Introduction	Profiled Attacks	PCA and LDA	Evaluation 8-bit	Evaluation 16-bit	Conclusions

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits CARDIS 2014

Omar Choudary Markus G. Kuhn

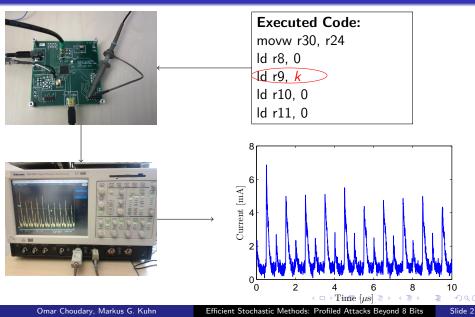
Paris, 6 November 2014

Omar Choudary, Markus G. Kuhn

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits

Slide 1

Introduction


Evaluation 8-bi

oit Evalua

luation 16-bit

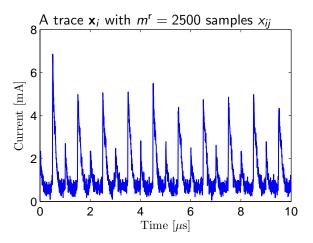
Conclusions

Framework for SCA – 8-bit target

Introduction	Profiled Attacks	PCA and LDA	Evaluation 8-bit	Evaluation 16-bit	Conclusions
Introduc	ction				

- Template Attacks (TA) [Chari et al., '02] very powerful
- Stochastic Model (SM) [Schindler et al., '05] very efficient
 ⇒ i.e. much fewer traces required than for TA during profiling
- PCA and LDA [Archambeau et al., '06, '08] great compression methods for TA
- There were no efficient (supervised) implementations of PCA or LDA for SM (until now...)

Introduction	Profiled Attacks	PCA and LDA	Evaluation 8-bit	Evaluation 16-bit	Conclusions
Introduction					

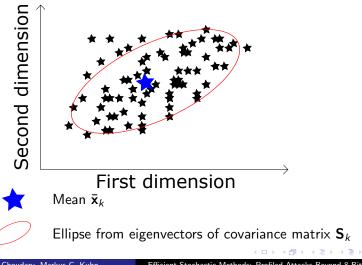

- Contributions:
 - Efficient methods for implementing PCA and LDA with SM
 - Evaluation on 8-bit
 - comparing several compressions with SM/TA, including PCA/LDA
 - Evaluation on 16-bit target
 - Show that SM are feasible on 16-bit and possibly larger targets (at least computationally)
 - Comparing 16-bit attack with two 8-bit attacks
 - Evaluation of extended 16-bit model
- Overall, we provide the most efficient kind of profiled attack

Slide 4

- Select/Detect the target data (e.g. a key byte, S-box output)
- Profile training device
 - Collect traces (and most likely compress them)
 - Build a model of the leakage for each target value
- Attack target device (same type as training device)
 - Compare leakage with model
 - Decide that target data is the one with best match

Conclusions

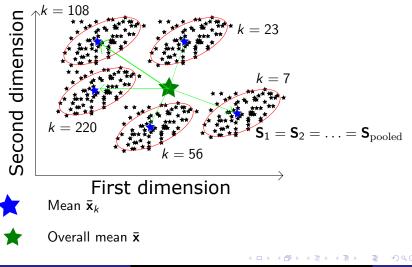
Template attacks – acquisition


For each k obtain $n_{\rm p}$ such traces

Template attacks – compression

- **(**) Goal is to reduce size from $m^r = 2500$ to $m \ll m^r$ \Rightarrow E.g. m = 4 (for PCA)
- 2 Common approaches
 - sample selection
 - PCA
 - IDA

Template attacks – model


Data space for a single k, 2 variables (leakage samples)

Slide 8

Template attacks – model

Data space for several k, 2 variables (leakage samples)

For each k compute linear discriminant score:

$$\mathbf{d}_{\mathrm{LINEAR}}^{\mathrm{joint}}(k \mid \mathbf{X}_{k\star}) = \bar{\mathbf{x}}_{k}' \mathbf{S}_{\mathrm{pooled}}^{-1} \left(\sum_{\mathbf{x}_{i} \in \mathbf{X}_{k\star}} \mathbf{x}_{i}\right) - \frac{n_{\mathrm{a}}}{2} \bar{\mathbf{x}}_{k}' \mathbf{S}_{\mathrm{pooled}}^{-1} \bar{\mathbf{x}}_{k}$$

 $\mathbf{X}_{k\star}$ contains n_{a} leakage traces for attack

$$k\star = rg\max_{k} \operatorname{d}_{\operatorname{LINEAR}}^{\operatorname{joint}}(k \mid \mathbf{X}_{k\star})$$

Omar Choudary, Markus G. Kuhn

Introduction Profiled Attacks PCA and LDA Evaluation 8-bit Evaluation 16-bit Conclusions
Stochastic method – model

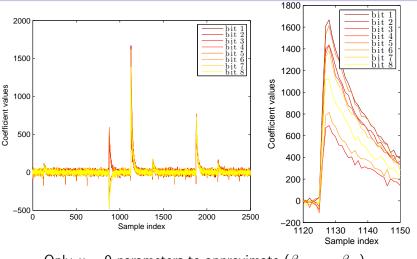
• Model each leakage sample as $x_j = \delta_j(k) + \rho_j$

•
$$\delta_j(k) = \sum_{b=0}^{u-1} \beta_{jb} \cdot g_{jb}(k)$$

- g_{jb} provides the model (usually bit selection)
- Coefficients β_{jb} obtained from least-squares approximation i.e. minimize $(x_{ij} \delta_j(k^i))^2$ over all traces \mathbf{x}_i

•
$$\hat{\mathbf{x}}'_k = [\delta_1(k), \dots, \delta_m(k)]$$

• $\mathbf{\hat{x}}_k$ replaces $\mathbf{\bar{x}}_k$ (from TA)

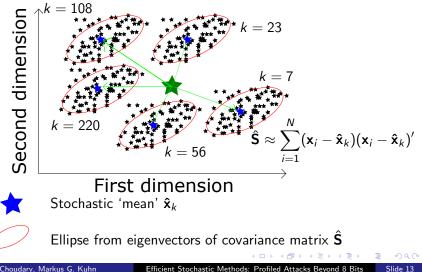

Evaluation 8-bi

on 8-bit

Evaluation 16-bit

Conclusions

Stochastic method – model



Only u = 9 parameters to approximate $(\beta_{j0}, \ldots, \beta_{j9})$

Fewer traces to match TA results (when model fits hardware well)

Profiled Attacks Introduction Conclusions Stochastic method – model

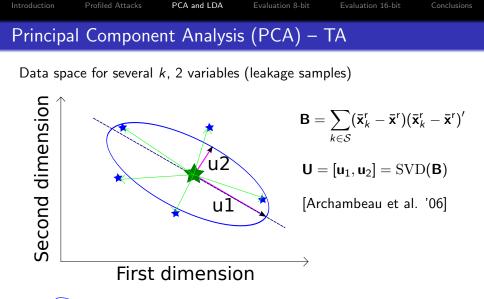
Data space for several k, 2 variables (leakage samples)

Omar Choudary, Markus G. Kuhn

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits

For each k compute linear discriminant score:

$$d_{\text{LINEAR}}^{\text{joint}}(k \mid \mathbf{X}_{k\star}) = \mathbf{\hat{x}}_{k}' \mathbf{\hat{S}}^{-1} \left(\sum_{\mathbf{x}_{i} \in \mathbf{X}_{k\star}} \mathbf{x}_{i}\right) - \frac{n_{\text{a}}}{2} \mathbf{\hat{x}}_{k}' \mathbf{\hat{S}}^{-1} \mathbf{\hat{x}}_{k}$$

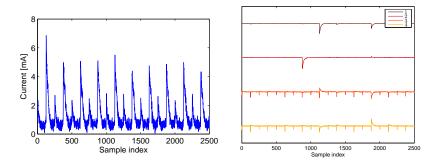

 $\mathbf{X}_{k\star}$ contains $n_{\rm a}$ leakage traces for attack

$$k\star = rg\max_{k} \operatorname{d}_{\operatorname{LINEAR}}^{\operatorname{joint}}(k \mid \mathbf{X}_{k\star})$$

Omar Choudary, Markus G. Kuhn

Stochastic method – compression

- So far the usual method was sample selection
- A single PCA proposal, but unsupervised (sub-optimal)
- Our contribution: PCA and LDA for SM in supervised (efficient) manner
 - Goal is to maintain profiling efficiency of SM

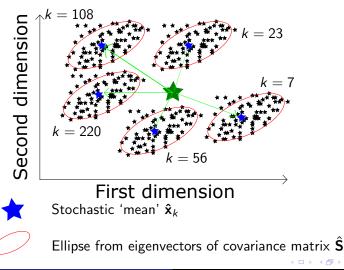


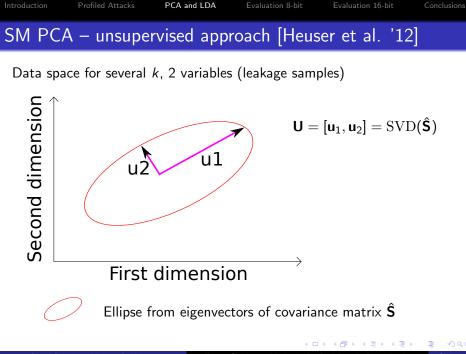
Ellipse from *treatment* matrix **B** (covariance of means)

Principal Component Analysis (PCA) – TA

$$\mathbf{x}_{ki}^{\mathsf{r}} \in \mathbb{R}^{m^{\mathsf{r}}}$$

$$\mathbf{U}^m = [\mathbf{u}_1, \dots, \mathbf{u}_m]$$

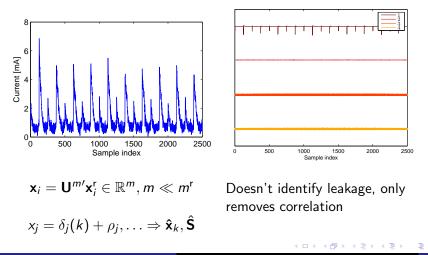



$$\mathbf{x}_{ki} = \mathbf{U}^{m'} \mathbf{x}_{ki}^r \in \mathbb{R}^m, m \ll m^r$$
 (e.g. $m^r = 2500, m = 4$)

Omar Choudary, Markus G. Kuhn

SM PCA – unsupervised approach [Heuser et al. '12]

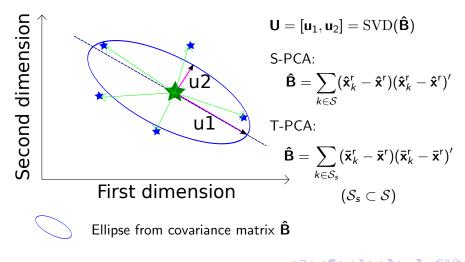
Data space for several k, 2 variables (leakage samples)



SM PCA – unsupervised approach [Heuser et al. '12]


$$\mathbf{x}_i^{\mathsf{r}} \in \mathbb{R}^{m^{\mathsf{r}}}$$

$$\mathbf{U}^m = [\mathbf{u}_1, \dots, \mathbf{u}_m]$$

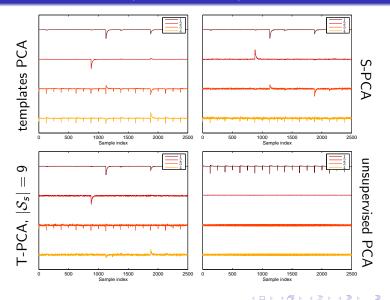

SM PCA – supervised (our approach)

Data space for several k, 2 variables (leakage samples)

SM PCA – supervised (our approach)

Data space for several k, 2 variables (leakage samples)

3 main steps for SM PCA (supervised approach):


- **(**) Compute $\hat{\mathbf{B}}$ as an approximation of \mathbf{B} (from TA) efficiently!
- Ompress traces

•
$$\mathbf{U}^m = [\mathbf{u}_1, \dots, \mathbf{u}_m] = \text{SVD}(\hat{\mathbf{B}})$$

• $\mathbf{x}_i = \mathbf{U}^{m'} \mathbf{x}_i^r \in \mathbb{R}^m, m \ll m^r$

Ose stochastic model on compressed traces

•
$$x_j = \delta_j(k) + \rho_j$$

• $\Rightarrow \hat{\mathbf{x}}_k, \hat{\mathbf{S}}$

SM PCA – supervised (our approach)

3 main steps for SM LDA (supervised approach):

• Compute
$$\hat{\mathbf{B}}$$
 (as for PCA) and $\hat{\mathbf{S}^{r}}$

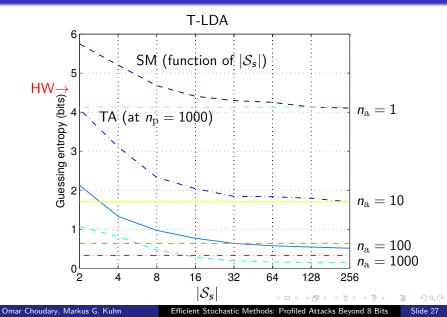
Ompress traces

O Use stochastic model on compressed traces

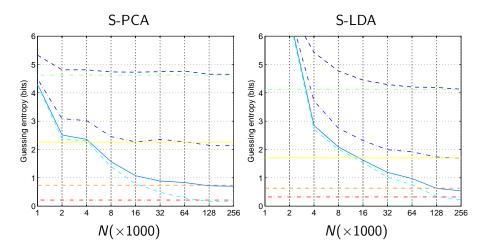
•
$$x_j = \delta_j(k) + \rho_j$$

• $\Rightarrow \hat{\mathbf{x}}_k, \hat{\mathbf{S}}$

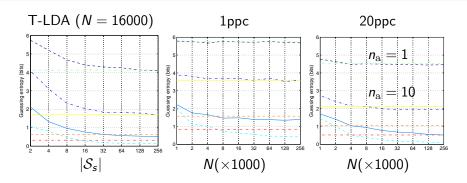
Depending on estimation of $\hat{\mathbf{B}}, \hat{\mathbf{S}}$ we have S-LDA or T-LDA.


Introduction Profiled Attacks PCA and LDA Evaluation 8-bit Evaluation 16-bit Conclusions SM PCA and LDA – supervised (our approach)

SM PCA and LDA – supervised (our approach)


Method	Step 1	Step 2	Step 3	
S-PCA	Estimate $\hat{\mathbf{B}}$ (SM)	$\mathbf{U} = \mathrm{SVD}(\mathbf{\hat{B}})$	Compute $\hat{\mathbf{x}}_k, \hat{\mathbf{S}}$	
T-PCA	Estimate ${f \hat{B}}$ (TA)	$\mathbf{U} = SVD(\mathbf{D})$	Compute $\mathbf{x}_k, 5$	
S-LDA	Estimate $\mathbf{\hat{B}}, \mathbf{\hat{S}^{r}}$ (SM)	$\bm{U}=\mathrm{SVD}(\hat{\bm{S}^{r}}^{-1}\bm{\hat{B}})$	(SM)	
T-LDA	Estimate $\hat{\mathbf{B}}, \hat{\mathbf{S}^{r}}$ (TA)	$\mathbf{U} = SVD(\mathbf{S}, \mathbf{B})$	(3101)	

Note: stochastic model 'sandwich' for S-PCA and S-LDA


Results – 8-bit target

Results – 8-bit target

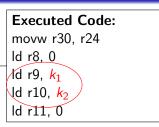
Results – 8-bit target

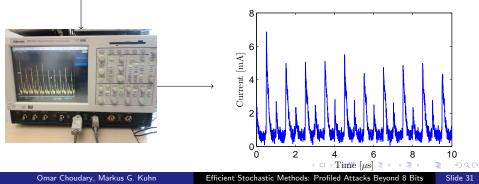
Overall, SM reaches TA boundary with considerably fewer traces

SM LDA is best method at low $n_{\rm a}$

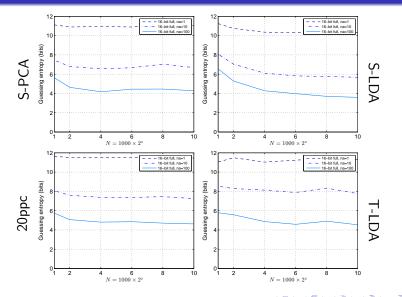
Attacks on 16-bit target

- TA are not feasible on much more than 8-bit
 - \Rightarrow Need to acquire $n_{\rm p}$ traces for each possible value k
 - \Rightarrow E.g. for 16-bit, to compute $\bar{\mathbf{x}}_0, \bar{\mathbf{x}}_1, \dots, \bar{\mathbf{x}}_{65535}$
- SM may allow profiling with a relatively small number N of traces
 - \Rightarrow Even for 16-bit (or larger) targets
 - \Rightarrow In such cases, SM may be the only possible profiled attack

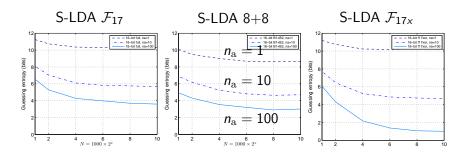

Evaluation 8-bi


Evaluation 16-bit

Conclusions


Attacks on 16-bit target

Results – 16-bit target



Evaluation 8-bi

Evaluation 16-bit

Conclusions

Results – 16-bit target

Note: attack on 2 consecutive bytes, not a 16-bit bus

Naively running a 16-bit attack in this case is not the best (large number of parameters)

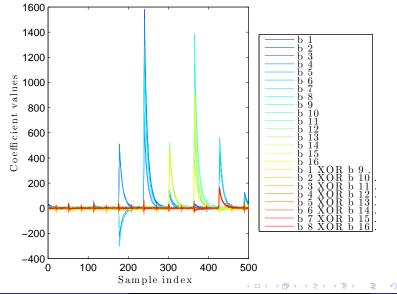
But adding the XOR between bytes to the model works best $(\mathcal{F}_{17x})_{230}$

Omar Choudary, Markus G. Kuhn

Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits

Slide 33

Introduction


Evaluation 8-bi

8-bit Ev

Evaluation 16-bit

Conclusions

Results – 16-bit target

Omar Choudary, Markus G. Kuhn

Introduction	Profiled Attacks	PCA and LDA	Evaluation 8-bit	Evaluation 16-bit	Conclusions
Conclus	ions				

- We have shown how to obtain very efficient profiled attacks
 ⇒ combining PCA and LDA with stochastic models
 ⇒ Main steps of S-PCA computation (including guessing entropy) for 16-bit target take less than 7 minutes
- Algorithm choice:
 - The stochastic model 'sandwich' S-LDA seems generally efficient (8 and 16-bit)
 - For low number of bits (e.g. 8-bit) T-LDA seems best
- For attacks on more than one byte we should enhance the model (e.g. include XOR)
- TODO: try on 16-bit bus

Omar Choudary: omar.choudary@cl.cam.ac.uk

Markus G. Kuhn: markus.kuhn@cl.cam.ac.uk

http://www.cl.cam.ac.uk/research/security/