
Flow Control in the Linux Network Stack

Michael Smith, Steve Bishop
Computer Laboratory, University of Cambridge, England

http://www.cl.cam.ac.uk/~pes20/Netsem/

February 5, 2005

1 Introduction

This document describes in some detail the algorithms used for the tuning of buffers and window
advertisements in the Linux kernel1. A brief discussion of memory structures and destination
caches is also given, with relevance to these mechanisms.

We are not the designers; this has all been determined by experiment and by examination
of the sources, and is likely incomplete and/or inaccurate. We would be very grateful for any
corrections or comments.

2 Overview of Buffer Memory Allocation

The Linux kernel has a number of different memory allocation mechanisms, tuned for different
purposes. The two that concern us are both allocations from kernel memory. The first is the
allocation of a contiguous memory block using kmalloc. This uses a binary buddy system,
and is useful for allocation of relatively small, variable amounts of memory. The second is
memory allocation via the SLAB cache. If the amount of memory for an object is constant
and frequently required, such a cache may be used to provide a memory pool for these objects.
This eliminates the wasteful (up to 50%) nature of the former. SLAB caches are used for such
objects as inodes and buffer heads – a cache is created using kmem cache create, and an object
is allocated using kmem cache alloc.

The data structure used for the send and receive buffers of a socket is essentially a linked
list of segments. Each packet received from the network is placed in its own buffer2 (a struct

sk buff, in include/linux/skbuff.h). The control block of this buffer is allocated from the
skbuff head cache (a SLAB cache). Of the fields in this structure, the most important are
the pointers:

• head Start of the data buffer.

• data Start of the data for the current protocol layer (i.e. excluding headers).

• tail End of the data for the current protocol layer.

• end End of the data buffer.

1Specifically, we are using version 2.4.21 of the Linux kernel.
2This is done by the function net/core/skbuff.c::alloc skb.

1

The head field points to the region of memory in which the raw packet data resides (allo-
cated by kmalloc), immediately after which (at the end pointer) is a struct skb shared info,
which among other things contains a pointer to a list of IP fragments.

For its receive and send queues, each socket then holds two pointers to lists of struct

sk buff3; sk->receive queue and sk->write queue.

3 sysctl Variables

The TCP implementation has three sysctl variable arrays that bound the amount of memory
available for send and receive buffers. sysctl tcp mem bounds the total amount of memory
(number of pages) used by TCP for the entire host, sysctl tcp rmem the amount (in bytes)
for the receive buffer of a single socket, and sysctl tcp wmem the amount (in bytes) for a
socket’s send buffer. Each of these is an array of three elements, giving the minimum, mem-
ory pressure point, and maximum values for the size of these buffers. If we have fewer than
sysctl tcp mem[0] pages allocated to TCP buffers, we are not under memory pressure. How-
ever, once we allocate more than sysctl tcp mem[1] pages, we remain under pressure (setting
the tcp memory pressure flag), until we drop below sysctl tcp mem[0] again.

The initial values are set in net/ipv4/tcp.c::tcp init, where order = log
2
bnum physpages

2x
c,

with x = 11 if we have less than 128k pages, otherwise x = 9. The values are initialised to:

order = 0 [0] [1] [2]

sysctl tcp mem 768 × 2order 1024 × 2order 1536 × 2order

sysctl tcp rmem PAGE SIZE 43689 87378
sysctl tcp wmem 4096 16384 65536

1 ≤ order < 3 [0] [1] [2]

sysctl tcp mem 1536 × 2order − 1024 1536 × 2order − 512 1536 × 2order

sysctl tcp rmem PAGE SIZE 43689 87378
sysctl tcp wmem 4096 16384 65536

order ≥ 3 [0] [1] [2]

sysctl tcp mem 1536 × 2order − 1024 1536 × 2order − 512 1536 × 2order

sysctl tcp rmem 4096 87380 174760
sysctl tcp wmem 4096 16384 131072

For a page size of 4KB, which is fairly usual, the values of order correspond to a physical
memory of:

order Physical Memory / MB
0 8
1 16
2 32
3 64

For the machines that we are running on our test network, each has 29340KB of physical
memory, with 4KB pages, so this translates to an order of 2.

3Actually, each is a pointer to a struct sk buff head, to which the struct sk buff at the head of the
queue is cast.

2

4 Buffer Tuning

Each socket stores two values to indicate the size of its buffers; sk->rcvbuf and sk->sndbuf.
In addition, the fields sk->rmem alloc and sk->wmem alloc store the number of bytes com-
mitted (i.e. actually in use) from each queue. Note that the buffer sizes are maxima, and do
not correspond to the amount of memory being allocated; memory is only actually allocated
when it is needed to store a segment.

When the socket is first created, the function net/ipv4/tcp ipv4.c::tcp v4 init sock

initialises the receive and send buffer sizes to sysctl tcp rmem[1] and sysctl tcp wmem[1]

respectively. The initial values are then tuned once the connection enters the established state.
The exception to this is during system startup, when the function net/ipv4/inet init

creates the TCP control socket. This has the special function of sending an RST on receiving
a packet for a non-existent socket. In this case, the send and receive buffers are initialised
to sysctl rmem default and sysctl wmem default by net/core/sock.c::sock init data.
These in turn are set from SK RMEM MAX and SK WMEM MAX; both of which are defined to be
65535 in include/linux/skbuff.h4.

On becoming established, net/ipv4/tcp input.c::tcp init buffer space calls the func-
tions tcp fixup rcvbuf and tcp fixup sndbuf. The former sets the receive buffer size to be
large enough to hold at least four MSS sized segments5, so long as this is less than the maximum
size imposed by sysctl tcp rmem[2]. The latter is similar, setting the send buffer to at least
three MSS sized segments, bounded by the maximum send buffer size.

5 Maximum Segment Sizes

Knowledge of the maximum segment size (MSS) for a connection is essential to the operation
of the algorithms described here. The Linux kernel, in fact, uses four distinct MSS values for
each socket, a summary of which is given below:

• tp->advmss – The MSS advertised by the host. This is initialised in the function
net/ipv4/tcp output.c::tcp advertise mss, from the routing table’s destination cache
(dst->advmss). Given that the cached entry is calculated from the MTU (maximum
transfer unit) of the next hop, this will have a value of 1460 over Ethernet.

• tp->ack.rcv mss – A lower-bound estimate of the peer’s MSS. This is initiated in
net/ipv4/tcp input.c::tcp initialize rcv mss, and updated whenever a segment is
received by tcp measure rcv mss.

• tp->mss cache – The current effective sending MSS, which is calculated in the function
net/ipv4/tcp output.c::tcp sync mss. When the socket is created, it is initialised to
536 by net/ipv4/tcp ipv4.c::tcp v4 init sock. Note that these are the only functions
that alter the value of tp->mss cache.

• tp->mss clamp – An upper-bound value of the MSS of the connection. This is negotiated
at connect(), such that it is the minimum of the MSS values advertised by the two hosts.
We will never see a segment larger than this.

4net/core/sock.c sets both sysctls to 32767 if the system has less than 4096 physical pages. Note that
these are set by the sockets layer and are not specific to TCP.

5We also reserve some multiple of 128 in the overhead of storing an MSS sized segment, such that the reserved
overhead is at least one third of the advertised MSS.

3

The most interesting of these values, for our purposes, is tp->ack.rcv mss. Its initial
value is set to the minimum of tp->mss cache and tp->advmss, which results is 536 in most
circumstances6). If we then see a larger segment, the function tcp measure rcv mss increases
tp->ack.rcv mss to its length. If the segment seen is smaller, however, we may still update
tp->ack.rcv mss to the segment length, if the segment is the same length as the last one seen,
and either:

1. The segment length (with transport layer header) ≥ TCP MIN RCVMSS + sizeof(struct

tcphdr).

2. The segment length (with transport layer header) ≥ TCP MIN MSS + sizeof(struct

tcphdr), and it is not the case that any of the FIN, URG, SYN, or PSH flags have been set.

Note that it is always the case that tp->ack.rcv mss ≤ tp->advmss, since the remote
machine cannot send any segments larger than our advertised MSS.

6 Window Advertisements

The receive window advertisement is calculated at the time that the host sends a segment.
This window update occurs in net/ipv4/tcp output.c::tcp select window, such that we
advertise the amount of free space in the receive buffer, clamped to tp->rcv ssthresh and
rounded to a multiple of the MSS. The important difference between the behaviour of Linux
and that of BSD, is that of clamping the window advertisement.

Note that the advertised window is never reduced in size, in accordance with the RFC.
Therefore, if large segments are initially received, opening up the window, but subsequent
segments are significantly smaller, we rely on the receive queue collapsing to avoid running out
of buffer space.

This window clamp is updated whenever data is received by the host. This is controlled by
two fields from the TCP option block of the socket (struct tcp opt in include/net/sock.h);
tp->window clamp is the maximum possible window (initially set to 65535, but reduced in the
case of memory shortage [see below]), and tp->rcv ssthresh is the current window clamp
(named due to the ‘slow start’ nature of the window increase).

When a connect() is called on a socket (net/ipv4/tcp ipv4.c::tcp v4 connect), the
function include/net/tcp.h::tcp select initial window is called to initialise the window
clamp. This sets tp->window clamp to 65535, and both tp->rcv wnd and tp->rcv ssthresh

to four times the MSS7. Once the connection is established, tcp init buffer space [see above]
ensures that tp->window clamp is at most 3

4
the size of the receive buffer8 minus the size of

the application buffer9. In addition, one segment (of advertised MSS size) is reserved from
tp->window clamp.

The algorithm that Linux uses to calculate the new value of tp->rcv ssthresh is outlined
below:

if (length of segment just received >= 128 bytes

AND current_clamp < max_clamp

6In particular, this constrains tp->ack.rcv mss to lie between TCP MIN MSS (default 88) and
TCP MIN RCVMSS (default 536).

7The multiple of the MSS used ranges from 2 to 4, depending on the window scale. The Linux implementation
follows RFC 2414.

8Assuming that tp->rcvbuf = 43689, this is 32766. See footnote 10.
9This is defined as 3

4
× (tp->rcvbuf) × 2−x, where x = sysctl tcp app win (default 31).

4

AND current_clamp < space in buffer

AND no memory pressure)

{ let window = 3/410 size of receive buffer

let truesize = 3/4 length of segment buffer

if (length of segment data >= truesize)

{ current_clamp += 2*MSS_1

}

else

{ if (there exists an n such that:

(1) window >= 2^n * current_clamp

(2) truesize <= 2^n * length of segment data)

{ current_clamp += 2*MSS_2

}

}

clip current_clamp to max_clamp

}

This algorithm (in net/ipv4/tcp output.c::tcp grow window), works on the basis that
we do not want to increase the advertised window if we receive lots of small segments (i.e.
interactive data flow), as the per-segment overhead (headers and the buffer control block) is
very high. We could therefore exhaust the buffer if we were to receive a large window of data,
spread across many small segments. In the converse case, when the segment we receive is large
(i.e. bulk data flow), the data dominates the segment buffer size and so we wish to increase
the window (to avoid the sender being throttled by our receive window).

One has to be careful in the intermediate case, where the segment data is of comparable
length to the overheads. In this case, we need to test whether we are able to increase the window
clamp without the possibility of the buffer overflowing due to too much overhead (assuming
the current segment length continues). This is done by finding a factor, 2n, such that we could
split the receive buffer into 2n smaller buffers; each larger than the current window clamp. If
we can spread the overhead of the current segment amongst all these ‘mini-buffers,’ such that
the segment’s data length is larger than the overhead allocated to any of the buffers, then there
is room for the advertised window to increase.

Note that two different MSS values are mentioned above. MSS 1 is the MSS advertised
by the host (tp->advmss), whereas MSS 2 is the estimate of the MSS of the remote machine
(tp->ack.rcv mss). These are described in the previous section. The use of tp->ack.rcv mss

in the intermediate segment size case ensures that the advertised window is opened more grad-
ually.

The result of the algorithm is three observable modes of operation, as shown graphically in
Figure 1:

1. Small segments – if the segment size is less than 128 bytes, the advertised window remains
constant at 4×tp->advmss.

2. Medium segments – if the segment size is between 128 and 647 bytes, the advertised
window grows linearly by 2×tp->ack.rcv mss on receipt of each packet. This continues
up to some limit less than tp->window clamp, as defined by the intermediate case of the
above algorithm. Note that for segment sizes of less than 536 bytes, tp->ack.rcv mss

will not change from its initial value of 536.

10This proportion is 1 − 2−x, where x = sysctl tcp adv win scale (default 2).

5

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2 4 6 8 10 12

W
in

do
w

 S
iz

e
/ b

yt
es

Number of Segments Received

skb->len < 128

128 < skb->len <= 647

skb->len > 647

Figure 1: Advertised windows for varying segment sizes

3. Large segments – if the segment size is larger than 647 bytes, the advertised window grows
linearly by 2×tp->advmss on receipt of each segment. This is limited by the minimum of
tp->window clamp, and 3

4
the size of the free space in the receive buffer. Figure 1 shows

the behaviour when this free space is not the limiting factor.

Whenever a segment is sent, the window to advertise is determined by tcp select window.
This is calculated as the free space in the receive buffer, clamped to tp->rcv ssthresh. How-
ever, we must round this to a multiple of tp->ack.rcv mss11, to allow the sender to fill the
window with MSS-sized segments. Note that we round to tp->ack.rcv mss even when we
are increasing the window by tp->advmss12. To this end, the data in Figure 1 illustrates the
fluctuations in behaviour, given that the actual windows are dependant upon the segment size.

The user may manually set the socket option TCP WINDOW CLAMP, setting tp->window clamp

to a value greater than half the size of the minimum receive buffer (SOCK MIN RCVBUF). Note
that this maximum window clamp may only be set to zero if the socket is in the closed state.

7 Memory Pressure

To understand what happens when the state of memory pressure is reached, we need to consider
the events when data is received by net/ipv4/tcp input.c::tcp data queue. This function
firstly attempts to place the segment into the user’s iovec (i.e. if the user called recv() on
the socket, and there is enough space in the buffer specified by the call). If we cannot do this
(or we can only transfer part of the segment data across), it must be queued on the socket’s
receive queue.

The function tcp rmem schedule tests whether our memory bounds allow us to perform
this queueing. If the size of the segment buffer is no greater than the space allocated forward

11The MSS value itself is clamped, if it is larger than the minimum of tp->window clamp and the size of the
socket’s receive buffer.

12For example, if a 1000 byte segment is received, with an initial window of 5840, the window is increased to
8000 rather than 8760.

6

(sk->forward alloc), we call net/ipv4/tcp.c::tcp mem schedule to do the real work. This
tries to add the required amount of memory to tcp memory allocated , returning ‘1’ if this
is successful. There are a number of different circumstances considered, depending on how
tcp memory allocated compares to the sysctl tcp mem values:

Condition State Memory Pressure Success

> sysctl tcp mem[2] over hard limit yes no
> sysctl tcp mem[1] over soft limit yes yes/no13

< sysctl tcp mem[1] under soft limit yes/no yes/no14

< sysctl tcp mem[0] under limit no yes

If sk->rmem alloc is greater than sk->rcvbuf (i.e. we’ve allocated more than the buffer
size) or the call to tcp rmem schedule failed, then we try to prune the receive queue by calling
tcp prune queue. If this succeeds, we call tcp rmem schedule again, otherwise we drop the
segment.

The tcp prune queue function firstly tests whether we have allocated more memory than
the size of the recieve buffer (sk->rmem alloc ≥ sk->rcvbuf). If this is the case, then we need
to recalculate the memory bounds of the socket by calling tcp clamp window. Furthermore,
even if we have not exceeded the socket memory bounds, if we are under memory pressure then
we reset tp->rcv ssthresh to four times the advertised MSS.

The interesting function to consider then, for our purposes, is tcp clamp window, as this
is the only place beyond initialisation that tp->window clamp is recalculated. The following
steps are executed:

1. Add up the lengths of all the out of order segments.

2. If we have any out of order segments, expand sk->rcvbuf15 to at least the actual amount
allocated (sk->rmem alloc), so long as this is less than sysctl tcp rmem[2], and we are
not under memory pressure.

3. If, after this, we have still allocated more than the receive buffer size:

(a) If there are no out of order segments, clip tp->window clamp to the application
window. This is calculated as the difference between the data we expect to next
receive and the data received but unread (tp->rcv nxt − tp->copied seq)16, and
is at least two times the advertised MSS.

(b) Reset tp->rcv ssthresh to two times the advertised MSS, clipped to the value of
tp->window clamp.

13‘Yes’, if sk->rmem alloc is less than sysctl tcp rmem[0], or if the socket is using less than its equal share
of sysctl tcp mem[2] pages shared amongst all the sockets on the host.

14As with footnote 13, but also ‘yes’ if we are not under memory pressure.
15We hope that the out of order segments will soon be removed from the queue, so we don’t want to clamp

the window unnecessarily.
16This is halved if we have allocated more than twice the receive buffer’s memory, and if it exceeds

tp->ack.rcv mss, this value is subtracted from it.

7

8 Caching of Socket Statistics

Each entry in the routing table (struct rtentry in include/linux/route.c) contains var-
ious statistics that are cached between connections. These destination caches are stored in
a dst entry structure (include/net/dst.h). When connect() is called on a socket, the
function include/net/route.h::ip route connect performs a routing table lookup, and sets
sk->dst cache as a pointer to that in the routing table entry. When the socket is closed,
the function include/net/tcp.h::tcp update metrics updates its destination cache (stor-
ing among other things the RTT and the sender’s congestion window). The advertised MSS
(tp->advmss) is also cached, by net/ipv4/route.c::rt set nexthop.

The apparent behaviour seen in net/ipv4/tcp output.c::tcp connect init is quite mis-
leading:

if (!tp->window_clamp)

tp->window_clamp = dst->window;

This suggests that the destination cache stores the maximum window clamp. However, this
field is never set. This means that tp->window clamp remains at zero after this point, and is
initialised in the usual way [see above].

It may be useful to note that destination caching can be disabled by turning off the DST HOST

flag in dst.h, although this change requires the kernel to be recompiled. If the cache needs to
be flushed, the command ‘ip route flush cache’ will do so.

Acknowledgements

We acknowledge funding from EC FET-GC project IST-2001-33234 PEPITO, the Royal Society,
and the Cambridge–MIT Institute.

A Summary of Important Fields

Below is a summary of the fields discussed:

• sk->rcvbuf The size of socket sk’s receive buffer.

• sk->sndbuf The size of socket sk’s send buffer.

• tp->window clamp The maximum possible receive window size.

• tp->rcv ssthresh The current receive window clamp.

• tp->rcv wnd The current receive window to advertise.

• tp->advmss The MSS advertised by the host.

• tp->ack.rcv mss A lower-bound estimate of the peer’s MSS.

8

