
(* emacs fontification -*-caml-*- *)

(*
— Introduction —
This file contains a mathematical version of the relaxed memory model of C11 and C++11, written in the specification
language of Lem. Lem can compile it to Ocaml, HOL, Isabelle or Latex. The basic model is faithful to the intent
of the 2011 standard and included here in full. In addition, there are several simplified models that either remove
redundant concepts or provide simplifications for programs that restrict the input language of programs.
There are lots of definitions that make up the models. To help you navigate them, the following table of contents
(with unique key phrases) can be used to search the document. Where appropriate, there are comments describing
or explaining the definitions. These are especially important for the top-level definitions of the simplified models.
— Contents —
1 - Relational definitions
2 - Action and location types
- 2.1 - Projection functions
- 2.2 - Location kinds
3 - The preferred model
- 3.1 - Execution records
- 3.2 - Well formed action
- 3.3 - Well formed threads
- 3.4 - Consistent locks
- 3.5 - Well formed reads from mapping
- 3.6 - Happens before
- 3.7 - Consistent SC and modification orders
- 3.8 - Visible side effects and VSSEs
- 3.9 - Undefined behaviour
- 3.10 - Consistent reads from mapping
- 3.11 - Consistent execution
- 3.12 - Preferred model top level judgement
4 - Standard C/C++ model
- 4.1 - Standard model top level judgement
5 - Model with seperate lock order
- 5.1 - Seperate lock order top level judgement
6 - Model with per-location lock orders
- 6.1 - per-location lock order top level judgement
7 - Model with single step mutex synchronisation
- 7.1 - single step mutex synchronisation top level judgement
8 - Model simplified for programs without consumes
- 8.1 - No consume top level judgement
9 - Model simplified for programs without consumes or relaxed
- 9.1 - No consume or relaxed top level judgement
10 - Model simplified for programs without consumes, relaxed, acquires or releases
- 10.1 - No consume, relaxed, acquire or release top level judgement
*)

(*** *)

(* 1 - Relational definitions *)

(*** *)

let irrefl s ord = ∀x∈s . ¬ ((x , x) ∈ ord)

let trans s ord = ∀x∈s , y∈s , z∈s . (((x , y) ∈ ord) ∧ ((y , z) ∈ ord)) → ((x , z) ∈ ord)

let cross S T = {(s , t)|∀s∈S , t∈T | true}

val tc : forall′a.(′a ∗ ′a) set → (′a ∗ ′a) set

let restrict relation set rel s = (rel) ∩ (cross s s)

1

let strict preorder s ord = irrefl s (ord) ∧ trans s (ord)

let relation over s rel = ∀(a, b)∈rel . a ∈ s ∧ b ∈ s

let inj on f A =
(∀x∈A. (∀y∈A. (f x = f y) → (x = y)))

let total order over s ord =
relation over s ord ∧ (∀x∈s , y∈s . (x , y) ∈ ord ∨ (y , x) ∈ ord ∨ (x = y))

let strict total order over s ord = strict preorder s ord ∧ total order over s ord

let adjacent less than ord s x y =
(x , y) ∈ ord ∧ ¬ (∃z∈s . (x , z) ∈ ord ∧ (z , y) ∈ ord)

let adjacent less than such that pred ord s x y =
pred x ∧ (x , y) ∈ ord ∧ ¬ (∃z∈s . pred z ∧ (x , z) ∈ ord ∧ (z , y) ∈ ord)

(*** *)

(* 2 - Action and location types *)

(*** *)

type action id = num

type thread id = num

type location = num

type value = num

type program = num

type memory order =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

type lock outcome =
Success

| Blocked

type action =
| Lock of action id ∗ thread id ∗ location ∗ lock outcome

| Unlock of action id ∗ thread id ∗ location

| Atomic load of action id ∗ thread id ∗ memory order ∗ location ∗ value

| Atomic store of action id ∗ thread id ∗ memory order ∗ location ∗ value

| Atomic rmw of action id ∗ thread id ∗ memory order ∗ location ∗ value ∗ value

| Load of action id ∗ thread id ∗ location ∗ value

| Store of action id ∗ thread id ∗ location ∗ value

| Fence of action id ∗ thread id ∗ memory order

| Blocked rmw of action id ∗ thread id ∗ location

(*** *)

(* - 2.1 - Projection functions *)

(*** *)

let action id of a =
match a with

| Lock aid → aid

2

| Unlock aid → aid

| Atomic load aid → aid

| Atomic store aid → aid

| Atomic rmw aid → aid

| Load aid → aid

| Store aid → aid

| Fence aid → aid

| Blocked rmw aid → aid

end

let thread id of a =
match a with

Lock tid → tid

| Unlock tid → tid

| Atomic load tid → tid

| Atomic store tid → tid

| Atomic rmw tid → tid

| Load tid → tid

| Store tid → tid

| Fence tid → tid

| Blocked rmw tid → tid

end

let memory order of a =
match a with

Atomic load mo → Some mo

| Atomic store mo → Some mo

| Atomic rmw mo → Some mo

| Fence mo → Some mo

| → None

end

let location of a =
match a with

Lock l → Some l

| Unlock l → Some l

| Atomic load l → Some l

| Atomic store l → Some l

| Atomic rmw l → Some l

| Load l → Some l

| Store l → Some l

| Fence → None

| Blocked rmw l → Some l

end

let value read by a =
match a with

Atomic load v → Some v

| Atomic rmw v → Some v

| Load v → Some v

| → None

end

let value written by a =
match a with

Atomic store v → Some v

| Atomic rmw v → Some v

| Store v → Some v

| → None

end

3

let is lock a =
match a with

Lock → true

| → false

end

let is successful lock a =
match a with

Lock Success → true

| → false

end

let is blocked lock a =
match a with

Lock Blocked → true

| → false

end

let is unlock a =
match a with

Unlock → true

| → false

end

let is atomic load a =
match a with

Atomic load → true

| → false

end

let is atomic store a =
match a with

Atomic store → true

| → false

end

let is atomic rmw a =
match a with

Atomic rmw → true

| → false

end

let is blocked rmw a =
match a with

Blocked rmw → true

| → false

end

let is load a =
match a with

Load → true

| → false

end

let is store a =
match a with

Store → true

| → false

end

4

let is fence a =
match a with

Fence → true

| → false

end

let is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

let is read a =
is load a ∨ is atomic load a ∨ is atomic rmw a

let is write a =
is store a ∨ is atomic store a ∨ is atomic rmw a

(* It is important to note that seq cst atomics are both acquires and releases *)

let is acquire a =
match memory order of a with

Some Mo acquire → is read a ∨ is fence a

| Some Mo acq rel → is read a ∨ is fence a

| Some Mo seq cst → is read a ∨ is fence a

| Some Mo consume → is fence a

| None → is lock a

| → false

end

let is consume a =
is read a ∧ (memory order of a = Some Mo consume)

let is release a =
match memory order of a with

Some Mo release → is write a ∨ is fence a

| Some Mo acq rel → is write a ∨ is fence a

| Some Mo seq cst → is write a ∨ is fence a

| None → is unlock a

| → false

end

let is seq cst a = (memory order of a = Some Mo seq cst)

(** *)

(* - 2.2 - Location kinds *)

(** *)

type location kind =
Mutex

| Non atomic

| Atomic

let actions respect location kinds actions lk =
∀a∈actions . match location of a with

Some l →
match lk l with

Mutex → is lock a ∨ is unlock a

| Non atomic → is load a ∨ is store a

| Atomic → is store a ∨ is atomic action a ∨ is blocked rmw a end

| None → true

end

5

let is at location kind lk a lk0 =
match location of a with

Some l → (lk l = lk0)
| None → false

end

let is at mutex location lk a =
is at location kind lk a Mutex

let is at non atomic location lk a =
is at location kind lk a Non atomic

let is at atomic location lk a =
is at location kind lk a Atomic

(** *)

(* 3 - The preferred model *)

(** *)

(* This simplification has ben verified equivalent to the Standard’s model (section 4) using the HOL theorem prover.
It removes the complicated notion of VSSE’s, whose force is covered by the coherence requirements. For those looking
to work with C or C++ concurrency, this is the preferred model. Predicates from this model will be used in those
that follow. *)

(*** *)

(* - 3.1 - Execution records *)

(*** *)

type opsem execution part =
〈[actions : action set;

threads : thread id set;
lk : location → location kind;
sb : (action ∗ action) set;
asw : (action ∗ action) set;
dd : (action ∗ action) set;
cd : (action ∗ action) set;]〉

type witness execution part =
〈[rf : (action ∗ action) set;

mo : (action ∗ action) set;
sc : (action ∗ action) set;]〉

(** *)

(* - 3.2 - Well formed action *)

(** *)

let same thread a b = (thread id of a = thread id of b)

let threadwise relation over s rel =
relation over s rel ∧ (∀x∈rel .
same thread (fst x) (snd x))

let same location a b = (location of a = location of b)

let locations of actions =
{l |∀Some l∈{(location of a)|∀a∈actions | true} | true}

6

let well formed action a =
match a with

Atomic load mem ord → mem ord = Mo relaxed ∨
mem ord = Mo acquire

∨ mem ord = Mo seq cst

∨ mem ord = Mo consume

| Atomic store mem ord → mem ord = Mo relaxed

∨ mem ord = Mo release

∨ mem ord = Mo seq cst

| Atomic rmw mem ord → mem ord = Mo relaxed

∨ mem ord = Mo release

∨ mem ord = Mo acquire

∨ mem ord = Mo acq rel

∨ mem ord = Mo seq cst

∨ mem ord = Mo consume

| → true

end

(*** *)

(* - 3.3 - Well formed threads *)

(*** *)

let well formed threads actions threads lk sb asw dd cd =
inj on action id of (actions) ∧
(∀a∈actions . well formed action a) ∧
threadwise relation over actions sb ∧
threadwise relation over actions dd ∧
threadwise relation over actions cd ∧
strict preorder actions sb ∧
strict preorder actions dd ∧
strict preorder actions cd ∧
(∀a∈actions . thread id of a ∈ threads) ∧
actions respect location kinds actions lk ∧
dd subset sb ∧
relation over actions asw ∧
(∀a∈actions .
(is blocked rmw a ∨ is blocked lock a)
→

¬ (∃b∈actions . a
sb
−→ b))

(*** *)

(* - 3.4 - Consistent locks *)

(*** *)

let consistent locks actions lo hb =
let mutex actions = {a|∀a∈actions | (is lock a ∨ is unlock a)} in

let lo happens before = restrict relation set hb mutex actions in

strict total order over mutex actions lo ∧
lo happens before subset lo ∧
(∀(a, c)∈lo.
is successful lock a ∧ is successful lock c ∧ same location a c

→

(∃b∈actions . same location a b ∧ is unlock b ∧ a
lo
−→ b ∧ b

lo
−→ c))

(*** *)

(* - 3.5 - Well formed reads from mapping *)

(*** *)

let well formed reads from mapping actions lk rf =

7

relation over actions rf ∧

(∀a1∈actions , a2∈actions , b∈actions . (a1
rf
−→ b ∧ a2

rf
−→ b) → (a1 = a2)) ∧

(∀a∈actions , b∈actions . a
rf
−→ b →

same location a b ∧
(value read by b = value written by a) ∧
¬ (a = b) ∧
¬ (is fence a) ∧ ¬ (is fence b) ∧
(is at mutex location lk a → false) ∧
(is at non atomic location lk a → is store a ∧ is load b) ∧
(is at atomic location lk a →
(is atomic store a ∨ is atomic rmw a ∨ is store a) ∧
(is atomic load b ∨ is atomic rmw b ∨ is load b)))

(*** *)

(* - 3.6 - Happens before *)

(*** *)

let rs element rs head a =
same thread a rs head ∨ is atomic rmw a

let release sequence actions lk mo a rel b =
is at atomic location lk b ∧
is release a rel ∧
((b = a rel) ∨

(rs element a rel b ∧ a rel
mo
−→ b ∧

(∀c∈actions . (a rel
mo
−→ c ∧ c

mo
−→ b) → rs element a rel c)))

let release sequence set actions lk mo =
{(a, b)|∀a∈actions , b∈actions |

release sequence actions lk mo a b}

let hypothetical release sequence actions lk mo a b =
is at atomic location lk b ∧
((b = a) ∨

(rs element a b ∧ a
mo
−→ b ∧

(∀c∈actions . (a
mo
−→ c ∧ c

mo
−→ b) → rs element a c)))

let hypothetical release sequence set actions lk mo =
{(a, b)|∀a∈actions , b∈actions |

hypothetical release sequence actions lk mo a b}

let synchronizes with actions sb asw rf lo rs hrs a b = a
asw
−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧
((* mutex sync *)

(is unlock a ∧ is successful lock b ∧ a
lo
−→ b) ∨

(* rel/acq sync *)

(is release a ∧ is acquire b ∧ ¬ (same thread a b) ∧

(∃c∈actions. a
rs
−→ c ∧ c

rf
−→ b)) ∨

(* fence sync *)

(¬ (same thread a b) ∧
is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x∈actions , y∈actions . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧ a
sb
−→ x ∧ y

sb
−→ b ∧

(∃z∈actions. x
hrs
−→ z ∧ z

rf
−→ y))) ∨

(¬ (same thread a b) ∧
is fence a ∧ is release a ∧ is atomic action b ∧ is acquire b ∧
(∃x∈actions . same location x b ∧

8

is atomic action x ∧ is write x ∧ a
sb
−→ x ∧

(∃z∈actions. x
hrs
−→ z ∧ z

rf
−→ b))) ∨

(¬ (same thread a b) ∧
is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧

(∃x∈actions . same location a x ∧ is atomic action x ∧ x
sb
−→ b ∧

(∃z∈actions. a
rs
−→ z ∧ z

rf
−→ x)))))

let synchronizes with set actions sb asw rf lo rs hrs =
{(a, b)|∀a∈actions , b∈actions |

synchronizes with actions sb asw rf lo rs hrs a b}

let carries a dependency to set actions sb dd rf = tc ((rf ∩ sb) ∪ dd)

let dependency ordered before actions rf rs cad a d =
a ∈ actions ∧ d ∈ actions ∧
(∃b∈actions . is release a ∧ is consume b ∧

(∃e∈actions . a
rs
−→ e ∧ e

rf
−→ b) ∧

(b
cad
−→ d ∨ (b = d)))

let dependency ordered before set actions rf rs cad =
{(a, b)|∀a∈actions , b∈actions |

dependency ordered before actions rf rs cad a b}

let compose R1 R2 =
{(w , z)|∀(w , x)∈R1, (y , z)∈R2 | (x = y)}

let inter thread happens before actions sb sw dob =
let r = sw ∪ dob ∪ (compose sw sb) in
tc (r ∪ (compose sb r))

let consistent inter thread happens before actions ithb =
irrefl actions ithb

let happens before actions sb ithb =
sb ∪ ithb

(*** *)

(* - 3.7 - Consistent SC and modification orders *)

(*** *)

let all sc actions actions =
{a|∀a∈actions | is seq cst a ∨ is lock a ∨ is unlock a}

let consistent sc order actions mo sc hb =
let sc happens before = restrict relation set hb (all sc actions actions) in
let sc mod order = restrict relation set mo (all sc actions actions) in
strict total order over (all sc actions actions) sc ∧
sc happens before subset sc ∧
sc mod order subset sc

let consistent modification order actions lk sb mo hb =

(∀a∈actions , b∈actions . a
mo
−→ b → (same location a b ∧ is write a ∧ is write b)) ∧

(∀l∈locations of actions .
match lk l with

Atomic →
(let actions at l = {a|∀a∈actions | location of a = Some l} in

let writes at l = {a|∀a∈actions at l | is write a} in

strict total order over writes at l (restrict relation set mo actions at l) ∧

9

(* hb is a subset of mo at l *)

restrict relation set hb writes at l subset mo)
| →

(let actions at l = {a|∀a∈actions | location of a = Some l} in

Set.is empty (restrict relation set mo actions at l)) end)

(*** *)

(* - 3.8 - Visible side effects *)

(*** *)

let visible side effect actions hb a b = a
hb
−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬ (∃c∈actions . ¬ (c = a) ∧ ¬ (c = b) ∧

is write c ∧ same location c b ∧ a
hb
−→ c ∧ c

hb
−→ b)

let visible side effect set actions sb hb =
{(a, b)|∀(a, b)∈hb | visible side effect actions hb a b}

(*** *)

(* - 3.9 - Undefined behaviour *)

(*** *)

let indeterminate reads actions rf =

{b|∀b∈actions | is read b ∧ ¬ (∃a∈actions. a
rf
−→ b)}

let unsequenced races actions sb =
{(a, b)|∀a∈actions , b∈actions |

¬ (a = b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬ (a
sb
−→ b ∨ b

sb
−→ a)}

let data races actions hb =
{(a, b)|∀a∈actions , b∈actions |

¬ (a = b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ (same thread a b) ∧
¬ (is atomic action a ∧ is atomic action b) ∧

¬ (a
hb
−→ b ∨ b

hb
−→ a)}

let data races ′ Xo Xw lo =
let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let sw = synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf lo rs hrs in

let cad = carries a dependency to set Xo.actions Xo.sb Xo.dd Xw .rf in

let dob = dependency ordered before set Xo.actions Xw .rf rs cad in

let ithb = inter thread happens before Xo.actions Xo.sb sw dob in

let hb = happens before Xo.actions Xo.sb ithb in

data races Xo.actions hb

let good mutex use actions lk sb lo a =
let mutexes at l =
{a ′|∀a ′∈actions | (is successful lock a ′ ∨ is unlock a ′) ∧ (location of a ′ = location of a)}

in

let lock order = restrict relation set lo mutexes at l in

(* violated requirement: The calling thread shall own the mutex. *)

(is unlock a → (∃al∈actions .

is successful lock al ∧ (location of al = location of a) ∧ al
sb
−→ a ∧

adjacent less than lock order actions al a)) ∧

10

(* violated requirement: The calling thread does not own the mutex. *)

(is lock a →
¬ (∃al∈actions .

is successful lock al ∧ (location of a = location of al) ∧ same thread a al ∧
adjacent less than lock order actions al a))

let bad mutexes Xo lo =
{a|∀a∈Xo.actions | ¬ (good mutex use Xo.actions Xo.lk Xo.sb lo a)}

let undefined behaviour Xo Xw =
¬ (data races′ Xo Xw Xw .sc = {}) ∨
¬ (unsequenced races Xo.actions Xo.sb = {}) ∨
¬ (indeterminate reads Xo.actions Xw .rf = {}) ∨
¬ (bad mutexes Xo Xw .sc = {})

(*** *)

(* - 3.9 - Consistent reads from mapping *)

(*** *)

let consistent non atomic read values actions lk rf vse =
∀b∈actions.
(is read b ∧ is at non atomic location lk b) →

(if (∃a vse∈actions. a vse
vse
−→ b)

then (∃a vse∈actions . a vse
vse
−→ b ∧ a vse

rf
−→ b)

else ¬ (∃a∈actions . a
rf
−→ b))

let coherent memory use actions lk rf mo hb =
(* CoRR *)

(∀(x , a)∈rf , (y , b)∈rf .

(a
hb
−→ b ∧ same location a b ∧ is at atomic location lk b) →

((x = y) ∨ x
mo
−→ y)) ∧

(* CoWR *)

(∀(a, b)∈hb, c∈actions .

(c
rf
−→ b ∧ is write a ∧ same location a b ∧ is at atomic location lk b) →

((c = a) ∨ a
mo
−→ c)) ∧

(* CoRW *)

(∀(a, b)∈hb, c∈actions .

(c
rf
−→ a ∧ is write b ∧ same location a b ∧ is at atomic location lk a) →

(c
mo
−→ b))

let rmw atomicity actions rf mo =
∀(a, b)∈rf .
is atomic rmw b → adjacent less than mo actions a b

let sc reads restricted actions rf sc mo hb =
∀(a, b)∈rf .
is seq cst b →
(adjacent less than such that (fun c → is write c ∧ same location b c) sc actions a b) ∨
(¬ (is seq cst a) ∧
(∀x∈actions .

(adjacent less than such that (fun c → is write c ∧ same location b c) sc actions x b) → ¬ (a
hb
−→ x)))

let sc fences heeded actions sb rf sc mo =
(* fence restriction N3291 29.3p4 *)

(∀a∈actions , (x , b)∈sb, y∈actions .
(is write a ∧ is fence x ∧
adjacent less than sc actions a x ∧

11

is atomic action b ∧ same location a b ∧ y
rf
−→ b) →

((y = a) ∨ a
mo
−→ y)) ∧

(* fence restriction N3291 29.3p5 *)

(∀(a, x)∈sb, (y , b)∈rf .
((is atomic action a ∧ is write a ∧

is fence x ∧ is atomic action b ∧ x
sc
−→ b ∧

same location a b) →

((y = a) ∨ a
mo
−→ y))) ∧

(* fence restriction N3291 29.3p6 *)

(∀(a, x)∈sb, (y , b)∈sb, z∈actions .
(is atomic action a ∧ is write a ∧

is fence x ∧ is fence y ∧ x
sc
−→ y ∧

is atomic action b ∧ same location a b ∧ z
rf
−→ b) →

((z = a) ∨ a
mo
−→ z)) ∧

(* SC fences impose mo N3291 29.3p7 *)

(∀(a, x)∈sb, (y , b)∈sb.
(is atomic action a ∧ is write a ∧
is atomic action b ∧ is write b ∧

is fence x ∧ is fence y ∧ x
sc
−→ y ∧

same location a b → a
mo
−→ b)) ∧

(* SC fences impose mo N3291 29.3p7, w collapsed first write*)

(∀a∈actions , (y , b)∈sb.
(is atomic action a ∧ is write a ∧

is fence y ∧ a
sc
−→ y ∧

is atomic action b ∧ is write b ∧

same location a b → a
mo
−→ b)) ∧

(* SC fences impose mo N3291 29.3p7, w collapsed second write*)

(∀(a, x)∈sb, b∈actions .
(is atomic action a ∧ is write a ∧

is fence x ∧ is atomic action b ∧ is write b ∧ x
sc
−→ b ∧

same location a b → a
mo
−→ b))

let no vsse consistent atomic read values actions lk rf hb vse =
∀b∈actions.
(is read b ∧ is at atomic location lk b) →

(if (∃a vse∈actions. a vse
vse
−→ b)

then (∃a∈actions . (a
rf
−→ b) ∧ ¬ (b

hb
−→ a))

else ¬ (∃a∈actions . a
rf
−→ b))

let no vsse consistent reads from mapping actions lk sb rf sc mo hb vse =
consistent non atomic read values actions lk rf vse ∧
no vsse consistent atomic read values actions lk rf hb vse ∧
coherent memory use actions lk rf mo hb ∧
rmw atomicity actions rf mo ∧
sc reads restricted actions rf sc mo hb ∧
sc fences heeded actions sb rf sc mo

(*** *)

(* 3.11 - Consistent execution *)

(*** *)

(* This simplification has ben verified equivalent to the model in section 3 using the HOL theorem prover. It removes
the complicated notion of VSSE’s, whose force is covered by the coherence requirements. For those looking to work
with C or C++ concurrency, this is the preferred model. *)

let no vsse consistent execution Xo Xw =

12

well formed threads Xo.actions Xo.threads Xo.lk Xo.sb Xo.asw Xo.dd Xo.cd ∧
(let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let sw = synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf Xw .sc rs hrs in

let cad = carries a dependency to set Xo.actions Xo.sb Xo.dd Xw .rf in

let dob = dependency ordered before set Xo.actions Xw .rf rs cad in

let ithb = inter thread happens before Xo.actions Xo.sb sw dob in

let hb = happens before Xo.actions Xo.sb ithb in

let vse = visible side effect set Xo.actions Xo.sb hb in

consistent locks Xo.actions Xw .sc hb ∧
consistent inter thread happens before Xo.actions ithb ∧
consistent sc order Xo.actions Xw .mo Xw .sc hb ∧
consistent modification order Xo.actions Xo.lk Xo.sb Xw .mo hb ∧
well formed reads from mapping Xo.actions Xo.lk Xw .rf ∧
no vsse consistent reads from mapping Xo.actions Xo.lk Xo.sb Xw .rf Xw .sc Xw .mo hb vse)

(*** *)

(* - 3.12 - Preferred model top level judgement *)

(*** *)

let no vsse cmm opsem (p : program) =
let pre executions =
{(Xopsem, Xwitness) | opsem p Xopsem ∧ no vsse consistent execution Xopsem Xwitness} in

if ∃(Xo, Xw)∈pre executions .

undefined behaviour Xo Xw

then {(Xo, Xw) | true}
else pre executions

(*** *)

(* 4 - Standard C/C++ model *)

(*** *)

(* The following definitions make up the memory model described by the 2011 standard. It was constructed in
discussion with the standardisation comittee. *)

let visible sequence of side effects tail actions mo hb vsse head b =

{c|∀c∈actions | vsse head
mo
−→ c ∧ ¬ (b

hb
−→ c) ∧

(∀a∈actions.

(vsse head
mo
−→ a ∧ a

mo
−→ c) → ¬ (b

hb
−→ a))}

(* visible sequences of side effects have been proven redundant. See the simpler model in section 3. *)

let visible sequence of side effects actions lk mo hb vsse head b =
(b, if is at atomic location lk b then

{vsse head} ∪
visible sequence of side effects tail actions mo hb vsse head b

else

{})

let visible sequences of side effects set actions lk mo hb vse =
{visible sequence of side effects actions lk mo hb vsse head b|
∀vsse head∈actions , b∈actions |
is at atomic location lk b ∧ is read b ∧

(vsse head
vse
−→ b)}

let consistent atomic read values actions lk rf vsses =
∀b∈actions.
(is read b ∧ is at atomic location lk b) →

13

(if (∃(b′, v)∈vsses. b = b′)
then (∃(b′, v)∈vsses. b = b′ ∧

(∃c∈v . c
rf
−→ b))

else ¬ (∃a∈actions . a
rf
−→ b))

let consistent reads from mapping actions lk sb rf sc mo hb vse vsses =
consistent non atomic read values actions lk rf vse ∧
consistent atomic read values actions lk rf vsses ∧
coherent memory use actions lk rf mo hb ∧
rmw atomicity actions rf mo ∧
sc reads restricted actions rf sc mo hb ∧
sc fences heeded actions sb rf sc mo

let consistent execution Xo Xw =
well formed threads Xo.actions Xo.threads Xo.lk Xo.sb Xo.asw Xo.dd Xo.cd ∧
(let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let sw = synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf Xw .sc rs hrs in

let cad = carries a dependency to set Xo.actions Xo.sb Xo.dd Xw .rf in

let dob = dependency ordered before set Xo.actions Xw .rf rs cad in

let ithb = inter thread happens before Xo.actions Xo.sb sw dob in

let hb = happens before Xo.actions Xo.sb ithb in

let vse = visible side effect set Xo.actions Xo.sb hb in

let vsses = visible sequences of side effects set Xo.actions Xo.lk Xw .mo hb vse in

consistent locks Xo.actions Xw .sc hb ∧
consistent inter thread happens before Xo.actions ithb ∧
consistent sc order Xo.actions Xw .mo Xw .sc hb ∧
consistent modification order Xo.actions Xo.lk Xo.sb Xw .mo hb ∧
well formed reads from mapping Xo.actions Xo.lk Xw .rf ∧
consistent reads from mapping Xo.actions Xo.lk Xo.sb Xw .rf Xw .sc Xw .mo hb vse vsses)

(*** *)

(* - 4.1 - Standard model top level judgement *)

(*** *)

let cmm opsem (p : program) =
let pre executions = {(Xopsem, Xwitness) | opsem p Xopsem ∧ consistent execution Xopsem Xwitness} in

if ∃(Xo, Xw)∈pre executions .

undefined behaviour Xo Xw

then {(Xo, Xw) | true}
else pre executions

(*** *)

(* 5 - Model with seperate lock order *)

(*** *)

(* A version of the no VSSE model with a seperate lock order. *)

let no vsse seperate lo consistent execution Xo Xw lo =
well formed threads Xo.actions Xo.threads Xo.lk Xo.sb Xo.asw Xo.dd Xo.cd ∧
(let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let sw = synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf lo rs hrs in

let cad = carries a dependency to set Xo.actions Xo.sb Xo.dd Xw .rf in

let dob = dependency ordered before set Xo.actions Xw .rf rs cad in

let ithb = inter thread happens before Xo.actions Xo.sb sw dob in

let hb = happens before Xo.actions Xo.sb ithb in

14

let vse = visible side effect set Xo.actions Xo.sb hb in

consistent locks Xo.actions lo hb ∧
consistent inter thread happens before Xo.actions ithb ∧
consistent sc order Xo.actions Xw .mo Xw .sc hb ∧
consistent modification order Xo.actions Xo.lk Xo.sb Xw .mo hb ∧
well formed reads from mapping Xo.actions Xo.lk Xw .rf ∧
no vsse consistent reads from mapping Xo.actions Xo.lk Xo.sb Xw .rf Xw .sc Xw .mo hb vse)

let no vsse seperate lo undefined behaviour Xo Xw lo =
¬ (data races′ Xo Xw lo = {}) ∨
¬ (unsequenced races Xo.actions Xo.sb = {}) ∨
¬ (indeterminate reads Xo.actions Xw .rf = {}) ∨
¬ (bad mutexes Xo lo = {})

(*** *)

(* - 5.1 - Seperate lock order top level judgement *)

(*** *)

let no vsse seperate lo cmm opsem (p : program) =
let pre executions =
{(Xopsem, (Xwitness , lo)) |
opsem p Xopsem ∧ no vsse seperate lo consistent execution Xopsem Xwitness lo} in

if ∃(Xo, (Xw , lo))∈pre executions .

no vsse seperate lo undefined behaviour Xo Xw lo

then {(Xo, (Xw , lo)) | true}
else pre executions

(*** *)

(* 6 - Model with per-location lock orders *)

(*** *)

(* This model uses per location lock orders rather than one shared one. *)

let multi lo consistent locks actions lk lo hb =
let mutex actions = {a|∀a∈actions | (is lock a ∨ is unlock a)} in

let lo happens before = restrict relation set hb mutex actions in

lo happens before subset lo ∧
(∀(a, c)∈lo. is successful lock a ∧ is successful lock c ∧ same location a c

→

(∃b∈actions . same location a b ∧ is unlock b ∧ a
lo
−→ b ∧ b

lo
−→ c)) ∧

∀l∈locations of actions .
let actions at l = {a|∀a∈actions | location of a = Some l} in

match lk l with

Mutex →
strict total order over actions at l (restrict relation set lo actions at l)

| → Set.is empty (restrict relation set lo actions at l) end

let no vsse multi lo consistent execution Xo Xw lo =
well formed threads Xo.actions Xo.threads Xo.lk Xo.sb Xo.asw Xo.dd Xo.cd ∧
(let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let sw = synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf lo rs hrs in

let cad = carries a dependency to set Xo.actions Xo.sb Xo.dd Xw .rf in

let dob = dependency ordered before set Xo.actions Xw .rf rs cad in

let ithb = inter thread happens before Xo.actions Xo.sb sw dob in

let hb = happens before Xo.actions Xo.sb ithb in

let vse = visible side effect set Xo.actions Xo.sb hb in

15

multi lo consistent locks Xo.actions Xo.lk lo hb ∧
consistent inter thread happens before Xo.actions ithb ∧
consistent sc order Xo.actions Xw .mo Xw .sc hb ∧
consistent modification order Xo.actions Xo.lk Xo.sb Xw .mo hb ∧
well formed reads from mapping Xo.actions Xo.lk Xw .rf ∧
no vsse consistent reads from mapping Xo.actions Xo.lk Xo.sb Xw .rf Xw .sc Xw .mo hb vse)

(*** *)

(* - 6.1 - per-location lock order top level judgement *)

(*** *)

let no vsse multi lo cmm opsem (p : program) =
let pre executions =
{(Xopsem, (Xwitness , lo)) |
opsem p Xopsem ∧ no vsse multi lo consistent execution Xopsem Xwitness lo} in

if ∃(Xo, (Xw , lo))∈pre executions .

no vsse seperate lo undefined behaviour Xo Xw lo

then {(Xo, (Xw , lo)) | true}
else pre executions

(*** *)

(* 7 - Model with single step mutex synchronisation *)

(*** *)

(* This model creates synchronizes-with edges from each unlock to the next lock at the same location, rather than
all subsequent ones. *)

let lo single synchronizes with actions sb asw rf lo rs hrs a b = a
asw
−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧
((* mutex sync *)

(is unlock a ∧ is successful lock b ∧ a
lo
−→ b ∧ ¬ (∃c∈actions . a

lo
−→ c ∧ c

lo
−→ b)) ∨

(* rel/acq sync *)

(is release a ∧ is acquire b ∧ ¬ (same thread a b) ∧

(∃c∈actions. a
rs
−→ c ∧ c

rf
−→ b)) ∨

(* fence sync *)

(¬ (same thread a b) ∧
is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x∈actions , y∈actions . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧ a
sb
−→ x ∧ y

sb
−→ b ∧

(∃z∈actions. x
hrs
−→ z ∧ z

rf
−→ y))) ∨

(¬ (same thread a b) ∧
is fence a ∧ is release a ∧ is atomic action b ∧ is acquire b ∧
(∃x∈actions . same location x b ∧

is atomic action x ∧ is write x ∧ a
sb
−→ x ∧

(∃z∈actions. x
hrs
−→ z ∧ z

rf
−→ b))) ∨

(¬ (same thread a b) ∧
is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧

(∃x∈actions . same location a x ∧ is atomic action x ∧ x
sb
−→ b ∧

(∃z∈actions. a
rs
−→ z ∧ z

rf
−→ x)))))

let lo single synchronizes with set actions sb asw rf lo rs hrs =
{(a, b)|∀a∈actions , b∈actions |

lo single synchronizes with actions sb asw rf lo rs hrs a b}

let no vsse multi lo single sw consistent execution Xo Xw lo =

16

well formed threads Xo.actions Xo.threads Xo.lk Xo.sb Xo.asw Xo.dd Xo.cd ∧
(let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let sw = lo single synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf lo rs hrs in

let cad = carries a dependency to set Xo.actions Xo.sb Xo.dd Xw .rf in

let dob = dependency ordered before set Xo.actions Xw .rf rs cad in

let ithb = inter thread happens before Xo.actions Xo.sb sw dob in

let hb = happens before Xo.actions Xo.sb ithb in

let vse = visible side effect set Xo.actions Xo.sb hb in

multi lo consistent locks Xo.actions Xo.lk lo hb ∧
consistent inter thread happens before Xo.actions ithb ∧
consistent sc order Xo.actions Xw .mo Xw .sc hb ∧
consistent modification order Xo.actions Xo.lk Xo.sb Xw .mo hb ∧
well formed reads from mapping Xo.actions Xo.lk Xw .rf ∧
no vsse consistent reads from mapping Xo.actions Xo.lk Xo.sb Xw .rf Xw .sc Xw .mo hb vse)

let los single sw data races ′ Xo Xw lo =
let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let sw = lo single synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf lo rs hrs in

let cad = carries a dependency to set Xo.actions Xo.sb Xo.dd Xw .rf in

let dob = dependency ordered before set Xo.actions Xw .rf rs cad in

let ithb = inter thread happens before Xo.actions Xo.sb sw dob in

let hb = happens before Xo.actions Xo.sb ithb in

data races Xo.actions hb

let no vsse multi lo single sw undefined behaviour Xo Xw lo =
¬ (los single sw data races′ Xo Xw lo = {}) ∨
¬ (unsequenced races Xo.actions Xo.sb = {}) ∨
¬ (indeterminate reads Xo.actions Xw .rf = {}) ∨
¬ (bad mutexes Xo lo = {})

(*** *)

(* - 7.1 - single step mutex synchronisation top level judgement *)

(*** *)

let no vsse multi lo single sw cmm opsem (p : program) =
let pre executions =
{(Xopsem, (Xwitness , lo)) |
opsem p Xopsem ∧ no vsse multi lo single sw consistent execution Xopsem Xwitness lo} in

if ∃(Xo, (Xw , lo))∈pre executions .

no vsse multi lo single sw undefined behaviour Xo Xw lo

then {(Xo, (Xw , lo)) | true}
else pre executions

(*** *)

(* 8 - Model simplified for programs without consumes *)

(*** *)

(* This model is simplified for use with programs that don’t use consume memory orders. Happens-before is transitive.
*)

let no vsse consume happens before actions sb sw =
tc (sb ∪ sw)

let no vsse consume consistent happens before actions hb =
irrefl actions hb

17

let no vsse consume consistent execution Xo Xw =
well formed threads Xo.actions Xo.threads Xo.lk Xo.sb Xo.asw Xo.dd Xo.cd ∧
(let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let sw = synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf Xw .sc rs hrs in

let hb = no vsse consume happens before Xo.actions Xo.sb sw in

let vse = visible side effect set Xo.actions Xo.sb hb in

consistent locks Xo.actions Xw .sc hb ∧
no vsse consume consistent happens before Xo.actions hb ∧
consistent sc order Xo.actions Xw .mo Xw .sc hb ∧
consistent modification order Xo.actions Xo.lk Xo.sb Xw .mo hb ∧
well formed reads from mapping Xo.actions Xo.lk Xw .rf ∧
no vsse consistent reads from mapping Xo.actions Xo.lk Xo.sb Xw .rf Xw .sc Xw .mo hb vse)

let no vsse consume data races ′ Xo Xw lo =
let rs = release sequence set Xo.actions Xo.lk Xw .mo in

let hrs = hypothetical release sequence set Xo.actions Xo.lk Xw .mo in

let sw = synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf lo rs hrs in

let hb = no vsse consume happens before Xo.actions Xo.sb sw in

data races Xo.actions hb

let no vsse consume undefined behaviour Xo Xw =
¬ (no vsse consume data races′ Xo Xw Xw .sc = {}) ∨
¬ (unsequenced races Xo.actions Xo.sb = {}) ∨
¬ (indeterminate reads Xo.actions Xw .rf = {}) ∨
¬ (bad mutexes Xo Xw .sc = {})

(*** *)

(* - 8.1 - No consume top level judgement *)

(*** *)

let no vsse consume cmm opsem (p : program) =
let pre executions =
{(Xopsem, Xwitness) |
opsem p Xopsem ∧ no vsse consume consistent execution Xopsem Xwitness} in

if ∃(Xo, Xw)∈pre executions .

no vsse consume undefined behaviour Xo Xw

then {(Xo, Xw) | true}
else pre executions

(*** *)

(* 9 - Model simplified for programs without consumes or relaxed *)

(*** *)

(* Without relaxed, can release sequences go? Unfortunately not. This model is NOT equvalent. *)

let no vsse consume relaxed synchronizes with actions sb asw rf lo a b = a
asw
−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧
((* mutex sync *)

(is unlock a ∧ is lock b ∧ a
lo
−→ b) ∨

(* rel/acq sync *)

(is release a ∧ is acquire b ∧ ¬ (same thread a b) ∧ a
rf
−→ b)))

let no vsse consume relaxed synchronizes with set actions sb asw rf lo =
{(a, b)|∀a∈actions , b∈actions |

no vsse consume relaxed synchronizes with actions sb asw rf lo a b}

18

let no vsse consume relaxed consistent execution Xo Xw =
well formed threads Xo.actions Xo.threads Xo.lk Xo.sb Xo.asw Xo.dd Xo.cd ∧
(let sw = no vsse consume relaxed synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf Xw .sc in

let hb = no vsse consume happens before Xo.actions Xo.sb sw in

let vse = visible side effect set Xo.actions Xo.sb hb in

consistent locks Xo.actions Xw .sc hb ∧
no vsse consume consistent happens before Xo.actions hb ∧
consistent sc order Xo.actions Xw .mo Xw .sc hb ∧
consistent modification order Xo.actions Xo.lk Xo.sb Xw .mo hb ∧
well formed reads from mapping Xo.actions Xo.lk Xw .rf ∧
no vsse consistent reads from mapping Xo.actions Xo.lk Xo.sb Xw .rf Xw .sc Xw .mo hb vse)

let no vsse consume relaxed data races ′ Xo Xw lo =
let sw = no vsse consume relaxed synchronizes with set Xo.actions Xo.sb Xo.asw Xw .rf lo in

let hb = no vsse consume happens before Xo.actions Xo.sb sw in

data races Xo.actions hb

let no vsse consume relaxed undefined behaviour Xo Xw =
¬ (no vsse consume relaxed data races′ Xo Xw Xw .sc = {}) ∨
¬ (unsequenced races Xo.actions Xo.sb = {}) ∨
¬ (indeterminate reads Xo.actions Xw .rf = {}) ∨
¬ (bad mutexes Xo Xw .sc = {})

(*** *)

(* - 9.1 - No consume or relaxed top level judgement *)

(*** *)

let no vsse consume relaxed cmm opsem (p : program) =
let pre executions =
{(Xopsem, Xwitness) |
opsem p Xopsem ∧ no vsse consume relaxed consistent execution Xopsem Xwitness} in

if ∃(Xo, Xw)∈pre executions .

no vsse consume relaxed undefined behaviour Xo Xw

then {(Xo, Xw) | true}
else pre executions

(*** *)

(* 10 - Model simplified for programs without consumes, relaxed, acquires or releases *)

(*** *)

let consistent total order actions sb asw tot =
strict total order over actions tot ∧
sb subset tot ∧
asw subset tot

let tot consistent reads from mapping actions lk rf tot =
(∀b∈actions .
(is read b) →
(let writes at same location = {a|∀a∈actions | (same location a b) ∧ is write a} in

(if (∃a∈actions .
adjacent less than (restrict relation set tot (writes at same location ∪ {b})) actions a b)

then (∃a∈actions .

(a
rf
−→ b) ∧

adjacent less than (restrict relation set tot (writes at same location ∪ {b})) actions a b)

else ¬ (∃a∈actions . a
rf
−→ b))))

let tot consistent execution Xo rf tot =
let lo = restrict relation set tot {a|∀a∈Xo.actions | is lock a ∨ is unlock a} in

19

well formed threads Xo.actions Xo.threads Xo.lk Xo.sb Xo.asw Xo.dd Xo.cd ∧
consistent total order Xo.actions Xo.sb Xo.asw tot ∧
consistent locks Xo.actions lo tot ∧
tot consistent reads from mapping Xo.actions Xo.lk rf tot ∧
well formed reads from mapping Xo.actions Xo.lk rf

let tot hb data races Xo rf tot =
let sc = tot ∩ {(a, b)|∀a∈Xo.actions , b∈Xo.actions | is seq cst a ∧ is seq cst b} in

let mo = tot ∩ {(a, b)|∀a∈Xo.actions , b∈Xo.actions | (same location a b) ∧ is write a ∧ is write b} in

let sw = no vsse consume relaxed synchronizes with set Xo.actions Xo.sb Xo.asw rf tot in

let hb = no vsse consume happens before Xo.actions Xo.sb sw in

data races Xo.actions hb

let tot data races actions tot =
{(a, b)|∀a∈actions , b∈actions |

¬ (a = b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ (same thread a b) ∧
¬ (is atomic action a ∧ is atomic action b) ∧
(adjacent less than tot actions a b ∨ adjacent less than tot actions b a)}

let tot undefined behaviour Xo rf tot =
¬ (tot hb data races Xo rf tot = {}) ∨
¬ (unsequenced races Xo.actions Xo.sb = {}) ∨
¬ (indeterminate reads Xo.actions rf = {}) ∨
¬ (bad mutexes Xo tot = {})

(*** *)

(* - 10.1 - No consume, relaxed, acquire or release top level judgement *)

(*** *)

let tot cmm opsem (p : program) =
let pre executions = {(Xopsem, (rf , tot)) | opsem p Xopsem ∧ tot consistent execution Xopsem rf tot} in

if ∃(Xo, (rf , tot))∈pre executions .

tot undefined behaviour Xo rf tot

then {(Xo, (rf , tot)) | true}
else pre executions

20

