
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

The Flat Operational Model

CHRISTOPHER PULTE, University of Cambridge

SHAKED FLUR, University of Cambridge

WILL DEACON, ARM Ltd.

JON FRENCH, University of Cambridge

SUSMIT SARKAR, University of St. Andrews

PETER SEWELL, University of Cambridge

This document gives a prose description of the Flat operational model, as formally defined in its Lem definition.

This is part of the supplementary material for “Simplifying ARM Concurrency: Multicopy-atomic Axiomatic

and Operational Models for ARMv8”.

1 AN OPERATIONAL MODEL FOR MCA ARMV8
To help reading this document we have colour-coded some text as follows:

• [
release/

acquire
] Release/Acquire instructions

• [exclusive] Exclusive instructions

• [
dmb ld/
dmb st] dmb ld and dmb st instructions

The operational model is expressed as a state machine, with states that are an abstract represen-

tation of hardware machine states. We first introduce the model states and transitions informally.

Model states A model state consists just of a shared memory and a tuple of thread model states:

Shared Memory

Thread 1 Thread n. . .

. . .

The shared memory state effectively just records the most recent write to each location. To handle

load/store-exclusives, the memory is extended with a map (the exclusives map) from read requests

to sets of write slices, that associates a read request of a load-exclusive with the write slices it read

from (excluding writes that have been forwarded to the read and have not reached memory yet).

Each thread model state consists principally of a list or tree of instruction instances, some of

which have been finished, and some of which have not. For example, below we show a thread model

state with instruction instances i1, . . . , i13, and the program-order-successor relation between them.

Three of those (i1, i3, and i4, boxed) have been finished; the remainder are non-finished.

i1 i2 i3 i4 i5

i6 i7

i8 i9

i10 i11 i12

i13

Authors’ addresses: Christopher Pulte, University of Cambridge, first.last@cl.cam.ac.uk; Shaked Flur, University of

Cambridge, first.last@cl.cam.ac.uk; Will Deacon, ARM Ltd. first.last@arm.com; Jon French, University of Cambridge,

first.last@cl.cam.ac.uk; Susmit Sarkar, University of St. Andrews, ss265@st-andrews.ac.uk; Peter Sewell, University of

Cambridge, first.last@cl.cam.ac.uk.

2017. XXXX-XXXX/2017/10-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

:2 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell

Non-finished instruction instances can be subject to restart, e.g. if they depend on an out-of-order or

speculative read that turns out to be unsound. The finished instances are not necessarily contiguous:

in the example, i3 and i4 are finished even though i2 is not, which can only happen if they are

sufficiently independent. Instruction instances i5 and i9 are conditional branches for which the

thread has fetched multiple possible successors. When a conditional branch is finished, any un-

taken alternative paths are discarded, and instruction instances that follow (in program order) a

non-finished conditional branch cannot be finished until that conditional branch is. One can choose

whether or not to allow simultaneous exploration of multiple successors of a conditional branch

(as shown above); this does not affect the set of allowed outcomes.

The intra-instruction behaviour of a single instruction can largely be treated as sequential

(but not atomic) execution of its ASL/Sail pseudocode. Each instruction instance state includes a

pseudocode execution state, which one can think of as a representation of the pseudocode control

state, pseudocode call stack, and local variable values. An instruction instance state also includes

information, detailed below, about the instruction instance’s memory and register footprints, its

register and memory reads and writes, whether it is finished, etc.

Model transitions For any state, the model defines the set of allowed transitions, each of which is

a single atomic step to a new abstract machine state. Each transition arises from the next step of a

single instruction instance; it will change the state of that instance, and it may depend on or change

the rest of its thread state and/or the shared memory state. Instructions cannot be treated as atomic

units: complete execution of a single instruction instance may involve many transitions, which

can be interleaved with those of other instances in the same or other threads, and some of this is

programmer-visible. The transitions are introduced below and defined in §1.4, with a precondition

and a construction of the post-transition model state for each. The transitions labelled ◦ can always

be taken eagerly, as soon as they are enabled, without excluding other behaviour; the • cannot.

Transitions for all instructions:

• Fetch instruction: This transition represents a fetch and decode of a new instruction instance,

as a program-order successor of a previously fetched instruction instance, or at the initial

fetch address for a thread.

◦ Register read: This is a read of a register value from themost recent program-order predecessor

instruction instance that writes to that register.

◦ Register write

◦ Pseudocode internal step: this covers ASL/Sail internal computation, function calls, etc.

◦ Finish instruction: At this point the instruction pseudocode is done, the instruction cannot

be restarted or discarded, and all memory effects have taken place. For a conditional branch,

any non-taken po-successor branches are discarded.

Load instructions:

◦ Initiate memory reads of load instruction: At this point the memory footprint of the load is

provisionally known and its individual reads can start being satisfied.

• Satisfy memory read by forwarding from writes: This partially or entirely satisfies a single

read by forwarding from its po-previous writes.

• Satisfy memory read from memory: This entirely satisfies the outstanding slices of a single

read, from memory.

◦ Complete load instruction (when all its reads are entirely satisfied): At this point all the

reads of the load have been entirely satisfied and the instruction pseudocode can continue

execution. A load instruction can be subject to being restarted until the Finish instruction

transition. In some cases it is possible to tell that a load instruction will not be restarted or

, Vol. 1, No. 1, Article . Publication date: October 2017.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Simplifying ARM Concurrency :3

discarded before that, e.g. when all the instructions po-before the load instruction are finished.

The Restart condition over-approximates the set of instructions that might be restarted.

Store instructions:

◦ Initiate memory writes of store instruction, with their footprints: At this point the memory

footprint of the store is provisionally known.

◦ Instantiate memory write values of store instruction: At this point the writes have their

values and program-order-subsequent reads can be satisfied by forwarding from them.

◦ Commit store instruction: At this point the store is guaranteed to happen (it cannot be

restarted or discarded), and the writes can start being propagated to memory.

• Propagate memory write: This propagates a single write to memory.

◦ Complete store instruction (when its writes are all propagated): At this point all writes have

been propagated to memory, and the instruction pseudocode can continue execution.

Store-exclusive instructions:

• Guarantee the success of store-exclusive: This guarantees the success of the store-exclusive.

• Make a store-exclusive fail: This makes the store-exclusive fail.

Barrier instructions:

◦ Commit barrier

1.1 Intra-instruction Pseudocode Execution
To link the model transitions introduced above to the execution of the instructions an interface

is needed between Sail and the rest of the concurrency model. For each instruction instance this

intra-instruction semantics is expressed as a state machine, essentially running the instruction

pseudocode, where each pseudocode execution state is a request of one of the following forms:

Read_mem(read_kind, address, size, read_continuation) Read request

Excl_res(res_continuation) Store-exclusive result

Write_ea(write_kind, address, size, next_state) Write effective address

Write_memv(memory_value, write_continuation) Write value

Barrier(barrier_kind, next_state) Barrier

Read_reg(reg_name, read_continuation) Register read request

Write_reg(reg_name, register_value, next_state) Write register

Internal(next_state) Pseudocode internal step

Done End of pseudocode

Each of these states is a suspended computation with a request for an action or input from the

concurrency model and, except in the case of Done, a continuation for the remaining execution.

Here memory values are lists of bytes, addresses are 64-bit numbers, read and write kinds identify

whether they are regular, exclusive, and/or release/acquire operations, register names identify

a register and slice thereof (start and end bit indices), and the continuations describe how the

instruction instance will continue for any value that might be provided by the surrounding memory

model. This largely follows Gray et al. [2015, §2.2], except that memory writes are split into two

steps, Write_ea and Write_memv. We ensure these are paired in the pseudocode, but there may

be other steps between them: it is observable that the Write_ea can occur before the value to

be written is determined, because the potential memory footprint of the instruction becomes

provisionally known then.

We ensure that each instruction has at most one memory read, memory write, or barrier step,

by rewriting the pseudocode to coalesce multiple reads or writes, which are then split apart into

, Vol. 1, No. 1, Article . Publication date: October 2017.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

:4 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell

the architecturally atomic units by the thread semantics; this gives a single commit point for all

memory writes of an instruction.

Each bit of a register read should be satisfied from a register write by the most recent (in program

order) instruction instance that can write that bit, or from the thread’s initial register state if there is

no such. That instance may not have executed its register write yet, in which case the register read

should block. The semantics therefore has to know the register write footprint of each instruction

instance, which it calculates when the instruction instance is created. We ensure in the pseudocode

that each instruction does exactly one register write to each bit of its register footprint, and also

that instructions do not do register reads from their own register writes. In some cases, but not in

the fragment of ARM that we cover at present, register write footprints need to be dynamically

recalculated, when the actual footprint only becomes known during pseudocode execution.

Data-flow dependencies in the model emerge from the fact that a register read has to wait for

the appropriate register write to be executed (as described above). This has to be carefully handled

in order not to create unintentional strength. First, for some instructions we need to ensure that

the pseudocode is in the maximally liberal order, e.g. to allow early computed-address register

writebacks before the corresponding memory write. Leaving load-pair aside (which we do not

cover), and the treatment of the multiple reads or writes that can be associated with a single load

or store instruction (which we do), we have not so far needed other intra-instruction concurrency.

Second, the model has to be able to know when a register read value can no longer change (i.e. due

to instruction restart). We approximate that by recording, for each register write, the set of register

and memory reads the instruction instance has performed at the point of executing the write.

This information is then used as follows to determine whether a register read value is final: if the

instruction instance that performed the register write from which the register reads from is finished,

the value is final; otherwise check that the recorded reads for the register write do not include

memory reads, and continue recursively with the recorded register reads. For the instructions we

cover this approximation is exact.

We express the pseudocode execution semantics in two ways: a definitional interpreter for

Sail [Gray et al. 2015], with an exhaustive symbolic mode to (re)calculate an instruction’s memory

and register footprints, and as a shallow embedding, translating Sail into directly executable code,

with separate hand-written definitions of the footprint functions. The two are essentially equivalent:

the first lets one small-step through the pseudocode interactively, while the second is more efficient

and should be more convenient for proof.

1.2 Instruction Instance States
Each instruction instance i has a state comprising:

• program_loc, the memory address from which the instruction was fetched;

• instruction_kind, identifying whether this is a load, store, or barrier instruction, each with

the associated kind; or a conditional branch; or a ‘simple’ instruction.

• regs_in, the set of input reg_names, as statically determined;

• regs_out, the output reg_names, as statically determined;

• pseudocode_state (or sometimes just ‘state’ for short), one of

– Plain next_state, ready to make a pseudocode transition;

– Pending_mem_reads read_cont, performing the read(s) from memory of a load; or

– Pending_mem_writes write_cont, performing the write(s) to memory of a store;

• reg_reads, the accumulated register reads, including their sources and values, of this instance’s

execution so far;

, Vol. 1, No. 1, Article . Publication date: October 2017.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Simplifying ARM Concurrency :5

• reg_writes, the accumulated register writes, including dependency information to identify

the register reads and memory reads (by this instruction) that might have affected each;

• mem_reads, a set of memory read requests. Each request includes a memory footprint (an

address and size) and, if the request has already been satisfied, the set of write slices (each

consisting of a write and a set of its byte indices) that satisfied it.

• mem_writes, a set of memory write requests. Each request includes a memory footprint

and, when available, the memory value to be written. In addition, each write has a flag that

indicates whether the write has been propagated (passed to the memory) or not.

• [exclusive] successful_exclusive, for store-exclusives, indicates whether it was previously guaran-

teed to succeed or made to fail.

• information recording whether the instance is committed, finished, etc.

Read requests include their read kind and their memory footprint (their address and size), the

as-yet-unsatisfied slices (the byte indices that have not been satisfied), and, for the satisfied slices,

information about the write(s) that they were satisfied from. Write requests include their write

kind, their memory footprint, and their value. When we refer to a write or read request without

mentioning the kind of request we mean the request can be of any kind. A load instruction which

has initiated (so its read request list mem_reads is not empty) and for which all its read requests

are satisfied (i.e. there are no unsatisfied slices) is said to be entirely satisfied. A load-exclusive is

called successful if the first po-following store-exclusive that has not been made to fail has been

guaranteed to succeed (as opposed to does not exist or has not been guaranteed to succeed or made

to fail). The successful load-exclusive and the successful store-exclusive are said to be paired. If a

successful load-exclusive has a read request that is mapped, in the exclusives map, to a write slice

ws, we say the load-exclusive has an outstanding lock on ws.

1.3 Thread States
The model state of a single hardware thread includes:

• thread_id, a unique identifier of the thread;

• register_data, the name, bit width, and start bit index for each register;

• initial_register_state, the initial register value for each register;

• initial_fetch_address, the initial fetch address for this thread;

• instruction_tree, a tree or list of the instruction instances that have been fetched (and not

discarded), in program order.

1.4 Model Transitions

Fetch instruction A possible program-order successor of instruction instance i can be fetched

from address loc if:

(1) it has not already been fetched, i.e., none of the immediate successors of i in the thread’s

instruction_tree are from loc;

(2) loc is a possible next fetch address for i:

(a) for a non-branch/jump instruction, the successor instruction address (i.program_loc+4);

(b) for an instruction that has performed a write to the program counter register (_PC), the
value that was written;

(c) for a conditional branch, either the successor address or the branch target address
1
; or

(d) for a jump to an address which is not yet determined, any address (this is approximated in

our tool implementation, necessarily); and

1
In AArch64, all the conditional branch instructions have statically determined addresses.

, Vol. 1, No. 1, Article . Publication date: October 2017.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

:6 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell

(3) there is a decodable instruction in program memory at loc.

Note that this allows speculation past conditional branches and calculated jumps.

Action: construct a freshly initialized instruction instance i
′
for the instruction in the pro-

gram memory at loc, including the static information available from the ISA model such as its

instruction_kind, regs_in, and regs_out, and add i
′
to the thread’s instruction_tree as a successor of i.

This involves only the thread, not the storage subsystem, as we assume a fixed program rather

than modelling fetches with memory reads; we do not model self-modifying code.

Initiate memory reads of load instruction An instruction instance i with next state

Read_mem(read_kind, address, size, read_cont) can initiate the corresponding memory reads. Action:

(1) Construct the appropriate read requests rrs:

• if address is aligned to size then rrs is a single read request of size bytes from address;

• otherwise, rrs is a set of size read requests, each of one byte, from the addresses ad-

dress. . .address+size-1.
(2) set i.mem_reads to rrs; and

(3) update the state of i to Pending_mem_reads read_cont.

Satisfy memory read by forwarding from writes For a load instruction instance i in state

Pending_mem_reads read_cont, and a read request, r in i.mem_reads that has unsatisfied slices, the

read request can be partially or entirely satisfied by forwarding from unpropagated writes by store

instruction instances that are po-before i, if the read-request-condition predicate holds. This is if:

(1) all po-previous dmb sy and isb instructions are finished;

(2) [
dmb ld/
dmb st] all po-previous dmb ld instructions are finished;

(3) [
release/

acquire
] if i is a load-acquire, all po-previous store-releases are finished; and

(4) [
release/

acquire
] all non-finished po-previous load-acquire instructions are entirely satisfied.

Letwss be the maximal set of unpropagated write slices from store instruction instances po-before

i (if i is a load-acquire, exclude store-exclusive writes), that overlap with the unsatisfied slices of r,

and which are not superseded by intervening stores that are either propagated or read from by this

thread. That last condition requires, for each write slice ws in wss from instruction i
′
:

• that there is no store instruction po-between i and i
′
with a write overlapping ws, and

• that there is no load instruction po-between i and i
′
that was satisfied from an overlapping

write slice from a different thread.

Action:

(1) update r to indicate that it was satisfied by wss; and

(2) restart any speculative instructions which have violated coherence as a result of this, i.e., for

every non-finished instruction i
′
that is a po-successor of i, and every read request r

′
of i

′
that

was satisfied from wss
′
, if there exists a write slice ws

′
in wss

′
, and an overlapping write slice

from a different write in wss, and ws
′
is not from an instruction that is a po-successor of i,

restart i
′
and its data-flow dependents (including po-successors of load-acquire instructions).

Note that store-release writes cannot be forwarded to load-acquires: a load-acquire instruction

cannot be satisfied before all po-previous store-release instructions are finished, and wss does not

include writes from finished stores (as those must be propagated).

Satisfymemory read frommemory For a load instruction instance i in state Pending_mem_reads
read_cont, and a read request r in i.mem_reads, that has unsatisfied slices, the read request can be

satisfied from memory if i is not a successful load-exclusive or no other successful load-exclusive

from a different thread has an outstanding lock on the writes r is trying to read from.

If: the read-request-condition holds (see previous transition).

, Vol. 1, No. 1, Article . Publication date: October 2017.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Simplifying ARM Concurrency :7

Action: let wss be the write slices from memory covering the unsatisfied slices of r, and apply

the action of Satisfy memory read by forwarding from writes. In addition, if i is a successful

load-exclusive, union wss with the set of write slices r is mapped to in the exclusives map.

Note that Satisfy memory read by forwarding from writes might leave some slices of the read

request unsatisfied. Satisfy memory read from memory, on the other hand, will always satisfy all

the unsatisfied slices of the read request.

Complete load instruction (when all its reads are entirely satisfied) A load instruction in-

stance i in state Pending_mem_reads read_cont can be completed (not to be confused with finished)

if all the read requests i.mem_reads are entirely satisfied (i.e., there are no unsatisfied slices).

Action: update the state of i to Plain (read_cont (memory_value)), where memory_value is assem-

bled from all the write slices that satisfied i.mem_reads.

Guarantee the success of store-exclusive A store-exclusive instruction instance i with next

state Excl_res(res_cont) can be guaranteed to succeed if:

(1) the store-exclusive has not been made to fail (as recorded in i.successful_exclusive);

(2) assuming i is successful, it can be paired with a load-exclusive i
′
(see §1.2); and

(3) if i
′
has already been satisfied (not necessarily entirely), let wss be the set of propagated write

slices i
′
has read from, then, no slice in wss has been overwritten (in memory) by a write from

this thread, and no other successful load-exclusive from a different thread has an outstanding

lock on a write slice from wss.

Action:

(1) record in i.successful_exclusive that the store-exclusive will be successful;

(2) if i
′
has already been satisfied, union wss with the set of write slices the read request of i

′
is

mapped to in the exclusives map, where wss is as above; and

(3) update the state of i to Plain (res_cont (true)).

Make a store-exclusive failA store-exclusive instruction instance iwith next state Excl_res(res_con-

tinuation) can be made to fail if the store-exclusive has not been guaranteed to succeed (as recorded

in i.successful_exclusive) Action:

(1) record in i.successful_exclusive that the store-exclusive was made to fail; and

(2) update the state of i to Plain (res_cont (false)).

Note the promise-success transition is enabled before the store-exclusive commits, and we do not

require it to have a fully-determined address or to be non-restartable. As a result, a store-exclusive

that has already promised its success might be restarted. Since other instructions may rely on

its promise, the restart will not affect the value of i.successful_exclusive. Instead, when the store-

exclusive is restarted it will take the same promise/failure transition as before its restart — based

on the value of i.successful_exclusive.

Initiate memory writes of store instruction, with their footprints An instruction instance

i with next state Write_ea(write_kind, address, size, next_state
′
) can announce its pending write

footprint. Action:

(1) construct the appropriate write requests:

• if address is aligned to size then ws is a single write request of size bytes to address;

• otherwise ws is a set of size write requests, each of one byte size, to the addresses ad-

dress. . .address+size-1.
(2) set i.mem_writes to ws; and

(3) update the state of i to Plain next_state
′
.

, Vol. 1, No. 1, Article . Publication date: October 2017.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

:8 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell

Note that at this point the write requests do not yet have their values. This state allows non-

overlapping po-following writes to propagate.

Instantiate memory write values of store instruction An instruction instance i with next state

Write_memv(memory_value, write_cont) can initiate the corresponding memory writes. Action:

(1) split memory_value between the write requests i.mem_writes; and

(2) update the state of i to Pending_mem_writes write_cont.

Commit store instruction For an uncommitted store instruction i in state Pending_mem_writes

write_cont, i can commit if:

(1) i has fully determined data (i.e., the register reads cannot change, see §1.5);

(2) all po-previous conditional branch instructions are finished;

(3) all po-previous dmb sy and isb instructions are finished;

(4) [
dmb ld/
dmb st] all po-previous dmb ld instructions are finished;

(5) [
release/

acquire
] all po-previous load-acquire instructions are finished;

(6) all po-previous store instructions, except for store-exclusives that failed, have initiated and

so have non-empty mem_writes;

(7) [
release/

acquire
] if i is a store-release, all po-previous memory access instructions are finished;

(8) [
dmb ld/
dmb st] all po-previous dmb st instructions are finished;

(9) all po-previous memory access instructions have a fully determined memory footprint; and

(10) all po-previous load instructions have initiated and so have non-empty mem_reads.

Action: record i as committed.

Propagate memory write For an instruction i in state Pending_mem_writes write_cont, and an

unpropagated write, w in i.mem_writes, the write can be propagated if:

(1) all memory writes of po-previous store instructions that overlap w have already propagated

(2) all read requests of po-previous load instructions that overlap with w have already been

satisfied, and the load instruction is non-restartable (see §1.5);

(3) all read requests satisfied by forwarding w are entirely satisfied; and

(4) [exclusive] no successful load-exclusive from a different thread has an outstanding lock on a write

slice that overlaps with w.

Action:

(1) restart any speculative instructions which have violated coherence as a result of this, i.e., for

every non-finished instruction i
′
po-after i and every read request r

′
of i

′
that was satisfied

from wss
′
, if there exists a write slice ws

′
in wss

′
that overlaps with w and is not from w, and

ws
′
is not from a po-successor of i, restart i

′
and its data-flow dependents;

(2) record w as propagated;

(3) update the memory with w; and

(4) [exclusive] for every successful load-exclusive that has read from w (by forwarding), add the

slices of w this load-exclusive read from to the set of write slices the read request of the

load-exclusive is mapped to in the exclusives map.

Complete store instruction (when its writes are all propagated) A store instruction i in state

Pending_mem_writes write_cont, for which all the memory writes in i.mem_writes have been

propagated, can be completed. Action: update the state of i to Plain(write_cont(true)).

Commit barrier A barrier instruction i in state Plain next_state where next_state is

Barrier(barrier_kind, next_state
′
) can be committed if:

(1) all po-previous conditional branch instructions are finished;

, Vol. 1, No. 1, Article . Publication date: October 2017.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Simplifying ARM Concurrency :9

(2) [
dmb ld/
dmb st] if i is a dmb ld instruction, all po-previous load instructions are finished;

(3) [
dmb ld/
dmb st] if i is a dmb st instruction, all po-previous store instructions are finished;

(4) all po-previous dmb sy barriers are finished;

(5) if i is an isb instruction, all po-previous memory access instructions have fully determined

memory footprints; and

(6) if i is a dmb sy instruction, all po-previous memory access instructions and barriers are

finished.

Note that this differs from the previous Flowing and POP models: there, barriers committed in

program-order and potentially re-ordered in the storage subsystem. Here the thread subsystem is

weakened to subsume the re-ordering of Flowing’s (and POP’s) storage subsystem.

Action: update the state of i to Plain next_state
′
.

Register read An instruction instance i with next state Read_reg(reg_name, read_cont) can do a

register read if every instruction instance that it needs to read from has already performed the

expected register write.

Let read_sources include, for each bit of reg_name, the write to that bit by the most recent (in

program order) instruction instance that can write to that bit, if any. If there is no such instruction,

the source is the initial register value from initial_register_state. Let register_value be the assembled

value from read_sources. Action:

(1) add reg_name to i.reg_reads with read_sources and register_value; and

(2) update the state of i to Plain (read_cont(register_value)).

Register write An instruction instance i with next state Write_reg(reg_name, register_value,

next_state
′
) can do the register write. Action:

(1) add reg_name to i.reg_writes with write_deps and register_value; and

(2) update the state of i to Plain next_state
′
.

where write_deps is the set of all read_sources from i.reg_reads and a flag that is set to true if i is a

load instruction that has already been entirely satisfied.

Pseudocode internal step An instruction instance i with next state Internal(next_state
′
) can do

that pseudocode-internal step. Action: update the state of i to Plain next_state
′
.

Finish instruction A non-finished instruction i with next state Done can be finished if:

(1) if i is a load instruction:

(a) all po-previous dmb sy and isb instructions are finished;

(b) [
dmb ld/
dmb st] all po-previous dmb ld instructions are finished;

(c) [
release/

acquire
] all po-previous load-acquire instructions are finished;

(d) it is guaranteed that the values read by the read requests of i will not cause coherence

violations, i.e., for any po-previous instruction instance i
′
, let cfp be the combined footprint

of propagated writes from store instructions po-between i and i
′
and fixed writes that were

forwarded to i from store instructions po-between i and i
′
including i

′
, and let cfp

′
be the

complement of cfp in the memory footprint of i. If cfp
′
is not empty:

(i) i
′
has a fully determined memory footprint;

(ii) i
′
has no unpropagated memory write that overlaps with cfp

′
; and

(iii) If i
′
is a load with a memory footprint that overlaps with cfp

′
, then all the read requests

of i
′
that overlap with cfp

′
are satisfied and i

′
can not be restarted (see §1.5).

Here a memory write is called fixed if it is the write of a non-exclusive-store instruction

that has fully determined data.

(e) [
release/

acquire
] if i is a load-acquire, all po-previous store-release instructions are finished;

, Vol. 1, No. 1, Article . Publication date: October 2017.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

:10 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell

(2) i has fully determined data; and

(3) all po-previous conditional branches are finished.

Action:

(1) if i is a branch instruction, discard any untaken path of execution, i.e., remove any (non-

finished) instructions that are not reachable by the branch taken in instruction_tree; and

(2) record the instruction as finished, i.e., set finished to true.

1.5 Auxiliary Definitions

Fully determined An instruction is said to have fully determined footprint if the memory reads

feeding into its footprint are finished: A register write w, of instruction i, with the associated

write_deps from i.reg_writes is said to be fully determined if one of the following conditions hold:

(1) i is finished; or

(2) the load flag in write_deps is false and every register write in write_deps is fully determined.

An instruction i is said to have fully determined data if all the register writes of read_sources in

i.reg_reads are fully determined. An instruction i is said to have a fully determined memory footprint

if all the register writes of read_sources in i.reg_reads that are associated with registers that feed

into i’s memory access footprint are fully determined.

Restart condition To determine if instruction i might be restarted we use the following recursive

condition: i is a non-finished instruction and at least one of the following holds,

(1) there exists an unpropagated write w such that applying the action of the Propagate memory

write transition to s will result in the restart of i;

(2) there exists a non-finished load instruction l such that applying the action of the Satisfy

memory read from memory transition to l will result in the restart of i (even if l is already

entirely satisfied); or

(3) there exists a non-finished instruction i
′
that might be restarted and i is in its data-flow

dependents (including po-successors of load-acquire instructions).

1.6 Remarks about load/store exclusive instructions
The MCA ARMv8 architecture intends that the success bit of store exclusives does not introduce

dependencies, to allow (e.g.) hardware optimisations that dynamically replace load/store exclusive

pairs by atomic read-modify-write operations that can execute in the memory subsystem and there-

fore be guaranteed to succeed. The ARMv8-axiomatic definition assumes all address/data/control

dependencies to be from reads, not writes. In the operational model, matching this weakness has

proved to be difficult: it means the operational model must be able to promise the success or failure

of a store-exclusive instruction even before any of its registers reads/writes have been done, so

before the store-exclusive’s address and data are available. The early success promises are the

source of deadlocks in the operational model. To illustrate this consider, for example, the following

litmus test and a state where both a and e are satisfied and finished, and where b and f are not
propagated. Then d can promise its success, locking memory location x, and h can promise its

success, locking location y. But now there is a deadlock:

• For d to propagate c has to be committed and hence b propagated.

But b cannot propagate since y is locked.

• For h to propagate g has to be committed and hence f propagated.
But f cannot propagate since x is locked.

, Vol. 1, No. 1, Article . Publication date: October 2017.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Simplifying ARM Concurrency :11

Thread 0

a: Rex x=0

b: W y=2

po

c: dmb st

po

d: Wex x=1

po

Thread 1

e: Rex y=0

f: W x=2

po

g: dmb st

po

h: Wex y=1

po

co
co

rf rf

Similar situations arise from cases where there are other barriers or release/acquire instructions

in-between the load and the store exclusive, or if the store exclusive has additional dependencies

that the load exclusive does not have. These are cases that are not really intended to be supported

by the architecture.

The model can also currently deadlock if a load and a store-exclusive are paired successfully

but later turn out to have different addresses: if the store-exclusive promises its success before its

address is known it locks the matched load-exclusive’s memory location; when they later turns

out to be to a different addresses it never unlocks it. This issue can be fixed, but it is currently still

being clarified what exactly the architecturally allowed behaviour should be.

REFERENCES
Kathryn E. Gray, Gabriel Kerneis, Dominic Mulligan, Christopher Pulte, Susmit Sarkar, and Peter Sewell. 2015. An integrated

concurrency and core-ISA architectural envelope definition, and test oracle, for IBM POWER multiprocessors. In

Proc. MICRO-48, the 48th Annual IEEE/ACM International Symposium on Microarchitecture.

, Vol. 1, No. 1, Article . Publication date: October 2017.

	Abstract
	1 An operational model for MCA ARMv8
	1.1 Intra-instruction Pseudocode Execution
	1.2 Instruction Instance States
	1.3 Thread States
	1.4 Model Transitions
	1.5 Auxiliary Definitions
	1.6 Remarks about load/store exclusive instructions

	References

