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Abstract. Network programming is notoriously hard to understand: one has to deal with a
variety of protocols (IP, ICMP, UDP, TCP etc), concurrency, packet loss, host failure, time-
outs, the complex sockets interface to the protocols, and subtle portability issues. Moreover,
the behavioural properties of operating systems and the network are not well documented.

A few of these issues have been addressed in the process calculus and distributed algorithm
communities, but there remains a wide gulf between what has been captured in semantic
models and what is required for a precise understanding of the behaviour of practical dis-
tributed programs that use these protocols.

In this paper we demonstrate (in a preliminary way) that the gulf can be bridged. We
give an operational model for socket programming with a substantial fraction of UDP and
ICMP, including loss and failure. The model has been validated by experiment against actual
systems. It is not tied to a particular programming language, but can be used with any
language equipped with an operational semantics for system calls – here we give such a
language binding for an OCaml fragment. We illustrate the model with a few small network
programs.
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The UDP Calculus 1

1 Introduction

1.1 Background and Problem Distributed applications consist of many concurrently-executing
systems, interacting by network communication. They are now ubiquitous, but writing reliable code
remains challenging. Most fundamentally, concurrency introduces the classic (but still problematic)
difficulties of nondeterminism: large state spaces, deadlocks, races etc.. Additional difficulties arise
from intrinsic properties of networks: communication is asynchronous and lossy, and hosts are
subject to failure. The communication abstractions provided by standard protocols (IP, ICMP,
UDP, TCP etc.) are therefore necessarily more complex than simple message-passing or streams.
Further, the programmer must understand not only the protocols – the inter-machine communica-
tion disciplines – but also the library interface to them. There is a ‘standard’ networking library,
the sockets interface [CSR83,IEE00], lying between applications and the protocol endpoint code
on a machine; the programmer must deal with what is visible through this interface, which has a
subtle relationship to the underlying protocols. This relationship, and the behaviour of the sockets
interface, has not been precisely described, and varies between implementations.
To provide a rigorous understanding of these issues requires precise mathematical models of the

behaviour of distributed systems. Such models can (1) improve our informal understanding and
system-building, (2) underpin proofs of robustness and security properties of particular programs,
and (3) support the design, proof and implementation of higher-level distributed abstractions.
Previous work on the theories of distributed algorithms and of process calculi has developed

models and reasoning techniques for concurrency and failure, but these models are generally rather
abstract and/or idealised: to our knowledge, none address the sockets interface and the behaviour
it makes visible, most ignore interesting aspects of the core protocols, and most do not support
reasoning about executable code. The protocols and sockets interface are worth detailed attention
– they are implemented on almost all machines, and underlie higher-level services, including those
providing resilience against failure and attack.

1.2 Contribution We give a model that provides a rigorous understanding of the sockets inter-
face and UDP, in realistic networks. To this we add an operational semantics for a programming
language (an ML fragment), allowing reasoning about executable distributed programs. We have:

– carefully chosen a useful fragment of the sockets interface and built a thin layer of abstraction
above it, focussing on UDP as a starting-point;

– constructed an experimentally-validated operational semantics that covers concurrency, asyn-
chrony, failure and loss;

– developed language-independent semantic idioms for interaction between an application thread,
its host OS, and the network;

– instantiated the model with a semantics for an executable fragment of OCaml, MiniCaml ; and
– exercised our semantics by proving properties of some small example distributed programs.

Taken together, the above also provide a theorists’ introduction to sockets/UDP programming.

1.3 Experimental Semantics A key goal of our work is to provide a clear and close corre-
spondence between our semantics and the behaviour of actual systems. To achieve this, we cannot
alter the extant widely-deployed OS networking code; the most we can do is choose which fragment
to model, and add a thin regularising layer above it. Even then, the systems are too complex to
analyse and hence derive an accurate semantics: consider the body of machine code and hardware
logic embedded in their operating systems, machines, network cards and routers. We are forced
therefore both to invent an appropriate level of abstraction at which to express our semantics,
and to experimentally determine and validate that semantics. We call this activity experimental
semantics.
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In our case, the semantics is expressed at the level of the system calls used to communicate
between the application language and the operating system sockets code. It was initially based
on the relevant natural-language documentation (man pages, RFCs [Pos80,Pos81,Bra89], the Posix
standard [IEE00], and standard references [Ste98,Ste94]), and on inspection of the sources of the
Linux implementation. We validated the semantics by a combination of ad hoc and automated test-
ing: writing code that interacted with the C sockets interface in the described ways, and confirming
that the resulting behaviour corresponded with our model.
To date, the semantics has only been validated against the Linux implementation (in fact,

against the Red Hat 7.0 distribution, kernel version 2.2.16-22, glibc 2.1.92). We intend also to use
our automated test scripts to identify differences with BSD and with Windows operating systems,
if possible picking out a useful common core.

1.4 Overview In the remainder of this section, we give a very brief informal introduction to
networks, the protocols IP, UDP, and ICMP, and the sockets interface to them. We then discuss
our choice of what to include in the model, and its structure, and highlight some subtleties that
must be understood for reliable programming.
In Sections 2 and 3 we describe the model, making these subtleties precise. Section 4 outlines

the MiniCaml programming language we adopt for expressing distributed programs, a fragment of
OCaml 3.00 [L+00]. The details, most of which are standard, are deferred to Appendices A and B.
Section 5 discusses our experimental setup and validation. The semantics is illustrated with a

few small examples in Section 6. Finally, we discuss related work and conclude in Sections 7 and
8.

1.5 Background: Networks and Protocols, Informally At the level of abstraction of our
model, a network consists of a number of machines connected by a combination of LANs (eg. ether-
nets) and routers(we discuss in the remainder of the paper how the model relates to actual systems).
Each machine has one or more IP addresses i , which are 32-bit values such as 192.168.0.11. The
Internet Protocol (IP) allows one machine to send messages (IP datagrams) to another, specifying
the destination by one of its IP addresses. IP datagrams have the form

IP(i1 , i2 , body)

where i1 and i2 are the source and destination addresses. The implementation of IP (consisting
of the routers within the network and the protocol endpoint code in machines) is responsible
for delivering the datagram to the correct machine. We can therefore abstract from routing and
network topology, and depict a network as below (in fact this is our test network). We can therefore
abstract from routing and network topology, and depict a network as below (in fact this is our test
network). Delivery is asynchronous and unreliable – IP does not provide acknowledgments that
datagrams are received, or retransmit lost messages.
UDP (the User Datagram Protocol) is a thin layer above IP that provides multiplexing. It

associates a set {1, .., 65535} of ports to each machine; a UDP datagram

IP(i1 , i2 ,UDP(ps1 , ps2 , data))

is an IP datagram with a body of the formUDP(ps1 , ps2 , data), containing a source and destination
port and a short sequence of bytes of data.
ICMP (the Internet Control Message Protocol) is another thin layer above IP dealing with

some control and error messages. Here we are concerned only with two, relating to UDP:

IP(i1 , i2 , ICMP PORT UNREACH(i3 , ps3 , i4 , ps4 )), and
IP(i1 , i2 , ICMP HOST UNREACH(i3 , ps3 , i4 , ps4 )).
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LinuxWin2K

kurt

Linux Win2K

192.168.0.12

alanemil

192.168.0.13 192.168.0.14

astrocytejohn

Linux

192.168.0.1

IP(192.168.0.14, 192.168.0.11, ICMP PORT UNREACH(..))

IP(192.168.0.11, 192.168.0.14,UDP(..))

192.168.0.21
192.168.0.11

The first may be generated by a machine receiving a UDP datagram for an unexpected port; the
second is sometimes generated by routers on receiving unroutable datagrams.

TCP (the Transmission Control Protocol) is a rather thicker layer above IP that provides bidi-
rectional stream communication, with flow control and retransmission of lost data. Most networked
applications are built above TCP, with some use of UDP, but we do not yet consider it.

The protocol endpoint code on a machine, implementing the above, is depicted below (together
with LIB, which we define in §2.1.5).

UDPICMP TCP

IP

LIB

interface
Device

interface
C sockets

1.6 Background: The Sockets Interface, Informally To show how application programs
can interact with the UDP endpoint code on their machines, we give the simplest possible example
of two programs communicating a single UDP datagram. We describe a small part of the sockets
interface informally, presenting only a crude intuition of the behaviour. The sender and receiver
programs, es and er respectively, are below. They are written in MiniCaml (with some typographic
conventions automatically applied to the executable code).

es = er =

let p = port_of_int 7654 in
let i = ip_of_string "192.168.0.11" in
let fd = socket() in
let = connect(fd , i , ↑p) in
let = print_endline_¤ush "sending" in
sendto(fd , ∗, "hello", false)

let p′ = port_of_int 7654 in
let i ′ = ip_of_string "192.168.0.11" in
let fd ′ = socket() in
let = bind(fd ′, ↑i ′, ↑p′) in
let = print_endline_¤ush "ready" in
let ( , , v) = recvfrom(fd ′, false) in
print_endline_¤ush v
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Here the ∗ and ↑ are the constructors of option types T↑. The example involves types fd of file
descriptors, ip of IP addresses, and port of ports 1..65535, and library calls

socket : () → fd

bind : fd ∗ ip↑ ∗ port↑ → ()
connect : fd ∗ ip ∗ port↑ → ()
sendto : fd ∗ (ip ∗ port)↑ ∗ string ∗ bool→ ()
recvfrom : fd ∗ bool → ip ∗ port↑ ∗ string
port_of_int : int → port

ip_of_string : string → ip

print_endline_¤ush : string → ()

(these calls may raise exceptions indicating a variety of errors). The sender program es, which
should be run on alan, defines a port p and an IP address i (in fact one of machine kurt)
and creates a new socket. A socket consists of assorted data maintained by the OS, including an
identifier (a file descriptor, which here will be bound to fd) and a pair of ‘local’ and ‘remote’ pairs
of an IP address and a port. These are used for matching incoming datagrams and addressing
outgoing datagrams. Program es then sets the remote pair of the socket to i and p using connect,
and sends a UDP datagram via fd with body "hello".
The receiver er, which should be run on kurt, defines i ′ and p′ to be the same IP address and

port, creates a new socket fd ′, sets the local pair of fd ′ to permit reception of datagrams sent to
(i ′, p′), and prints "ready". It then blocks, waiting for a datagram to be received by the socket,
after which it prints the datagram body.
If es and er are run on alan and kurt respectively (but er is started first), and there is no

failure in either machine or the network, a single UDP datagram will be sent from one machine to
the other.

1.7 Choices: What to Model? To address the issues of §1.1, and support the desired rigorous
understanding, the model must satisfy several criteria.

1. It must have a clear relationship (albeit necessarily informal) to what goes on in actual systems;
it must be sufficiently accurate for reasoning in the model to provide assurances about the
behaviour of those systems. For this, it is essential to include the various failures that can
occur.

2. It must cover a large enough fragment of the network protocols and sockets interface to allow
interesting distributed algorithms to be expressed. In particular, we want to provide as much
information about failure as possible to the programmer, to support failure-aware algorithms.

3. In tension with both of these, the model must be as simple as possible, for reasoning to be
tractable.

The full range of network protocols and OS interactions is very large by the standards of semantic
definitions. As a starting point, in this paper we choose to address (unicast) UDP and the associated
part of ICMP, with a single thread of control per machine, in a flat network. We choose the fragment
of the sockets interface that is most useful for programming in these circumstances, and deal with
the sockets interface view of message loss, host failure and various local errors. For simplicity, we
do not as yet deal with any of the following, despite their importance.

– TCP, and associated ICMP messages
– broadcast and multicast UDP communication
– multithreaded machines and inter-thread communication
– other IO primitives (in this paper we choose, minimally, ‘print’ and ‘exit’)
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– persistent storage
– network partition (especially for machines with intermittent connections)
– DNS
– IPv6 protocols
– machine reconfiguration and other privileged operations (eg. changing IP addresses)

We are not modelling the implementation of IP (routing, fragmentation etc.) or lower levels (Eth-
ernet, ARP, etc.), as we aim to support reasoning about distributed applications and algorithms
above IP, rather than implementations of low-level network protocols.
The standard sockets interface is a C language library. To avoid dealing with irrelevant com-

plexities of a C interface (weak typing and explicit memory management) we introduce a thin
abstraction layer, providing a clean strongly-typed view (we also clean up the interface by omit-
ting redundancy). This LIB interface is defined in Figure 3; it was shown in the diagram at the
end of §1.5.
In this paper we describe only an interleaving semantics. We anticipate that it will be straight-

forward to add fairness constraints, which are required for reasoning about non-trivial examples,
and intend to investigate lightweight timing annotations, for more precise properties about exam-
ples involving time-outs. The model is not intended for quantitative probabilistic reasoning, eg. for
quality of service issues. It may, however, provide a useful model for reasoning about some forms
of malicious attack – eg. for networks with some malicious hosts, though with our flat network
topology we do not deal with firewalls.
Blocking system calls are a key aspect of sockets programming, so it is natural to deal with

sequential threads, rather than a concurrent programming language with language-level parallelism
(for which blocking system calls would block the entire runtime).

1.8 Structuring the Model (and Language Independence) We want to reason about
executable implementations of distributed algorithms, expressed in some programming language(s),
not in a modelling language. We do not wish to fix on a single language, however, as the behaviour
of the sockets interface and network is orthogonal to the programming language used to express
the computation on each machine. We therefore factor the model, allowing threads to be arbitrary
labelled transition systems (LTSs) of a certain form. One can extend the operational semantics
of a variety of languages with labelled transitions, for library calls and returns, so that programs
denote these LTSs (values used by the sockets interface are all of rather simple types, not involving
callbacks, so this is straightforward). In this paper we do so for a fragment of OCaml, with functions,
references and exceptions. This allows our example programs to be executed without change, by
linking them with a module providing our thin layer of abstraction, LIB, above the OCaml sockets
library (in turn implemented above the C library).
It will be convenient to be able to describe partial systems, for example to consider the interac-

tions between the collection of all threads and the rest of the system, so we allow hosts and their
threads to be syntactically separated. Networks therefore consist of a parallel composition of IP
datagrams, hosts (each with a state v , giving the host’s IP addresses, states of sockets etc.), and
threads (each with a state e of an LTS). The precise definition is in §2.1.6, which uses the grammar
below.

N ::= 0 empty
N | N parallel composition
IP v IP datagram in transit
n·Host v host n, with state v
n·e thread of host n, with state e

The host semantics – the heart of the model – is outlined in §2.3. The behaviour of networks is
defined in §2.2.6 by a structural operational semantics (SOS), combining the LTSs of hosts and
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threads, using process-calculus techniques (we give a direct operational semantics, rather than a
complex encoding into an existing calculus).

1.9 It’s Not Really So Easy The informal introductions to the protocols and sockets interface
in §§1.5,1.6 above give a deceptively simple view. Real network programming must take into account
the following, all of which are captured in our model:

1. IP addresses and ports with zero values have special meanings, being treated roughly as wild-
cards, both in the arguments to bind, connect, etc. and in the socket states. Our ip and port are
types of non-zero IP addresses and ports; we use option types ip↑ and port↑ where the zero
values (∗) may occur.

2. The system-call interactions between a thread and its host are weakly coupled to the interac-
tions between a host and the network. Messages may arrive at a machine, and be processed (and
buffered) by the network hardware and OS, at almost any time. The sendto and recvfrom calls
can block, until there is queue space to send a message or until a message arrives, respectively.
Further, select allows blocking until one of a number of file descriptors is ready for reading or
writing, or a specified time has elapsed. Communication between hosts is asynchronous, due
both to buffering and the physical media.

3. Machines can fail; messages can be lost, reordered, or duplicated. There is buffering (and
potential loss) at many points: in the operating system, in the network cards, and in the network
routers. UDP provides very little error detection and no recovery. UDP datagrams typically
contain a checksum (here we idealise, assuming that the checksum is perfect and hence that
all corrupted datagrams are discarded). More interestingly, remote failure can sometimes be
detected: a machine receiving a UDP datagram addressed to a port that does not have an
associated socket may send back an ICMP message. These can asynchronously set an error flag
in the originating socket, giving rise to an error from a blocked or future library call.

4. Many local errors are possible, for example (just considering bind): a port may be already in
use or in a privileged range; an IP address may not belong to the machine; the OS may run
out of resources; the file descriptor may not identify a socket. In MiniCaml, these are reported
via exceptions, which may be caught and handled.

5. Machines can have more than one IP address – in fact, a machine may have several interfaces,
each of which has a primary IP address and possibly also other alias IP addresses. Typically
each interface will correspond to a hardware device, but a machine will also have a loopback
interface which echoes messages back.

6. The sockets interface includes assorted other functionality – further library calls, socket options
etc.



The UDP Calculus 7

2 UDP – The Model

We now introduce the UDP Calculus, our model of the network and of the sockets interface to UDP.
This section gives the basic structure and definitions, and explanation of important points. The
heart of the model, the detailed operational semantic rules for hosts, is given in Section 3. Section 2.1
presents the static structure of the model, Section 2.2 explains the interactions between parts of
the model, Section 2.3 illustrates the host semantics by means of some key rules, and Section 2.4
discusses some sanity results. For the most part we speak as if the model and actual systems
coincide, though some points of abstraction, idealisation and modelling choice are discussed. This
section is arranged in a tutorial order rather than the strict bottom-up order of definitions; an
index is provided at the end of the document.

2.1 Statics: Types, Values, and Judgements

The model is largely built from the types T shown in Figure 1, which have values v composed of
the constructors c ∈ Con given in Figure 2; constructors can be polymorphic. Each constructor
has a natural number arity and a non-empty set of sequences (of length one plus that arity) of
types; the sequences are written with arrows → , suggestively. Values are terms of

v ::= c v1..vn arity(c) = n

(quotiented by equations for finite set equality at T set types) with typing judgement ` v :T
defined by the rule:

c :T1→ ..→Tn→T
` vi :Ti i = 1..n

` c v1..vn :T

In addition, a number of invariants, on messages, interface descriptor sets, socket descriptors, and
hosts, are expressed by judgements

` v msg-ok ` v ifd-set-ok ` v socket-ok(ifds) ` v host-ok

(defined below) which strengthen the associated typing statements. The main formation judgement,
for networks, has the form ` N network.

Notation:We typically let i , p, e, tm range over values of types ip, port, error, int, and is, ps, es , tms
over values of types ip↑, port↑, error↑, int↑. The infix list append operation is written @, we write
[e1 , .., en] for e1 :: (... :: (en ::nil)), and where e1 :T list and e2 :T we abuse notation by writ-
ing e1 :: e2 for e1@[e2 ]. We use list comprehensions [x | x ∈ xseq ∧ P (x)]. For a set X, write
orderings(X) for the obvious set of lists.

2.1.1 Messages IP datagrams m, which may carry either a UDP or ICMP payload, are values
of type msg, all of which are of one of the forms below.

IP(i1 , i2 ,UDP(ps1 , ps2 , data))
IP(i1 , i2 , ICMP PORT UNREACH(i3 , ps3 , i4 , ps4 ))
IP(i1 , i2 , ICMP HOST UNREACH(i3 , ps3 , i4 , ps4 ))

Here i1 : ip and i2 : ip are the source and destination IP addresses. UDP datagrams contain a source
and destination port ps1 : port↑ and ps2 : port↑, and a string of octets data : string. In unusual cases
the ports may be zero (see §2.3.19) so we use port↑ rather than simply port. ICMP datagrams
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T ::= int

bool

string

() unit type
T1 ∗ .. ∗ Tn tuple (n ≥ 2)
T list list
T↑ optional type
T err T or error
void empty type

fd file descriptor
ip IP address
port port
error OS error
netmask netmask
ifid interface descriptor
sockopt socket options



















































































































TL

T set finite set
ipBody body of IP datagram
msg IP datagram
ifd interface descriptor table entry
flags flags from socket descriptor table entry
socket socket descriptor table entry
hostid unique identifier of a host
hostThreadState the OS view of a thread
host a single host

The clauses annotated by TL form a subgrammar of T , the language types. All values passed between
a thread and its host OS are of a language type.

Fig. 1. Types

contain the source and destination IP addresses and ports of the UDP datagram that generated
them, i3 , i4 : ip and ps3 , ps4 : port↑. We expect any reasonable ICMP to have i1 = i4 and i2 = i3 ,
but do not enforce this.
The maximum size of data is UDPpayloadMax = 65507 (see §2.3.16). Define ` IP(i1 , i2 , body)msg-ok

if ` IP(i1 , i2 , body) :msg and also body = UDP(ps1 , ps2 , data) implies size(data) ≤ UDPpayloadMax.
Certain pathological IP addresses, and messages containing them, are described as martian;

we define a predicate martian(m) in §2.3.23. In certain contexts such addresses do not appear;
we therefore define ` IP(i1 , i2 , body)msg-oq-ok if ` IP(i1 , i2 , body)msg-ok ∧ i1 6∈ MARTIAN ∧

(body = ICMP PORT UNREACH(i3 , ps1 , i4 , ps2 , data) =⇒ {i3 , i4} ∩ MARTIAN = ∅) ∧
¬(∃v .body = ICMP HOST UNREACH v).

2.1.2 Hosts and Threads We separate a running machine into two parts: the host, representing
the machine itself and its operating system; and the thread, representing the application program
controlling it. Threads are explained in §2.2.5. A host is of the form:

Host(ifds , t , s, oq , oqf )

A host has a set ifds : ifd set of interfaces, each with a set of IP addresses. Interfaces are explained in
§§2.1.3, 2.3.24; we assume all hosts have at least a loopback interface and one other. We sometimes
write i ∈ ifds to mean ‘i is an IP address of one of the interfaces in ifds’. The operating system’s
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Partition Con into the language constructors:

..,−1, 0, 1, 2, .. : int

true, false : bool

octet-sequence : string

() : ()
( , .. , ) (mixfix) : T1→ ..→Tn→T1 ∗ .. ∗ Tn n ≥ 2
nil : T list

:: (infix) : T →T list→T list

∗ : T↑
↑ : T →T↑
OK : T →T err

Fail : error→T err

1..232 − 1 : ip

1..65535 : port

fd3, fd4, . . . : fd

lo, eth0, eth1, . . . : ifid
∑

i∈j..31 2i : netmask for 0 ≤ j ≤ 31

SO BSDCOMPAT,SO REUSEADDR : sockopt

EACCES, EADDRINUSE, EADDRNOTAVAIL, EAGAIN, EBADF,
ECONNREFUSED, EHOSTUNREACH, EINTR, EINVAL, EMFILE,
EMSGSIZE, ENFILE, ENOBUFS, ENOMEM, ENOTCONN,
ENOTSOCK : error

and the non-language constructors:

IP : ip ∗ ip ∗ ipBody → msg

UDP : port↑ ∗ port↑ ∗ string → ipBody

ICMP HOST UNREACH : ip ∗ port↑ ∗ ip ∗ port↑ → ipBody

ICMP PORT UNREACH : ip ∗ port↑ ∗ ip ∗ port↑ → ipBody

Host : ifd set ∗ hostThreadState ∗ socket list ∗msg list ∗ bool → host

Sock : fd ∗ ip↑ ∗ port↑ ∗ ip↑ ∗ port↑ ∗ error↑ ∗ flags ∗ (msg ∗ ifid) list→ socket

IF : ifid ∗ ip set ∗ ip ∗ netmask → ifd

Run : hostThreadState

Term : hostThreadState

RetTL : TL → hostThreadState

Sendto2 : fd ∗ (ip ∗ port)↑ ∗ string → hostThreadState

Recvfrom2 : fd → hostThreadState

Select2 : fd list ∗ fd list ∗ int↑ → hostThreadState

Print2 : string → hostThreadState

Flags : bool ∗ bool → flags

alan, kurt, astrocyte, . . . : hostid

Elements of T set are written {v1 , .. , vn}. The TL subscript of RetTL will usually be elided.

Fig. 2. Constructors
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view of the thread state is stored in t : hostThreadState: the thread may be running (Run), termi-
nated (Term), or waiting for the OS to return from a call. In the last case, the OS may be about
to return a value from a fast system call (Ret v) or the thread may be blocked waiting for a slow
system call to complete (Sendto2 v , Recvfrom2 v , Select2 v , Print2 v). The host’s current
list of sockets is given by s : socket list. The outqueue, a queue of outbound IP messages, is given
by oq :msg list and oqf : bool, where oq is the list of messages and oqf is set when the queue is full
(see §2.3.18).

The host invariant ` Host v host-ok requires that the interface set ifds, sockets s and messages
in the outqueue oq satisfy their respective invariants, if the outqueue oq is empty then the outqueue
full flag oqf is false, that the host thread state is sensible, and that no two sockets share a file
descriptor. It is defined by the rule

` ifds ifd-set-ok
` t : hostThreadState
` s : socket list ∧ ∀Sock v ∈ s . ` Sock v socket-ok(ifds)
` oq :msg list ∧ ∀m ∈ oq . ` mmsg-oq-ok
` oqf : bool
oq = [ ] =⇒ oqf = false

t = Sendto2 (fd , ips, data) =⇒ fd ∈ sockfds(s) ∧ (ips 6= ∗ ∨ is2 (s, fd) 6= ∗) ∧ ps1 (s, fd) 6= ∗
t = Recvfrom2 fd =⇒ fd ∈ sockfds(s) ∧ ps1 (s, fd) 6= ∗
t = Select2 (readseq ,writeseq , tms) =⇒ readseq@writeseq ⊆ sockfds(s) ∧ ¬∃tm < 0 . tms = ↑tm
¬(s = s1@Sock v1@s2@Sock v2@s3 ∧ sockfd(Sock v1 ) = sockfd(Sock v2 ))

` Host(ifds, t , s, oq , oqf ) host-ok

Here, for ` Sock v : socket and ` s : socket list, define

sockfd(Sock(fd , , , , , , ) = fd
sockfds(s) = map sockfd s

For s = s1@Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq)@s2 a socket list with no repeated fd ’s, take
is1 (s, fd) = is1 etc..

For convenience, we define several classes of contexts that build a host, and one that builds a
socket list:

H ( ) ::= Host(ifds , , s, oq , oqf )
Q( 1, 2, 3) ::= Host(ifds , 1, 2, oq , 3)
F ( 1, 2, 3) ::= Host( 1, 2, s1@[ 3]@s2 ), oq , oqf )
S( ) ::= s1@[ ]@s2

There are no implicit typing constraints on these contexts, but we will only use well-typed instanti-
ations of them. For F as above, define socks(F ) = s1@s2 (this will only be used where the socket in
the hole of F is fully wildcarded). We abuse notation, writing Sock v ∈ F for Sock v ∈ socks(F ).

It is also useful to pick out the host thread states that are specific to a single fd :

OP2 ( ) ::= Sendto2 ( , v , data)
Recvfrom2 ( )
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Define htsType(t), giving either Run or a language type for each t : hostThreadState, as below.
This gives the type of values (if any) to be returned to the thread. It is lifted to hosts in the obvious
way.

htsType(Run) = Run

htsType(RetTL) = TL
htsType(Sendto2 v) = () err
htsType(Recvfrom2 v) = (ip ∗ port↑ ∗ string) err
htsType(Select2 v) = (fd list ∗ fd list) err
htsType(Print2 v) = () err
htsType(Term) = void

2.1.3 Interfaces (1) Each host has a set ifds of interfaces, of the form

{ IF(ifid j , isetj , iprimaryj ,netmask j) | j ∈ J },

where each ifid j : ifd is an interface identifier (unique within this host), iset j : ip set is the set of IP
addresses of this interface, iprimary j : ip is its primary IP address (which must be in iset j), and
netmask j : netmask is its netmask. We sometimes abuse notation, writing i ∈ ifds ⇐⇒ ∃j ∈ J.i ∈
isetj . We suppose each host has a loopback interface and at least one other, and impose a number
of other sanity conditions, defining ` ifds ifd-set-ok in §2.3.24.

2.1.4 Sockets The central abstraction of the sockets interface is the socket. It represents a
communication endpoint, specifying a local and a remote pair of an IP address and UDP port,
along with other parts of the protocol implementation state. It is of the form

Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq)

A socket is uniquely identified within the host by its file descriptor fd : fd. (Note that file descriptors
of closed sockets may be reused.) The local and remote address/port pairs are is1 : ip↑, ps1 : port↑
and is2 : ip↑, ps2 : port↑ respectively; wildcards may occur. These 4-tuples are used both for filling in
the details in outgoing messages and for matching incoming messages, to determine which socket (if
any) they should be delivered to. Asynchronous error conditions store the pending error in the error
flag es : error↑. An assortment of socket parameters are stored in f : flags. The elements of flags are
Flags(bc, ra), where bc : bool and ra : bool record the SO BSDCOMPAT and SO REUSEADDR

socket options. Finally, mq : (msg∗ ifid) list is a queue of incoming messages that have been delivered
to this socket but not yet received by the application.
We define helper functions for manipulating the flags:

bsdcompat Flags(bc, ) = bc
reuseaddr Flags( , ra) = ra
setbsdcompat (Flags( , ra), bc) = Flags(bc, ra)
setreuseaddr (Flags(bc, ), ra) = Flags(bc, ra)

The socket invariant ` Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq) socket-ok(ifds) is parametric on an
ifds. It requires the components to be well typed (` Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) : socket);
the 4-tuple (is1 , ps1 , is2 , ps2 ) to be in one of the forms

(∗, ∗, ∗, ∗)
(∗, ↑p1 , ∗, ∗)
(↑i1 , ↑p1 , ∗, ∗)
(↑i1 , ↑p1 , ↑i2 , ∗)
(↑i1 , ↑p1 , ↑i2 , ↑p2 )
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with i1 ∈ ifds; the messages in mq to be sensible (∀(m, ifid) ∈ mq . ` mmsg-ok ∧ ¬martian(m));
and if the 4-tuple is (∗, ∗, ∗, ∗) then mq = nil and es = ∗.

2.1.5 The Sockets Interface A library interface defines the form of the interactions between
a thread and a host, specifying the system calls that the thread can make. A library interface
consists of a set of calls, each with a pair of language types (we have no need for polymorphic
library calls). We take a library interface LIB, shown in Figure 3, consisting of the sockets interface
together with some basic OS operations.

The sockets interface:
socket : () → fd err

bind : fd ∗ ip↑ ∗ port↑ → () err
connect : fd ∗ ip ∗ port↑ → () err
disconnect : fd → () err
getsockname : fd → (ip↑ ∗ port↑) err
getpeername : fd → (ip↑ ∗ port↑) err
sendto : fd ∗ (ip ∗ port)↑ ∗ string ∗ bool → () err
recvfrom : fd ∗ bool → (ip ∗ port↑ ∗ string) err
geterr : fd → error↑ err
getsockopt : fd ∗ sockopt → bool err

setsockopt : fd ∗ sockopt ∗ bool → () err
close : fd → () err
select : fd list ∗ fd list ∗ int↑ → (fd list ∗ fd list) err
port_of_int : int → port err

ip_of_string : string → ip err

getifaddrs : () → (ifid ∗ ip ∗ ip list ∗ netmask) list err

Basic operating system operations:
print_endline_¤ush : string → () err
exit : () → void

Fig. 3. The library interface LIB

All of the sockets interface calls return a value of some type T err to the thread, which can be
either OK v for v :T or Fail e for a Unix error e : error. A language binding may map these error
returns into exceptions, as the MiniCaml binding of §4 does. The approximate meanings of the
sockets interface calls are as follows.
Calling socket() creates a new socket, returning a file descriptor that other calls can use to refer

to it. Its local and remote IP/port pairs can be set by bind, connect, and disconnect, and examined
with getsockname and getpeername.
A UDP datagram can be sent with sendto(fd , ips, data, b). The destination address may be

specified explicitly (ips = ↑(i , p)), or left to the socket to determine (ips = ∗). The data is simply
a string of octets. The b : bool specifies whether the call should return immediately if the outqueue
is full, or block until the datagram can be queued.
A UDP datagram can be received with recvfrom(fd , b). If a message is available (ie., is on the

message queue mq of socket fd) then it will be returned, together with its originating IP address
and port. Otherwise, the call will return immediately if b = true, or block if b = false.
A socket may be in a pending error state (eg. set by an asynchronously-arriving ICMP message).

Various calls will return this error; it can also be explicitly examined and cleared by geterr.
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τ
alan·Host(..)

Host

Thread

alan·e

τ

alan·OK()

alan·console "hello"

alan·IP(..)

alan·sendto(..)

alan·IP(..)

IP(ialan, ikurt,UDP(1024, 7654, "hello"))

IP(ikurt, ialan, ICMP PORT UNREACH(..))

Network

Fig. 4. Thread, Host and Network

Sockets have a number of options, accessed by getsockopt and setsockopt. Option SO REUSEADDR

allows ports to be reused by different sockets. Option SO BSDCOMPAT affects the delivery of
ICMP messages to unconnected sockets.

Calling select(readseq ,writeseq , ↑tm) will block until one of the sockets in readseq has a message
ready for reading, one of those in writeseq is ready for writing, time tm elapses, or an error occurs. It
returns the sublists of all those ready. The non-blocking variant select(readseq ,writeseq , ∗) returns
immediately.

A socket can be closed using close fd , and the interfaces of a host can be examined using
getifaddrs.

We include injections port_of_int and ip_of_string for constructing values of types port and ip.
In this paper we have no need of injections for netmask or ifid, or the corresponding projections,
so they are omitted.

It is useful to pick out the operations that are specific to a single fd : (if ` fd : fd then OP(fd)
is an element of the Lhost defined in §2.2.4).

OP( ) ::= bind( , is , ps)
connect( , i , ps)
disconnect

getsockname

getpeername

geterr

getsockopt( , opt)
setsockopt( , opt , b)
sendto( , v , data,nb)
recvfrom( ,nb)
close
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We discuss the design of LIB further in §§2.3.21, 2.3.22.

2.1.6 Networks A network N (a term of the grammar in §1.8) is a parallel composition of IP
datagrams, hosts, and their threads. To describe partial systems, we allow hosts and their threads
to be split apart. The association between them is expressed by shared names n : hostid, which are
purely semantic devices, not to be confused with IP addresses or DNS names. Here e ranges over
thread labelled transition systems, defined in §2.2.5 (not to be confused with e : error).
The formation judgement ` N network is below. It uses judgements msg-ok and host-ok, which

impose some invariants, and ensures that host identifiers and IP addresses are not repeated.

` 0 network

` IP v msg-ok

` IP v network

` n : hostid
` Host v host-ok

` n·Host v network

` n : hostid
e is a thread LTS

` n·e network

` Nj network j = 0, 1
if n·Host v ∈ Nj then ¬∃n·Host v ′ in N1−j

if n·e ∈ Nj then ¬∃n·e
′ in N1−j

if n·Host v ∈ Nj and n·e ∈ N1−j then instep(Host v , e)
if nj ·Host vj ∈ Nj , j = 0, 1, then disjoint addr(Host v0 ,Host v1 )

` N0 | N1 network

where instep and disjoint addr are defined in §2.2.5 and §2.3.24 respectively. The empty network is
a network. A valid message (msg-ok; ie., well-typed and not over the maximum size) is a network.
A valid host or thread tagged by a hostid is a network. Finally, two networks may be combined if
the sets of host tags are disjoint, the sets of thread tags are disjoint, threads and hosts sharing the
same tag are in step, and all non-loopback host IP addresses are disjoint.

Note that there is no structure on the messages in transit – they represent all IP datagrams
anywhere in the network, both buffered in routers and travelling in physical links.

2.2 Dynamics: Interaction

The threads, hosts, and the network itself are all labelled transition systems; they interact by
means of CCS-style synchronisations. Figure 4 shows the network

N = alan·e | alan·Host(..)

| IP(ialan, ikurt,UDP(1024, 7654, "hello"))

| IP(ikurt, ialan, ICMP PORT UNREACH(..)) | . . .

along with some of its possible interactions (showing the host LTS labels). Host and thread are
linked by the hostid prefix on their transitions, but messages on the network are bare – messages
are not tied to any particular host, other than by the IP addresses contained in their source and
destination fields. As we shall see, the host and thread LTSs are defined without these prefixes,
which are added when they are lifted to the network SOS.

2.2.1 Thread and Host Interaction The only interaction between a thread and its associated
host is via system calls – a call and its return are both modelled by CCS-style synchronisations.
A thread can make a system call f v for any f :TL→TL′ in LIB and argument v :TL, for exam-
ple sendto(..). The operating system may then return a value r :TL′, for example OK(). In the
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above diagram, the host’s alan·sendto(..) and alan·OK() are part of call and return synchronisa-
tions respectively. For example, for socket : ()→ fd err the (unprefixed) thread and host may have
transitions:

thread host
C(socket()) Host(ifds ,Run, s, oq , oqf )

socket()
−−−−→

socket()
−−−−→

C(RETfd err) Host(ifds ,Ret (OK fd), s ′, oq , oqf )
OK fd
−−−−→

OK fd
−−−−→

C(fd) Host(ifds ,Run, s ′, oq , oqf )

Here the thread states are those of MiniCaml (see §4), with C a reduction context and the store
component elided. In the host states, the hostThreadState component is Run for states in which
no system call is executing, and Ret v for states in which a system call is executing, and is just
about to return v to the thread.
Invocations of system calls may be fast or slow [Ste98, p124]. Fast calls return quickly, whereas

slow calls block, perhaps indefinitely – for example, until a message arrives. The labelled transitions
have the same form for both, but the host states differ (as in §2.1.2). In the host state, the
hostThreadState component is Run for states in which no system call is executing. A fast system
call takes this to Ret r, which can immediately perform the transition r back to the Run state.
A slow system call, however, introduces additional host states for the intermediate blocked states.
For example, a blocking receive in a state which has no messages queued for socket fd has host

transitions

Host(ifds ,Run, s, oq , oqf )
recvfrom(fd,false)
−−−−−−−−−−−→ Host(ifds ,Recvfrom2 fd , s ′, oq , oqf )

...a message is delivered from the network ...
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Host(ifds ,Recvfrom2 fd , s ′′, oq , oqf )

OK(i3 ,p3 ,ifid,data)
−−−−−−−−−−−−→ Host(ifds ,Run, s ′′′, oq , oqf )

where Host(..,Recvfrom2 fd , s ′, ..) is the blocked state (more details are in §2.3.2). (In the
absence of slow calls, one could model system calls as single transitions, carrying both argument
and return values, rather than pairs.)

2.2.2 Host and Network Interaction A host interacts with the network by sending and
receiving IP datagrams: alan·IP(..) and alan·IP(..) in the figure, respectively.
A host interacts with the network asynchronously to its interactions with the thread, so these

host transitions are independent of the host thread state. For example, there may be transitions
as below, for an output from a host and input to a host respectively.

host network
Host(ifds , t , s, oq :: IP(i3 , i4 , body), oqf ) N

IP(i3 ,i4 ,body)
−−−−−−−−−→

IP(i3 ,i4 ,body)
−−−−−−−−−→

Host(ifds , t , s, oq , oqf ′) N | IP(i3 , i4 , body)

Host(ifds , t , s, oq , oqf ) N | IP(i3 , i4 , body)
IP(i3 ,i4 ,body)
−−−−−−−−−→

IP(i3 ,i4 ,body)
−−−−−−−−−→

Host(ifds , t , s ′, oq , oqf ) N
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2.2.3 Host and Console Interaction A host may also emit strings to its console with transi-
tions of the form alan·console "hello". This provides a minimal way to observe the behaviour of a
network, namely by examining the output on each console. For example, there may be transitions
as below.

thread host
C(print_endline_¤ush v) Host(ifds,Run, s, oq , oqf )

print_endline_¤ush v
−−−−−−−−−−−→

print_endline_¤ush v
−−−−−−−−−−−→

C(RET() err) Host(ifds,Print2 v , s, oq , oqf )
console v
−−−−−−→

Host(ifds,Ret (OK ()), s, oq , oqf )
OK ()
−−−→

OK ()
−−−→

C(()) Host(ifds,Run, s, oq , oqf )

2.2.4 Host LTS Semantics Collecting these interactions together, the Host LTS has labels

Lhost = { f v | f :TL→TL′ ∈ LIB ∧ ` v :TL } call
∪ { r | ∃TL . ` r :TL } return
∪ { IP v | ` IP v msg-ok } message receipt
∪ { IP v | ` IP v msg-ok } message send

∪ { console v | ` v : string } console output
∪ {τ} internal action

and states {Host v | ` Host v : host }. The transition relation is defined by the rules in §3, some
of which are illustrated in §2.3. It is the least relation containing

Host v
l
−→ Host v ′

for each instance of a rule for which ` Host v host-ok and l ∈ Lhost. A number of properties of the
transition relation are stated in §2.4; among them, Theorem 2 shows that all transitions preserve
` Host v host-ok.

2.2.5 Thread LTSs and Language Independence The interactions between a thread and
the OS are essentially independent of the programming language the thread is written in – they
exchange only values of simple types, the language types of Figure 1. Instead of taking a thread
to be a syntactic program in some particular language, we can therefore take an arbitrary labelled
transition system, with labels f v , r and τ . It is then straightforward to extend an operational
semantics for a variety of languages to define such an LTS, as we do for MiniCaml in §4.
Take a thread LTS e to be (Lthread, S, −→, s0) where S is a set of states, s0 ∈ S is the initial

state, −→ ⊆ S × Lthread× S is the transition relation, and the labels are

Lthread = { f v | f :TL→TL′ ∈ LIB ∧ ` v :TL } ∪ { r | ∃TL . ` r :TL } ∪ {τ}

Some axioms must be imposed to give an accurate model, as in [Sew97]. System calls are deter-
ministic – a thread cannot offer to invoke multiple system calls simultaneously. Moreover, after
making a system call, the thread must be prepared to input any of the possible return values,
and its subsequent behaviour will be a function of the value. Threads may however have internal
nondeterminism. A thread can always make progress, unless it has been terminated by invoking
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exit (the only system call with return type void). We require that the reachable states of S can be
partitioned into sets

CALL(f ) f ∈ dom(LIB) the thread is just about to make system call f
RETTL the thread is waiting for a response of language type TL
TAU the thread is computing internally

such that

1. if s ∈ CALL(f ) and f :TL→TL′ ∈ LIB

then ∃v , s ′ . ` v :TL ∧ s
f v
−−→ s ′ and ∀l, s ′′ . s

l
−→ s ′′ =⇒ s ′′ = s ′ ∧ l = f v ∧ s ′′ ∈ RETTL′

2. if s ∈ RETTL

then ∀r . ` r :TL =⇒ ∃1s
′ . s

r
−→ s ′ and ∀l, s ′′ . s

l
−→ s ′′ =⇒ ∃r . ` r :TL ∧ l = r ∧ s ′′ ∈ PROG

3. if s ∈ TAU then ∃s ′ . s
τ
−→ s ′ and ∀l, s ′′ . s

l
−→ s ′′ =⇒ l = τ ∧ s ′′ ∈ PROG

where PROG
def
= TAU ∪

⋃

f∈dom(LIB) CALL(f ) (such a partition is unique if it exists).
The definition allows internal nondeterminism. This occurs in the MiniCaml semantics for

technical reasons (fresh references are chosen nondeterministically), and would be important when
regarding the semantics of a concurrent language such as Pict [PT00] or Join [FGL+96] as a thread
LTS, where the natural operational semantics gives a loose specification of how language-level
processes should be scheduled.
For a host h : host and a thread LTS e = (Lthread, S, −→, s0) define

instep(h, e) = (s0 ∈ PROG ⇐⇒ htsType(h) = Run) ∧
∀TL . (s0 ∈ RETTL ⇐⇒ htsType(h) = TL)

Often we deal with thread LTSs that are generated by an operational semantics over some
expressions E , also ranged over by e. We then confuse the thread LTS (Lthread, E , −→, e) with e
itself.
The definition of thread LTS, and that of the LIB interface, does not include any notion of

marshalling – the sendto and recvfrom calls allow communcation only of strings. Marshalling could
be addressed in the language semantics (though MiniCaml does not). If one wished to deal with
marshallable values of extensible types (eg. new channel names or cryptographic keys) then the
definition of thread LTS should be extended with renaming structure, along the lines of [CS00].

2.2.6 Network Operational Semantics Now we define an SOS to glue things together, mak-
ing precise the synchronisations between threads, hosts, and network datagrams that were described
informally above. The labels of a network are as those of threads and hosts, together with ‘crash’
for machine failure, but tagged with host identifiers n.

Lnetwork = {n·l | ` n : hostid ∧ l ∈ Lthread \ τ }
∪ {n·l | ` n : hostid ∧ l ∈ Lhost \ τ }
∪ Crash ∪ Crash
∪ {τ}

where

Crash = {n·crash | ` n : hostid }
Crash = {n·crash | ` n : hostid }

The transitions of a network are defined by the rules below, together with a structural con-
gruence defined by associativity, commutativity and identity axioms for | and 0. Here we let x be
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either a host (with ` x host-ok) or a thread LTS, ` n : hostid, and ` Ni network. As usual, for a
label l we write l for the label as l but overbarred iff l is not, for l 6= τ , and τ = τ . For a set L of
labels L = { l | l ∈ L }.

x
l
−→ x′ l 6= τ

n·x
n·l
−−→ n·x′

x
τ
−→ x′

n·x
τ
−→ n·x′ 0

n·IP v
−−−−→ IP v IP v

n·IP v
−−−−→ 0

N1
n·l
−−→ N ′

1

N2
n·l
−−→ N ′

2

N1 | N2
τ
−→ N ′

1 | N
′
2

par.1

N1
n·l
−−→ N ′

1

l ∈ Lthread ∪ Crash =⇒ n·Host v /∈ N2

l ∈ Lthread ∪ Crash =⇒ n·e /∈ N2

N1 | N2
n·l
−−→ N ′

1 | N2

par.2

0
n·IP v
−−−−→ 0

drop.1
k ≥ 2

0
n·IP v
−−−−→

∏

j∈1..k IP v
dup.1

n·Host v
n·crash
−−−−→ 0

host.crash.1
n·e

n·crash
−−−−→ 0

host.crash.2

Our network has no interesting topological structure. It can always receive a new datagram,
and can always deliver any datagram it has, with rules similar to those of Honda and Tokoro’s
asynchronous π-calculus [HT91]. The par .∗ rules force synchronisations between a host and a
thread that share a name. IP datagrams can arrive out of order, be lost or be (finitely) duplicated.
Re-ordering is built into the first two lines of rules, but for the other kinds of failure we add the
rules drop.1 , dup.1 and host .crash.∗. These are most interesting when constrained, eg. by fairness
or timing assumptions. Hosts can fail in a variety of ways. In this paper we consider only the
simplest, ‘crash’ failure [Mul93, §2.4]. The host failure model could be made richer in at least 3
directions: by allowing restart (and checkpointing of some non-volatile state); by allowing network
partitions (or perhaps only disconnections of single machines); and by allowing Byzantine failure.

It is worth noting that delivery of an IP datagram to a host consumes the datagram, so this
would not be an accurate model if we allowed hosts to share IP addresses. Note also that datagrams
for IP addresses that do not belong to a host are not garbage-collected.

2.3 An Overview of the Host Semantics

We now explain the main points of the host semantics, illustrating some of the host transition
axioms.
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2.3.1 Example Message Transmission We begin by outlining the host transitions involved
in one successful execution of the single datagram example from §1.6. The combined system is
revisited in §6.1. First, consider the transitions of the sender host alan, running es. We have

Host(ifdsalan,Run, [ ], [ ], false)
port_of_int 7654
−−−−−−−−−→

OKp
−−−→

ip_of_string "192.168.0.11"
−−−−−−−−−−−−−−−→

OKi
−−−→

socket()
−−−−→

OK fd
−−−−→ Host(ifdsalan,Run, [Sock(fd , ∗, ∗, ∗, ∗, ∗, f , [ ])], [ ], false)

connect(fd,i,↑p)
−−−−−−−−−→

OK()
−−−→ Host(ifdsalan,Run, [Sock(fd , ↑i1 , ↑p1 , ↑i , ↑p, ∗, f , [ ])], [ ], false)

print_endline_¤ush "sending"
−−−−−−−−−−−−−−−−→ Host(ifdsalan,Print2 "hello", [Sock(fd , ↑i1 , ↑p1 , ↑i , ↑p, ∗, f , [ ])], [ ], false)

console "sending"
−−−−−−−−−−−→

OK()
−−−→ Host(ifdsalan,Run, [Sock(fd , ↑i1 , ↑p1 , ↑i , ↑p, ∗, f , [ ])], [ ], false)

sendto(fd,∗,"hello",false)
−−−−−−−−−−−−−−−→

OK()
−−−→ Host(ifdsalan,Run, [Sock(fd , ↑i1 , ↑p1 , ↑i , ↑p, ∗, f , [ ])], [m], false)

m
−→ Host(ifdsalan,Run, [Sock(fd , ↑i1 , ↑p1 , ↑i , ↑p, ∗, f , [ ])], [ ], false)

exit ()
−−−→ Host(ifdsalan,Term, [ ], [ ], false)

where fd : fd, f = Flags(false, false), i1 = 192.168.0.14, p1 ∈ {1024, .., 4999}, i = 192.168.0.11,
p = 7654, and m = IP(i1 , i

′,UDP(↑p1 , ↑p, "sending")).

Here socket creates a new socket, connect sets its remote IP address and port to ↑i and ↑p,
sendto constructs an IP datagram m and adds it to the host’s outqueue, and the delivery .1 rule
outputs m to the network. The connect call also fills in the socket’s local IP address/port – see
‘autobinding’ (§2.3.3) and ‘outroute’ (§2.3.7) below. On exit all sockets created by the thread are
closed (in our single-thread model, this covers all sockets).

This is just one trace of many – it has no errors or incoming messages, and the output m could
occur one step earlier or later.

Most of the transitions are invocations and returns of library routines (interactions with the
thread program), apart from the console output console "sending" and the output to the network of
messagem. The first 4 pairs of transitions are potential interactions with the thread, derivable using
rules convert .port .1 , convert .ip.1 , socket .1 , connect .1 , sendto.1 , and ret .1 . The next 3 transitions
are a call to print_endline_¤ush and the resulting console output console "sending". The following
3 are a call to sendto and its return, and the output m of message m to the network, derivable
using delivery .out .1 . The last is another interaction with the thread, from exit .1 .

The thread LTSs for es includes complementary sequences of transitions, except for the console
and network interactions console and m. It has additional internal transitions for computation
steps.
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2.3.2 Example Message Reception Now we show the host transitions involved in one run of
the receiver er from §1.6.

Host(ifdskurt,Run, [ ], [ ], false)
port_of_int 7654
−−−−−−−−−→

OKp′

−−−→
ip_of_string "192.168.0.11"
−−−−−−−−−−−−−−−→

OKi′
−−−→

socket()
−−−−→

OK fd ′

−−−−→ Host(.., Run, [Sock(fd ′, ∗, ∗, ∗, ∗, ∗, f , [ ])], ..)
bind(fd ′,↑i′,↑p′)
−−−−−−−−−−→

OK()
−−−→ Host(..,Run, [Sock(fd ′, ↑i ′, ↑p′, ∗, ∗, ∗, f , [ ])], ..)

print_endline_¤ush "ready"
−−−−−−−−−−−−−−−→ Host(..,Print2 "ready",[ .. ], ..)

console "ready"
−−−−−−−−−−→ Host(..,Ret (OK()), [ .. ], ..)

OK()
−−−→ Host(..,Run, [ .. ], ..)

recvfrom(fd ′,false)
−−−−−−−−−−−→ Host(..,Recvfrom2 fd ′,[ .. ], ..)

m
−→ Host(..,Recvfrom2 fd ′,[Sock(fd ′, ↑i ′, ↑p′, ∗, ∗, ∗, f , [m])],..)

OK(i1 ,↑p1 ,"hello")
−−−−−−−−−−−−→ Host(..,Run, [Sock(fd ′, ↑i ′, ↑p′, ∗, ∗, ∗, f , [ ])], ..)

print_endline_¤ush "hello"
−−−−−−−−−−−−−−→ Host(..,Print2 "hello", [ .. ], ..)

console "hello"
−−−−−−−−−→

OK()
−−−→ Host(..,Run, [ .. ], ..)
exit ()
−−−→ Host(..,Term, [ ], ..)

where fd ′ : fd, f = Flags(false, false), i ′ = 192.168.0.11, p ′ = 7654, and m is as before.
Again, these transitions are invocations and returns of library routines, apart from the input

with label m, receiving a datagram from the network, and the console outputs console "ready" and
console "hello".

2.3.3 Ports: Privileged, Ephemeral, and Unused, and Autobinding The ports 1..65535
of a host are partitioned into the privileged = {1, .., 1023}, the ephemeral = {1024, .., 4999}, and
the rest (these sets are implementation-dependent; we fix on the Linux defaults). The unused ports
of a host are the subset of {1, .., 65535} that do not occur as the local port of any of its sockets,
unused(s), where

unused(s) = { p | p ∈ {1, .., 65535} ∧ ¬∃Sock( , , ↑p, , , , , ) ∈ s }

One can bind the local port of a socket either to an explicit non-privileged value, eg. the p ′ = 7654
of the er example in §1.6, or request the OS to choose a unused port from the set of ephemeral
ports. The latter autobinding can be done by invoking bind with a ∗ in its port↑ argument, as in
the bind .2 rule:

bind.2 (↑i , ∗) succeed, autobinding
F (ifds ,Run,Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

bind(fd,↑i,∗)
−−−−−−−→F (ifds ,Ret (OK()),Sock(fd , ↑i , ↑p ′1 , ∗, ∗, es , f ,mq))

p′1 ∈ unused(F ) ∩ ephemeral and i ∈ ifds

To reduce the syntactic clutter in rules, we define several classes of contexts that build a host. Here
F ranges over contexts of the form Host( 1, 2, S( 3), oq , oqf ), where S is a socket list context, of
the form s1@[ ]@s2 . This and the other context forms H , Q and J were defined in §2.1.2. The
unused function is lifted in the obvious way. The rule also requires the IP address i to be one of
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those of this host. Autobinding can also occur in connect (if one connects a socket that does not
have a local port bound), in disconnect, in sendto, and in recvfrom, which use the function below.

autobind(ps1 ,F ) = (if ps1 = ↑p1 then {p1} else unused(F ) ∩ ephemeral)

2.3.4 Message Delivery to the Net In the simplest case, sending a UDP datagram involves
two host transitions: one that constructs the datagram and adds it to the host outqueue, and
one that takes it from the outqueue and outputs it to the network. These are given by the host
transition axioms below.

sendto.1 succeed
Host(ifds ,Run, S(Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,mq)), oq , oqf )

sendto(fd,ips,data,nb)
−−−−−−−−−−−−−→

Host(ifds ,Ret (OK()), S(Sock(fd , is1 , ↑p
′
1 , is2 , ps2 , ∗, f ,mq)), oq

′, oqf ′)

p′1 ∈ autobind(ps1 , S)
and (oq ′, oqf ′,true) ∈ dosend(ifds , (ips, data), (is1 , ↑p

′
1 , is2 , ps2 ), oq , oqf )

and size(data) ≤ UDPpayloadMax and (ips 6= ∗ or is2 6= ∗).

In sendto.1 : S is a socket list context, allowing the fd socket to be picked out; the autobind
function provides a nondeterministic choice of an unused ephemeral port, if the local port of this
socket has not yet been bound; the dosend function constructs a datagram, using the ips argument
to sendto and the IP addresses and ports from the socket, and adds it to the outqueue (or fails, if
the queue is full); the length of data must be less than UDPpayloadMax; and at least one of the
ips argument and the socket must specify a destination IP address.

delivery.out.1 put UDP or ICMP to the network from oq
Host(ifds, t , s, oq , oqf )

IP(i3 ,i4 ,body)
−−−−−−−−−→Host(ifds, t , s, oq ′, oqf ′)

((IP(i3 , i4 , body)), oq
′, oqf ′) ∈ dequeue(oq , oqf )

and i4 /∈ LOOPBACK ∪MARTIAN
and i3 /∈ MARTIAN

In delivery .out .1 : the dequeue function picks a datagram off the outqueue (nondeterministi-
cally resetting the oqf flag), and checks the datagram has non-martian source and destination
addresses [Bak95, §5.3.7] (see §2.3.23). It outputs the datagram to the network.

2.3.5 Return From a Fast Call After the invocation of a fast call (§2.2.1), eg. an instance of
the sendto.1 rule above, the host thread state is of the form Ret v , recording the value v to be
returned to the thread by ret .1 below.

ret.1 return value v from fast system call to thread
Host(ifds,Ret v , s, oq , oqf )

v
−→Host(ifds,Run, s, oq , oqf )

2.3.6 Message Delivery from the Net If the thread invokes recvfrom on a socket fd that
does not have any queued messages, with the ‘non-blocking’ flag argument false, the thread will
block until a message arrives (or until an error of some kind occurs).
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recvfrom.2 block, entering Recvfrom2 state
F (ifds,Run,Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,nil))

recvfrom(fd,false)
−−−−−−−−−−−→F (ifds,Recvfrom2 fd ,Sock(fd , is1 , ↑p

′
1 , is2 , ps2 , ∗, f ,nil))

p′1 ∈ autobind(ps1 , socks(F ))

As in bind .2 and sendto.1 , the local port of the socket will be automatically bound (to an unused
ephemeral port) if it is not already bound.

When a UDP datagram, eg. IP(i3 , i4 ,UDP(ps3 , ps4 , data)), arrives at a host, the 4-tuple
(i3 , ps3 , i4 , ps4 ) is matched against each of the host’s sockets, to determine which (if any) the data-
gram should be delivered to. This matching compares the 4-tuple with each Sock(.., is1 , ps1 , is2 , ps2 , ..),
giving a score from 0 to 4 of how many elements match, treating a ∗ in the socket elements as a
wildcard. The lookup function defined in §2.3.20 takes a list s of sockets and a datagram 4-tuple
(i3 , ps3 , i4 , ps4 ), returning the set of sockets with maximal non-zero scores. The datagram is de-
livered to one of these sockets, by adding it to the end of the socket’s message queue mq . This is
expressed in the basic delivery .in.udp.1 rule below.

delivery.in.udp.1 get UDP from network and deliver to a matching socket
Host(ifds, t , s, oq , oqf )

IP(i3 ,i4 ,UDP(ps3 ,ps4 ,data))
−−−−−−−−−−−−−−−−−−→Host(ifds, t , S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,

mq :: (IP(i3 , i4 ,UDP(ps3 , ps4 , data)), ifid))), oq , oqf )

Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq) ∈ lookup s (i3 , ps3 , i4 , ps4 )
and S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq)) = s
and (ifid , iset , , ) ∈ ifds and i4 ∈ iset
and i4 /∈ LOOPBACK and i3 /∈ MARTIAN ∪ LOOPBACK

After this, a blocked recvfrom will be able to complete, using the recvfrom.6 rule.

recvfrom.6 slow succeed
F (ifds,Recvfrom2 fd ,Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,

(IP(i3 , i4 ,UDP(ps3 , ps4 , data)), ifid) ::mq))
OK(i3 ,ps3 ,data)
−−−−−−−−−−→F (ifds,Run,Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,mq))

2.3.7 Wildcard IP Addresses and outroute When a datagram IP(i1 , i2 , body) is sent from
a host, its source IP address i1 must be filled in. If the socket’s local IP address field is a wildcard,
then one of the host’s IP addresses must be chosen – in fact, the primary IP address of the interface
that the host’s local routing table specifies should be used for sending to i2 . This occurs in sendto

and also in connect.

Our model does not contain routing information, so we take a nondeterministic approximation,
distinguishing only between loopback and non-loopback addresses. We define

outroute : ifd set ∗ ip→ ip set

outroute ({ IF(ifid j , isetj , iprimaryj ,netmask j) | j ∈ J }, i) =
if i ∈ LOOPBACK then {localhost}
else { iprimaryj | j ∈ J and iset j 6= LOOPBACK }

used, for example, in connect .1 :
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connect.1 (is1 = ∗) succeed, autobinding if necessary
F (ifds,Run,Sock(fd , ∗, ps1 , ∗, ∗, es , f ,mq))

connect(fd,i,ps)
−−−−−−−−−→F (ifds,Ret (OK()),Sock(fd , ↑i1 , ↑p

′
1 , ↑i , ps , es , f ,mq))

i1 ∈ outroute(ifds, i) and p
′
1 ∈ autobind(ps1 ,F )

Note that outroute(ifds , i) cannot be empty, as we insist (in the host-ok invariant) that machines
have both a loopback interface and at least one other interface. We do so to simplify the treatment
of dosend and sendto, ensuring dosend always returns a nonempty set; it is justified by the fact
that we do not wish to reason about disconnected machines here (in fact, disconnected machines
can generate ENETUNREACH errors in connect and sendto).

2.3.8 ICMP Generation If a UDP datagram arrives at a host (so its destination IP address is
one of the host’s) but no socket matches its 4-tuple (i3 , ps3 , i4 , ps4 ) then the host may or may not
send an ICMP PORT UNREACH message back to the sender. This is dealt with by the rule
below (in the non-loopback case). Note that the ICMP message is added to the host’s outqueue
oq , not put directly on the network. This uses an auxiliary function enqueue described in §2.3.18
below.

delivery.in.udp.2 get UDP from network but generate ICMP, as no matching socket
Host(ifds , t , s, oq , oqf )

IP(i3 ,i4 ,UDP(ps3 ,ps4 ,data))
−−−−−−−−−−−−−−−−−−→Host(ifds , t , s, oq ′, oqf ′)

i4 ∈ ifds and lookup s (i3 , ps3 , i4 , ps4 ) = ∅
and (oq ′, oqf ′, ok) ∈ {(oq , oqf ,true)} ∪
enqueue(IP(i4 , i3 , ICMP PORT UNREACH(i3 , ps3 , i4 , ps4 )), oq , oqf )
and i4 /∈ LOOPBACK and i3 /∈ MARTIAN ∪ LOOPBACK

The ICMP is not always generated – the Linux kernel has per-type-of-ICMP rate-limiting to
control denial-of-service attacks. We take a nondeterministic approximation.

2.3.9 Asynchronous Errors When an ICMP PORT UNREACH message arrives at a host,
it is matched against the sockets, in roughly the same way that UDP datagrams are. If it matches a
socket (which typically will be the one used to send the UDP datagram that generated this ICMP)
then the error should be reported to the thread. The arrival and processing of the ICMP message
is asynchronous w.r.t. the thread activity, though, so what happens is simply that the error flag
es ′ of the socket is set, in this case to ↑ECONNREFUSED.

delivery.in.icmp.1 get ICMP from the network, setting error in a matching socket
Host(ifds, t , s, oq , oqf )

IP(i′4 ,i
′

3 ,ICMP X UNREACH(i3 ,ps3 ,i4 ,ps4 ))
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Host(ifds, t , S(Sock(fd , is1 , ps1 , is2 , ps2 , es
′, f ,mq)), oq , oqf )

S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq)) = s
and Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq) ∈ lookup s(i3 , ps3 , i4 , ps4 )
and m = IP(i ′4 , i

′
3 , ICMP X UNREACH(i3 , ps3 , i4 , ps4 ))

and i ′3 ∈ ifds and ¬(loopback(m) ∨ martian(m))
and es ′ = if (is2 6= ∗) or ¬(bsdcompat f ) then ↑ECONNREFUSED else es

Here X is either HOST or PORT. There are sanity constraints on the IP addresses involved, and
the behaviour differs according to whether the bsdcompat socket flag is set. Note also that un-
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matched ICMPs do not themselves generate new ICMPs – there is no analogue of delivery .in.udp.2
for ICMPs.

The error flag may cause subsequent sendtos or recvfroms to fail, returning the error and clearing
the flag, for example in the rule below.

sendto.5 fail, as socket in an error state
F (ifds,Run,Sock(fd , is1 , ↑p1 , is2 , ps2 , ↑e, f ,mq))

sendto(fd,ips,data,nb)
−−−−−−−−−−−−−→F (ifds,Ret (Fail e),Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,mq))

The error flag can also be explicitly inspected and cleared by geterr .

geterr.1 succeed
F (ifds,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

geterr fd
−−−−−→F (ifds,Ret (OKes),Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,mq))

2.3.10 Local Errors A number of other sources of error must be dealt with. Firstly, there
are straightforward erroneous parameters. Any call that takes an fd can return ENOTSOCK or
EBADF if given a file descriptor that is not a socket. For bind we also have:

EACCES for a port p ∈ privileged = {1, .., 1023},
EADDRINUSE for a port already in use (modulo the reuseaddr flags),
EADDRNOTAVAIL for an IP address that is not one of the host’s, and
EINVAL if the socket already has a non-∗ local port;

for sendto we have

ENOTCONN if the destination is ∗ and the socket is unconnected, and
EMSGSIZE if the data is bigger than UDPpayloadMax = 65507 (see §2.3.16);

and both sendto and recvfrom return EAGAIN if the non-blocking flag argument is set but the
call would block.

Secondly, any of the slow calls (sendto, recvfrom, select) can return EINTR from the blocked
state if the system call is interrupted. Our model does not contain the sources of such interrupts,
so all we can do is include a nondeterministic rule allowing the error to occur:

intr.1 slow intr, as system call interrupted
Host(ifds , op v , s, oq , oqf )

Fail EINTR
−−−−−−−→Host(ifds ,Run, s, oq , oqf )

op ∈ {Sendto2 ,Recvfrom2 ,Select2 ,Print2 }

with the expectation that most interesting reasoning will depend on an assumption that this does
not occur too often.

Thirdly, there are pathological cases in which the OS has exhausted some resource. A call to
socket can return EMFILE or ENFILE, if there are too many open files or the file table overflows,
and all calls can return ENOMEM or ENOBUFS if the OS has run out of space or buffers. Again,
these are modelled by purely nondeterministic rules, for example



The UDP Calculus 25

badmem.2 OP bad fail, as no space
F (ifds,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

OP(fd)
−−−−−→F (ifds,Ret (Fail e), v)

e ∈ {ENOMEM,ENOBUFS} and ` v socket-ok(ifds) and sockfd(v) = fd

where OP ranges over a class of invocations of calls with a single fd argument (defined in §3). Note
that the rule allows the socket state to change arbitrarily, as we do not wish to specify exactly
when during the system call such failures may occur, or expect the OS to return the socket to its
initial state, so an application program should not depend on the resulting socket state. Here, we
expect interesting reasoning to depend on an assumption that these errors do not occur. They are
included in the model as an application may have to catch them in order to do some clean-up.
We must also deal with the possibility that all the ephemeral ports are exhausted when an

autobind is perfomed, in one of bind, connect, disconnect, sendto. On our test machines this does not
occur, as other resources are exhausted first – we include rules for it to ensure the semantics does
not get stuck. The returned error is chosen from ephemeralErrors = {EAGAIN,EADDRINUSE}.

2.3.11 Errors and Nondeterminism In cases where multiple error conditions hold, we have
chosen to give a loose specification, nondeterministically allowing any of them. In any particular
implementation some will take priority over others, depending on how the OS code is sequenced,
but this is very likely to vary – applications should not depend on a particular priority order.
Roughly, the various ‘success’ rules are disjoint from each other and from all the ‘fail’ rules, but
the ‘fail’ rules can overlap with each other. This is made precise by Theorem 3 on page 33.
In some error cases we allow a socket state to be changed nondeterministically – again, as the

actual result depends on details of the OS coding that we do not wish to fix, and that applications
should not depend on.

2.3.12 Loopback A datagram sent to a loopback address i ∈ LOOPBACK = 127/8 will be
echoed back – without reaching the network. Typically, one uses the loopback address localhost =
127.0.0.1, which our ifd-set-ok condition fixes as the primary address of the unique loopback inter-
face on each machine.
To model loopback, we use a number of additional delivery rules (delivery .loopback .∗), which

are essentially the compositions of delivery .out .∗ and delivery .in.∗ rules. For example, the rule

delivery.loopback.udp.1 get loopback UDP from oq and deliver to a matching socket
Host(ifds , t , s, oq , oqf )

τ
−→Host(ifds , t , S(Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,

mq :: (IP(i3 , i4 ,UDP(ps3 , ps4 , data)), ifid))), oq
′, oqf ′)

(IP(i3 , i4 ,UDP(ps3 , ps4 , data)), oq
′, oqf ′) ∈ dequeue(oq , oqf )

and i4 ∈ LOOPBACK
and s = S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))
and Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq) ∈ lookup s(i3 , ps3 , i4 , ps4 )
and IF(ifid ,LOOPBACK, localhost, 255/8) ∈ ifds

removes a loopback UDP from a host’s outqueue and delivers in to a matching socket, in a single
step. It is an analogue of delivery .out .1 composed with delivery .in.udp.1 (see §2.3.4, 2.3.6).
Together with i /∈ LOOPBACK conditions in various rules, this ensures that the IP packets

that would otherwise be generated do not touch the network. This means they cannot be reordered,
duplicated, or lost (the last is an idealisation, since in actual systems the OS could drop them for
lack of space).
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2.3.13 Console Interaction As a minimal form of stdio I/O, we add a flushing print, with
host labelled transitions console v for strings v generated by rule

console.print.2 print the string on console
H (Print2 v)

console v
−−−−−−→H (Ret (OK()))

Adding input would be straightforward, but would require dealing with the fact that user input
events (key presses or mouse events) can occur at any time. As in [Sew97], the host state would
have to be extended with a buffer of these events.

2.3.14 Thread Termination A thread can terminate by calling exit : ()→ void, from which the
host will not return. On termination, all sockets are closed.

exit.1 exit
Host(ifds ,Run, s, oq , oqf )

exit ()
−−−→Host(ifds ,Term, [ ], oq , oqf )

This is correct only for an idealised machine which has no sockets except those opened by the thread.
Note that the fact that sockets are closed on termination may be observed by other machines, as
they can then receive ICMP PORT UNREACH messages from the associated ports. We do not
treat Unix return codes (the OCaml exit allows a Unix return code to be specified, but we do not
wish to model the details).

2.3.15 Select Timeout As said in §2.1.5, calling select(readseq ,writeseq , ↑tm) will block until
one of the sockets in readseq has a message ready for reading, one of those in writeseq is ready
for writing, time tm elapses, or an error occurs. With an untimed interleaving semantics, the
timeout cannot be modelled very faithfully – the most we can do is allow the timer to decrement,
nondeterministically:

select.5 slow timeout decrement
Q(Select2 (readseq ,writeseq , ↑tm), s, oqf )

τ
−→Q(Select2 (readseq ,writeseq , ↑(tm− 1)), s, oqf )

tm > 0
readseq ′ = [fd | fd∈readseq and ∃Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ s . (mq 6= nil ∨ es 6= ∗)]
writeseq ′ = [fd | fd ∈ writeseq and oqf = false and ∃Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ s]
readseq ′ = nil and writeseq ′ = nil

2.3.16 Message Size The maximum size of data in a UDP datagram is UDPpayloadMax =
65507 octets, as fixed by the IP and UDP protocols. The msg-ok, network, socket-ok and host-ok
judgements require that in all UDP(ps1 , ps2 , data) on the network, in socket queues, or in the
outqueue, we have size(data) ≤ UDPpayloadMax. Calls to sendto with larger data return an error
(EMSGSIZE if no other error condition applies). In general, it is not guaranteed that such large
datagrams will be handled by the protocol endpoint code [Ste98, p159], but the Linux implemen-
tation appears to.
A separate issue is that of fragmentation: typically, a physical link will only handle packets up

to a certain size (eg., 1500 octets for Ethernet). The implementation of IP involves the sender (and
possibly also routers) fragmenting datagrams into packets that are small enough to be transmitted,
and the receiver reassembling them. This increases the potential for loss of a large datagram, as
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all of its fragments must arrive successfully (and within some time window) for the datagram to
be reassembled. Moreover, routers may simply drop large packets. At our level of abstraction,
however, both of these are covered by the drop.1 loss rule.

2.3.17 Loss The drop.1 loss rule 0
n·IP v
−−−−→ 0 covers many different circumstances:

– Packet loss entirely in the network, eg. due to routers choosing to drop, noise and collisions in
the physical medium.

– Packet loss entirely in the receiver, eg. due to:

• the device being full
• the network module backlog queue being full
• the socket message queue being full (discussed in §2.3.22 under ‘receive buffer size’)
• checksum failures at various points.

– Defragmentation not succeeding, either because some of the fragments were lost, or because
the receiver did not receive them close enough together in time.

2.3.18 The Outqueue A call to sendto can block or fail (according to whether the nb flag
argument is set) if there is no space to enqueue the message. In the Linux implementation, each
socket has a variable-length virtual buffer (size settable with SO SNDBUF), and messages on the
outqueue are charged to the buffer of the socket that sent them; a message cannot be sent by a
socket unless there is space in this socket’s virtual buffer.

We choose not to model this exactly, instead idealising as follows:

– The host’s outqueue oq has an associated ‘outqueue full’ flag oqf .

– oqf is initially false, indicating that there is space in the outqueue.

– When a message is placed on the outqueue, oqf may nondeterministically be set to true.

– When a message is removed from the outqueue, oqf may nondeterministically be set to false;
if it was the only message on the outqueue, oqf is deterministically set to false.

– When oqf is set, calls to sendto block or fail.

– When oqf is set, any ICMPs that are generated are discarded.

Thus we maintain the host-ok invariant that oq = [ ] =⇒ oqf = false. The sendto.∗ and
delivery .∗ rules that express this use two auxiliary functions

enqueue : msg ∗msg list ∗ bool→ (msg list ∗ bool ∗ bool) set
dequeue : msg list ∗ bool → (msg ∗msg list ∗ bool) set

The enqueue function takes a message to enqueue and the current oq and oqf , and returns a set of
(oq ′, oqf ′, ok) triples where oq ′ and oqf ′ are the resulting outqueue, and ok is true if the message
was enqueued and false if not. The dequeue function takes the current outqueue and returns a
set of (m, oq ′, oqf ′) triples where m is the first element and oq ′ is the resulting outqueue, with flag
oqf ′. This set is empty if the current outqueue is empty. The functions are defined by

enqueue (m, oq ,true) = {(oq ,true, false)}
enqueue (m, oq , false) = { (m :: oq , oqf ′,true) | oqf ′ ∈ {false,true} }
dequeue (nil, oqf ) = {}
dequeue (oq ::m, oqf ) = { (m, oq , oqf ′) | oqf ′ ∈ {(oqf ∧ oq 6= nil), false} }

We further idealise by not modelling any additional network-card buffering.
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2.3.19 Dosend We use an auxiliary function dosend in the sendto rules, to construct an IP
datagram and enqueue it on the outqueue. It has type

dosend : ifd set ∗ ((ip ∗ port)↑ ∗ string) ∗ (ip↑ ∗ port↑ ∗ ip↑ ∗ port↑) ∗msg list ∗ bool (1)

→ (msg list ∗ bool ∗ bool) set (2)

mapping (ifds , (ips, data), (is1 , ps1 , is2 , ps2 ), oq , oqf ) to a set of triples (oq
′, oqf ′, ok). It is only

called with (ips 6= ∗ or is2 6= ∗) and ps1 6= ∗, and always returns a nonempty set (the latter
depends on the fact that enqueue and outroute always return nonempty sets).
It takes the host’s ifds, the (ips, data) part of the sendto arguments, the (is1 , ps

′
1 , is2 , ps2 ) part

of the relevant socket (ps ′1 is either the original ps1 6= ∗, or the result of the necessary autobind),
the outqueue oq and the output flag oqf , and returns the set of possible outcomes. Each outcome
is a triple of the new oq , the new oqf and a bool. This bool is true if there was room on the
outqueue for the msg, and false if not. In the latter case, oq ′ = oq and oqf ′ = oqf = true by
definition of enqueue.

dosend(ifds, (∗, data), (↑i1 , ↑p1 , ↑i2 , ps2 ), oq , oqf )
= enqueue(IP(i1 , i2 ,UDP(↑p1 , ps2 , data)), oq , oqf )

dosend(ifds, (↑(i , p), data), (∗, ↑p1 , ∗, ∗), oq , oqf )
=

⋃

i′∈outroute(ifds,i) enqueue(IP(i
′, i ,UDP(↑p1 , ↑p, data)), oq , oqf )

dosend(ifds, (↑(i , p), data), (↑i1 , ↑p1 , is2 , ps2 ), oq , oqf )
= enqueue(IP(i1 , i ,UDP(↑p1 , ↑p, data)), oq , oqf )

The first case, in which a UDP datagram with a zero destination port is generated if ips = ∗ and
ps2 = ∗, may be surprising but does occur. One might expect the i1 in the UDP datagram of the
last case to be taken to be the primary IP address of the interface used for sending to i , not the
local address i1 of the socket, ie. with

⋃

i′∈outroute(ifds,i) enqueue(IP(i
′, i ,UDP(↑p1 , ↑p, data)), oq , oqf ),

but it is not. Note that sendto(fd , ↑(i , p), data,nb) on a connected socket (ie. with is2 , ps2 not ∗, ∗)
works, whereas according to [Ste98, p225] Posix specifies it should give EISCONN.

2.3.20 Matching and Lookup At various points a 4-tuple (i3 , ps3 , i4 , ps4 ) is matched against
each of the host’s sockets, to determine which socket (if any) match it most closely (eg. as in
delivery .in.udp.1 , §2.3.6). We define a matching function, returning a score for each match, as
follows.

match (∗, ∗, ∗, ∗) (i3 , ps3 , i4 , ps4 ) = 0
match (∗, ↑p1 , ∗, ∗) (i3 , ps3 , i4 , ps4 ) = if (↑p1 = ps4 ) then 1 else 0
match (↑i1 , ↑p1 , ∗, ∗) (i3 , ps3 , i4 , ps4 ) = if (i1 = i4 ) and (↑p1 = ps4 ) then 2 else 0
match (↑i1 , ↑p1 , ↑i2 , ∗) (i3 , ps3 , i4 , ps4 ) = if (i2 = i3 ) and (i1 = i4 )

and (↑p1 = ps4 ) then 3 else 0
match (↑i1 , ↑p1 , ↑i2 , ↑p2 ) (i3 , ps3 , i4 , ps4 ) = if (↑p2 = ps3 ) and (i2 = i3 )

and (i1 = i4 ) and (↑p1 = ps4 ) then 4 else 0

Using this, we define score and lookup .

score Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) (i3 , ps3 , i4 , ps4 )
= match (is1 , ps1 , is2 , ps2 ) (i3 , ps3 , i4 , ps4 )

lookup s (i3 , ps3 , i4 , ps4 ) = {Sock v | Sock v ∈ s and score (Sock v) (i3 , ps3 , i4 , ps4 ) > 0
and ¬∃Sock v ′ ∈ s . score (Sock v ′) (i3 , ps3 , i4 , ps4 ) > score (Sock v) (i3 , ps3 , i4 , ps4 )}
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The lookup function returns the set of maximal non-zero scoring sockets, which may be empty.
If there are several then one will be chosen nondeterministically (rules that use lookup take an
arbitrary element).
In the Linux implementation, sockets are kept in a hash chain, which resolves this nondeter-

minism. The details are complex, as sockets can be added either at bind time or at ‘first use’ time;
we expect applications will not depend on this behaviour and so choose not to model it.

2.3.21 LIB Design: the Thin Abstraction Layer Given our choice of what UDP function-
ality to deal with, and our decision to abstract from the intricacies of C parameter passing, the
design of LIB is largely straightforward. A few small points remain – LIB also abstracts from some
awkwardnesses of the C system calls underlying our bind, disconnect, getsockname and getpeername,
to ensure that our socket states are an accurate abstraction of the actual OS datastructures.
The details are given in comments to the rules bind .5 and getsockname.1 , getpeername.1 , and
disconnect .∗. We omit send and recv since they are simply trivial wrappers around sendto and
recvfrom. We arbitrarily ignore sendmsg and recvmsg.
A useful principle in the LIB design is that it should be stateless, so that in extremis an

application could use combine LIB and a standard sockets library, if some non-LIB functionality
is required.

2.3.22 Socket Options and Other Flags, and the LIB Design We considered
all the socket-level socket options defined by Linux. Those we do not implement, be-
cause they are irrelevant to our fragment of UDP or duplicate behaviour obtainable
by other means, are: SO ATTACH FILTER, SO DETACH FILTER, SO BINDTODEVICE,
SO BROADCAST, SO DONTROUTE, SO NO CHECK, SO PASSCRED, SO PEERCRED,
SO PRIORITY, SO RCVLOWAT and SO SNDLOWAT, SO RCVTIMEO and SO SNDTIMEO,
SO TYPE, and several options only relevant for TCP, namely SO DEBUG, SO KEEPALIVE,
SO LINGER, and SO OOBINLINE. We implement the only interesting SOL IP socket option
other than perhaps IP RECVERR, namely IP PKTINFO, which appears to have similar function-
ality to the IP RECVDSTADDR and IP RECVIF options of [Ste98, pp198,532]. The options set
via fcntl and ioctl, and the flags passed to send and receive, are either mentioned below or have
been omitted for similar reasons.
The options we implement are as follows. Their semantics follows Linux except where otherwise

stated.

BSD compatibility If an ICMP is received for a socket that is not connected, the BSD se-
mantics (against [Bra89, §4.1.3.3]) is to ignore it. Linux however normally delivers the mes-
sage, just as it would for a connected socket. This only affects ICMPs defined as hard errors
(here ICMP PORT UNREACH but not ICMP HOST UNREACH) or sockets with the
IP RECVERR option set. The BSD semantics may be obtained by setting SO BSDCOMPAT;
by default this is false except on SunOS and SunOS32. We provide this socket option as an
element of the flags component of the Sock structure.

Socket errors Reading the SO ERROR socket option gets and clears the current socket error if
present. Writing is not possible. We provide this with a system call, geterr : fd→ error↑ err; see
§2.3.9.

Send and receive buffer size The send and receive buffer sizes may be read and written by
the socket options SO SNDBUF and SO RCVBUF. Modelling these options fully in our cal-
culus would complicate the semantics in annoying ways: the receive buffer would limit the
per-socket message queue in some way, and the send buffer would involve tagging each mes-
sage on the outqueue with an owning socket for charging purposes. Instead, we implement a
nondeterministically-full outqueue as described in §2.3.18, and ignore the receive queue entirely,
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considering it a part of the network and thus modelled by drop.1 , the network packet-dropping
rule. Note that this means that an assumption that drop.1 does not occur (such as one might
make when proving properties of an algorithm under a lossless network hypothesis) is only
reasonable if every host does enough recvfroms that no message queue ever fills.

Address reuse Under normal circumstances, the 4-tuples (is1 , ps1 , is2 , ps2 ) of distinct sockets
may not overlap; that is, every incoming message must match (in the sense of match, §2.3.20)
at most one socket. However, this may be overridden if all sockets participating in the overlap
have the SO REUSEADDR socket option set. The constraint is enforced at bind-time. We
provide this socket option as an element of the flags component of the Sock structure.

Packet information Sometimes (such as when doing virtual hosting) we want to know the des-
tination address and/or receiving interface of an incoming packet. [Ste98, pp198,532] suggests
the use of SOL IP options IP RECVDSTADDR and IP RECVIF. In Linux, these are not
available, but setting the IP PKTINFO option causes a control message to be placed in the
message header of each message received on the socket, containing the remote source address
and the receiving interface. This may be obtained using recvmsg. In our calculus, messages on
the socket message queue are tagged with the receiving interface; however it was considered
sufficiently awkward in Linux to obtain the IP PKTINFO information that it would be unreal-
istic to return this information from every recvfrom call. Instead, the semantics contains enough
information to permit an extended recvfrom (such as a recvmsg call) to be defined, providing
this information to the thread. We do not define this extension here.

Non-blocking There are several ways in which potentially-blocking operations (send, receive)
can be made non-blocking, returning EAGAIN (in Linux aliased with EWOULDBLOCK) if
they would otherwise block. Using an ioctl or fcntl, the socket file descriptor may be set to
O NONBLOCK so that all subsequent operations will not block; alternatively, individual sends
and receives may set the MSG DONTWAIT flag. We provide this functionality by adding a
flag to sendto and recvfrom, requesting non-blocking operation per call. (The non-blocking flag
does not affect delivery, hence it is not necessary to store this flag in the socket.)

Interface information There are several ways to obtain information about the host’s inter-
faces. Among them are the ioctl SIOCGIFCONF, and routing sockets. Abstracting away
from the details of how exactly we obtain this information, we simply add a system call
getifaddrs : ()→ (ifid ∗ ip ∗ ip list ∗ netmask) list.

2.3.23 IP Addressing: Loopback and Martians We use dotted-decimal notation for IP
addresses, writing eg. 192.3.57.1 for 192× 224+3× 216+57× 28+1. Trailing zero components will
sometimes be omitted, allowing eg. 127 to denote 127.0.0.0. For x ∈ 0..32 and an address i which
is zero in its least significant (32− x) bits we write i/x for the set of addresses which agree with i
on their most significant x bits.

Several classes of IP addresses have special meaning. Here we pick out the loopback addresses,
LOOPBACK = 127/8 : ip set, for datagrams to be echoed internally, with conventional element
localhost = 127.0.0.1 ∈ LOOPBACK, and the pathological martian addresses [Bak95, §5.3.7].

We take a crude idealisation of martian addresses, defining the sets of bad addresses below (in
fact, sources and destinations are treated differently, and broadcast/multicast are involved).

MULTICAST = 224/4
BADCLASS = 240/4
ZERONET = 0/8
MARTIAN = MULTICAST ∪ BADCLASS ∪ ZERONET
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These are lifted to a definition of martian IP datagram as below.

martian(IP(i1 , i2 ,UDP v)) = {i1 , i2} ∩MARTIAN 6= ∅
martian(IP(i1 , i2 , ICMP X UNREACH(i3 , ps3 , i4 , ps4 ))) = {i1 , i2 , i3 , i4} ∩MARTIAN 6= ∅

Similarly, we define a predicate that picks out IP datagrams containing (in any position) a loopback
address.

loopback(IP(i1 , i2 ,UDP v)) = {i1 , i2} ∩ LOOPBACK 6= ∅
loopback(IP(i1 , i2 , ICMP X UNREACH(i3 , ps3 , i4 , ps4 ))) = {i1 , i2 , i3 , i4} ∩ LOOPBACK 6= ∅

We assume that IP addresses in datagrams (on the network and in host queues) are non-zero,
expressing this by using ip rather than ip↑ in the type of the message constructor IP. This is not
entirely true – at start-up, a host may need to send messages with a zero source address; zero
destinations are still forbidden [Ste98, p891].

2.3.24 Interfaces (2) For ifds = { IF(ifid j , isetj , iprimaryj ,netmask j) | j ∈ J }, we say `
ifds ifd-set-ok if:

1. ` ifds : ifd set.
2. all ifids are distinct, ie. ∀j, j ′ ∈ J . j 6= j′ =⇒ ifid j 6= ifid j′

3. each primary IP is in the associated IP set, ie. ∀j ∈ J . iprimary j ∈ isetj
4. all IPs in each IP set agree with each other on the set bits of the netmask,

ie. ∀j ∈ J .∀i , i ′ ∈ isetj . (i &netmask j) = (i
′&netmask j)

5. all IPs appearing in ifds are distinct, ie. ∀j, j ′ ∈ J . j 6= j′ =⇒ isetj ∩ isetj′ = ∅
6. there is exactly one loopback interface,

ie. ∃1j ∈ J . iset j = LOOPBACK ∧ iprimaryj = localhost ∧ netmask j = 255.0.0.0
7. there is at least one non-loopback interface, ie. ∃j ∈ J . iset j ∩ LOOPBACK = ∅
8. all interfaces have non-martian addresses, ie. ∀j ∈ J . iset j ∩MARTIAN = ∅

Two hosts have disjoint IP addresses if they satisfy the predicate

disjoint addr(Host v ,Host v ′) = ∀j, j′ . (isetj ∩ isetj′) \ LOOPBACK = ∅

2.4 Sanity Properties

This section gives type preservation and progress theorems for the model, and a semideterminacy
result. The latter states roughly that for a given system call and host state, either the call succeeds
(and exactly one rule applies) or it fails (several error rules may be in competition). The combina-
tion of the progress result, the thread LTS axioms and the network SOS rules exclude pathological
deadlocks.
Define host thread state classes – subsets of { v | ` v : hostThreadState } – as follows (overload-

ing the identifiers):

Run = {Run}
Term = {Term}
RetTL,Sendto2,Recvfrom2,Select2,Print2 the values of the corresponding forms
Ret = {RetTLv | ` v :TL }
RetOK = {RetTL err(OKv) | ` v :TL }
RetFail = {RetTL err(Fail v) | ` v : error }
Op2 = Sendto2 ∪Recvfrom2 ∪ Select2 ∪Print2
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These classes are lifted to hosts – subsets of { v | ` v : host } – in the obvious way. Let h =
Host(ifds, t , s, oq , oqf ) and h′ = Host(ifds ′, t ′, s ′, oq ′, oqf ′) range over hosts, and l range over
host labels Lhost.

Theorem 1 (Axiom Classification). The host transition axioms may be partitioned as follows:

Transition type From state Under label To state By rules

h
f v
−−→ h′ Run f v RetOK succeed

Run f v Op2 enter2
Run f v Term {exit .1}
Run f v RetFail fail
Run f v RetFail badfail

h
r
−→ h′ Ret r Run {ret .1}

Op2 OKv Run slowsucceed
Op2 Fail v Run slowfail
Op2 Fail EINTR Run {intr .1}
Op2 Fail v Run slowbadfail

h
console v
−−−−−−→ h′ Print2 console v RetOK {console.print .2}

h
τ
−→ h′ Select2 τ Select2 {select .5}

t τ t internaldelivery

h
IPv
−−→ h′ t IPv t accept

h
IPv
−−→ h′ t IPv t emit

Here succeed, fail,badfail, slowsucceed, slowfail, slowbadfail are the sets of rules with those words
first in the rule description. The set enter2 is {sendto.2 , recvfrom.2 , select .1 , console.print .1}. The
set internaldelivery is {delivery .loopback .∗, delivery .out .martian}. The set accept is {delivery .in.∗}.
The set emit is {delivery .out .1}. In the last three lines the hostThreadState t is unchanged.

Proof. By inspection of the axioms.

Theorem 2 (Preservation: typing and host-ok ). Suppose ` h host-ok.

1. If h
f v
−−→ h′, f :TL→TL′ ∈ LIB and ` v :TL then htsType(h) = Run, htsType(h′) = TL′ and

` h′ host-ok.
2. If h

r
−→ h′ then t ∈ Ret ∪Op2, ` r : htsType(h), t ′ = Run, and ` h′ host-ok.

3. If h
τ
−→ h′ then htsType(h′) = htsType(h) and ` h′ host-ok.

4. If h
IPv
−−→ h′ then htsType(h′) = htsType(h) and ` h′ host-ok.

5. If h
IPv
−−→ h′ then htsType(h′) = htsType(h) and ` h′ host-ok.

6. If h
console v
−−−−−−→ h′ then ` v : string, htsType(h′) = htsType(h) and ` h′ host-ok.

Proof. By inspection of the axioms.

Corollary 1. If h performs a library call transition f v, then the first subsequent return transition
(if any) is well-typed for f :

(

f :TL→TL′ ∈ LIB ∧ h
f v
−−→ · →∗

noRet ·
r
−→

)

=⇒ ` r :TL′

where (→noRet) = { (h, h
′) | (h, l, h′) ∈ (

·
−→) ∧ ∀r . l 6= r }



The UDP Calculus 33

Now let R range over axiom names and define an extended transition relation labelled with these,
thus: h→l

R h′. Write h→R h′ for
⋃

l →
l
R.

Theorem 3 (Semideterminacy). Suppose ` h host-ok.

1. For a Run host state and a given system call, either exactly one successful rule applies, or the
call fails (several fail rules may be in competition): if h ∈ Run, f :TL→TL′ and ` v :TL then
exactly one of the following two cases holds.
•

(

∃1R ∈ succeed ∪ enter2 ∪ {exit .1} . h→
f v
R

)

∧
(

¬∃R ∈ fail . h→f v
R

)

•
(

¬∃R ∈ succeed ∪ enter2 ∪ {exit .1} . h→f v
R

)

∧
(

∃≥1R ∈ fail . h→
f v
R

)

2. For an Op2 host state, either exactly one successful rule applies, or the call fails (several
slowfail rules may be in competition), or it is blocked: if h ∈ Op2 then exactly one of the
following three cases holds.
•

(

∃1R ∈ slowsucceed ∪ {console.print .2 , select .5} . h→R

)

∧
(

¬∃R ∈ slowfail . h→R

)

•
(

¬∃R ∈ slowsucceed ∪ {console.print .2 , select .5} . h→R

)

∧
(

∃≥1R ∈ slowfail . h→R

)

•
(

¬∃R ∈ slowsucceed ∪ {console.print .2 , select .5} ∪ slowfail . h→R

)

3. The host can accept any message destined for it, by exactly one rule:

` IP(i3 , i4 , body)msg-ok ∧ i4 ∈ ifds ∧ i4 /∈ LOOPBACK =⇒ ∃1R ∈ accept . h→
IP(i3 ,i4 ,body)
R

4. If the oq contains a message, there is exactly one rule that deals with it:
oq 6= nil =⇒ ∃1R ∈ emit ∪ internaldelivery . h→R

Note that the first two clauses do not exclude the possibility of badfail, slowbadfail or intr rules.

Proof. By inspection of the axioms, using the the observation that the success of dosend (ie. of
enqueue) is determined solely by oqf .

Theorem 4 (Receptiveness and Progress). Suppose ` h host-ok.

1. If the host is in a Run host thread state, any well-typed library call may be performed:

t = Run ∧ f :TL→TL′ ∈ LIB ∧` v :TL =⇒ h
f v
−−→

2. If the host is in a Ret host thread state, a unique value will be returned:

t ∈ Ret =⇒ ∃1r.h
r
−→

3. The host can accept any message destined for it:

` IP(i3 , i4 , body)msg-ok ∧ i4 ∈ ifds ∧ i4 /∈ LOOPBACK =⇒ h
IP(i3 ,i4 ,body)
−−−−−−−−−→

Proof. Clauses 1 and 3 follow from Theorem 3; clause 2 is immediate from Theorem 1 and the
ret .1 axiom.

Theorem 5 (Absence of Pathological Host-Thread Deadlocks). If ` h host-ok, e is a thread
LTS and instep(h, e) then:

1. if e
f v
−−→ then h

f v
−−→; and

2. if h
r
−→ then e

r
−→.

Proof. An immediate consequence of the previous results and the thread LTS axioms.

Theorem 6 (Preservation – Network). If ` N network and N
l
−→ N ′ then ` N ′ network

Proof. Induction on the derivations.
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3 The Model: Detailed Operational Semantics

3.1 SOCKET

socket.1 succeed
Host(ifds ,Run, s, oq , oqf )

socket()
−−−−−−→Host(ifds ,Ret (OKfd),Sock(fd , ∗, ∗, ∗, ∗, ∗,Flags(false, false),nil) :: s, oq , oqf )

fd /∈ sockfds(s)

In BSD, this would be Flags(true, false)

socket.2 bad fail, as no file descriptors or file table space
H (Run)

socket()
−−−−−−→H (Ret (Fail e))

e ∈ {EMFILE,ENFILE}

The errors are ‘Too many open files’ and ‘File table overflow’.

3.2 BIND

bind.1 (∗, ∗) succeed, autobinding
F (ifds,Run,Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

bind(fd , ∗, ∗)
−−−−−−−−−−→F (ifds,Ret (OK()),Sock(fd , ∗, ↑p ′1 , ∗, ∗, es , f ,mq))

p′1 ∈ unused(F ) ∩ ephemeral

bind.2 (↑i , ∗) succeed, autobinding
F (ifds ,Run,Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

bind(fd , ↑i , ∗)
−−−−−−−−−−→F (ifds ,Ret (OK()),Sock(fd , ↑i , ↑p ′1 , ∗, ∗, es , f ,mq))

p′1 ∈ unused(F ) ∩ ephemeral and i ∈ ifds

bind.3 (∗, ↑p) succeed
F (ifds ,Run,Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

bind(fd , ∗, ↑p)
−−−−−−−−−−−→F (ifds ,Ret (OK()),Sock(fd , ∗, ↑p, ∗, ∗, es , f ,mq))

p /∈ privileged and ∀ Sock(fd ′, is ′1 , ps
′
1 , is

′
2 , ps

′
2 , es

′, f ′,mq ′) ∈ F .
(ps ′1 = ↑p) =⇒ (reuseaddr (f ) = true = reuseaddr (f ′))

Note that the i1 doesn’t get chosen until a datagram is sent, as in [Ste98, p.92].
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bind.4 (↑i , ↑p) succeed
F (ifds ,Run,Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

bind(fd , ↑i , ↑p)
−−−−−−−−−−−→F (ifds ,Ret (OK()),Sock(fd , ↑i , ↑p, ∗, ∗, es , f ,mq))

i ∈ ifds and p /∈ privileged and ∀ Sock(fd ′, is ′1 , ps
′
1 , is

′
2 , ps

′
2 , es

′, f ′,mq ′) ∈ F .
(ps ′1 = ↑p and (is

′
1 = ∗ or is

′
1 = ↑i)) =⇒ (reuseaddr (f ) = true = reuseaddr (f ′))

Bind failures

We assume that any unsuccessful bind leaves the socket state unchanged. In Linux, bind .7
(EADDRNOTAVAIL) wins over bind .5 (EACCES) and bind .6 (EADDRINUSE), and bind .5
(EACCES) wins over bind .6 (EADDRINUSE). We choose not to specify this (see §2.3.11).
If we did want to, we would add is = ∗ or ((is = ↑i) =⇒ i ∈ ifds) to bind .5 and (is =
∗ or ((is = ↑i) =⇒ i ∈ ifds)) and p /∈ privileged to bind .6 . Moreover, bind .8 (EINVAL) wins
over the other three. To express this, we would replace Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) in
bind .5 , bind .6 , bind .7 by Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq).

bind.5 (is , ↑p) fail, as we don’t have access for port p
F (ifds ,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

bind(fd , is , ↑p)
−−−−−−−−−−−→F (ifds ,Ret (Fail EACCES),Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq))

p ∈ privileged

On Linux, is is written into the Sock(...); we choose not to do so because it would violate our tidy socket

invariant. Since the socket is not placed on the delivery list, we can hide this by letting our wrapper for
getsockname test the local port, and, if it is ∗, return ∗ for local is.

bind.6 (is , ↑p) fail, as port p is already in use
F (ifds ,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

bind(fd , is , ↑p)
−−−−−−−−−−−→F (ifds ,Ret (Fail EADDRINUSE),Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq))

¬(∀Sock(fd ′, is ′1 , ps
′
1 , is

′
2 , ps

′
2 , es

′, f ′,mq ′) ∈ F .(ps ′1 = ↑p and (is
′
1 = ∗ or is = ∗ or is

′
1 = is))

=⇒ (reuseaddr (f ) = true = reuseaddr (f ′)))

bind.7 (↑i , ps) fail, as i is not one of our ip addresses
F (ifds,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq))

bind(fd , ↑i , ps)
−−−−−−−−−−−→F (ifds,Ret (Fail EADDRNOTAVAIL),Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

i /∈ ifds

bind.8 (is , ps) fail, as the socket has a non-∗ port already
F (ifds,Run,Sock(fd , is1 , ↑p1 , is2 , ps2 , es , f ,mq))

bind(fd , is , ps)
−−−−−−−−−−−→F (ifds,Ret (Fail EINVAL),Sock(fd , is1 , ↑p1 , is2 , ps2 , es , f ,mq))
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bind.9 (is, ∗) fail, as there are no ephemeral ports left
F (ifds ,Run,Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

bind(fd , is , ∗)
−−−−−−−−−−→F (ifds ,Ret (Fail e),Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

unused(F ) ∩ ephemeral = ∅ and e ∈ ephemeralErrors

This error is awkward to test, as the test machines run out of files (ENFILE from socket)
at about 3500, before the ephemeral ports are exhausted. The error set ephemeralErrors =
{EAGAIN,EADDRINUSE} is therefore speculative.

3.3 CONNECT

Our type for connect forbids the use of ∗ for the IP address. In practice, using 0 here requests
loopback transmission; it has the same effect as using 127.0.0.1.

connect.1 (is1 = ∗) succeed, autobinding if necessary
F (ifds,Run,Sock(fd , ∗, ps1 , ∗, ∗, es , f ,mq))

connect(fd , i , ps)
−−−−−−−−−−−−−→F (ifds,Ret (OK()),Sock(fd , ↑i1 , ↑p

′
1 , ↑i , ps, es , f ,mq))

i1 ∈ outroute(ifds , i) and p
′
1 ∈ autobind(ps1 ,F )

connect.2 (is1 = ↑i1 ) succeed
F (ifds,Run,Sock(fd , ↑i1 , ↑p1 , is2 , ps2 , es , f ,mq))

connect(fd , i , ps)
−−−−−−−−−−−−−→F (ifds,Ret (OK()),Sock(fd , ↑i1 , ↑p1 , ↑i , ps, es , f ,mq))

connect.3 fail, as there are no ephemeral ports left
F (ifds,Run,Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

connect(fd , i , ps)
−−−−−−−−−−−−−→F (ifds,Ret (Fail e), v)

unused(F ) ∩ ephemeral = ∅ and e ∈ ephemeralErrors
and ` v socket-ok(ifds) and sockfd(v) = fd

See remark for bind .9 . The rule leaves the socket in a indeterminate state, as we do not want to specify
exactly when the getport is called.

3.4 DISCONNECT

A disconnect is a C-library connect with AF UNSPEC. [Ste98, p.226] suggests some archi-
tectures would give EAFNOSUPPORT for a successful disconnect; we would hide that in the
wrapper.

disconnect.1 succeed
F (ifds ,Run,Sock(fd , is1 , ↑p1 , is2 , ps2 , es, f ,mq))

disconnect fd
−−−−−−−−−−→F (ifds ,Ret (OK()),Sock(fd , ∗, ↑p1 , ∗, ∗, es , f ,mq))
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Note that this leaves the local port in place, perhaps surprisingly.

disconnect.2 succeed, but also autobind
F (ifds,Run,Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

disconnect fd
−−−−−−−−−−→F (ifds,Ret (OK()),Sock(fd , ∗, ↑p1 , ∗, ∗, es , f ,mq))

p1 ∈ unused(F ) ∩ ephemeral

This autobind may be surprising, but the resulting state can receive msgs on ∗, p1 .

disconnect.3 fail, as there are no ephemeral ports left
F (ifds,Run,Sock(fd , ∗, ∗, ∗, ∗, es , f ,mq))

disconnect fd
−−−−−−−−−−→F (ifds,Ret (Fail e), v)

unused(F ) ∩ ephemeral = ∅ and e ∈ ephemeralErrors
and ` v socket-ok(ifds) and sockfd(v) = fd

See remark for connect .3 .

3.5 GETSOCKNAME, GETPEERNAME

getsockname.1 succeed
F (ifds ,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

getsockname fd
−−−−−−−−−−−→F (ifds ,Ret (OK(is1 , ps1 )),Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

See comment at bind .5 (EACCES). This involves a thin wrapper over the C system call; if we get
(↑is, ∗) from the C system call then return (∗, ∗). This ps1 = ∗ case of the rule covers for the weird
Linux behaviour of a failing bind due to EACCES or EADDRINUSE.

getpeername.1 succeed
F (ifds,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

getpeername fd
−−−−−−−−−−−→F (ifds,Ret (OK(is2 , ps2 )),Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

This involves a thin wrapper over the C system call: if we get ENOTCONN then return (∗, ∗).

3.6 GETERR, GETSOCKOPT, SETSOCKOPT

A geterr is a C-library getsockopt with SOL SOCKET and SO ERROR.

geterr.1 succeed
F (ifds ,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

geterr fd
−−−−−−→F (ifds ,Ret (OKes),Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,mq))
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getsockopt.1 succeed
F (ifds ,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

getsockopt(fd , opt)
−−−−−−−−−−−−−−→F (ifds ,Ret (OK b),Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq))

b = bsdcompat (f ) if opt = SO BSDCOMPAT, and
b = reuseaddr (f ) if opt = SO REUSEADDR.

setsockopt.1 succeed
F (ifds ,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq))

setsockopt(fd , opt , b)
−−−−−−−−−−−−−−−→F (ifds ,Ret (OK()),Sock(fd , is1 , ps1 , is2 , ps2 , es, f

′,mq))

f ′ = setbsdcompat (f , b) if opt = SO BSDCOMPAT, and
f ′ = setreuseaddr (f , b) if opt = SO REUSEADDR.

3.7 SENDTO

Passing ∗ as the second argument to sendto corresponds in C to giving sendto a null sockaddr
pointer; cf.[Ste98, p224]. Our typing prohibits passing ∗ for either the IP address or the port. In
practice, we guess passing a zero IP sends to loopback (presumably as 127.0.0.1), and passing a
zero port yields an EINVAL error.

We omit send since it is simply a trivial wrapper around sendto. We are arbitrarily ignoring
sendmsg, even though it may have useful functionality.

sendto.1 succeed
Host(ifds ,Run, S(Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,mq)), oq , oqf )

sendto(fd , ips, data,nb)
−−−−−−−−−−−−−−−−−−→

Host(ifds ,Ret (OK()), S(Sock(fd , is1 , ↑p
′
1 , is2 , ps2 , ∗, f ,mq)), oq

′, oqf ′)

p′1 ∈ autobind(ps1 , S)
and (oq ′, oqf ′,true) ∈ dosend(ifds , (ips, data), (is1 , ↑p

′
1 , is2 , ps2 ), oq , oqf )

and size(data) ≤ UDPpayloadMax and (ips 6= ∗ or is2 6= ∗).

sendto.2 block, entering Sendto2 state
Host(ifds,Run, S(Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,mq)), oq , oqf )

sendto(fd , ips, data, false)
−−−−−−−−−−−−−−−−−−−−−→

Host(ifds ,Sendto2 (fd , ips, data), S(Sock(fd , is1 , ↑p
′
1 , is2 , ps2 , ∗, f ,mq)), oq

′, oqf ′)

p′1 ∈ autobind(ps1 , S) and (oq
′, oqf ′, false) ∈ dosend(ifds, (ips, data), (is1 , ↑p

′
1 , is2 , ps2 ), oq , oqf )

and (ips 6= ∗ or is2 6= ∗)
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sendto.3 fail, as would block
Host(ifds ,Run, S(Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,mq)), oq , oqf )

sendto(fd , ips, data,true)
−−−−−−−−−−−−−−−−−−−−→

Host(ifds ,Ret (Fail EAGAIN), S(Sock(fd , is1 , ↑p
′
1 , is2 , ps2 , ∗, f ,mq)), oq

′, oqf ′)

p′1 ∈ autobind(ps1 , S) and (oq
′, oqf ′, false) ∈ dosend(ifds , (ips, data), (is1 , ↑p

′
1 , is2 , ps2 ), oq , oqf )

and (ips 6= ∗ or is2 6= ∗)

Note that in Linux EWOULDBLOCK and EAGAIN are aliased.

sendto.4 fail, as socket unconnected
F (ifds,Run,Sock(fd , is1 , ps1 , ∗, ∗, ∗, f ,mq))

sendto(fd , ∗, data,nb)
−−−−−−−−−−−−−−−−→F (ifds,Ret (Fail ENOTCONN),Sock(fd , is1 , ↑p

′
1 , ∗, ∗, ∗, f ,mq))

p′1 ∈ autobind(ps1 , socks(F ))

[Ste98] states this should give EDESTADDRREQ, not ENOTCONN.

sendto.5 fail, as socket in an error state
F (ifds ,Run,Sock(fd , is1 , ↑p1 , is2 , ps2 , ↑e, f ,mq))

sendto(fd , ips, data,nb)
−−−−−−−−−−−−−−−−−−→F (ifds ,Ret (Fail e),Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,mq))

Recall that by the socket-ok invariant if the error component is e↑ then the local port is not ∗.

sendto.6 fail, as data size too big
Host(ifds ,Run, S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq)), oq , oqf )

sendto(fd , ips, data,nb)
−−−−−−−−−−−−−−−−−−→

Host(ifds,Ret (Fail EMSGSIZE), S(Sock(fd , is1 , ps
′
1 , is2 , ps2 , es , f ,mq)), oq , oqf )

size(data) > UDPpayloadMax and ps ′1 ∈ {ps1} ∪ image(↑)autobind(ps1 , S)

In Linux, sendto.5 takes precedence over this, so EMSGSIZE cannot happen in an error state. In a
normal state, it does not set the error flag. What happens on a Sendto2 if an error flag is set is open.
Note that we let ps ′

1 = ps1 nondeterministically, as the size check may be before or after the autobind.
On Linux this is unnecessary as the autobind is performed before the EMSGSIZE check. Note that we
nondeterministically allow the message size check to fail either on entry to Sendto2 or on exit.

sendto.7 fail, as there are no ephemeral ports left
Host(ifds ,Run, S(Sock(fd , ∗, ∗, ∗, ∗, ∗, f ,mq)), oq , oqf )

sendto(fd , ips, data,nb)
−−−−−−−−−−−−−−−−−−→Host(ifds ,Ret (Fail e), S(v), oq , oqf )

autobind(∗, S) = ∅ and e ∈ ephemeralErrors
and ` v socket-ok(ifds) and sockfd(v) = fd

See remark for connect .3 .
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sendto.8 slow succeed
Host(ifds ,Sendto2 (fd , ips, data), S(Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,mq)), oq , oqf )

OK()
−−−−→Host(ifds ,Run, S(Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,mq)), oq

′, oqf ′)

(oq ′, oqf ′,true) ∈ dosend(ifds , (ips, data), (is1 , ps1 , is2 , ps2 ), oq , oqf )
and size(data) ≤ UDPpayloadMax

Note that the Sendto2 state can only be entered by the sendto.2 rule, so we have (ips 6= ∗ or is2 6= ∗)
in the host-ok invariant.

sendto.9 slow fail, as socket has entered an error state
Host(ifds ,Sendto2 (fd , ips, data), S(Sock(fd , is1 , ps1 , is2 , ps2 , ↑e, f ,mq)), oq , oqf )

Fail e
−−−−−→Host(ifds ,Run, S(Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,mq)), oq , oqf )

sendto.10 slow fail, as data size too big
Host(ifds ,Sendto2 (fd , ips, data), s, oq , oqf )

Fail EMSGSIZE
−−−−−−−−−−−−−−→Host(ifds ,Run, s, oq , oqf )

size(data) > UDPpayloadMax

This rule leaves the socket state unchanged. One might wish to allow it to have been disturbed, nonde-
terministically.

3.8 RECVFROM

We omit recv since it is simply a trivial wrapper around recvfrom. We are arbitrarily ignoring
recvmsg, even though it provide useful functionality.

We do not return the ifid component of the message queue element, as it seems sufficiently
awkward to obtain under Linux that one really wouldn’t want to do it all the time. We keep it in
the model to support an extended recvfrom in future.

recvfrom.1 succeed
F (ifds ,Run,Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,

(IP(i3 , i4 ,UDP(ps3 , ps4 , data)), ifid) ::mq))
recvfrom(fd ,nb)
−−−−−−−−−−−−→F (ifds ,Ret (OK(i3 , ps3 , data)),Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,mq))

recvfrom.2 block, entering Recvfrom2 state
F (ifds ,Run,Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,nil))

recvfrom(fd , false)
−−−−−−−−−−−−−−−→F (ifds ,Recvfrom2 fd ,Sock(fd , is1 , ↑p

′
1 , is2 , ps2 , ∗, f ,nil))

p′1 ∈ autobind(ps1 , socks(F ))

The autobinding can be observed by guessing the next ephemeral port.
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recvfrom.3 fail, as would block
F (ifds,Run,Sock(fd , is1 , ps1 , is2 , ps2 , ∗, f ,nil))

recvfrom(fd ,true)
−−−−−−−−−−−−−−→F (ifds,Ret (Fail EAGAIN),Sock(fd , is1 , ↑p

′
1 , is2 , ps2 , ∗, f ,nil))

p′1 ∈ autobind(ps1 , socks(F ))

Note that in Linux EWOULDBLOCK and EAGAIN are aliased.

recvfrom.4 fail, as socket in an error state
F (ifds,Run,Sock(fd , is1 , ↑p1 , is2 , ps2 , ↑e, f ,mq))

recvfrom(fd ,nb)
−−−−−−−−−−−−→F (ifds,Ret (Fail e),Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,mq))

recvfrom.5 fail, as there are no ephemeral ports left
F (ifds,Run,Sock(fd , ∗, ∗, ∗, ∗, ∗, f ,nil))

recvfrom(fd ,nb)
−−−−−−−−−−−−→F (ifds,Ret (Fail e), v)

autobind(∗,F ) = ∅ and e ∈ ephemeralErrors
and ` v socket-ok(ifds) and sockfd(v) = fd

See remark for connect .3 .

recvfrom.6 slow succeed
F (ifds ,Recvfrom2 fd ,Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,

(IP(i3 , i4 ,UDP(ps3 , ps4 , data)), ifid) ::mq))

OK(i3 , ps3 , data)
−−−−−−−−−−−−−−→F (ifds ,Run,Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,mq))

Note that the Recvfrom2 state can only be entered by the recvfrom.2 rule, so we have ps1 = ↑p1 in
the host-ok invariant.

recvfrom.7 slow fail, as socket has entered an error state
F (ifds ,Recvfrom2 fd ,Sock(fd , is1 , ↑p1 , is2 , ps2 , ↑e, f ,mq))

Fail e
−−−−−→F (ifds ,Run,Sock(fd , is1 , ↑p1 , is2 , ps2 , ∗, f ,mq))

3.9 CLOSE

close.1 succeed
Host(ifds,Run, s1@[Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq)]@s2 , oq , oqf )

close fd
−−−−−−→Host(ifds,Ret (OK()), s1@s2 , oq , oqf )

3.10 SELECT
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select.1 enter Select2 state
H (Run)

select(readseq ,writeseq , tms)
−−−−−−−−−−−−−−−−−−−−−−→H (Select2 (readseq ,writeseq , tms))

readseq@writeseq ⊆ sockfds(H ) and tms = ↑i =⇒ 0 ≤ i

select.2 fail, as timeout negative
H (Run)

select(readseq ,writeseq , ↑tm)
−−−−−−−−−−−−−−−−−−−−−−→H (Ret (Fail EINVAL))

tm < 0

select.3 slow succeed, with at least one fd ready
Q(Select2 (readseq ,writeseq , tms), s, oqf )

OK(readseq ′,writeseq ′)
−−−−−−−−−−−−−−−−−−→Q(Run, s, oqf )

readseq ′ = [fd | fd ∈ readseq and ∃Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ s . (mq 6= nil ∨ es 6=
∗)]
writeseq ′ = [fd | fd ∈ writeseq and oqf = false and ∃Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ s]
readseq ′ 6= nil or writeseq ′ 6= nil

Note that (by our approximate treatment of oqf ) all sockets become writable simultaneously.

select.4 slow succeed, with zero timeout
Q(Select2 (readseq ,writeseq , ↑0), s, oqf )

OK(readseq ′,writeseq ′)
−−−−−−−−−−−−−−−−−−→Q(Run, s, oqf )

readseq ′ = [fd | fd ∈ readseq and ∃Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ s . (mq 6= nil ∨ es 6=
∗)]
writeseq ′ = [fd | fd ∈ writeseq and oqf = false and ∃Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ s]
∧ readseq ′ = nil ∧ writeseq ′ = nil

select.5 slow timeout decrement
Q(Select2 (readseq ,writeseq , ↑tm), s, oqf )

τ
−→Q(Select2 (readseq ,writeseq , ↑(tm− 1)), s, oqf )

tm > 0
readseq ′ = [fd | fd∈readseq and ∃Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ s . (mq 6= nil ∨ es 6= ∗)]
writeseq ′ = [fd | fd ∈ writeseq and oqf = false and ∃Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ s]
readseq ′ = nil and writeseq ′ = nil

3.11 GETIFADDRS
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getifaddrs.1 succeed
Host(ifds,Run, s, oq , oqf )

getifaddrs()
−−−−−−−−→Host(ifds,Ret (OKiflist), s, oq , oqf )

iflist ∈ orderings({(ifid , ipslist, iprimary ,netmask) | (ifid , iset , iprimary ,netmask) ∈
ifds and ipslist ∈ orderings(iset)})

Note this returns the interfaces in any arbitrary order each time; likewise the aliases within each interface.
If one wanted otherwise, ifds and iset should be lists.

3.12 CONSOLE IO

console.print.1 enter print2 state
H (Run)

print_endline_¤ush v
−−−−−−−−−−−−−−−→H (Print2 v)

console.print.2 print the string on console
H (Print2 v)

console v
−−−−−−−→H (Ret (OK()))

3.13 CONVERSIONS

convert.port.1 succeed
H (Run)

port_of_int v
−−−−−−−−−→H (Ret (OKv))

1 ≤ v ≤ 65535

convert.port.2 fail
H (Run)

port_of_int v
−−−−−−−−−→H (Ret (Fail EINVAL))

v < 1 or v > 65535

convert.ip.1 succeed
H (Run)

ip_of_string v
−−−−−−−−−−→H (Ret (OKi))

v is a valid non-zero IP dotted-quad with value i
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convert.ip.2 fail
H (Run)

ip_of_string v
−−−−−−−−−−→H (Ret (Fail EINVAL))

v is not a valid non-zero IP dotted-quad

3.14 EBADF/ENOTSOCK

Fail as the fd is not a file descriptor, or is a file descriptor but not a socket These may apply
to any of the operations that take an fd as argument, so beware when doing case analysis on
operations.

notsockfd.1 select fail, as some fd not a socket file descriptor
H (Run)

select(readseq ,writeseq , tms)
−−−−−−−−−−−−−−−−−−−−−−→H (Ret (Fail EBADF))

∃fd ∈ (readseq ∪ writeseq) \ sockfds(H )

The error is ‘Bad file number’.

notsockfd.2 OP fail, as fd not a socket file descriptor
H (Run)

OP(fd)
−−−−−−→H (Ret (Fail e))

fd /∈ sockfds(H ) and e ∈ {ENOTSOCK,EBADF}

The errors are ‘Socket operation on non-socket’ and ‘Bad file number’.

3.15 ENOBUFS/ENOMEM AND EINTR

The ENOBUFS/ENOMEM rules may apply to any of the operations that take an fd as
argument, and the EINTR rule may apply to any of the operations that may block, so beware
when doing case analysis on operations. We conservatively allow ENOBUFS/ENOMEM in any
of the OP2 (fd) or Select2 v states. In the rules for OP(fd) and OP2 (fd) we allow the resulting
socket state to be arbitrary, as we expect that a failing operation may leave the socket in bad state.

intr.1 slow intr, as system call interrupted
Host(ifds, op v , s, oq , oqf )

Fail EINTR
−−−−−−−−−−→Host(ifds,Run, s, oq , oqf )

op ∈ {Sendto2 ,Recvfrom2 ,Select2 ,Print2 }

This rule leaves the socket state unchanged, as we presume that the interrupt occurs in a coherent state.
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badmem.1 socket bad fail, as no space
H (Run)

socket()
−−−−−−→H (Ret (Fail e))

e ∈ {ENOMEM,ENOBUFS}

The errors are (no space to allocate) and (no space for buffers) respectively.

badmem.2 OP bad fail, as no space
F (ifds,Run,Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

OP(fd)
−−−−−−→F (ifds,Ret (Fail e), v)

e ∈ {ENOMEM,ENOBUFS} and ` v socket-ok(ifds) and sockfd(v) = fd

The errors are (no space to allocate) and (no space for buffers) respectively.

badmem.3 OP2 slow bad fail, as no space
F (ifds ,OP2 (fd),Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))

Fail e
−−−−−→F (ifds ,Run, v)

e ∈ {ENOMEM,ENOBUFS} and ` v socket-ok(ifds) and sockfd(v) = fd

The errors are (no space to allocate) and (no space for buffers) respectively.

badmem.4 Select2 slow bad fail, as no space
H (Select2 v)

Fail e
−−−−−→H (Run)

e ∈ {ENOMEM,ENOBUFS}

The errors are ‘Out of memory’ and ‘No buffer space available’.

3.16 EXIT

exit.1 exit
Host(ifds,Run, s, oq , oqf )

exit ()
−−−−→Host(ifds,Term, [ ], oq , oqf )

See §2.3.14. This rule removes all the sockets (matching Unix behaviour, supposing that all sockets in
the machine were created by the process). It leaves the oq and oqf unchanged, so messages may still be
delivered outwards.

3.17 RET
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ret.1 return value v from fast system call to thread
Host(ifds ,Ret v , s, oq , oqf )

v
−→Host(ifds ,Run, s, oq , oqf )

3.18 DELIVERY

OUT

delivery.out.1 put UDP or ICMP to the network from oq
Host(ifds , t , s, oq , oqf )

IP(i3 , i4 , body)
−−−−−−−−−−−−→Host(ifds , t , s, oq ′, oqf ′)

((IP(i3 , i4 , body)), oq
′, oqf ′) ∈ dequeue(oq , oqf )

and i4 /∈ LOOPBACK ∪MARTIAN
and i3 /∈ MARTIAN

Note that dequeue gives an empty set of possible outcomes if oq = [ ].

delivery.out.martian discard martian IP from oq
Host(ifds , t , s, oq , oqf )

τ
−→Host(ifds , t , s, oq ′, oqf ′)

((IP(i3 , i4 , body)), oq
′, oqf ′) ∈ dequeue(oq , oqf ) and i4 ∈ MARTIAN

This rule is speculative. Note that it applies to UDP and to ICMP, and to loopback destinations.

IN - UDP

delivery.in.udp.1 get UDP from network and deliver to a matching socket
Host(ifds , t , s, oq , oqf )

IP(i3 , i4 ,UDP(ps3 , ps4 , data))
−−−−−−−−−−−−−−−−−−−−−−−−→Host(ifds , t , S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,

mq :: (IP(i3 , i4 ,UDP(ps3 , ps4 , data)), ifid))), oq , oqf )

Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq) ∈ lookup s (i3 , ps3 , i4 , ps4 )
and S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq)) = s
and (ifid , iset , , ) ∈ ifds and i4 ∈ iset
and i4 /∈ LOOPBACK and i3 /∈ MARTIAN ∪ LOOPBACK
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delivery.in.udp.2 get UDP from network but generate ICMP, as no matching socket
Host(ifds , t , s, oq , oqf )

IP(i3 , i4 ,UDP(ps3 , ps4 , data))
−−−−−−−−−−−−−−−−−−−−−−−−→Host(ifds , t , s, oq ′, oqf ′)

i4 ∈ ifds and lookup s (i3 , ps3 , i4 , ps4 ) = ∅
and (oq ′, oqf ′, ok) ∈ {(oq , oqf ,true)} ∪
enqueue(IP(i4 , i3 , ICMP PORT UNREACH(i3 , ps3 , i4 , ps4 )), oq , oqf )
and i4 /∈ LOOPBACK and i3 /∈ MARTIAN ∪ LOOPBACK

Note that ICMP generation is unreliable; the Linux kernel has per-type-of-ICMP rate-limiting to control
denial-of-service attacks. We take a nondeterministic approximation. Note also that the ICMP is dropped
if the outqueue is full (ok = false).

delivery.in.martian.3 get martian IP from network and discard
Host(ifds , t , s, oq , oqf )

IP(i3 , i4 , v)
−−−−−−−−−→Host(ifds , t , s, oq , oqf )

i4 ∈ ifds and i4 /∈ LOOPBACK
and (loopback(IP(i3 , i4 , v)) ∨ martian(IP(i3 , i4 , v)))

This is a garbage collection rule to pull martian UDP or ICMP off of the network and discard them.

IN - ICMP
We have not investigated what happens if the ICMP header source and destination do not

match the embedded UDP source and destination, supposing for the time being that matching is
done on the embedded data. X here is PORT or HOST .

delivery.in.icmp.1 get ICMP from the network, setting error in a matching socket
Host(ifds, t , s, oq , oqf )

IP(i ′4 , i
′
3 , ICMP X UNREACH(i3 , ps3 , i4 , ps4 ))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Host(ifds, t , S(Sock(fd , is1 , ps1 , is2 , ps2 , es

′, f ,mq)), oq , oqf )

S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq)) = s
and Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,mq) ∈ lookup s(i3 , ps3 , i4 , ps4 )
and m = IP(i ′4 , i

′
3 , ICMP X UNREACH(i3 , ps3 , i4 , ps4 ))

and i ′3 ∈ ifds and ¬(loopback(m) ∨ martian(m))
and es ′ = if (is2 6= ∗) or ¬(bsdcompat f ) then ↑ECONNREFUSED else es

As we are not sure which destination (i3 , i ′3 ) address the matching is done on, we add the LOOPBACK
check to both to make the rule sensible.

delivery.in.icmp.2 get ICMP from the network and drop, as no matching socket
Host(ifds, t , s, oq , oqf )

IP(i ′4 , i
′
3 , ICMP X UNREACH(i3 , ps3 , i4 , ps4 ))

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Host(ifds, t , s, oq , oqf )

i ′3 ∈ ifds and lookup s(i3 , ps3 , i4 , ps4 ) = ∅
and m = IP(i ′4 , i

′
3 , ICMP X UNREACH(i3 , ps3 , i4 , ps4 ))

and ¬(loopback(m) ∨ martian(m))
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LOOPBACK

delivery.loopback.udp.1 get loopback UDP from oq and deliver to a matching socket
Host(ifds , t , s, oq , oqf )

τ
−→Host(ifds , t , S(Sock(fd , is1 , ps1 , is2 , ps2 , es, f ,

mq :: (IP(i3 , i4 ,UDP(ps3 , ps4 , data)), ifid))), oq
′, oqf ′)

(IP(i3 , i4 ,UDP(ps3 , ps4 , data)), oq
′, oqf ′) ∈ dequeue(oq , oqf )

and i4 ∈ LOOPBACK
and s = S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))
and Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ lookup s(i3 , ps3 , i4 , ps4 )
and IF(ifid ,LOOPBACK, localhost, 255/8) ∈ ifds

Note that {i3 , i4} ∩MARTIAN = ∅ is guaranteed by invariants.

delivery.loopback.udp.2 get a loopback UDP from oq but generate loopback ICMP, as
no matching socket

Host(ifds , t , s, oq , oqf )
τ
−→Host(ifds , t , s, oq ′′, oqf ′′)

(IP(i3 , i4 ,UDP(ps3 , ps4 , data)), oq
′, oqf ′) ∈ dequeue(oq , oqf )

and i4 ∈ LOOPBACK
and lookup s(i3 , ps3 , i4 , ps4 ) = ∅
and (oq ′′, oqf ′′, ok) ∈ enqueue(IP(i4 , i3 , ICMP PORT UNREACH(i4 , ps4 , i3 , ps3 )), oq

′, oqf ′)

ICMPs are dropped if the outqueue is full (the ok flag is ignored). Note that {i3 , i4} ∩MARTIAN = ∅
is guaranteed by invariants.

delivery.loopback.icmp.1 get a loopback ICMP from oq and deliver (by setting es) to
a matching socket

Host(ifds , t , s, oq , oqf )
τ
−→Host(ifds , t , S(Sock(fd , is1 , ps1 , is2 , ps2 , es

′, f ,mq)), oq ′, oqf ′)

(IP(i ′4 , i
′
3 , ICMP PORT UNREACH(i3 , ps3 , i4 , ps4 )), oq

′, oqf ′) ∈ dequeue(oq , oqf )
and i ′3 ∈ LOOPBACK
and s = S(Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq))
and Sock(fd , is1 , ps1 , is2 , ps2 , es , f ,mq) ∈ lookup s(i4 , ps4 , i3 , ps3 )
and es ′ = if (is2 6= ∗) or ¬(bsdcompat f ) then ↑ECONNREFUSED else es

Note that {i ′4 , i
′
3 , i3 , i4} ∩MARTIAN = ∅ is guaranteed by invariants.

delivery.loopback.icmp.2 get a loopback ICMP from oq and drop, as no socket matches
Host(ifds , t , s, oq , oqf )

τ
−→Host(ifds , t , s, oq ′, oqf ′)

(IP(i ′4 , i
′
3 , ICMP PORT UNREACH(i3 , ps3 , i4 , ps4 )), oq

′, oqf ′) ∈ dequeue(oq , oqf )
and i ′3 ∈ LOOPBACK
and lookup s(i4 , ps4 , i3 , ps3 ) = ∅

Note that {i ′4 , i
′
3} ∩MARTIAN = ∅ is guaranteed by invariants.



The UDP Calculus 49

4 MiniCaml

MiniCaml is designed to be a sublanguage of OCaml 3.00 [L+00]. The semantics is largely standard;
the details can be found in Appendix A.

4.1 Syntax The types are given by the grammar marked TL in Figure 1 (except T err), together
with:

T ::= · · · | T→T ′ | T ref | exn

The nullary and unary constructors c0 and c1 are all language constructors of arity 0 and 1 of
Figure 2, together with

UDP : error→ exn

Match failure : string ∗ int ∗ int→ exn

The expressions, matches, and patterns are

e ::= c0 | c1 e | e :: e | (e1 , .., en) | x
| ref |! | := | e = e | if e then e else e | while e do e done | e; e
| function mtch | e e | let p = e in e | let rec x = function mtch in e
| raise e | try e with mtch
| f | RETT err | RETvoid

mtch ::= p→ e | (p→ e | mtch)
p ::= | x | c0 | c1 p | (p1 , .., pn) | p :: p | (p :T )

This is standard except for the last line of the e grammar. We let f range over calls of the
library interface LIBEX, consisting of f :T→T ′ for each f :T→T ′ err ∈ LIB and exit : ()→ void.
RETT err is an expression waiting for a return value of type T err from a library call. The value
will be mapped into either a value of type T or a raise of an exception. RETvoid is a placeholder
for a terminated program (that has invoked exit , raised an uncaught exception, or reduced to a
value).

4.2 Typing The typing rules are standard (though for simplicity we allow polymorphism only
for constructors, not for let-bound identifiers). They define judgements:

E ` e :T E ` mtch :T→T ′ ` p :T B E E ` s store

Here stores s are finite partial functions from identifiers to values. We say a program is an expression
e that does not contain an occurrence of RET such that ` e :T for some T .

4.3 Operational Semantics The operational semantics defines a transition relation over pairs
e, s of an expression and a store, where E ` e :T ∧ E ` s store for some E ,T . Stores are sometimes
elided. It is standard, using reduction axioms and evaluation contexts (taking the evaluation order
of the ocamlopt native-code compiler), except for transitions with non-τ labels, for which we take
the axioms

f v , s
f v
−−→ RETT ′ , s if f :T→T ′ in LIB

RETT err, s
OK(v)
−−−−→ v , s if ` v :T

RETT err, s
Fail (v)
−−−−−→ raise UDP(v), s if ` v : error
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(closed under evaluation contexts), together with top-level axioms for exit of a terminated value
or unhandled exception:

v , s
exit ()
−−−→ RETvoid, s

raise v , s
exit ()
−−−→ RETvoid, s

4.4 Sanity Properties We prove theorems stating that types are preserved by transitions, that
runtime errors do not occur, and that the semantics satisfies the thread LTS axioms of §2.2.5.

4.5 Implementation We have implemented an OCaml module Udplang that provides all the
language types of Figure 1 that are not OCaml types (except T err), the language constructors
of Figure 2 for types T↑, error and sockopt, and (almost all of) the library LIBEX. Its signature
can be found in Appendix B. The example programs in this paper are automatically typeset
from working code, omitting an open Udplang;; at the beginning of each program and using
mathematized concrete syntax, writing (),T↑, ↑e, ∗,→ for unit, T lift, Lift e, Star and ->.
unit, T lift, Lift e, Star and ->. We also typeset sugared lists [e1 ; ..; en] as [e1 , .., en]. We have not
implemented any automated check that an OCaml program lies within MiniCaml.
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5 Validation

5.1 What We Did To develop and validate our host semantics, we set up a test network: a
non-routed 10BaseT-Ethernet subnet with four dedicated machines (two Linux and two Win2K),
accessible via an additional interface on one of our Linux workstations.

astrocytekurt john

alanemil

Linux Win2K

(no routing)

LinuxWin2K

192.168.0.11 192.168.0.12 192.168.0.1

192.168.0.13 192.168.0.14

128.232.8.107

Internet

Linux

192.168.0.21

This gives us a quiet and predictable network over which we are able to send and receive
datagrams and observe the behaviour of the various UDP and sockets implementations. In a few
cases (mainly in order to generate ICMPs with more significant delays) we also sent datagrams
into the wider Internet.
The machines kurt, john, emil, alan are all Intel Pentium 150s. kurt and alan run

Linux 2.2.16-22, and john and emil run Windows 2000 5.00.2195. The workstation astrocyte

is an Athlon 800 running a departmentally-modified version of Linux 2.2.16-4. All machines use
3Com network interface cards.
Tests were written in C, using the glibc 2.1.92 sockets library. Initially we wrote a large number

of ad hoc tests, C programs that display the results of short sequences of socket calls, and also
observed the resulting network traffic with the tcpdump utility. We wrote a daemon, udpdaemon,
which allowed us to remotely send and receive UDP datagrams and test for returned ICMPs.
Certain hard-to-test issues (eg., the range of ephemeral ports, the reliability of ICMP generation)
were resolved by inspecting the Linux kernel source code, which also helped us build an intuition
for the OS’s view of socket interaction.
Later, to more thoroughly validate the semantics as a whole, we translated the host operational

semantics into C; we wrote an automatic tool, udpautotest, that simulates the model in parallel
with the real socket calls (augmented with a wrapper providing tracing and the thin LIB abstraction
of Section 1.7). This tests representatives of most cases of the semantic rules, giving us a high level
of confidence in our model. It helped us greatly in correctly stating the more subtle corners of the
semantics, and will hopefully make determining the semantics of other implementations (such as
Win2K or BSD) relatively routine.

5.2 Limitations The testing has a number of limitations, however. We only test the sockets
library as a closed box: the internal socket state is not directly observable or manipulable, and so
all our observations are via the sockets interface itself. Our automated test framework relies heavily
on first using a sequence of socket, bind, connect to put a socket in a known state, then invoking
the socket call under test, and finally testing the state of the socket afterwards using getsockname,
getpeername, and getsockopt. UDP messages and, indirectly, ICMPs are generated by sendto and
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tested for by recvfrom. This means that we have to trust that these calls are ‘telling the truth’.
We can gain some confidence of this by direct observation of the network using tcpdump, and by
inspecting the implementation source code where available.
Our testing has other limitations.

– It is clearly impossible to exhaust all cases – every possible port, every possible IP address,
every possible file descriptor – and so we chose a set of representative values: for ports, for
example, we chose a privileged port, an already-bound port, the wildcard port, an arbitrary
unbound port, and a known unbound port.

– While tcpdump did allow us to inspect arbitrary packets on the wire, we had no way of injecting
arbitrary packets onto the wire; while UDP datagrams are easily generated, we were only able
to generate ICMP messages by sending UDP datagrams to unbound ports on known hosts;
we did not test ICMP HOST UNREACH behaviour. Similarly, we were unable to generate
martian or loopback packets on the wire to validate their treatment.

– We were unable to test most of the ‘bad errors’, such as running out of kernel memory or
ephemeral ports; similarly some details of the behaviour of blocking calls, slow returns, and
interrupted system calls; the exact behaviour of delivery and loopback rules (unobservable
without examining internal state); multiple interfaces and/or multiple IPs per interface. We
did not thoroughly test the reuseaddr behaviour, or calls with non-socket file descriptors.

– We did not look for Byzantine behaviour – if we attempted to send a datagram on port 1745,
we did not check for datagrams on ports 1746 or 42420, for example.

– Loss is very rare on our single subnet, and as far as we are aware reordering and duplication
never occur. To test these we will need to extend our tests through one or more routers,
probably using the Internet rather than our own isolated network.

We therefore cannot regard the semantics as definitive, and would be interested to hear of
discrepancies between it and real system behaviour.

5.3 Idealisation and Abstraction We have endeavoured to make the model as accurate as
possible, for the fragment of socket programming and the level of abstraction chosen in §1.7, and as
far as one can with an untimed interleaving semantics. Nonetheless, it is in some respects idealised.
Some of these are resource issues – we do not bound the MiniCaml space usage, and have a purely
nondeterministic semantics for OS allocation failures. We simplify the real full-outqueue behaviour,
and use an approximation to the treatment of ‘martian’ datagrams. We also assume unbounded
integers and perfect UDP checksums, and have atomic transitions that have a subtle relationship
to the detailed OS process scheduling.
In the model, the library call (f v) and return (r) host transitions are atomic, as are the

delivery transitions, and delivery transitions can be arbitrarily interleaved with calls and returns.
It is tempting to think of the calls and returns as occuring exactly when control is passed from user
to library code (well-defined up to a few cycles). To be strictly accurate, however, we would have
to take into account when the Linux kernel takes locks, and how the scheduler operates. It would
be interesting to develop a precise statement of the sense in which our model is an abstraction
of such a lower-level model, though useful properties of distributed infrastructures may well not
depend on such details.
Using an untimed semantics restricts the possible treatments of message delivery. Our model

is asynchronous, ensuring that it does not have unrealistic message ordering properties, but conse-
quently messages do persist in a network until either they are delivered or the loss rule fires. (The
alternative, of a synchronous model, would be more seriously flawed.) In an actual network, an
ethernet-connected machine must be up for the interval during which a packet passes its interface
in order to receive it; to reflect these details requires a more complex timed semantics.
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5.4 MiniCaml No attempt was made to validate either the language semantics for MiniCaml
(other than to check the evaluation order, which differs between the native-code generator and
the bytecode interpreter), or the Udplang OCaml binding we used to test our examples. In the
latter case, we assume the OCaml Unix module is a trivial binding to the C sockets interface; our
Udplang module does little more.
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6 Examples

6.1 The Single Sender We first show the possible traces of the single sender and single receiver
from §1.6. Their state spaces and transition relations are illustrated in Appendix C. Consider

N = alan·es | alan·Host(ifdsalan,Run, [ ], [ ], false)
| kurt·er | kurt·Host(ifdskurt,Run, [ ], [ ], false)

and discount rules modelling interrupted system calls or the OS running out of file descriptors or
kernel memory(the badfail, intr .1 and slowbadfail rules ). Suppose loss (drop.1 ) may occur, but
duplication (dup.1 ) and host failure (host .crash.∗) do not.

One behaviour involves message m = IP(ialan, ikurt,UDP(↑p1 , ↑7654, "hello")) (for p1 ∈
ephemeral) being successfully sent, with observable trace

N
kurt·console "ready"
−−−−−−−−−−−−−→

alan·console "sending"
−−−−−−−−−−−−−−→

kurt·console "hello"
−−−−−−−−−−−−→ N ′

and resulting state

N ′ = alan·RETvoid | alan·Host(ifdsalan,Term, [ ], [ ], false)
| kurt·RETvoid | kurt·Host(ifdskurt,Term, [ ], [ ], false)

It is also possible for the "hello" to be received and printed with the message m arriving at kurt

after kurt’s bind but before the output of "ready", giving trace

N
alan·console "sending"
−−−−−−−−−−−−−−→

kurt·console "ready"
−−−−−−−−−−−−−→

kurt·console "hello"
−−−−−−−−−−−−→ N ′

ending in the same state. If message m arrives at kurt before kurt’s bind, however, it will be
discarded, giving a trace

N
alan·console "sending"
−−−−−−−−−−−−−−→

kurt·console "ready"
−−−−−−−−−−−−−→ N ′′

ending with alan’s state terminated as before but kurt in a blocked Recvfrom2 state. Here
kurt may or may not generate an ICMP, which may or may not be delivered to alan in time
to set the socket error flag, but as the socket is not used again and is removed on exit this is not
visible.

Finally, there are two observable traces if messagem is lost: the trace above and its permutation.
In both alan runs to completion and kurt remains blocked; no ICMPs are generated.
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6.2 The Single Heartbeat As a more realistic example, we present code for a simple heartbeat
algorithm, a program eA that checks the status of another program eB (which one might think of
running as part of a large application):

eA = eB =
let p = port_of_int (7655) in
let i = ip_of_string ("192.168.0.11") in
let fd = socket() in
let = bind(fd , ∗, ↑p) in
let = connect(fd , i , ↑p) in
let = print_endline_¤ush "pinging" in
let = sendto(fd , ∗, "ping", false) in
let (fds, ) = select([fd ], [ ], ↑5000000) in
if fds = [ ] then

print_endline_¤ush "dead"
else
try

let ( , , v) = recvfrom(fd , false) in
print_endline_¤ush v

with
UDP(ECONNREFUSED)
→ print_endline_¤ush "down"

let p = port_of_int (7655) in
let i = ip_of_string ("192.168.0.14") in
let fd = socket() in
let = bind(fd , ∗, ↑p) in
let = connect(fd , i , ↑p) in
let = print_endline_¤ush "ready" in
let = recvfrom(fd , false) in
let = sendto(fd , ∗, "ack", false) in
print_endline_¤ush "done"

Program eB , which should be run on kurt, displays "ready" on the console, waits for a message
from alan on a known port, and responds with an "ack" message when the message arrives.
Program eA, which should be run on alan, displays "pinging" and checks the status of the

remote machine kurt by sending a message on the known port. It then waits up to five seconds
for a response (either a UDP reply datagram or an ICMP PORT UNREACH error). If there is
none, it displays "dead"; if the response is a UDP datagram it displays its contents to indicate
kurt is alive; and if the response is an ICMP it displays "down" to indicate that kurt is running
but the responder thread eB is down. Note that eA will print "dead" if kurt is really dead, but
it may also do so if the initial datagram is lost, or if the reply datagram or ICMP is lost, or if the
reply ICMP is not generated.
It is straightforward to apply the MiniCaml axioms to determine the thread-LTS behaviour

of each program. One may then determine the host’s response to each transition and thus the
behaviour of the system as a whole. Again discount rules modelling interrupted system calls or the
OS running out of resources, but now allow loss, duplication and failure. Assuming further that
only eA and eB run, on an otherwise-quiet network, we can prove that no uncaught exceptions arise
during the execution of eA. No errors can arise from any line of eA apart from the recvfrom call, and
the only error this may return is ECONNREFUSED. This means we are justified in omitting all
error handling from the code of eA. Further, we can show that the sendto and recvfrom calls in eA
will never block. On the other hand, the message duplication rule dup.1 means that eB might block
temporarily in the sendto call, if the output queue has been filled with ICMP PORT UNREACH

messages generated by "ping" messages arriving before the bind call, but at least one "ping" arrives
after the bind. It is still guaranteed that no system call in eB will fail.
A more useful version of this would have both eA and eB repeat. This is easily expressible, but

the desired properties require a fair and/or timed semantics. More sophisticated examples often
require multiple threads per host, so that one thread can be dedicated to a protocol.
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7 Related Work

Work on the mathematical underpinnings of distributed systems has been carried out in the fields
of distributed algorithms, process calculi, and programming language semantics. Distributed al-
gorithms research has developed sophisticated algorithms, often dealing with failure, and proofs
of their properties, for example using the IO automata of Lynch et al. [Lyn96] and the TLA
of Lamport [Lam94]. Work on process calculi has emphasised operational equivalences and com-
positional descriptions of processes, and recently systems with dynamic local name generation
– with calculi based on the π-calculus of Milner, Parrow and Walker [MPW92]. A few calculi
have dealt with failure, including [AP94,FGL+96,RH97,BH00]. Building on process calculi, a num-
ber of concurrent or distributed programming languages have been designed, with associated
semantic work, including among others Occam, Facile, CML, Pict, JoCaml, and Nomadic Pict
[INM87,TLK96,Rep91,PT00,FGL+96,WS00]. Little of this work, however, deals with the core net-
work protocols, and as far as we are aware none addresses the level of abstraction of the sockets
interface. Further, most does not support reasoning about executable code (or adopts a much
higher level of abstraction). The most relevant work is discussed below.
The IOA Language [GLV00] is a language for expressing IO automata directly. Work on proof

tools and compilation is ongoing. This will allow reasoning about executable sophisticated dis-
tributed algorithms that interact with the network using higher-level abstractions than the sockets
library, modulo correctness of the compiler. Using IOA rather than conventional programming
languages aids reasoning, but may reduce the applicability of the method.
The approach of Arts and Dam [AD99] is similar to ours: they aim to prove properties of real

concurrent programs written in Erlang. They describe an operational semantics for a subset of
Erlang, a logic for reasoning about this subset, and use an automated tool to verify that a program
satisfies properties expressed in the logic.
Less closely related, Biagioni implemented TCP/IP in ML [Bia94] as part of the Fox project,

and the Ensemble system of [Hay98] provides group communication facilities above UDP. The latter
is implemented in OCaml; some verification of optimisations to the Ensemble protocol endpoint
code has been carried out. Neither involve a semantics of the network (or, for Ensemble, the
underlying sockets implementation), however. At a lower level, work on the semantics of active
networks [Swi01] has developed proofs of routing algorithms. Related work on monitoring protocol
implementations – TCP in particular – from outside the hosts is presented in [BCMG01].
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8 Conclusion

We have described a model that gives a rigorous understanding of programming with sockets and
UDP, validated against actual systems. This demonstrates that an operational treatment of this
level of network programming – traditionally regarded as beyond the scope of formal semantics –
is feasible.
We hope that such models, giving precise behavioural descriptions (albeit only for a fragment

of the full OS library interfaces), will usefully complement the more usual informal descriptions.
Developing the semantics has required us to consider many erroneous and pathological cases; these
may be uncommon but are also likely to be poorly understood, and hence may lead to coding
errors.
The model provides a basis for two directions of future work. Firstly, we plan to investigate

the verification of more interesting examples, developing proof techniques that build on those of
both the distributed algorithm and process calculus communities. Secondly, we plan to extend the
model to cover a larger fragment of network programming, in a number of ways; we are considering
machine support for managing the large definitions that will certainly result. We intend to define
other language bindings, eg. for a Java fragment. Incorporating fairness and time is required to
capture interesting properties of algorithms. As discussed in §5, we plan to apply our validation
tools to other operating systems, to identify a common semantic core. Finally, we would like to
address more of the points listed in §1.7, especially aspects of TCP and multi-threaded hosts.

Acknowledgements Sewell is funded by a Royal Society University Research Fellowship. Serjan-
tov and Wansbrough are funded by EPSRC research grant GRN24872 Wide-area programming:
Language, Semantics and Infrastructure Design.
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A MiniCaml Definition

A.1 Syntax

The types T are given by the clauses of the Figure 1 grammar marked TL, except T err, together
with:

T ::= · · · | T→T ′ | T ref | exn

The nullary and unary constructors c0 and c1 are all language constructors of arity 0 and 1 of
Figure 2, together with

UDP : error→ exn

Match failure : string ∗ int ∗ int→ exn

Note the language constructors are all of arity 0, arity 1, or equal to :: or ( , .., ). We let f range
over calls of the library interface LIBEX, consisting of f :T→T ′ for each f :T→T ′ err ∈ LIB and
exit : ()→ void. Take operators o

ref : T→T ref

! : T ref→T
:= : (T ref) ∗ T→ ()
= : T ∗ T→ bool T not involving → , ref or string

We write e := e ′ for := (e, e ′) and e = e ′ for = (e, e ′). The examples in this paper require equality,
but do not require any other operators, eg.. for booleans, integers, or strings, so we omit them.

Expresssions

e ::= c0 c0 a constructor of arity 0
c1 e c1 a constructor of arity 1
e :: e Cons
(e1 , .., en) Tuple (n ≥ 2)
f f ∈ LIB
o o an operator
x Identifier







































v

if e then e else e Conditional
while e do e done Loop
e; e Sequence
function mtch Function
e e Application
let p = e in e Local definition
let rec x = function mtch in e Recursive definition
raise e Raise exception
try e with mtch Handle exception(s)
RETT err Await return from OS routine
RETvoid Terminated

Values The values v are the elements of the subgrammar of expressions marked ‘v ’ above, together
with all expressions of the form function mtch.
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Matches

mtch ::= p→ e
p→ e|mtch

Patterns

p ::= Wildcard
x Variable
c0 c0 a constructor of arity 0
c1 p c1 a constructor of arity 1
p :: p Cons
(p1 , .., pn) Tuple (n ≥ 2)
(p :T ) Typed pattern

These are subject to the condition that all variables occuring in a pattern are distinct.

Binding: We work up to alpha equivalence throughout, with the obvious scoping of the constructs
above. Note that MiniCaml does not allow rebinding of library functions or operators, contrary to
OCaml. The syntactic categories relate as follows.

MiniCaml OCaml
T typexpr
e expr
p pattern
mtch pattern-matching

A.2 Typing

Type Environments E are finite partial functions from identifiers to types. We write E ,E ′ for their
union, thereby asserting also that E and E ′ have disjoint domain. We say E closed if it declares
only references, ie. if ∀x ∈ domE .E (x) = T =⇒ ∃T ′ .T = T ′ ref . Stores s are finite partial
functions from identifiers to values. The typing judgements are:

E ` e :T under assumptions E , expression e has type T
E ` mtch :T→T ′ under assumptions E , mtch has type T→T ′

` p :T B E pattern p matches type T , giving additional bindings E
E ` s store under assumptions E , store s is well-formed

The typing rules are in Figure 5. We say a program is an expression e that does not contain an
occurrence of RET such that ` e :T for some T .

A.3 Operational Semantics

For any program e, we define a thread LTS with labels Lthread (as defined in §2.2.5), states

{ e ′, s | ∃E ,T .E ` e ′ :T ∧ E ` s store }

initial state e, empty, and transitions as defined below. Note that the E ` s store rule requires E
closed; we are only interested in behaviour w.r.t. such closed E . Strictly, the transition relations
are defined as the least relations over

{ e, s | ∃E ,T .E ` e :T ∧ E ` s store } × { e, s | e, s an arbitrary expression and store }

satisfying the rules below.
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E ` e : T

c0 : T

E ` c0 : T

c1 : T →T ′

E ` e : T

E ` c1 e : T ′

E ` e1 : T
E ` e2 : T list

E ` e1 :: e2 : T list

E ` ei :Ti i ∈ 1..n
n ≥ 2

E ` (e1 , .., en) : T1 ∗ .. ∗ Tn

f : T →T ′ ∈ LIBEX

E ` f : T →T ′

o : T →T ′

E ` o : T →T ′ E , x : T ` x : T

E ` e1 : bool
E ` e2 : T
E ` e3 : T

E ` if e1 then e2 else e3 : T

E ` e1 : bool
E ` e2 : ()

E ` while e1 do e2 done : ()

E ` e1 : ()
E ` e2 : T

E ` e1 ; e2 : T

E ` mtch : T → T ′

E ` function mtch : T → T ′

E ` e1 : T → T ′

E ` e2 : T

E ` e1 e2 : T ′

` p : T1 B E ′

E ` e1 : T1

E ,E ′ ` e2 : T2

E ` let p = e1 in e2 : T2

E , x : T → T ′ ` mtch : T → T ′

E , x : T → T ′ ` e2 : T2

E ` let rec x = function mtch in e2 : T2 E ` RETvoid : T

E ` e : exn

E ` raise e : T

E ` e : T
E ` mtch : exn→ T

E ` try e with mtch : T E ` RETT err : T

E ` mtch : T → T ′

` p : T B E ′

E ,E ′ ` e : T ′

E ` p→ e : T → T ′

E ` p→ e : T → T ′

E ` mtch : T → T ′

E ` p→ e|mtch : T → T ′

` p : T B E ′

` : T B empty ` x : T B x : T
c0 : T

` c0 : T B empty

c1 : T →T ′

` p : T B E ′

` c1 p : T ′
B E ′

` p1 : T B E1

` p2 : T list B E2

` p1 :: p2 : T list B E1 ,E2

` pi :Ti B Ei i ∈ 1..n
n ≥ 2

` (p1 , .., pn) : T1 ∗ .. ∗ Tn B E1 , .., En

` p : T B E ′

` (p : T ) : T B E ′

E ` s store

E closed
domE = doms
∀x : T ref ∈ domE .E ` s(x) : T

E ` s store

Fig. 5. MiniCaml Typing Rules
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Evaluation contexts

C ::= c1 c1 a constructor of arity 1
:: e
v ::
(e1 , .., em−1, , vm+1, .., vn) n ≥ 2
if then e1 else e2
; e
e
v
let p = in e
raise
try with mtch

The evaluation order is chosen to match that of the ocamlopt native code compiler, not the
bytecode compiler. Note that in both, tuples are evaluated right-to-left.

Matching Define a partial function match( , ) taking a value and a pattern (in which all variables
are distinct) and giving a set of substitutions:

match(v , ) = {}
match(v , x) = {v/x}
match(v , (p :T )) = match(v , p)
match(c0,c0) = {}
match(c1 v ,c1 p) = match(v , p)
match(v1 :: v2 , p1 :: p2 ) = match(v1 , p1 ) ∪match(v2 , p2 )
match((v1 , .., vn), (p1 , .., pn)) = match(v1 , p1 ) ∪ ... ∪match(vn, pn) n ≥ 2
match(v , p) undefined otherwise

Reduction Axioms In the following, the store component is elided from left and right hand sides.

if true then e1 else e2
τ
−→ e1 1

if false then e1 else e2
τ
−→ e2 2

(); e
τ
−→ e 3

while e1 do e2 done
τ
−→ if e1 then (e2 ; while e1 do e2 done) else () 4

(function p1 → e1 |...|pn→ en)v
τ
−→ match(v , pi)ei (a) 5

(function p1 → e1 |...|pn→ en)v
τ
−→ raise Match failure v ′ (b) 6

let p = v in e
τ
−→ match(v , p)e match(v , p) defined 7

let p = v in e
τ
−→ raise Match failure v ′ match(v , p) not defined and (d) 8

let rec x = function mtch in e
τ
−→ {({let rec x = function mtch in x/x}function mtch)/x}e 9

C(raise v)
τ
−→ raise v (c) 10

try raise v with p1 → e1 |..|pn→ en
τ
−→ match(v , pi)ei (a) 11

try v with p1 → e1 |..|pn→ en
τ
−→ v 12

(a) match(v , pi) is defined and there is no j < i with match(v , pj) defined
(b) where not exists i ∈ 1..n such that match(v , pi) is defined, and v

′ is an arbitrary value such
that ` v ′ : string ∗ int ∗ int

(c) if not exists p1 → e1 |..|pn→ en and i st C = try with p1 → e1 |..|pn→ en and match(v , pi)
defined

(d) ` v ′ : string ∗ int ∗ int



62 Andrei Serjantov Peter Sewell Keith Wansbrough

Note the match failure rule introduces nondeterminism. In the OCaml implementation, the string∗
int ∗ int gives the position in the source file of this code; we do not want to model that precisely.
Now rules for operators:

ref v , s
τ
−→ x, (s, x 7→ v) x 6∈ doms 13

!x, s
τ
−→ s(x), s x ∈ doms 14

x := v , s
τ
−→ (), (s ⊕ x 7→ v) x ∈ doms 15

v = v
τ
−→ true 16

v = v ′
τ
−→ false v 6= v ′ 17

Note that the rule for ref introduces nondeterminism. That could be avoided by working up to
cyclic bindings, but we choose not to for simplicity. Transitions with τ labels are closed under
reduction contexts:

e, s
τ
−→ e ′, s ′

C(e), s
τ
−→ C(e ′), s ′

Input and Output Transition axioms The transition relations with non-τ labels are the least con-
taining the closure of axioms

fv , s
fv
−→ RETT ′ , s if f :T→T ′ in LIB 18

RETT err, s
OK(v)
−−−−→ v , s if ` v :T 19

RETT err, s
Fail (v)
−−−−−→ raise UDP(v), s if ` v : error 20

under reduction contexts:

e, s
l
−→ e ′, s ′

C(e), s
l
−→ C(e ′), s ′

together with

v , s
exit ()
−−−→ RETvoid, s 21

raise v , s
exit ()
−−−→ RETvoid, s 22

(not closed under reduction contexts).
In the implementation, the user can distinguish the two exit cases, both by an uncaught excep-

tion being printed and by the return status. The return code varies with the exception, though –
we choose not to model this exactly.

Runtime errors and Termination

iserr(if v then e1 else e2 , s) v 6∈ {true, false} 23
iserr(v ; e, s) v 6= () 24
iserr(v1 v2 , s) v1 not of the forms function mtch, f , or o 25
iserr(!v , s) v 6∈ doms 26
iserr(v := v ′, s) v 6∈ doms 27

isterm(RETvoid) 28

iserr(e, s)

iserr(C(e), s)

isterm(e, s)

isterm(C(e), s)
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A.4 Sanity Properties

Lemma 1 (Matching yields well-typed substitutions).

E ` v :T
` p :T B E ′

match(v , p) defined

dom(match(v , p)) = dom(E ′)
∀x :T ′ ∈ E ′ .E ` match(v , p)(x) :T ′

Lemma 2 (Substitution).

E ,E ′ ` e :T
dom(σ) = dom(E ′)
∀x :T ′ ∈ E ′ .E ` σ(x) :T ′

E ` σe :T

Theorem 7 (Type Preservation).

E ` e :T
E ` s store

e, s
l
−→ e ′, s ′

∃E ′ .E ′ ` e ′ :T ∧ E ′ ` s ′ store
l = fv =⇒ ∃T1 ,T2 . f :T1 →T2 in LIB and ` v :T1

Theorem 8 (Absence of runtime errors).

E ` e :T
E ` s store

¬iserr(e, s)

Let r range over the set {1, .., 28} of transition axioms, runtime error axioms, and termination
axiom.

Lemma 3 (Unique Decomposition). For any (expression,state) pair e, s there exists a unique
sequence of evaluation contexts C, expression e0 , and rule r such that

e = C[e0 ]
e0 , s is an instance of rule r
r ∈ {21, 22} =⇒ C =

Theorem 9 (Thread LTS). For any program e, the LTS above satisfies the thread LTS axioms
of §2.2.5.

Proof. (Sketch) Take the partition of states below.

CALL(f ) = {C[f v ], s | ∃E ,T ′ .E ` C[f v ] :T ′ ∧ E ` s store } f 6= exit

CALL(exit ) = {C[exit v ], s | ∃E ,T ′ .E ` C[exit v ] :T ′ ∧ E ` s store }
∪ { v , s | ∃E ,T ′ .E ` v :T ′ ∧ E ` s store }
∪ { raise v , s | ∃E ,T ′ .E ` raise v :T ′ ∧ E ` s store }

RETT err = {C[RETT err], s | ∃E ,T ′ .E ` C[RETT err] :T
′
∧ E ` s store }

RETvoid = {C[RETvoid], s | ∃E ,T ′ .E ` C[RETvoid] :T
′
∧ E ` s store }

RETT = ∅ T not of the forms T err or void
TAU = all other states
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B MiniCaml Implementation: udplang.mli

type fd

type ip

type port

type error = EACCES | EADDRINUSE | EADDRNOTAVAIL | EAGAIN | EBADF

| ECONNREFUSED | EHOSTUNREACH | EINTR | EINVAL | EMFILE

| EMSGSIZE | ENFILE | ENOBUFS | ENOMEM | ENOTCONN

| ENOTSOCK

type netmask

type ifid

type sockopt = (* SO_BSDCOMPAT | *) SO_REUSEADDR

type ’a lift = Star | Lift of ’a

type void

exception UDP of error

val socket : unit -> fd

val bind : fd*ip lift *port lift -> unit

val connect : fd*ip*port lift -> unit

(* val disconnect: fd -> unit *)

val getsockname : fd -> (ip lift * port lift )

val getpeername : fd -> (ip lift * port lift )

val sendto : fd* (ip*port) lift *string*bool -> unit

val recvfrom : fd*bool -> (ip*(port lift)*string)

(* val geterr : fd -> error lift *)

val getsockopt : fd*sockopt -> bool

val setsockopt : fd*sockopt*bool -> unit

val close : fd -> unit

val select : fd list * fd list * int lift -> (fd list * fd list)

val port_of_int : int -> port

val ip_of_string : string -> ip

(* val getifaddrs: unit -> (ifid * ip * ip list * netmask) list *)

val print_endline_flush : string -> unit

val exit : unit -> void

(* For select, the int measures microseconds. *)

(* Some LIB functionality is not yet implemented, as it is not easy to

do so above the OCAML 3.00 Unix library: geterr, getifaddrs, and

get/setsockopt with the SO_BSDCOMPAT socket option. These are

commented out, therefore. We add two exceptions, not in the model.

If the OS (via the OCaml Unix library) returns an error that is not

one of those above, BadUnixError is raised. If it is detected that

the abstraction is broken in some other surprising way, BadError is

raised. *)

exception BadUnixError of Unix.error * string

exception BadError of string
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C The Single Sender: State Spaces

In this appendix we illustrate the state spaces of the two host/thread pairs in the single sender
example of §6.1. In larger examples this quickly becomes impractical; it may be convenient to work
with explicit symbolic characterisations of the state spaces. There are clearly many confluent pairs,
which reasoning methods should take advantage of.
As the example is of a quiet network, with only the two hosts, we need not consider any incoming

datagrams to alan until after m has been sent, after which there might be an ICMP coming back.
Looking at this part of the transition system of

alan·es | alan·Host(ifdsalan,Run, [ ], [ ], false),

therefore, we have:

es ,Host(ifdsalan,Run, [ ], [ ], false)

τ
13

.

console "sending"

.

τ
3

C[RET()],Host(ifdsalan,Ret (OK()), [s1 ], [m], oqf )

τ

m

...,Host(.., [s1 ], [ ], false)

τ

mI

...,Host(.., [s2 ], [ ], false)

τ

mI

.

τ

m

...,Host(.., [s1 ], [ ], false)

τ

mI

...,Host(.., [s2 ], [ ], false)

τ

mI

RETvoid,Host(ifdsalan,Term, [ ], [m], oqf )
m

...,Host(.., [ ], [ ], false)
mI

...,Host(.., [ ], [ ], false)

mI

where

s0 = Sock(fd , ∗, ∗, ∗, ∗, ∗, f , [ ])
s1 = Sock(fd , ↑ialan, ↑p1 , ↑ikurt, ↑p, ∗, f , [ ])
s2 = Sock(fd , ↑ialan, ↑p1 , ↑ikurt, ↑p, ↑ECONNREFUSED, f , [ ])
m = IP(ialan, ikurt,UDP(↑p1 , ↑7654, "hello"))
mI = IP(ikurt, ialan, ICMP PORT UNREACH(ialan, ↑p1 , ikurt, ↑p))

and many state components are elided, as is the alan labelling.
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For the receiver

kurt·er | kurt·Host(ifdskurt,Run, [ ], [ ], false)

we have the transitions below, considering just a single incoming message m and again eliding
many state components and the kurt labelling. Here we also omit (for lack of space!) transitions
in which m is received before the socket is bound but an ICMP is not generated; these are from
the initial state and its first 9 τ successors. The ellipses · · · indicate blocks of left-to-right m and
mI transitions.

er,Host(ifdskurt,Run, [ ], oq, oqf )

τ
9

m

...

.., [mI ], oqf
′, ..

τ
9

mI

[ ], oqf ′′

τ
9

[s′1 ]

τ

m
.

τ

.

τ

[s′2 ]

τ
3

m

...

[s′3 ]

τ
3 τ

3

···

τ
3

.

console "ready"

.

console "ready" console "ready" console "ready"

.

τ
3

[s′3 ]

τ
3

τ
3

τ
3

Run, [s′2 ]

τ

m

[s′3 ]

τ τ τ

Recvfrom2 fd ′, [s′2 ]
m

Recvfrom2 fd ′, [s′3 ]
τ

Ret (..), [s′4 ]

τ

Recvfrom2 fd ′
mI

Recvfrom2 fd ′

Run, [s′4 ]

τ

console "hello"

.

τ
2

.

τ

.

where

s ′1 = Sock(fd ′, ∗, ∗, ∗, ∗, ∗, f , [ ])
s ′2 = Sock(fd ′, ↑ikurt, ↑p, ∗, ∗, ∗, f , [ ])
s ′3 = Sock(fd ′, ↑ikurt, ↑p, ∗, ∗, ∗, f , [m])
s ′4 = Sock(fd ′, ↑ikurt, ↑p, ∗, ∗, ∗, f , [ ])
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