
SBMF 2008

Transforming Programs into
Recursive Functions

Magnus O. Myreen, Michael J. C. Gordon1

Computer Laboratory, University of Cambridge
15 JJ Thomson Avenue, Cambridge, UK

Abstract

This paper presents a new proof-assistant based approach to program verification: programs are translated,
via fully-automatic deduction, into tail-recursive function defined in the logic of a theorem prover. This
approach improves on well-established methods based on Hoare logic and verification condition generation
(VCG) by removing the need to annotate programs with assertions, making the proof natural to the theorem
prover and being easier to implement than a trusted VCG. Our tool has been implemented in the HOL4
theorem prover.

Keywords: program verification, theorem proving.

1 Introduction

Program verification is commonly done by reasoning in programming logics or by
generating verification conditions. These approaches serve as interfaces from pro-
grams to ‘mathematics’. Programming logics provide an axiomatic formal system
for reasoning about programs, whilst verification condition generators (VCGs) ex-
tract sufficient conditions, typically as first order formulae, for properties of pro-
grams to hold.

In this paper we propose a different approach: translating programs, via fully
automatic deduction, into recursive functions defined directly in the native logic of
a theorem prover. This approach has a number of benefits for program verification:

(i) makes subsequent proofs natural for the theorem prover (e.g. use of induction);

(ii) reduces the verification problem to its essence (the computation);

(iii) allows reuse of already proved algorithm (from library theories);

(iv) facilitates use of existing automation (e.g. existing decision procedures);

(v) easier to implement than a trustworthy (i.e. proved or proof-producing) VCG;

1 We thank Larry Paulson for pointing out results by Moore and Manolios [5] which made this work possible.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Myreen and Gordon

(vi) provides a back-end that can support verification for different languages.

To give the reader a sense for what these translations are, we illustrate one
such translation using an example by McCarthy [7]. McCarthy points out the
correspondence between imperative programs and recursive functions by showing
that the following program

y := 1;
while (0 < x) do
y := x × y;
x := x - 1;

end

implements the function f below 2 . Here g corresponds to the while loop.

f(x,y) = let y = 1 in g(x,y)

g(x,y) = if not (0 < x) then (x,y) else
let y = x × y in
let x = x - 1 in
g(x,y)

Our contribution is a technique that uses a theorem prover to perform this trans-
lation fully automatically by mechanised deduction from a formal semantics of the
programming language. The techique automatically creates a proof certifying that
the recursive functions represents the semantics of the program. More specifically,
this paper:

(i) shows how a translation into recursive functions can be constructed by instan-
tiations of proof rules for both partial and total correctness (Sections 5 and 6)

(ii) states termination conditions in a way which makes them naturally a conse-
quence of any proof by induction used for verification (Sections 6.1 and 7);

(iii) illustrates advantages of proof by induction over established methods based on
verification condition generation (Sections 7 and 8).

We have implemented 3 our proof-generating translation method in the HOL4
theorem prover [12]. In order to show that nothing was simplified in the translation
to printed form, we keep the notation in this paper close to HOL4’s syntax (only
special characters !, ? etc. are translated to standard notation ∀, ∃ etc.).

2 Semantics of a simple language

Consider programs constructed from the following. Here i stands for integers and
v for strings.

e ::= Const i | Var v | Plus e e | Sub e e | ...

2 McCarthy used a different notation for both the program and the function.
3 Our implementation is available at http://hol.sf.net/ in SVN under /HOL/examples/opsemTools/extract.

2

Myreen and Gordon

b ::= Not b | Equal e e | Less e e | ...
program ::= Skip | Assign v e | Seq program program

| Cond b program program | While b program

In HOL, the program above is encoded as:

Seq (Assign "y" (Const 1))
(While (Less (Const 0) (Var "x"))
(Seq (Assign "y" (Times (Var "x") (Var "y")))

(Assign "x" (Sub (Var "x") (Const 1)))))

We build on work by Camilleri and Melham [1], who define in HOL a big-step
operational semantics for such programs. In this presentation we consider states
that are (finite) partial functions from variable names (of type :string) to integers
(type :int). Let neval and beval define evaluations over expressions.

neval (Const k) state = k
neval (Var v) state = state(v)
neval (Plus e1 e2) state = neval e1 state + neval e2 state
...

beval (Not b) state = ¬(beval b state)
beval (Equal e1 e2) state = (neval e1 state = neval e2 state)
...

The semantics of programs is defined by EVAL program s1 s2, which relates s1
to s2 if and only if state s1 can be transformed into state s2 by an execution of
program. Here s[v 7→ x] updates state s so that it maps v to x. EVAL is the least
relation satisfying the following:

EVAL Skip s s

EVAL (Assign v e) s (s[v 7→ neval e s])

EVAL c1 s1 s2 ∧ EVAL c2 s2 s3 ⇒ EVAL (Seq c1 c2) s1 s3

EVAL c1 s1 s2 ∧ beval b s1 ⇒ EVAL (Cond b c1 c2) s1 s2

EVAL c2 s1 s2 ∧ ¬beval b s1 ⇒ EVAL (Cond b c1 c2) s1 s2

¬beval b s ⇒ EVAL (While b c) s s

EVAL c s1 s2 ∧ EVAL (While b c) s2 s3 ∧ beval b s1
⇒ EVAL (While b c) s1 s3

3

Myreen and Gordon

3 Hoare logic

We will express specifications using Hoare triples [3]. A standard partial-correctness
Hoare triple, {p} c {q}, is written here as SPEC p c q and given the semantics de-
fined by:

SPEC p c q = ∀s1 s2. p s1 ∧ EVAL c s1 s2 ⇒ q s2

Informally, this reads as: if precondition p is satisfied by some current state s1 then
postcondition q holds for any state s2 reachable by an execution of program c.

Notice that SPEC does not guarantee that there exists any reachable final state
s2, i.e. SPEC does not ensure termination. The following total-correctness Hoare
triple requires termination for any state s1 which satisfies precondition p:

TOTAL_SPEC p c q = SPEC p c q ∧
∀s1. p s1 ⇒ ∃s2. EVAL c s1 s2

4 A thin layer of separation logic

We will use a separating conjunction (borrowed from separation logic [11]) to aid
automation and add expressiveness to our Hoare triples. The separating conjunction
p * q is true for state s, if s can be split into two disjoint states s1, s2 such that
p holds for s1 and q holds for s2:

SPLIT s (s1,s2) = (domain s1 ∪ domain s2 = domain s) ∧
(domain s1 ∩ domain s2 = {}) ∧
(∀v. v ∈ domain s ⇒

s(v) = if v ∈ domain s1
then s1(v) else s2(v))

(p * q) s = ∃s1 s2. SPLIT s (s1,s2) ∧ p s1 ∧ q s2

The *-operator is both associative and commutative.
We define new versions of Hoare triples using the separating conjunction:

SEP_SPEC p c q = ∀r. SPEC (p * r) c (q * r)

SEP_TOTAL_SPEC p c q = ∀r. TOTAL_SPEC (p * r) c (q * r)

These definitions incorporate the semantic idea underlying the frame rule of separa-
tion logic, but differ because, in separation logic, the *-operator is used to separate
heap assertions but not stack assertions. In contrast, here the separating conjunc-
tion is used to separate all resources; this bears some similarity to the idea of
“Variable as Resource” [10].

The remaining sections discuss proof rules that can be derived from the defini-
tions of SEP SPEC and SEP TOTAL SPEC. One such rule, the frame rule, allows any
assertion f to be added (unconditionally) to specifications:

4

Myreen and Gordon

∀f. SEP_SPEC p c q ⇒ SEP_SPEC (p * f) c (q * f)

∀f. SEP_TOTAL_SPEC p c q ⇒ SEP_TOTAL_SPEC (p * f) c (q * f)

An example will illustrate this. Our specifications use VAR (defined below) to assert
the value of a variable, i.e. VAR v x states that variable v has value x:

(VAR v x) s = (domain s = {v}) ∧ (s(v) = x)

Now the assignment “b := a + b” has the following specification. Here the pre-
condition assumes that variable "a" has initial value a and that "b" has value b.
The postcondition states that the assignment updates variable "b" to a + b.

SEP_SPEC (VAR "a" a * VAR "b" b)
(Assign "b" (Plus (Var "a") (Var "b")))
(VAR "a" a * VAR "b" (a + b))

The frame rule allows us to infer that resources not mentioned in the specification
are left untouched, e.g. we can instantiate f in the frame rule with VAR "c" c and,
thus have:

SEP_SPEC (VAR "a" a * VAR "b" b * VAR "c" c)
(Assign "b" (Plus (Var "a") (Var "b")))
(VAR "a" a * VAR "b" (a + b) * VAR "c" c)

Instantiating the frame rule with VAR "a" x would give a false precondition, and
thus a vacuously true statement. An example of what a SEP SPEC specification
means in terms of EVAL is given in Section 7.1.

5 Constructing specifications for partial-correctness

This section presents proof rules for SEP SPEC, that can be derived from its defini-
tion, and shows how the rule can be used to automatically derive functions describ-
ing the effect of programs.

5.1 Assignments

Assignments update the value of a variable and can always be implemented by a
let-expression, e.g. the effect of Assign "b" (Plus (Var "a") (Var "b")) is cap-
tured by let b = a + b in (a,b). We express this fact by the following theorem:

SEP_SPEC (VAR "a" a * VAR "b" b)
(Assign "b" (Plus (Var "a") (Var "b")))
(let b = a + b in (VAR "a" a * VAR "b" b))

5

Myreen and Gordon

5.2 Sequential composition

Sequential composition is introduced using the following proof rule:

SEP_SPEC p c1 m ∧ SEP_SPEC m c2 q ⇒
SEP_SPEC p (Seq c1 c2) q

Given specifications for two programs, say, program1 and program2,

SEP_SPEC (VAR "a" a * VAR "b" b * VAR "c" c)
program1
(let (b,c) = f1(a,b,c) in
(VAR "a" a * VAR "b" b * VAR "c" c))

SEP_SPEC (VAR "a" a * VAR "b" b)
program2
(let b = f2(a,b) in
(VAR "a" a * VAR "b" b))

we can compose the two by first using the frame rule to insert VAR "c" c into
the second specification and then instantiating the second specification with the
let-update from the first specification, followed by an application of composition:

SEP_SPEC (VAR "a" a * VAR "b" b * VAR "c" c)
(Seq program1 program2)
(let (b,c) = f1(a,b,c) in
let b = f2(a,b) in
(VAR "a" a * VAR "b" b * VAR "c" c))

5.3 Conditional statements

Conditional execution is based on a guard, e.g. (Less (Var "a") (Const 5)). Let
SEP GUARD p g b require that function g is equivalent to the guard b, if the resource
assertion p holds:

SEP_GUARD p g b = ∀r s x. (p x * r) s ⇒ (g x = beval b s)

As an example, (λa. a < 5) is related to (Less (Var "a") (Const 5)):

SEP_GUARD (λa. VAR "a" a) (λa. a < 5) (Less (Var "a") (Const 5))

Functions describing conditionals are constructed using the following rule:

SEP_GUARD p g b ⇒
SEP_SPEC (p x) c1 (p y) ⇒
SEP_SPEC (p x) c2 (p z) ⇒
SEP_SPEC (p x) (Cond b c1 c2) (p (if g x then y else z))

As an example, we have:

6

Myreen and Gordon

SEP_SPEC (VAR "a" a)
(Cond (Less (Var "a") (Const 5))

(Assign "a" (Const 1))
(Assign "a" (Plus (Var "a") (Const 1))))

(let a = if a < 5
then (let a = 1 in a)
else (let a = a + 1 in a) in (VAR "a" a))

5.4 While loops

A recursive function is needed for describing the behaviour of While b c. For this
purpose, we define a tail-recursive function WHILE as follows:

WHILE g f x = if g x then WHILE g f (f x) else x

Moore and Manolios showed that such a function can be defined in logic without
a termination proof [5]. WHILE corresponds to the effect of a while loop, as can be
seen from the following loop rule:

SEP_GUARD p g b ⇒
(∀x. g x ⇒ SEP_SPEC (p x) c (p (f x))) ⇒
(∀x. SEP_SPEC (p x) (While b c) (p (WHILE g f x)))

Before presenting a sketch of the proof of this rule, we illustrate its use by an
example. Suppose c = Assign "a" (Plus (Var "a") (Const 1)) and b is the
guard (Less (Var "a") (Const 5)), then

SEP_SPEC ((λa. VAR "a") a)
(Assign "a" (Plus (Var "a") (Const 1))
((λa. VAR "a") ((λa. let a = a + 1 in a) a))

fits the loop rule, and if add loop is defined by

add_loop = WHILE (λa. a < 5) (λa. let a = a + 1 in a)

then the loop rule produces:

SEP_SPEC (VAR "a" a)
(While (Less (Var "a") (Const 5))

(Assign "a" (Plus (Var "a") (Const 1))))
(let a = add_loop a in VAR "a" a)

An equation for add loop can be proved by an unfolding of WHILE:

add_loop a
= WHILE (λa. a < 5) (λa. let a = a + 1 in a) a
= if (λa. a < 5) a then

WHILE (λa. a < 5) (λa. let a = a + 1 in a)

7

Myreen and Gordon

((λa. let a = a + 1 in a) a) else a
= if a < 5 then add_loop (let a = a + 1 in a) else a
= if a < 5 then let a = a + 1 in add_loop a else a

5.5 Proof of loop rule

The proof of the loop rule is based on the case split on whether one can reach a
state where the guard for WHILE is made false by repeatedly executing the body of
the loop. Let FUNPOW f n x be the value of n applications of f to x:

FUNPOW f 0 x = x
FUNPOW f (n + 1) x = FUNPOW f n (f x)

The proof is based on a case split on:

∃n. ¬g (FUNPOW f n x)

If there exists such an n then we unfold the loop n-times to get the desired result. If
there is no such n then the loop does not terminate, making the partial-correctness
Hoare triple SEP SPEC vacuously true.

5.6 McCarthy’s Example

The theorem stating the correspondence between the function and the program in
McCarthy’s example (from Section 1, where f is defined) is the following:

SEP_SPEC (VAR "x" x * VAR "y" y)
(Seq (Assign "y" (Const 1))

(While (Less (Const 0) (Var "x"))
(Seq (Assign "y" (Times (Var "x") (Var "y")))

(Assign "x" (Sub (Var "x") (Const 1))))))
(let (x,y) = f(x,y) in (VAR "x" x * VAR "y" y))

6 Constructing specifications for total-correctness

Most of the proof rules and hence most of the derivation of the executed function
is exactly the same for total-correctness. The required change is that we need to
assume termination for loops, i.e. for a loop described by WHILE guard f x we need
to assume that some number of applications of f to x will eventually turn guard to
false:

∃n. ¬guard (FUNPOW f1 n x)

This necessary assumption in the loop rule introduces a precondition which needs
to be threaded through the entire development.

8

Myreen and Gordon

6.1 While loops

For the loop rule we define the following format for its precondition. Here PRE states
that the loop described by WHILE guard f x terminates and that each execution
of the loop body can assume the side-condition q.

PRE f guard q x =
(∃n. ¬guard (FUNPOW f n x)) ∧
(∀k. (∀m. m ≤ k ⇒ guard (FUNPOW f m x)) ⇒ q (FUNPOW f k x))

The following theorem states that PRE can be unfolded like a recursive function:

PRE f guard q x = (guard x ⇒ q x ∧ PRE f guard q (f x))

This unfolding is particularly useful in induction proofs where the base case makes
guard false and the step case unfolds PRE once, i.e. this unfolding makes the termi-
nation condition follow from any induction used for verification of WHILE.

The following induction principle is proved from the definition of PRE.

∀P. (∀x. guard x ∧ side x ∧ P (f x) ⇒ P x) ∧
(∀x. ¬guard x ⇒ P x) ⇒
(∀x. PRE f guard side x ⇒ P x)

The induction is used in proving a rule for While:

SEP_GUARD p guard b ⇒
(∀x. guard x ∧ side x ⇒ SEP_TOTAL_SPEC (p x) c (p (f x))) ⇒
(∀x. PRE f guard side x ⇒

SEP_TOTAL_SPEC (p x) (While b c) (p (WHILE guard f x)))

This rule is proved from the induction arising from PRE with P instantiated to:

λx. SEP SPEC (p x) (While b c) (p (WHILE guard f x))

The total correctness specification for the example used for illustrating the partial-
correctness will have a precondition:

add_loop_pre = PRE (λa. let a = a + 1 in a) (λa. a < 5) (λa. T)

The While-rule gives the following:

add_loop_pre a ⇒
SEP_TOTAL_SPEC (VAR "a" a)

(While (Less (Var "a") (Const 5))
(Assign "a" (Plus (Var "a") (Const 1)))

(let a = add_loop a in VAR "a" a)

The precondition, i.e. the termination condition, can be stated as the following
rewrite, which can be unfolded until the guard a < 5 becomes false.

9

Myreen and Gordon

add_loop_pre a = (a < 5 ⇒ add_loop_pre (let a = a + 1 in a))

For this case it is easy to prove ∀a. add loop pre a.

6.2 Propagating termination conditions

For total-correctness, special termination conditions need to be passed through
the rules for composing specifications. The loop rule allows accumulation of side-
conditions in PRE. For sequential composition the side conditions are composed, e.g.

side1 x ⇒ SEP_TOTAL_SPEC (p x) c1 (let x = f1 x in p x)

side2 x ⇒ SEP_TOTAL_SPEC (p x) c2 (let x = f2 x in p x)

produces the following, using the rule for sequential composition.

side1 x ∧ (let x = f1 x in side2 x) ⇒
SEP_TOTAL_SPEC (p x)

(Seq c1 c2)
(let x = f1 x in (let x = f2 x in p x))

The rule for conditional statements introduces an if into the side condition:

(if h x then side1 x else side2 x) ⇒
SEP_TOTAL_SPEC (p x)

(Cond g c1 c2)
(let x = (if h x then f1 x else f2 x) in p x)

Assignments stay the same:

∀p v e q. SEP_TOTAL_SPEC p (Assign v e) q =
SEP_SPEC p (Assign v e) q

6.3 McCarthy’s Example

The following is the accumulated precondition for the initial example program, when
a total-correctness specification is derived.

f_pre(x,y) = let y = 1 in g_pre(x,y)

g_pre(x,y) = (0 < x ⇒ let y = x * y in
let x = x - 1 in
g_pre(x,y))

10

Myreen and Gordon

7 Proving conditional termination

Consider the following program, which stores n DIV 2 in a if n is initially non-
negative and even. The program fails to terminate if n is odd.

a := 0;
while (n 6= 0) do
a := a + 1;
n := n - 2

end

This is an example used by Moore to illustrate his approach to verification condition
generation [8]. We illustrate our approach on the same example to ease a comparison
of the two approaches (next section).

When the above code is translated into recursive functions, function d is gener-
ated:

d(a,n) = let a = 0 in d1(a,n)

d1(a,n) = if n = 0 then (a,n) else
let a = a + 1 in
let n = n - 2 in
d1(a,n)

and precondition d pre specifies a sufficient condition for termination:

d_pre(a,n) = let a = 0 in d1_pre(a,n)

d1_pre(a,n) = ¬(n = 0) ⇒ (let a = a + 1 in
let n = n - 2 in
d1_pre(a,n))

We prove, by a straight-forward induction on n (a 4-line HOL4 proof), the following
property of the loop d1 and its precondition d1 pre:

∀n a. 0 ≤ n ⇒ d1_pre(a,2×n) ∧ (d1(a,2×n) = (n + a, 0))

from which it is easy (3 lines of HOL4) to prove termination and functional correct-
ness of the translated function d, i.e.

∀n a. 0 ≤ n ∧ EVEN n ⇒ d_pre(a,n) ∧ (d(a,n) = (n DIV 2, 0))

Let this theorem be called d spec.

7.1 Relating the verification proof to the automatically derived theorem

The following theorem was derived when the original program (which we will refer
to as d program) was translated into recursive functions d and d pre.

11

Myreen and Gordon

d_pre(a,n) ⇒
SEP_TOTAL_SPEC (VAR "a" a * VAR "n" n)

d_program
(let (a,n) = d(a,n) in (VAR "a" a * VAR "n" n))

In order to justify that d spec is a verification proof of d program, note that d spec
implies:

0 ≤ n ∧ EVEN n ⇒
SEP_TOTAL_SPEC (VAR "a" a * VAR "n" n)

d_program
(VAR "a" (n DIV 2) * VAR "n" 0)

which by expansion of various definitions is equivalent to the following statement:

0 ≤ s1("n") ∧ EVEN s1("n") ∧ {"a","n"} ⊆ domain s1 ⇒
(∃s2. EVAL s1 s2 d_program) ∧
(∀s2. EVAL s1 s2 d_program ⇒

s2 = s1["a" 7→ (s1("n") DIV 2)]["n" 7→ 0])

Thus, the user need only prove d spec in order to imply termination and functional
correctness of d program.

8 Comparing different approaches

The previous section presented an example verification using our method of “trans-
lation into recursive functions”. This section compares the above proof with well
established techniques based on verification condition generators (VCGs) and rea-
soning directly using a Hoare logic.

8.1 Using a verification condition generator

To verify a program using a VCG, one starts by annotating the code with asser-
tions. For the program above (d program) one needs to invent a precondition, a
postcondition and, for the loop, an invariant and a variant (the result is to be
a total-correctness specification). Here n is logical variable (the initial values of
variable "n").

pre n = λs. (s("n") = n) ∧ EVEN n ∧ 0 ≤ n

post n = λs. (s("a") = n DIV 2) ∧ (s("n") = 0)

inv n = λs. (n = 2×s("a")+s("n")) ∧ EVEN s("n") ∧ 0 ≤ s("n")

variant = λs. s("n")

The program with the annotations:

12

Myreen and Gordon

{ pre n }
a := 0;
while (n 6= 0) do { inv n } [variant]
a := a + 1;
n := n - 2

end
{ post n }

A VCG produces the following verification conditions:

∀n s. pre n (s["a" 7→ 0]) ⇒ inv n s ∧ 0 ≤ variant s

∀n s. let s’ = s["n" 7→ s("n")-2]["a" 7→ s("a")+1] in
(inv n s ∧ (s("n") 6= 0)
⇒ inv n s’ ∧ variant s’ < variant s)

∀n s. inv n s ∧ (s("n") = 0) ⇒ post n s

∀n s. inv n s ⇒ 0 ≤ variant s

If these verification conditions are proved, by the user in some way, then this total-
correctness theorem follows:

∀n. TOTAL_SPEC (pre n) d_program (post n)

The definitions pre, post, inv and variant were defined to reflect intuition.
However, the resulting specification is much weaker than the specification proved
using our technique (previous section), since the above specification does not say
anything about variables other than "a" and "n". It is obvious that other variables,
say "b" or "m", are left untouched by the program, but the VCG proof did not
prove it. Other differences that are worth noting are:

(i) the VCG proof requires more user input: stating the assertions for the VCG
proof requires more writing than the proof goals stated in the previous section;

(ii) the VCG proof requires the user to invent an invariant expression

n = 2 × s("a") + s("n")

describing the relationship between the intermediate values and the initial
value n, while the induction proof, from the previous section, only required
stating the desired result of executing the remaining part of the loop:

d1(a, 2 × n) = (n + a, 0)

(iii) the VCG proof uses a variant where the previous section uses an induction;

(iv) the VCG proof deals directly with the state s, while the verification proof from
the previous section only concerns logical variables (and is, as a result, reusable
for similar code based on a different definitions of ‘state’).

13

Myreen and Gordon

Our example program d program intentionally coincides with the example Moore
uses to illustrate his approach to verification using a VCG [8]. Moore suggests that
the user defines a function halfa (which is basically equivalent to our definition of d,
Section 7) and that the user writes annotations which state that halfa is executed
by the program he aims to verify. He proves using a VCG that his program executes
halfa. In our approach ‘halfa’ is derived completely automatically and then we
went further to prove a non-recursive specification about the original program.

8.2 Using a Hoare logic directly

The VCG method automates Hoare logic. In this section we demonstrate how
d program, from Section 7, can be proved manually using Hoare logic, given defini-
tions pre, post, inv and variant from above; and assuming that the verification
conditions from above have been proved.

The manual Hoare logic proof will make use of the following five proof rules: as-
signment, precondition strengthening, postcondition weakening, sequence and while.

TOTAL_SPEC (λs. p (s[v 7→ (neval e s)]) (Assign v e) p

(∀s. p’ s ==> p s) ∧ TOTAL_SPEC p c q ⇒ TOTAL_SPEC p’ c q

(∀s. q s ==> q’ s) ∧ TOTAL_SPEC p c q ⇒ TOTAL_SPEC p c q’

TOTAL_SPEC p c1 q ∧ TOTAL_SPEC q c2 r
⇒ TOTAL_SPEC p (Seq c1 c2) r

(∀s. i s ⇒ 0 ≤ f(s)) ∧
(∀v. TOTAL_SPEC (λs. i s ∧ beval b s ∧ (f(s) = v)) c

(λs. i s ∧ (f(s) < v)))
⇒ TOTAL_SPEC i (While b c) (λs. i s ∧ ¬(beval b s))

Appropriate instantiations of the assignment rule and sequence rule give:

TOTAL_SPEC (λs. inv n (s["a" 7→ 0])) (Assign "a" (Const 0)) (inv n)

TOTAL_SPEC (λs. let s’ = s["n" 7→ s("n")-2]["a" 7→ s("a")+1] in
(inv n s’ ∧ (variant s’ = v)))

(Seq (Assign "a" (Plus (Var "a") (Const 1)))
(Assign "n" (Sub (Var "n") (Const 2))))

(λs. inv n s ∧ (variant s = v))

Assuming that the second verification condition from above has been proved, the
while rule can be applied to the above theorem for the following:

TOTAL_SPEC (inv n)
(While (Not (Equal (Var "n") (Const 0)))

(Seq (Assign "a" (Plus (Var "a") (Const 1)))

14

Myreen and Gordon

(Assign "n" (Sub (Var "n") (Const 2)))))
(λs. inv n s ∧ (s("n") = 0))

which by application of the sequence rule followed by precondition strengthening
and postcondition weakening proves:

TOTAL_SPEC (pre n) d_program (post n)

9 Discussion of related work

The previous section compared our approach with approaches based on direct rea-
soning using a Hoare logic [3] and an approach based on a VCG. Hoare logics are
reasonably easily implemented in a theorem prover, but tend to be labour inten-
sive to use manually inside a theorem prover. Trustworthy verification condition
generators are on the other hand easier to use but harder to implement [4,8,6].
The method presented here requires less user input, provides stronger specifications
and is readily implementable. The automatic translator has been implemented as
a 400-line ML program.

Representing imperative programs as recursive functions, due to McCarthy [7],
was key in this work. Ideas from separation logic [11] were used to aid automation
(by keeping specifications free of side conditions); and ideas from decompilation into
HOL were used for dealing with loops [9]. Our programming environment is the
HOL4 theorem prover [12].

The net effect of the presented translation into functional programs bears some
resemblance to automation developed by Filliâtre for verification of imperative pro-
grams using the Coq proof assistant [2]. However, Filliâtre’s approach requires the
user to annotate the program with invariants before the translation can be per-
formed. In contrast, the approach presented here is fully automatic and requires no
annotations of the original program.

References

[1] Juanito Camilleri and Tom Melham. Reasoning with inductively defined relations in the HOL theorem
prover. Technical Report 265, Computer Laboratory, University of Cambridge, August 1992.

[2] Jean-Christophe Filliâtre. Verification of non-functional programs using interpretations in type theory.
J. Funct. Program., 13(4):709–745, 2003.

[3] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969.

[4] Peter V. Homeier and David F. Martin. A mechanically verified verification condition generator.
Comput. J., 38(2):131–141, 1995.

[5] Panagiotis Manolios and J. Strother Moore. Partial functions in ACL2. J. Autom. Reasoning,
31(2):107–127, 2003.

[6] John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. Verification condition generation
via theorem proving. In LPAR, volume 4246 of LNCS, pages 362–376. Springer, 2006.

[7] John McCarthy. Towards a mathematical science of computation. In IFIP Congress, pages 21–28,
1962.

[8] J. Strother Moore. Inductive assertions and operational semantics. In CHARME, volume 2860 of
LNCS, pages 289–303. Springer, 2003.

15

Myreen and Gordon

[9] Magnus O. Myreen, Konrad Slind, and Michael J. C. Gordon. Machine-code verification for multiple
architectures – An application of decompilation into logic. In FMCAD, 2008.

[10] Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno. Variables as resource in Hoare logics.
In LICS, pages 137–146. IEEE Computer Society, 2006.

[11] John Reynolds. Separation logic: A logic for shared mutable data structures. In LICS. IEEE Computer
Society, 2002.

[12] Konrad Slind and Michael Norrish. A brief overview of HOL4. In TPHOLs, LNCS. Springer, 2008.

16

	Introduction
	Semantics of a simple language
	Hoare logic
	A thin layer of separation logic
	Constructing specifications for partial-correctness
	Assignments
	Sequential composition
	Conditional statements
	While loops
	Proof of loop rule
	McCarthy's Example

	Constructing specifications for total-correctness
	While loops
	Propagating termination conditions
	McCarthy's Example

	Proving conditional termination
	Relating the verification proof to the automatically derived theorem

	Comparing different approaches
	Using a verification condition generator
	Using a Hoare logic directly

	Discussion of related work
	References

