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Abstract
Network protocols are hard to implement correctly. Despite the
existence of RFCs and other standards, implementations often
have subtle differences and bugs. One reason for this is that the
specifications are typically informal, and hence inevitably contain
ambiguities. Conformance testing against such specifications is
challenging.

In this paper we present a practical technique for rigorous
protocol specification that supports specification-based testing. We
have applied it to TCP, UDP, and the Sockets API, developing
a detailed ‘post-hoc’ specification that accurately reflects the
behaviour of several existing implementations (FreeBSD 4.6,
Linux 2.4.20-8, and Windows XP SP1). The development process
uncovered a number of differences between and infelicities in these
implementations.

Our experience shows for the first time that rigorous specification
is feasible for protocols as complex as TCP. We argue
that the technique is also applicable ‘pre-hoc’, in the design
phase of new protocols. We discuss how such a design-for-
test approach should influence protocol development, leading to
protocol specifications that are both unambiguous and clear, and
to high-quality implementations that can be tested directly against
those specifications.

Categories and Subject Descriptors C.2.2 [Computer-
Communications Networks]: Network Protocols; C.2.6
[Computer-Communications Networks]: Internetworking—
Standards (e.g., TCP/IP); F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms Documentation, Design, Standardization, The-
ory, Verification.

Keywords Network Protocols, TCP/IP, Sockets, API, Specifica-
tion, Conformance Testing, Higher-order Logic, HOL, Operational
Semantics
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1. INTRODUCTION
Background Network protocols such as TCP are typically de-
scribed using informal prose and pseudocode to characterise the
behaviour of the systems involved. This use of informal natural-
language descriptions, coupled with an emphasis on working code
and interoperability, has served the field well. It made the early
specifications accessible, letting protocols evolve as required, and
discouraged heavy over-specification disconnected from imple-
mentation.

There is a downside, however. Protocols such as TCP are hard
to implement correctly, as one can see from the many subtle dif-
ferences between implementations [30], [RFC2525]; they are also
hard to use correctly. The protocols are complex, both intrinsically
and due to the accumulation of historical artifacts. Informal de-
scriptions, despite the care taken by their authors, are inevitably
somewhat ambiguous and incomplete, leaving room for inconsis-
tent interpretations. Moreover, conformance testing is challenging.
There is in fact no clear way to define what it means for an im-
plementation of TCP to conform to the RFC standards, let alone to
test whether it does. (Of course, there are many ways in which an
implementation might obviously not conform.)

Ideally we would have the best of both worlds: protocol descrip-
tions that are simultaneously:

1. clear, accessible to a broad community and easy to modify;
2. unambiguous, characterising exactly what behaviour is speci-
fied;

3. sufficiently loose, characterising exactly what is not specified,
and hence what is left to implementors (especially, permitting
high-performance implementations without over-constraining
their structure); and

4. directly usable as a basis for conformance testing, not read-
and-forget documents.

Contribution We demonstrate, for the first time, a practical tech-
nique for rigorous protocol specification that makes this ideal at-
tainable for protocols as complex as TCP. We describe specifica-
tion idioms that are rich enough to express the subtleties of TCP
endpoint behaviour and that scale to the full protocol, all while
remaining readable. We also describe novel tools for automated
conformance testing between specifications and real-world imple-
mentations.

To develop the technique, and to establish its feasibility, we have
produced a post-hoc specification of existing protocols: a mathe-
matically rigorous and experimentally-validated characterisation of

http://www.cl.cam.ac.uk/users/pes20/Netsem


the behaviour of TCP, UDP, and the Sockets API, as implemented
in practice.

The resulting specification may be useful in its own right in sev-
eral ways. It has been extensively annotated to make it usable as a
reference for TCP/IP stack implementors and Sockets API users,
supplementing the existing informal standards and texts. It can
also provide a basis for high-fidelity conformance testing of future
implementations, and a basis for design (and conceivably formal
proof) of higher-level communication layers.

Perhaps more significantly, the work demonstrates that it would
be feasible to carry out similar rigorous specification work for new
protocols, in a tolerably light-weight style, both at design-time
and during standardisation. We believe the increased clarity and
precision over informal specifications, and the possibility of au-
tomated specification-based testing, would make this very much
worthwhile, leading to clearer protocol designs and higher-quality
implementations. We discuss some simple ways in which protocols
could be designed to make testing computationally straightforward.

Approach: The Specification Language A reasonable specifi-
cation of TCP must be nondeterministic: it must be a loose speci-
fication in various ways, e.g. to allow TCP options to be chosen or
not, to allow variations in initial window sizes and initial sequence
numbers, and so forth. Moreover, it must admit the variations in be-
haviour that can arise from OS scheduling, message processing de-
lays, timer variations, etc. It can not therefore be written directly in
a conventional programming language, and is quite different from
a reference implementation. Nor, however, can it be expressed in
any simple logic or calculus: the protocol endpoints have complex
state-spaces, with various queues and lists, timing properties, and
extensive mod-232 arithmetic.

Accordingly, we write our specification as an operational seman-
tics definition in higher-order logic, mechanized using the HOL
system [14, 17]. Higher-order logic is similar to conventional first-
order logic (or predicate calculus) with the normal logical opera-
tions, quantifiers, etc., but with the addition of a rich type struc-
ture (including numeric types, lists, and functions) and the ability
to quantify over any type. It lets one write more-or-less arbitrary
mathematics idiomatically.

HOL is a system for manipulating higher-order logic definitions,
type-checking them and performing proof. The system provides
the programmer with a variety of decision procedures and script-
able tactics. HOL is not a fully automatic theorem-prover or model
checker, as higher-order logic is not decidable, but its programma-
bility allows the development of standalone tools, tailored to par-
ticular domains. Machine-processed mathematics in a system such
as HOL, in a well-defined logic, is the most rigorous form of defi-
nition currently possible.

The use of higher-order logic may be unfamiliar at first sight but
should not present any real difficulty in understanding the specifi-
cation. Our experience is that smart undergraduate students, pre-
viously unfamiliar with HOL, can quickly get up to speed, making
useful contributions within a week or two; most of that time is taken
in understanding the protocols rather than higher-order logic. We
give a brief introduction to HOL in §3; previous exposure to it is
not needed to read this paper.

Approach: Conformance Checking To relate such a specifi-
cation to implementations we have had to develop new verifica-
tion techniques. A typical implementation of TCP/IP is a com-
plex artifact, with many thousands of lines of multi-threaded C
code, interrupt-driven timers, function pointers, and various opti-
mizations, e.g. for fast-path processing. Relating the two by con-
ventional model-checking or proof-based verification techniques

would be very challenging. Machine-checked proof of code on this
scale seems beyond the current state of the art. Model-checking
could be used to check some simple properties of implementations,
but the complexity of the state space suggests it would be hard to
get good coverage.

We therefore take a specification-based testing approach. We
have written a special-purpose checker which performs symbolic
evaluation of the specification with respect to captured real-world
traces, maintaining sets of constraints as it works along a trace,
simplifying them (and using various decision procedures) as new
information becomes available, and backtracking if required. The
checker is itself above HOL, and so its results are guaranteed cor-
rect (modulo only the possibility of errors in the small HOL ker-
nel): checking each trace essentially involves an automatically-
generated and machine-checked proof that that trace is accepted
by the specification.

The flexibility of HOL lets us write the specification declara-
tively, in as clear an idiom as we can, decoupled from these al-
gorithmic details of conformance checking. The structure of the
specification is also unconstrained by the algorithmic issues of ef-
ficient protocol implementation: it can be optimized for clarity, not
performance, but still be checked against production implementa-
tions.

Approach: Experimental Semantics We began writing a rigor-
ous specification of TCP by trying to restate the relevant RFC and
POSIX standards mathematically. Unfortunately, those standards
omit many important aspects of behaviour, and the common im-
plementations do not conform to everything that they do prescribe.
One would have to design the missing aspects, and the result would
be hard to relate to current practice.

We therefore took seriously the fact that for many purposes TCP
is defined by the de facto standard of the common implementations
— intended differences, bugs, and all. Our specification aims to
capture the behaviour of three widely-deployed implementations:
FreeBSD 4.6–RELEASE, Linux 2.4.20–8, and Windows XP Pro-
fessional SP1. Behavioural differences between the three are made
explicit by parameterisation on the OS version. (These clearly do
not cover the behaviour of all important implementations, but they
are an indicative sample.)

The first drafts of the specification were based on the RFCs (es-
pecially 768, 791, 792, 793, 1122, 1323, 2414, 2581, 2582, 2988,
3522, and 3782), POSIX standard [18], Stevens’s texts [37, 40,
38], BSD and Linux source code, and ad hoc tests. Such work is
error-prone; one should have little confidence in the result without
some form of validation. We therefore used our symbolic evalu-
ation techniques to validate the specification directly against the
implementations (as opposed to the more common validation of an
implementation against a specification). We wrote tools to gener-
ate several thousand traces from the implementations running on
an instrumented test network, chosen to give as broad coverage as
we could, and used the checker to ensure that the specification does
admit those traces. Validation is computationally intensive, so for
reasonable performance it was necessary to distribute the task over
a bank of machines (currently around 100 processors).

Developing the specification has been an iterative experimental
semantics process, in which we use the trace checker to identify
errors in the specification, inadequacies in the symbolic evaluator,
and problems in the trace generation process, repeating until vali-
dation succeeds.

This work builds on our earlier semantics for UDP, first in infor-
mal mathematics [33, 34] and then in HOL [39, 27].
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Figure 1: Modelling: where to cut.

The Specification The specification is available online, together
with a full description of the project [7, 8]. As discussed above, it
is fully rigorous. It is detailed, with almost all important aspects
of the real-world communications at the level of individual TCP
segments and UDP datagrams, with timing, and with congestion
control. It abstracts from the internals of IP. It has broad coverage,
dealing with the behaviour of a host for arbitrary incoming mes-
sages and Sockets API call sequences, not just some well-behaved
usage — one of our main goals was to characterise the failure se-
mantics under network loss, duplication and reordering, API errors,
and malicious attack. It is also remarkably accurate, satisfying al-
most all the test traces.

We cannot, of course, claim total accuracy. Hosts are (ignoring
memory limits) infinite-state systems; our generated traces surely
do not explore all the interesting behaviour; and a few traces are
still not successfully checked. Moreover, while for UDP and the
Sockets API we dealt with all three OS versions in depth, for TCP
we focussed primarily on the BSD version, identifying only some
differences with the other two. Nonetheless, our automated valida-
tion process is, by the standards of normal software development,
an extremely demanding test.

Overview We begin in §2 by discussing some of our key choices:
exactly what our specification should model and how it should be
expressed. The specification itself is outlined in §3. In §4 we de-
scribe our experimental validation process, with details of test gen-
eration and checking. §5 and §6 give the current validation status
of the specification and highlight some of the anomalies we have
discovered in the implementations. In §7 we discuss how what we
have learnt can be applied during future protocol design. Finally,
§8 discusses related work, and we conclude in §9.

2. MODELLING
For the specification to be useful, and for experimental validation

to be possible, there must be a clear (though necessarily informal)
relationship between certain events in the real system and events in
the specification. We have to choose what system events are taken
as observable, what is abstracted from them, and how to restrict the
system to a manageable domain. These choices become embodied
in the validation infrastructure, as instrumentation of the observable
events and calculation of their abstract views.

Where to cut There are five main options for where to cut the
system to pick out events, three of which are shown in Fig. 1. In
each part of the figure the shaded areas indicate the part of the
system covered by the model (which can abstract freely from the

interior structure of these parts) and the short arrows indicate the
specified interactions, between the modelled part and the remain-
der.

An endpoint specification, shown on the left, deals with events
at the network interface and Sockets API of a single machine, but
abstracts from the implementation details within the network stack.
For TCP the obvious wire interface events are at the level of indi-
vidual TCP segments sent or received.

An end-to-end specification, shown in the middle, describes the
end-to-end behaviour of the network as observed by users of the
Sockets API on different machines, abstracting from what occurs
on the wire. For TCP such a specification could model connections
roughly as a pair of streams of data, together with additional data
capturing the failure behaviours, connection shutdown, etc.

A wire-interface-only endpoint specification, shown on the right,
would specify the legal TCP segments sent by a single host irre-
spective of whatever occurs at the API.

One could also think of a network interior specification, char-
acterising the possible traffic at a point inside the IP network, of
interest for network monitoring, or a pure transport-protocol spec-
ification, defining the behaviour of just the TCP part of a TCP/IP
stack with events at the Sockets API and (OS-internal) IP inter-
faces.

All would be useful. We chose to develop a segment-level end-
point specification, for three main reasons. Firstly, we considered
it essential to capture the behaviour at the Sockets API. Focussing
exclusively on the wire protocol would be reasonable if there truly
were many APIs in common use, but in practice the Sockets API
is also a de facto standard, with its behaviour of key interest to
a large body of developers. Ambiguities, errors, and implemen-
tation differences here are often just as important as for the wire
protocol. Secondly, the segment-level specification has a straight-
forward model of network failure, essentially with individual seg-
ments either being delivered correctly or not; the observable effects
of network failure in an end-to-end model would be far more clearly
characterised as a corollary of this than directly. Thirdly, it seemed
likely that automated validation would be most straightforward for
an endpoint model: by observing interactions as close to a host
as possible (on the Sockets and wire interfaces) we minimise the
amount of nondeterminism in the system and maximise the amount
of information our instrumentation can capture.

The form of the specification The main part of the specification
(the pale shaded region of Fig. 1) is the host labelled transition
system, or host LTS, describing the possible interactions of a host
OS: between program threads and host via calls and returns of the



Sockets API, and between host and network via message sends and
receives.

The host LTS defines a transition relation

h
lbl
−→ h

′

where h and h ′ are host states, modelling the relevant parts of the
OS and network hardware of a single machine, and lbl is an inter-
action on either the Sockets API or wire interface. Typical labels
lbl are:

• msg for the host receiving a datagram msg from the network;
• msg for the host sending a datagram msg to the network;
• tid ·bind(fd , is1, ps1

) for a bind() call being made to the
Sockets API by thread tid , with arguments (fd , is1, ps1

) for the
file descriptor, IP address, and port;
• tid ·v for value v being returned to thread tid by the Sockets
API;
• τ for an internal transition by the host, e.g. for a datagram
being taken from the host’s input queue and processed, possibly
enqueuing other datagrams for output; and
• dur for time dur passing.

The transition relation is defined by some 148 rules for the socket
calls (5–10 for each interesting call) and some 46 rules for mes-
sage send/receive and for internal behaviour. Each rule has a name,
e.g. bind_5 , deliver_in_1 etc., and various attributes. These rules
form the main part of the specification.

The host LTS can be combined with a model of the IP network,
e.g. abstracting from routing topology but allowing message de-
lay, reordering, and loss, to give a full specification. In turn, that
specification can be used together with a semantic description of a
programming language to give a model of complete systems: an IP
network; many hosts, each with their TCP/IP protocol stack; and
executable code on each host making Sockets API calls. Comp-
ton [11] has demonstrated fully formal reasoning about executable
OCaml code above our earlier UDP specification, using the Isabelle
proof assistant [19].

Network interface issues The network interface events msg and
msg are the transmission and reception of UDP datagrams, ICMP
datagrams, and TCP segments. We abstract from IP, omitting the
IP header data except for source and destination addresses, proto-
col, and payload length. We also abstract from IP fragmentation,
leaving our test instrumentation to perform IP reassembly.

Given these abstractions, the model covers unrestricted wire in-
terface behaviour. It describes the effect on a host of arbitrary in-
coming UDP and ICMP datagrams and TCP segments, not just of
the incoming data that could be sent by a ‘well-behaved’ protocol
stack. This is important, both because ‘well-behaved’ is not well-
defined, and because a good specification should describe host be-
haviour in response to malicious attack as well as to loss.

Cutting at the wire interface means that our specification mod-
els the behaviour of the entire protocol stack and also the network
interface hardware. Our abstraction from IP, however, means that
only very limited aspects of the lower levels need be dealt with ex-
plicitly. For example, a model host has queues of input and output
messages; each queue models the combination of buffering in the
protocol stack and in the network interface.

Sockets interface issues The Sockets API is used for a variety
of protocols. Our model covers only the TCP and UDP usage, for
SOCK_STREAM and SOCK_DGRAM sockets respectively. It covers al-

most anything an application might do with such sockets, including
the relevant ioctl() and fcntl() calls and support for TCP ur-
gent data. Just as for the wire interface, we do not impose any
restrictions on sequences of socket calls, though in reality most ap-
plications use the API only in limited idioms.

The Sockets API is not independent of the rest of the operating
system: it is intertwined with the use of file descriptors, IO, threads,
processes, and signals. Modelling the full behaviour of all of these
would have been prohibitive, so we have had to select a manageable
part that nonetheless has broad enough coverage for the model to be
useful. The model deals only with a single process, but with multi-
ple threads, so concurrent Sockets API calls are included. It deals
with file descriptors, file flags, etc., with both blocking and non-
blocking calls, and with pselect(). The poll() call is omitted.
Signals are not modelled, except that blocking calls may nondeter-
ministically return EINTR.

The Sockets API is a C language interface, with much use of
pointer passing, of moderately complex C structures, of byte-order
conversions, and of casts. While it is important to understand these
details for programming above the C interface, they are orthogo-
nal to the network behaviour. Moreover, a model that is low-level
enough to express them would have to explicitly model at least
pointers and the application address space, adding much complex-
ity. Accordingly, we abstract from these details altogether, defin-
ing a pure value-passing interface. For example, in FreeBSD the
accept() call has type:

int accept(int s, struct sockaddr *addr,

socklen_t *addrlen);

In the model, on the other hand, accept() has type

fd → fd ∗ (ip ∗ port)

taking an argument of type fd and either returning a triple of type
fd ∗ (ip ∗ port) or raising one of several possible errors. The ab-
straction from the system API to the model API is embodied in an
nssock C library, which has almost exactly the same behaviour
as the standard calls but also calculates the abstract HOL views of
each call and return, dumping them to a log.

The model is language-neutral, but we also have an OCaml [23]
library (implemented above nssock) with types almost identical to
those of the model.

Protocol issues We work only with IPv4, though there should be
little difference for IPv6. For TCP we cover roughly the protocol
developments in FreeBSD 4.6-RELEASE. We include MSS op-
tions; the RFC1323 timestamp and window scaling options; PAWS;
the RFC2581 and RFC2582 New Reno congestion control algo-
rithms; and the observable behaviour of syncaches. We do not in-
clude the RFC1644 T/TCP (though it is in this codebase), SACK,
or ECN. For UDP, for historical reasons we deal only with unicast
communication.

Time It is essential to model time passage explicitly: much TCP
behaviour is driven by timers and timeouts. Time passage is mod-
elled by transitions labelled dur ∈ R>0 interleaved with other
transitions, modelling global time which passes uniformly for all
participants.

Global time cannot be directly observed, however, and the spec-
ification imposes loose bounds on the time behaviour of certain
operations: for example, a call to pselect() with no file descriptors
specified and a timeout of 30s will return at some point in the inter-
val [30, 30 + dschedmax] seconds. Some operations have both a
lower and upper bound; some must happen immediately; and some



have an upper bound but may occur arbitrarily quickly. Especially,
the rate of a host’s ‘ticker’ is constrained only to be within cer-
tain bounds of unity. This ensures the specification includes the
behaviour of real systems with (boundedly) inaccurate clocks.

Relationship between code and specification structure In
writing the specification we have examined the implementation
source code closely, but the two have very different structure. The
code is in C with a rough layer structure (but tight coupling be-
tween some layers). It has accreted changes over the years, giving
a tangled control flow in some parts, and is optimised for fast-path
performance. For the specification, however, clarity is the prime
concern. In structuring it we have tried to isolate each conceptually-
distinct behaviour into a single rule. Each rule is as far as possible
declarative, defining a relation between outputs and inputs. In some
cases we have been forced to introduce extra structure to mirror
oddities in the implementations, e.g. intermediate state variables
to record side effects that subsidiary functions have before a seg-
ment is dropped, and clauses to model the fact that the BSD fast-
path optimisation is not precisely equivalent to the slow path. The
specification is loose at many points, allowing certain variations in
behaviour.

3. THE SPECIFICATION
The specification is written as a mechanized higher-order logic

definition in HOL [14, 17], a language that is rich and expressive
yet supports both internal consistency checking (type checking in
particular is essential with a definition of this scale) and our au-
tomated testing techniques. We have tried hard to establish id-
ioms with as little syntactic noise as possible, e.g. with few explicit
‘frame conditions’ concerning irrelevant quantities.

It is a moderately large document, around 360 pages typeset au-
tomatically from the HOL source. Of this around 125 pages is
preamble defining the main types used in the model, e.g. of the
representations of host states, TCP segments, etc., and various aux-
iliary functions. The remainder consists primarily of the host tran-
sition rules, each defining the behaviour of the host in a particular
situation, divided roughly into the Sockets API rules (160 pages)
and the protocol rules (75 pages). This includes extensive com-
ments, e.g. with summaries for each Sockets call and differences
between the model API and the three implementation APIs.

These rules are supported by type definitions for each interaction
and state component, constant definitions for the various protocol
parameters, and auxiliary function definitions for common opera-
tions and glue. For instance, the state of a host is defined as a HOL
type as follows:
host =〈[ arch : arch; (* OS version *)

privs : bool; (* whether process has privilege *)
ifds : ifid 7→ ifd; (* network interfaces *)
rttab : routing_table; (* routing table *)
ts : tid 7→ hostThreadState timed;

(* host view of each thread state *)
files : fid 7→ file; (* open file descriptions *)
socks : sid 7→ socket; (* sockets *)
listen : sid list; (* list of listening sockets *)
bound : sid list; (* bound sockets in order *)
iq : msg list timed; (* input queue *)
oq : msg list timed; (* output queue *)
bndlm : bandlim_state; (* bandlimiting *)
ticks : ticker; (* kernel timer *)
fds : fd 7→ fid (* process file descriptors *)

]〉

This introduces a record type with labelled fields. Several of the

fields hold finite maps (lookup tables), e.g. socks maps from the
type sid of socket identifiers to the type socket of socket records.

The iq field has type msg list timed, denoting a list of IP data-
grams with an attached timer used to model the delay between re-
ceipt and processing. The ts field holds a lookup table from thread
IDs tid to thread states (running, blocked in a system call, or ready
to be returned a value), again with an attached timer (used to model
scheduling delays). Other fields are internal kernel tables (e.g.
socks), protocol data (e.g. listen), and configuration (e.g. arch).

Each socket has internal structure, some of which is protocol-
dependent: e.g., flags, local and remote IP addresses and ports,
pending error, TCP state, send and receive queues, and TCP control
block (cb) variables.

Another key type is that of TCP segments:

tcpSegment

=〈[ is1 : ip option; (* source IP address *)
is2 : ip option; (* destination IP address *)
ps

1
: port option; (* source port *)

ps
2

: port option; (* destination port *)
seq : tcp_seq_local; (* sequence number *)
ack : tcp_seq_foreign; (* acknowledgment number *)
URG : bool;ACK : bool;PSH : bool;
RST : bool;SYN : bool;FIN : bool;
win : word16; (* window size *)
ws : byte option; (* window scaling option, typically 0..14 *)
urp : word16; (* urgent pointer *)
mss : word16 option; (* max segment size option *)
ts : (ts_seq#ts_seq) option; (* RFC1323 option *)
data : byte list

]〉

This is a fairly precise model of a TCP segment: we include
all TCP flags and the commonly-used options, but abstract from
option order, IP flags, and fragmentation. Address and port values
are modelled with HOL option types to allow the zero values to be
distinguished.

Fig. 2 shows an example rule from our specification,
deliver_in_1 , eliding some details. This rule models the be-
haviour of the system on processing a SYN addressed to a listening
socket. It is of intermediate complexity: many rules are rather sim-
pler than this, a few more substantial.

The transition h 〈[...]〉
τ
−→ h 〈[...]〉 appears at the top: the input

and output queues are unpacked from the original and final hosts,
along with the listening socket pointed to by sid and the newly-
created socket pointed to by sid ′.

The bulk of the rule, below the line, is the condition (a predicate)
guarding the transition, specifying when the rule applies and what
relationship holds between the input and output states. The condi-
tion is simply a conjunction of clauses, with no temporal ordering.

Notice first that the rule applies only when dequeueing of the
topmost message on the input queue iq (as defined by predicate
dequeue_iq) results in a TCP segment TCP seg , leaving remain-
ing input queue iq ′. The rule then unpacks and constrains the fields
of seg by pattern matching: seg .is1 must be nonzero (hence ↑)
and is bound to variable i2; similarly for i1, p2, p1; fields seg .seq
and seg .ack are bound to seq and ack (cast to the type of foreign
and local sequence number respectively); field seg .URG is ignored
(along with FIN and PSH), and so we existentially bind it; of the
other TCP flags, ACK is false, RST is false, SYN is true; and so
on.

The main HOL syntax used is as follows. Record fields can be
accessed by dot notation h.ifds or by pattern-matching. Since all
variables are logical, there is no assignment or record update per se,



deliver_in_1 tcp: network nonurgent
Passive open: receive SYN, send SYN,ACK

h 〈[socks := socks ⊕ [(sid , sock)]; (* listening socket *)
iq := iq ; (* input queue *)
oq := oq ]〉 (* output queue *)

τ
−→

h 〈[socks := socks ⊕
(* listening socket *)
[(sid , SOCK(↑ fid , sf , is1, ↑ p1, is2, ps2

, es, csm, crm,
TCP_Sock(LISTEN, cb, ↑ lis ′, [ ], ∗, [ ], ∗, NO_OOB)));

(* new connecting socket *)
(sid ′, SOCK(∗, sf ′, ↑ i1, ↑ p1, ↑ i2, ↑ p2, ∗, csm, crm,

TCP_Sock(SYN_RCVD, cb ′′, ∗, [ ], ∗, [ ], ∗, NO_OOB)))];
iq := iq ′;
oq := oq ′]〉

(* check first segment matches desired pattern; unpack fields *)
dequeue_iq(iq , iq ′, ↑(TCP seg)) ∧
(∃win_ ws_ mss_ PSH URG FIN urp data ack .

seg =
〈[ is1 := ↑ i2; is2 := ↑ i1; ps1

:= ↑ p2; ps2
:= ↑ p1;

seq := tcp_seq_flip_sense(seq : tcp_seq_foreign);
ack := tcp_seq_flip_sense(ack : tcp_seq_local);
URG :=URG;ACK := F;PSH :=PSH ;
RST := F;SYN := T;FIN :=FIN ;
win :=win_;ws :=ws_; urp := urp;mss :=mss_; ts := ts;
data := data

]〉 ∧
w2n win_ = win∧ (* type-cast from word to integer *)
option_map ord ws_ = ws ∧
option_map w2n mss_ = mss) ∧

(* IP addresses are valid for one of our interfaces *)
i1 ∈ local_ips h.ifds ∧
¬(is_broadormulticast h.ifds i1) ∧ ¬(is_broadormulticast h.ifds i2) ∧

(* sockets distinct; segment matches this socket; unpack fields of socket *)
sid /∈ (dom(socks)) ∧ sid

′ /∈ (dom(socks)) ∧ sid 6= sid
′ ∧

tcp_socket_best_match socks(sid , sock)seg h.arch ∧
sock = SOCK(↑ fid , sf , is1, ↑ p1, is2, ps2

, es, csm, crm,
TCP_Sock(LISTEN, cb, ↑ lis, [ ], ∗, [ ], ∗, NO_OOB)) ∧

(* socket is correctly specified (note BSD listen bug) *)
((is2 = ∗ ∧ ps

2
= ∗) ∨

(bsd_arch h.arch ∧ is2 = ↑ i2 ∧ ps
2

= ↑ p2)) ∧
(case is1 of ↑ i1

′ → i1
′ = i1 ‖ ∗ → T) ∧

¬(i1 = i2 ∧ p1 = p2) ∧

(* (elided: special handling for TIME_WAIT state, 10 lines) *)

(* place new socket on listen queue *)
accept_incoming_q0 lis T ∧
(* (elided: if drop_from_q0, drop a random socket yielding q0’) *)
lis

′ = lis 〈[ q0 := sid
′ :: q ′

0]〉 ∧

(* choose MSS and whether to advertise it or not *)
advmss ∈ {n | n ≥ 1 ∧ n ≤ (65535 − 40)} ∧
advmss

′ ∈ {∗; ↑ advmss} ∧

(* choose whether this host wants timestamping; negotiate with other side *)
tf _rcvd_tstmp

′ = is_some ts ∧
(choose want_tstmp :: {F; T}.
tf _doing_tstmp

′ = (tf _rcvd_tstmp
′ ∧ want_tstmp)) ∧

(* calculate buffer size and related parameters *)
(rcvbufsize

′, sndbufsize
′, t_maxseg

′, snd_cwnd
′) =

calculate_buf_sizes advmss mss ∗ (is_localnet h.ifds i2)
(sf .n(SO_RCVBUF))(sf .n(SO_SNDBUF))
tf _doing_tstmp

′
h.arch ∧

sf
′ = sf 〈[ n := funupd_list sf .n[(SO_RCVBUF, rcvbufsize

′);
(SO_SNDBUF, sndbufsize

′)]]〉 ∧

(* choose whether this host wants window scaling; negotiate with other side *)
req_ws ∈ {F; T} ∧
tf _doing_ws

′ = (req_ws ∧ is_some ws) ∧
(if tf _doing_ws

′ then
rcv_scale ′ ∈ {n | n ≥ 0 ∧ n ≤ TCP_MAXWINSCALE} ∧
snd_scale ′ = option_case 0 I ws

else
rcv_scale ′ = 0 ∧ snd_scale ′ = 0) ∧

(* choose initial window *)
rcv_window ∈ {n | n ≥ 0 ∧

n ≤ TCP_MAXWIN∧
n ≤ sf .n(SO_RCVBUF)} ∧

(* record that this segment is being timed *)
(let t_rttseg ′ = ↑(ticks_of h.ticks, cb.snd_nxt) in

(* choose initial sequence number *)
iss ∈ {n | T} ∧

(* acknowledge the incoming SYN *)
let ack

′ = seq + 1 in

(* update TCP control block parameters *)
cb

′ =
cb 〈[ tt_keep := ↑((())

slow_timer TCPTV_KEEP_IDLE
);

tt_rexmt := start_tt_rexmt h.arch 0 F cb.t_rttinf ;
iss := iss; irs := seq ;
rcv_wnd := rcv_window ; tf _rxwin0sent :=(rcv_window =0);
rcv_adv := ack

′ + rcv_window ; rcv_nxt := ack
′;

snd_una := iss; snd_max := iss + 1; snd_nxt := iss + 1;
snd_cwnd := snd_cwnd

′; rcv_up := seq + 1;
t_maxseg := t_maxseg

′; tadvmss := advmss
′;

rcv_scale := rcv_scale ′; snd_scale := snd_scale ′;
tf _doing_ws := tf _doing_ws

′;
ts_recent := case ts of

∗ → cb.ts_recent ‖

↑(ts_val , ts_ecr) → (ts_val)TIMEWINDOW
kern_timer dtsinval

;
last_ack_sent := ack

′;
t_rttseg := t_rttseg ′;
tf _req_tstmp := tf _doing_tstmp

′;
tf _doing_tstmp := tf _doing_tstmp

′

]〉) ∧

(* generate outgoing segment *)
choose seg

′ :: make_syn_ack_segment cb
′

(i1, i2, p1, p2)(ticks_of h.ticks).

(* attempt to enqueue segment; roll back specified fields on failure *)
enqueue_or_fail T h.arch h.rttab h.ifds[TCP seg

′]oq
(cb

〈[ snd_nxt := iss;
snd_max := iss;
t_maxseg := t_maxseg

′;
last_ack_sent := tcp_seq_foreign 0w;
rcv_adv := tcp_seq_foreign 0w

]〉)cb′(cb′′, oq ′)

Figure 2: A sample TCP transition rule.



Rules Observed labels in trace (omitting time passage data and thread ids)

connect_1 connect(FD 8, IP 192 168 0 14, SOME(Port 3333))s

epsilon_1

sdeliver_out_99

epsilon_1

−−−−−−
TCP 2634140288:0 (0:0) UAPRSF192.168.0.12:3333→192.168.0.14:3333 win=57344 ws=0
urp=0 mss=1460 ts=572641697,0 len=0 −−−−−−−−−−−−−−→

sdeliver_in_99

epsilon_1; deliver_in_2

−−

TCP 260964823:2634140289 (0:1) UAPRSF

192.168.0.14:3333→192.168.0.12:3333 win=5792 ws=0

urp=0 mss=1460 ts=78216088,572641697 len=0−−−−−−−−−−−−−−−−−−→

sdeliver_out_99

connect_2; epsilon_1

−−−−−−
TCP 2634140289:260964824 (1:1) UAPRSF192.168.0.12:3333→192.168.0.14:3333 win=57920 ws=*
urp=0 mss=* ts=572641697,78216088 len=0 −−−−−−−−−−−−−−→

return_1 OK()

epsilon_1

s

send_1 send(FD 8, NONE, "Hello!", [])s

epsilon_1; deliver_out_1

sdeliver_out_99

epsilon_1

−−−−−−
TCP 2634140289:260964824 (1:1) UAPRSF192.168.0.12:3333→192.168.0.14:3333 win=57920 ws=*
urp=0 mss=* ts=572641747,78216088 len=6 −−−−−−−−−−−−−−→

return_1 OK("")

epsilon_1

s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 3: Extract from sample checked TCP trace, with rule
firings.

but we may construct a new record by copying an existing one and
providing new values for specific fields: cb ′ = cb 〈[irs := seq ]〉
states that the record cb ′ is the same as the record cb, except that
field cb′.irs has the value seq . For optional data items, ∗ denotes
absence (or a zero IP or port) and ↑ x denotes presence of value x .

After some validity checks, and determining the matching
socket, the predicate computes values required to generate the re-
sponse segment and to update the host state. For instance, the host
nondeterministically may or may not wish to do timestamping (here
the nondeterminism models the unknown setting of a configura-
tion parameter). Timestamping will be performed if the incoming
segment also contains a timestamping request. Several other lo-
cal values are specified nondeterministically: the advertised MSS
may be anywhere between 1 and 65495, the initial window is any-
where between 0 and the maximum allowed bounded by the size
of the receive buffer, and so on. Buffer sizes are computed based
on the (nondeterministic) local and (received) remote MSS, the ex-
isting buffer sizes, whether the connection is within the local sub-
net, and the TCP options in use. The algorithm used differs be-
tween implementations, and is specified in the auxiliary function
calculate_buf_sizes (definition not shown).

Finally, the internal TCP control block cb ′ for the new socket is
created, based on the listening socket’s cb. Timers are restarted,
sequence numbers are stored, TCP’s sliding window and conges-
tion window are initialised, negotiated connection parameters are
saved, and timestamping information is logged. An auxiliary func-
tion make_syn_ack_segment constructs an appropriate response
segment using parameters stored in cb ′; if the resulting segment
cannot be queued (due to an interface buffer being full or for some
other reason) then certain of the updates to cb ′ are rolled back.

Some non-common-case behaviour is visible in this rule: (1) in
the BSD implementation it is possible for a listening socket to have
a peer address specified, and we permit this when checking the
socket is correctly formed; and (2) URG or FIN may be set on

an initial SYN, though this is ignored by all implementations we
consider.

Fig. 3 shows an extract from a captured trace with the observed
labels for Sockets API calls and returns and TCP segment sends
and receives. It is annotated on the left with the sequence of
rules connect_1 , epsilon_1 ,. . . used to match this trace when it
was checked. Note the time passage transitions (rule epsilon_1 )
and the various internal (τ ) steps: deliver_in_2 dequeuing a
SYN,ACK segment and generating an ACK (to be later output
by deliver_out_99 ), connect_2 setting up the return from the
blocked connect(), and deliver_out_1 enqueuing the “Hello!”
segment for output. The diagram shows only the rule names, omit-
ting the symbolic internal state of the host which is calculated at
each point.

This trace shows a common case, and should be unsurprising.
However, the specification covers TCP in full detail: fast retrans-
mit and recovery, RTT measurement, PAWS, and so on, and for all
possible inputs, not just common cases: error behaviour, patholog-
ical corners, concurrent socket calls, and so on. Such completeness
of specification is an important part of our rigorous approach.

4. EXPERIMENTAL VALIDATION
Trace generation To generate traces of the real-world imple-
mentations in a controlled environment we set up an isolated test
network, with machines running each of our three OS versions, and
wrote instrumentation and test generation tools. A sample test con-
figuration is illustrated in Fig. 4. We instrument the wire interface
with a slurp tool above libpcap, instrument the Sockets API with
an nssock wrapper, and on BSD additionally capture TCP control
block records generated by the TCP_DEBUG kernel option. All three
produce HOL format records which are merged into a single trace;
this requires accurate timestamping, with careful management of
NTP offsets between machines and propagation delays between
them. A test executive tthee drives the system by making Sockets
API calls (via a libd daemon) and directly injecting messages with
an injector tool. These tools are written in OCaml [23] with ad-
ditional C libraries. The resulting traces are HOL-parsable text files
containing an initial host state (its interfaces, routing table, etc.), an
initial time, and a list of timestamped labels (as in §2).

Tests Tests are scripted above tthee. They are of two kinds.
The most straightforward use two machines, one instrumented and
an auxiliary used as a communication partner, with socket calls
invoked remotely. The others use a virtual auxiliary host, directly
injecting messages into the network; this permits tests that are not
easily produced via the Sockets layer, e.g. with re-ordering, loss, or
illegal or nonsense segments.

We have written tests to, as far as we could, exercise all the inter-
esting behaviour of the protocols and API. Almost all tests are run
on all three OSs; many are automatically iterated over a selection
of TCP socket states, port values, etc. In total around 6000 traces
are generated.

For example, trace 1484, of intermediate complexity, is infor-
mally described as follows: “send() – for a non-blocking socket in
state ESTABLISHED(NO_DATA), with a reduced send buffer
that is almost full, attempt to send more data than there is space
available.”

Assessing coverage of the traces is non-trivial, as the system is
essentially infinite-state, but we can check that almost all the host
LTS rules are covered.

Symbolic evaluation Given the (nondeterministic) transition
system l

−→ defined by the host LTS, an initial host h0, and an
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This shows a sample configuration of our instrumentation and test generation tools.

Figure 4: Testing infrastructure.
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Bars indicate the checker execution time for each step, on the left scale. Diamonds
indicate how far through the trace each step is, on the right scale. This trace, atypically,
required significant backtracking; most need no backtracking of depth greater than
one.

Figure 5: Checker monitoring: timed step graph.
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This indicates how an entire check run progressed, showing the number of traces pro-
cessed, succeeded, and non-succeeded for various reasons. The INCOMPLETE line
(dropping around 33 hours) indicates roughly how many worker machines were active.
The shape of the graph is largely determined by the order of traces in the run, shortest
first.

Figure 6: Checker monitoring: progress of a TCP run.

experimentally-observed trace of labels l1 . . . ln, we want to deter-
mine whether h0 could have exhibited this behaviour. Because the
transition system includes unobservable τ labels, the sequence of
events undergone by h0 may have also included τ steps whose pres-
ence will need to be inferred. Nondeterminism arises in two ways:
two or more rules may apply to the same host-label pair (often one
for a τ step), and a single rule may weakly constrain some part of
the resulting host, e.g. constraining a number to fall within certain
bounds, or an error code to be one of several possibilities. The first
is dealt with by a depth-first search (checking τ possibilities last).
For the second, explicit search is clearly impractical. Instead, the
system maintains sets of constraints, which are just arbitrary HOL
formulae, attached to each transition. These constraints are sim-
plified (including the action of arithmetic decision procedures) and
checked for satisfiability as checking proceeds. Later labels often
fully determine variables that were introduced earlier, e.g. for file
descriptors, TCP options, etc.

For example, a connect_1 transition modelling the connect()
invocation in TCP trace 0999 introduces:
==New variables: (advmss :num), (advmss’ :num option),

(cb’_2_rcv_wnd :num), (n :num), (rcv_wnd0 :num),
(request_r_scale :num option), (ws :char option)

==New constraints:
∀n2. advmss’ = SOME n2 ==> n2 <= 65535
∀n2. request_r_scale = SOME n2 ==> ORD (THE ws) = n2
pending (cb’_2_rcv_wnd=rcv_wnd0* 2**case 0 I request_r_scale)
pending (ws = OPTION_MAP CHR request_r_scale)
advmss <= 65495
cb’_2_rcv_wnd <= 57344
n <= 5000
rcv_wnd0 <= 65535
1 <= advmss
1 <= rcv_wnd0
1024 <= n
advmss’ = NONE ∨ advmss’ = SOME advmss
request_r_scale=NONE ∨ ∃n1.request_r_scale=SOME n1 ∧ n1<=14
nrange n 1024 3976
nrange rcv_wnd0 1 65534
case ws of NONE -> T || SOME v1 -> ORD v1 <= TCP_MAXWINSCALE

Some of these will be further constrained by the first segments that
appear; as they become ground it becomes possible to substitute
them out altogether.

An important aim of the formalisation has been to support the
use of a natural, mathematical idiom in the writing of the specifica-
tion. This does not always produce logical formulas well-suited to
automatic analysis. Even making sure that the conjuncts of a side-
condition are “evaluated” (simplified) in a suitable order can make
a big difference to the efficiency of the tool. Rather than force the
specification authors to behave like Prolog programmers, we have
developed a variety of tools to automatically translate a variety of
idioms into provably-equivalent forms that are easier to check.

Distributed checking infrastructure Trace checking is compu-
tationally expensive, but for good coverage we want to check many
traces. We therefore distributed checking over as many processors
as possible. Each trace (apart from initialisation of the evaluator) is
independent, so this is conceptually straightforward.

Checking is compute-bound, not space- or IO-limited. A typi-
cal trace check run might require 100MB of memory (a few need
more); most trace input files are only of the order of 10KB, and the
raw checker output for a trace is 100KB – 3MB.

At present we use approximately 100 processors, running back-
ground jobs on personal workstations and lab machines (the fastest
being dual 3.06GHz Xeons) and using a processor bank of 25 dual
Opteron 250s. We currently rely on a common NFS-mounted file
system. Checking around 2600 UDP traces takes approximately
5 hours; checking around 1100 TCP traces (for BSD only) takes
approximately 50 hours.



Considerable work has gone in to achieving this performance,
e.g. with recent improvements to the simplifier reducing the total
TCP check time from 500 hours, which was at the upper limit of
what was practical.

The resulting dataset is large and good visualisation tools are
necessary for working with it. Our main tool is an HTML dis-
play of the results of each check run, with for each trace a link to
the checker output, the trace in HTML and graphical form (as in
Fig. 3), the short description, and a graph showing the backtrack-
ing and progress of the checker (as in Fig. 5). The progress of a
whole run can be visualised as in Fig. 6.

Fig. 5 suggests the checker run-time per step rises piecewise ex-
ponentially with the trace length, though with a small exponent.
This is due to the gradual accumulation of constraints, especially
time passage rate constraints. In principle there is no reason why
in long traces they could not be agglomerated.

5. RESULTS
The experimental validation process shows that the specifica-

tion admits almost all the test traces generated. For UDP, over all
three implementations (BSD, Linux, and WinXP), 2526 (97.04%)
of 2603 traces succeed. For TCP we have focussed recently on the
BSD traces, and here 1004 (91.7%) of 1095 traces succeed.

While we have not reached 100% validation, we believe these
figures indicate that the model is for most purposes very accurate
— certainly good enough for it to be a useful reference. Further,
we believe that closing the gap would only be a matter of additional
labour, fixing sundry very local issues rather than needing any fun-
damental change to the specification or the tools.

Of the UDP non-successes: 36 are due to a problem in test gen-
eration (difficulties with accurate timestamping on WinXP); 27 are
tests which involve long data strings for which we hit a space lim-
itation of the HOL string library (which uses a particularly non-
space-efficient representation at present); 11 are because of known
problems with test generation; and 3 are due to an ICMP delivery
problem on FreeBSD.

Of the TCP non-successes: 42 are due to checker problems
(mainly memory limits); 6 are due to problems in test generation;
and the remaining 43 traces due to a collection of 20 issues in the
specification which we have roughly diagnosed but not yet fixed.

Much of the TCP development was also carried out for all three
implementations, and the specification does identify various dif-
ferences between them. In the later stages we focussed on BSD
for two reasons. Firstly, the BSD debug trace records make auto-
mated validation easier in principle. Secondly, as a small research
team we have had only rather limited staff resources available. We
believe that extending the TCP work to fully cover the other imple-
mentations would require little in the way of new techniques.

The success rates above are only meaningful if the generated
traces do give reasonable coverage. Care was taken in the design
of the test suite to cover interesting and corner cases, and we can
show that almost all rules of the model are exercised in success-
ful trace checking. Of the 194 host LTS rules 142 are covered in
at least one successful trace check run; 32 should not be covered
by the tests (e.g. rules dealing with file-descriptor resource lim-
its, or non-BSD TCP behaviour); and 20 either have not had tests
written or not yet succeeded in validation. Moreover, test gener-
ation was largely independent of the validation process (some ad-
ditional tests were constructed during validation, and some partic-
ularly long traces were excluded). For TCP, however, it would be
good to check more medium-length traces, to be sure that the var-
ious congestion-control regimes are fully explored. Our trace set
is perhaps weighted more towards connection setup/teardown and
Sockets API issues.

6. IMPLEMENTATION ANOMALIES
The goal of this project was not to find bugs in the implemen-

tations. Indeed, from a post-hoc specification point of view, the
implementation behaviour, however strange, is a de facto standard
which users of the protocols and API should be aware of. More-
over, to make validation of the specification against the implemen-
tation behaviour possible, it must include whatever that behaviour
is.

Nonetheless, in the course of the work we have found many
behavioural anomalies, some of which are certainly bugs in the
conventional sense. There are explicit OS version dependencies
on around 260 lines of the specification, and the report [7] details
around 30 anomalies. All are relatively local issues — the imple-
mentations are extremely widely used, so it would be very surpris-
ing to find serious problems in the common-case paths. We list a
few briefly below, mostly for BSD TCP. By describing these oddi-
ties we hope primarily to give some sense of what kind of fine-grain
detail can be captured by our automated testing process, in which
window values, time values, etc. are checked against their allow-
able ranges as soon as possible. Some may be already known.

• The receive window is updated on receipt of a bad segment.
• Simultaneous open can respond with an ACK rather than a
SYN,ACK.
• The code has an erroneous definition of the
TCPS_HAVERCVDFIN macro, making it possible, for exam-
ple, to generate a SIGURG signal from a socket after its
connection has been closed.
• listen() can be (erroneously) called from any state, which can
lead to pathological segments being transmitted (with no flags or
only a FIN).
• After repeated retransmission timeouts the RTT estimates are
incorrectly updated.
• After 232 segments there is a 16 segment window during
which, if the TCP connection is closed, the RTT values will not
be cached in the routing table.
• The received urgent pointer is not updated in the fast-path
code, so if 2GB of data is received in the fast path, subsequent
urgent data will not be correctly signalled.
• On Linux, options can be sent in a SYN,ACK that were not in
the received SYN.

The main point we observe in the implementations is that their
behaviour is extremely complex and irregular, but that is not subject
to any easy fix.

7. DESIGN FOR TEST
Our experience with post-hoc rigorous specification and

specification-based testing for existing protocols suggests that sim-
ilar work would be feasible and desirable at design-time for new
protocols.

Rigorous specification alone, if it is possible in a sufficiently
lightweight form, promises several benefits:

• As Anderson et al. write in their Design guidelines for robust
Internet protocols, the value of conceptual simplicity is widely
accepted but hard to realise [2, Guideline #1]. Writing a be-
havioural specification makes complexity apparent early in the
design process, drawing attention to unnecessary irregularities
and asymmetries in a way that informal prose and working code
do not.
• Specification is a form of communication, both within the pro-
tocol design group and later to implementors and users. The



added clarity of rigorous specification aids precise communica-
tion and reduces ambiguity.
• Incompleteness is a fertile source of bugs. Specifications that
can be machine-checked for completeness, or that make com-
pleteness self-evident, can address this.

The ability to directly test conformance of an implementation
would result in higher-quality implementations, with fewer quirks
and obscure bugs. A specification should clearly define how an ac-
ceptable implementation may behave. We have shown here that
it is feasible to do so in a way that makes it possible to test
whether an execution of an implementation is admissible, without
any unchecked manual (error-prone) translation.

Bearing conformance testing in mind during protocol and API
design could make testing much more straightforward. The treat-
ment of loose specification and nondeterminism is crucial here. For
TCP and the Sockets API there are many internal events (process-
ing messages from input queues, timer firings, etc.) which are not
directly observable either on the wire or via the API, and which
are not determined in a simple way by the observable events. This
meant that our automated validation had to maintain highly sym-
bolic descriptions of states, with unresolved constraints on state
variables, and had to perform a backtracking search. If one en-
sured the API could (on demand) reveal internal state changes, and
enough of the internal state to compute the abstract specification
state, then testing could be carried out in lock-step between imple-
mentation and specification, with fully-known states.

Ideally one would develop both an endpoint specification, pre-
scribing the behaviour of a single protocol stack, and an end-to-
end specification, characterising just the behaviour that API users
can depend upon. Including the API behaviour in both is feasible,
would reduce future portability problems, and would ease testing.

Good specification idioms are crucial for readability. Our use of
HOL enables modular structuring to be used for maximum clarity,
without constraining the structure of implementations. It would be
desirable to isolate aspects of the specification that are loose, mak-
ing it possible to modularly replace them with particular definitions
to yield an executable prototype. Similarly, aspects that are subject
to more frequent change (such as congestion control) should be re-
placeable modules.

The up-front effort and technical background required for a rig-
orous specification might be thought problematic, but we believe
not. Gaining enough familiarity with HOL to understand and write
this style of specification takes a matter of a few days. Working
directly on improving the symbolic evaluator does need special ex-
pertise; a question for future work is to what extent our techniques
there can be packaged and generalised.

The total effort required for the project, from our earliest exper-
iments with UDP, has been perhaps 9 man-years over 3.5 calendar
years. Of this, much has been devoted to idiom and tool develop-
ment, and much to unpicking the intricacies of the existing TCP
implementations. Similar work in future should be much less ardu-
ous, especially if performed at design-time, and in any case this is
a small amount of effort compared with that devoted to designing,
implementing, and using such protocols.

8. RELATED WORK
There is a vast literature devoted to verification techniques for

protocols, with both proof-based and model-checking approaches,
e.g. in conferences such as CAV, CONCUR, FORTE, ICNP, SPIN,
and TACAS.

To the best of our knowledge, however, no previous work ap-
proaches a specification dealing with the full scale and complexity

of a real-world TCP. In retrospect this is unsurprising: we have
depended on automated reasoning tools and on raw compute re-
sources that were simply unavailable in the 1980s or early 1990s.
Our goals have also been different, and in some sense more modest,
than the correctness theorems of traditional formal verification: we
have not attempted to prove that an implementation of TCP meets
an endpoint specification, or that two TCP endpoints do provide a
psuedo-reliable stream service.

The most detailed rigorous specification of a TCP-like protocol
we are aware of is that of Smith [36], an I/O automata specifica-
tion and implementation, with a proof that one satisfies the other,
used as a basis for work on T/TCP. The protocol is still substan-
tially idealised, however: congestion control is not covered, nor are
options, and the work supposes a fixed client/server directionality.
Later work by Smith and Ramakrishnan uses a similar model to
verify properties of a model of SACK [35].

Musuvathi and Engler have applied their CMC model-checker
to a Linux TCP/IP stack [26]. The properties checked were of two
kinds: resource leaks and invalid memory accesses, and protocol-
specific properties specified by a hand translation of the RFC793
state diagram into C code. While this is a useful model of the pro-
tocol, it is an extremely abstract view, omitting flow control, con-
gestion control etc. Four bugs in the Linux implementation were
found.

Bhargavan et al. develop an automata-theoretic approach for
monitoring of network protocol implementations, with classes of
properties that can be efficiently checked on-line in the presence
of network effects [3]. They show that certain properties of TCP
implementations can be expressed.

In a rare application of rigorous techniques to actual standards,
Bhargavan, Obradovic, and Gunter use a combination of the HOL
proof assistant and the SPIN model checker to study properties
of distance-vector routing protocols [4], proving correctness theo-
rems. In contrast to our experience for TCP, they found that for RIP
the existing RFC standards were precise enough to support “with-
out significant supplementation, a detailed proof of correctness in
terms of invariants referenced in the specification”. The protocols
are significantly simpler: their model of RIP is (by a naïve line
count) around 50 times smaller than the specification we present
here.

Alur and Wang address the PPP and DHCP protocols [1]. For
each they check refinements between models that are manually ex-
tracted from the RFC specification and from an implementation.

There are I/O automata specifications and proof-based verifica-
tion for aspects of the Ensemble group communication system by
Hickey, Lynch, and van Renesse [15], and NuPRL proofs of fast-
path optimizations for local Ensemble code by Kreitz [22].

For radically idealised variants of TCP, one has for example the
PVS verification of an improved Sliding Window protocol by Chk-
liaev et al. [10], and Fersman and Jonsson’s application of the
SPIN model checker to a simplified version of the TCP establish-
ment/teardown handshakes [12]. Schieferdecker verifies a property
(expressed in the modal µ calculus) of a LOTOS specification of
TCP, showing that data is not received before it is sent [32]. The
specification is again roughly at the level of the TCP state diagram.
Hofmann and Lemmen report on testing of a protocol stack based
on an SDL specification of TCP/IP [16]. Billington and Han have
produced a coloured Petri net model of the service provided by TCP
for a highly idealised ISO-style interface [6]. Murphy and Shankar
verify some safety properties of a 3-way handshake protocol anal-
ogous to that in TCP [24] and of a transport protocol based on this
[25]. Finally, Postel’s PhD thesis used early Petri net protocol mod-
els descriptively [31].



A number of tools exist for testing or fingerprinting of TCP im-
plementations with hand-crafted ad-hoc tests, not based on a rigor-
ous specification. They include the tcpanaly of Paxson [30], the
TBIT of Padhye and Floyd [28], and Fyodor’s nmap [13]. RFC2398
[29] lists several other tools. There are also commercial products
such as Ixia’s Automated Network Validation Library [20].

Implementations of TCP in high-level languages have been writ-
ten by Biagioni in Standard ML [5], by Castelluccia et al. in Esterel
[9], and by Kohler et al. in Prolac [21]. Each of these develops com-
pilation techniques for performance. They are presumably more
readable than low-level C code, but each is a particular implemen-
tation rather than a specification of a range of allowable behaviours:
as for any implementation, allowable nondeterminism means they
could not be used as oracles for conformance testing.

9. CONCLUSION
Future work There are many directions for future work based on
the current specification.

While it has been subject to extensive validation and annotation,
the specification surely still contains some errors, and is not as
clearly presented as it might be. We would be interested to hear
feedback on either point.

The specification has been developed based on three particular
implementations, and with reference to the Linux and (especially,
for TCP) the BSD source code, but we have aimed to make it suf-
ficiently loose to admit other implementation differences. It would
be interesting to run the validation tools on a fresh implementation
that did not influence the specification development, to see how
much implementation-specific change is required, and also on new
(and longer) trace sets. Our automated validation for TCP makes
use of the BSD TCP_DEBUG trace records to resolve nondetermin-
ism early — how important this is is unclear.

It would be useful to maintain the specification, completing the
Linux and WinXP validation for TCP, tracking version changes in
all three implementations, and providing feedback to implementa-
tion groups. We believe this would now be an essentially routine
task.

We have informal descriptions of many invariants which we be-
lieve the model satisfies; it would be useful to prove these (as we
did for our earlier UDP specification).

Given the segment-level endpoint specification we expect one
could directly produce a more abstract stream-level end-to-end
specification of TCP and Sockets. In doing so it would be use-
ful to state formally the intended abstraction relation between the
segment-level and stream-level models. Proving this would ad-
vance the state of the art, but the effort required may be dispro-
portionate to what would be learned about the protocol — which
is, after all, known to work reasonably well in practice.

In the opposite direction, towards the concrete, we would like to
specify particular choices at points of nondeterminism, thus deriv-
ing an actual implementation. It should then be possible to inte-
grate the packet slurp tool, the specification, our symbolic evalua-
tion engine, and the injector, forming a working prototype TCP.
One could gain additional confidence in the validity of the speci-
fication by checking this interoperates with existing TCP/IP stacks
(artificially slowed down to match the speed of the evaluator).

TCP does not have a clear modular structure, but rather has
accreted functionality through a succession of RFCs and code
changes. We have tried to clarify the behaviour as much as we
could, but the imperative nature of the code is hard to escape —
witness especially our deliver_in_3 rule, which processes normal
segments in a connected state, and which must deal with many
computation paths that have some important side-effects but then

abort. Any improvement to this structure would be worthwhile.
For example, good modular structure would let one cleanly replace
the existing congestion control mechanisms by other proposals.

Finally, our symbolic evaluator is a special-purpose tool, part of
which is particular to the details of our specification. Ideally one
would have a more general-purpose system, applying to any spec-
ification in some identified language. However, the specification
makes use of a substantial fragment of the HOL logic, with the
evaluator performing non-trivial proof that certain parts of it are
equivalent to algorithmically more tractable definitions. It is there-
fore hard to imagine that such a language can exist. Nonetheless,
it would be interesting to characterise more sharply exactly what
fragment of HOL is needed here.

Summary We have established rigorous techniques for specifi-
cation and specification-based conformance testing that are practi-
cal for protocols as complex as TCP. To the best of our knowledge
this is the first time this has been done.

We have demonstrated our techniques by producing a post hoc
specification of TCP, UDP, and the Sockets API. The specification
is rigorous (in the mechanised higher-order logic of HOL), detailed
(with almost all aspects of the real-world communications at the
level of TCP segments and UDP datagrams), has broad coverage
(with arbitrary incoming messages and Sockets API invocations),
and is accurate (experimentally validated against the behaviour of
some widely-deployed implementations).

The specification has been extensively annotated, aiming to
make it usable as a reference by TCP/IP stack implementors, users
of the Sockets API, and designers of protocol modifications. It is
available (in a version automatically typeset from the HOL source)
on the web [8]. Also available from that link is a version of the
‘TCP state diagram’ based on the specification, which is rather
more complete than the diagrams from RFC793 or the later Stevens
texts.

Perhaps most importantly, the practicality of our technique for
TCP suggests that similar rigorous specification should be both fea-
sible and desirable for future protocol design, leading to clearer
specifications and higher-quality implementations, and we have
discussed some key points for such a design-for-test approach.
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