/HOL axiomatisation, to keep
the checker and our model in exact correspondence and reduce the
possibility for error.

The operational semantics Our overall semantics is stratified: the
memory model is expressed as a predicate on the actions and rela-
tions of a candidate execution. This means we need an operational
semantics of an unusual form to generate all such candidates. In a
setting with a global SC memory, the values read by loads can be
determined immediately, but here, for example for a program with
a single load, in principle we have to generate a large set of exe-
cutions, each with a load event with one of the possible values. We
make this executable by building a symbolic semantics in which the
values in actions can be either concrete values or unification vari-
ables (shown as?v). Control flow can depend on the values read,
so the semantics builds a set of these actions (and the associated
relations), together with constraints on the values, for each control-
flow path of the program. For each path, the associated constraint
is solved at the end; those with unsatisfiable constraints (indicating
unreachable execution paths) are discarded.

The tool is designed to support litmus test examples of the kind
we have seen, not arbitrary C++ code. These do not usually involve
many C++ features, and the constraints required are propositional
formulae over equality and inequality constraints over symbolic
and concrete values. It is not usually important in litmus tests to
do more arithmetic reasoning; one could imagine using an SMT
solver if that were needed, but for the current constraint language,a
standard union-find unifier suffices. The input program is processed
by the CIL parser [NMRW02], extended with support for atomics.
We use Graphviz [GN00] to generate output. We also allow the user
to add explicit constraints on the value read by a memory load in a
C++ source program, to pick out candidate executions of interest;
to selectively disable some of the checks of the model; and to de-
clutter the output by suppressing actions and edges.

As an example, consider the first program we saw, in§2.1. There
are two possibilities: the reads of x either read the same value or
different values, and hence the operational semantics gives the two
candidate executions and constraints below:

a:Wna x=2

b:Wna y=0

c:Rna x=?v1

e:Wna y=1

Constraint:
?v1 != ?v2

d:Rna x=?v2

sb

sb sb

sb,dd sb,dd

a:Wna x=2

b:Wna y=0

c:Rna x=?v1 d:Rna x=?v1

e:Wna y=1

Constraint:
true

sb

sb sb

sb,dd sb,dd

Later, the memory model will rule out the left execution, since there
is no way to read anything but 2 at x.

The semantics maintains an environment mapping identifiers to
locations. For loads, the relevant location is found in that, and a
fresh variable?v is generated to represent the value read.

Other constructs typically combine the actions of their subterms
and also build the relations (sequenced-before, data-dependency,
etc.) ofXopsem as appropriate. For example, for theif statement,
the execution path splits and two execution candidates will be
generated. The one for the true branch has an additional constraint,
that the value returned by the condition expression is true (in the
C/C++ sense , i.e. different from0), and the candidate for the false
branch constrains the value to be false. There are also additional
sequenced-beforeandcontrol-dependencyedges from the actions
in the condition expression to actions in the branch.

Choosing instantiations of existential quantifiersGiven the
Xopsem part of a finite candidate execution, theXwitness part is
existentially quantified over a finite but potentially large set. In
the worst case, withm reads andn writes, all sequentially consis-
tent (atomic), to the same location, and with the same value, there
might beO(m(n+1) · m! · (m + n)!) possible choices of anrf,
modification-orderandscrelation. In practice, though, litmus tests
are much simpler: there are typically no more than 2 or 3 writes to
any one location, so we avoid coding up a sophisticated memory-
model-aware search procedure in favour of keeping this part of the
code simple. For the examples shown here, the tool has to check
at most a few thousand alternatives, and takes less than0.2 sec-
onds. The most complex example we tested (IRIW with all SC)
had 162,000 cases to try, and the overall time taken was about 5
minutes.

Checking code extracted from IsabelleWe use Isabelle/HOL
code generation to produce a checker as an OCaml module, which
can be linked in with the rest of the CPPSEM tool. Our model is
stated in higher-order logic with sets and relations. Restricted to
finite sets, the predicates and definitions are almost all directly ex-
ecutable, within the domain of the code generation tool (which im-
plements finite sets by OCaml lists). For a few cases (e.g impor-
tantly transitive closure), we had to write a more efficient function
and an Isabelle/HOL proof of equivalence. The overall checking
time per example is on the order of10−3 seconds, for examples
with around 10 actions.

6.1 Finite model generation with Nitpick/Kodkod

Given theXopsem part of a candidate execution, the space of pos-
sibleXwitness parts which will lead to valid executions can be ex-
plored by tools for model generation. We reused the operational
semantics above to produce aXopsem from a program, and then
posed problems to Nitpick, a finite model generator built into Is-
abelle [BN10]. Nitpick is a frontend to Kodkod, a model generator
for first order logic extended with relations and transitive closure
based on a state-of-the-art SAT solver. Nitpick translates higher-
order logic formulae to first-order formulae within Kodkod syntax.
For small programs, Nitpick can easily find some consistent execu-
tion, or report that none such exists, in a few seconds. In particular,
for the IRIW-SC example mentioned above, Nitpick takes 130 sec-
onds to report that no execution exists, while other examples take
around 5 seconds. Of course, Nitpick can also validate an execu-
tion X with both partsXopsem andXwitness concretely specified,
but this is significantly slower than running the Isabelle-extracted
validator. The bottleneck here is the translation process, which is
quite involved.

7. Related work
The starting points for this paper were the draft standard itself and
the work of Boehm and Adve [BA08], who introduced the ratio-
nale for the C++0x overall design and gave a model for non-atomic,
lock, and SC atomic operations, without going into low-level atom-
ics or fences in any detail. It was expressed in informal mathemat-
ics, an intermediate point between the prose of the standard and

the mechanised definitions of our model. The most closely related
other work is the extensive line of research on the Java Memory
Model (JMM) [Pug00, MPA05, CKS07, SA08, TVD10]. Java im-
poses very different constraints to C++ as there it is essential to
prohibit thin-air reads, to prevent forging of pointers and hence se-
curity violations.

Turning to the sequential semantics of C++, Norrish has re-
cently produced an extensive HOL4 model [Nor08], and Za-
lewski [Zal08] formalised the proposed extension of C++ concepts.

There is also a body of research on tool support for memory
models, notably including (among others) the MEMSAT of Tor-
lak et al. [TVD10], which uses Kodkod for formalisations of the
JMM, and NEMOSFINDER of Yang et al. [YGLS04], which is
based on Prolog encodings of memory models and included an Ita-
nium specification. Building on our previous experience with the
MEMEVENTS tool for hardware (x86 and Power) memory mod-
els [SSZN+09, OSS09, SSO+10, AMSS10], we designed CPP-
MEM to eliminate the need for hand-coding of the tool to reflect
changes in the model, by automatically generating the checker code
from the Isabelle/HOL definition. We made it practically usable
for exploring our non-idealised (and hence rather complex) C++0x
model by a variety of user-interface features, letting us explore the
executions of a program in various ways.

8. Conclusion
We have put the semantics of C++ and C concurrency on a mathe-
matically sound footing, following the current final committee draft
standard as far as possible, except as we describe in§4. This should
support future improvements to the standard and the development
of semantics, analysis, and reasoning tools for concurrent systems
code.

Having done so, the obvious question is the extent to which the
formal model could be incorporated as anormativepart of a fu-
ture standard. The memory model is subtle but it uses only simple
mathematical machinery, of various binary relations over a fixed
set of concrete actions, that can be visualised graphically. There
is a notational problem: one would probably have to translate (au-
tomatically or by hand) the syntax of first-order logic into natural
language, to make it sufficiently widely accessible. But given that,
we suspect that the formal model would be clearer than the current
‘standardsese’ for all purposes, not only for semantics and analysis.

Acknowledgements This work would not have been possible
without discussions with members of the C++ Concurrency sub-
committee and thecpp-threads mailing list, including Hans
Boehm, Lawrence Crowl, Peter Dimov, Doug Lea, Nick Maclaren,
Paul McKenney, Clark Nelson, and Anthony Williams. Jasmin
Blanchette assisted us with the Nitpick tool. We acknowledge fund-
ing from EPSRC grants EP/F036345, EP/H005633, EP/H027351,
and EP/F067909.

References
[AB10] S. V. Adve and H.-J. Boehm. Memory models: A case for

rethinking parallel languages and hardware.C. ACM, 2010.

[AMSS10] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in
weak memory models. InProc. CAV, 2010.

[ARM08] ARM. ARM Architecture Reference Manual (ARMv7-A and
ARMv7-R edition). April 2008.

[BA08] H.-J. Boehm and S.V. Adve. Foundations of the C++ concur-
rency memory model. InProc. PLDI, 2008.

[Bec10] P. Becker, editor.Programming Languages — C++. Final
Committee Draft.2010. ISO/IEC JTC1 SC22 WG21 N3092.

[BN10] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A
counterexample generator for higher-order logic based on a
relational model finder. InProc. ITP, 2010.

[BOS] www.cl.cam.ac.uk/users/pes20/cpp.

[C1X] JTC1/SC22/WG14 — C. http://www.open-std.org/
jtc1/sc22/wg14/.

[CKS07] P. Cenciarelli, A. Knapp, and E. Sibilio. The Java mem-
ory model: Operationally, denotationally, axiomatically. In
Proc. ESOP, 2007.

[GN00] E. R. Gansner and S. C. North. An open graph visualization
system and its applications to software engineering.Softw.
Pract. Exper., 30(11):1203–1233, 2000.

[Haf09] Florian Haftmann. Code Generation from Specifications in
Higher-Order Logic. PhD thesis, TU M̈unchen, 2009.

[HOL] The HOL 4 system.http://hol.sourceforge.net/.

[Int02] Intel. A formal specification of Intel Itanium processor fam-
ily memory ordering. http://www.intel.com/design/
itanium/downloads/251429.htm, October 2002.

[Isa] Isabelle 2009-2.http://isabelle.in.tum.de/.

[Lam79] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs.IEEE Trans. Comput.,
C-28(9):690–691, 1979.

[MPA05] J. Manson, W. Pugh, and S.V. Adve. The Java memory model.
In Proc. POPL, 2005.

[MS10] P. E. McKenney and R. Silvera. Example POWER
implementation for C/C++ memory model. http:
//www.rdrop.com/users/paulmck/scalability/
paper/N2745r.2010.02.19a.html, 2010.

[MW] P. E. McKenney and J. Walpole. What is RCU, fundamen-
tally? Linux Weekly News,http://lwn.net/Articles/
262464/.

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul, and
Westley Weimer. Cil: Intermediate language and tools for
analysis and transformation of c programs. InProc. CC, 2002.

[Nor08] M. Norrish. A formal semantics for C++. Technical report,
NICTA, 2008.

[OSS09] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory
model: x86-TSO. InProc. TPHOLs, 2009.

[Owe10] S. Owens. Reasoning about the implementation of concur-
rency abstractions on x86-TSO. InProc. ECOOP, 2010.

[Pow09] Power ISA Version 2.06. IBM, 2009.

[Pug00] W. Pugh. The Java memory model is fatally flawed.Concur-
rency - Practice and Experience, 12(6), 2000.

[SA08] J.Šev̌ćık and D. Aspinall. On validity of program transforma-
tions in the Java memory model. InECOOP, 2008.

[Spa] The SPARC architecture manual, v. 9. http://dev
elopers.sun.com/solaris/articles/sparcv9.pdf.

[SSO+10] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, and M. O.
Myreen. x86-TSO: A rigorous and usable programmer’s
model for x86 multiprocessors.C. ACM, 53(7):89–97, 2010.

[SSZN+09] S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge,
T. Braibant, M. Myreen, and J. Alglave. The semantics of
x86-CC multiprocessor machine code. InProc. POPL, 2009.

[Ter08] A. Terekhov. Brief tentative example x86 imple-
mentation for C/C++ memory model. cpp-threads
mailing list,http://www.decadent.org.uk/pipermail/
cpp-threads/2008-December/001933.html, Dec. 2008.

[TJ07] E. Torlak and D. Jackson. Kodkod: a relational model finder.
In Proc. TACAS, 2007.

[TVD10] E. Torlak, M. Vaziri, and J. Dolby. MemSAT: checking ax-
iomatic specifications of memory models. InPLDI, 2010.

[YGLS04] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind.
Nemos: A framework for axiomatic and executable specifica-
tions of memory consistency models. InIPDPS, 2004.

[Zal08] M. Zalewski. Generic Programming with Concepts. PhD
thesis, Chalmers University, November 2008.

