
Verified LISP implementations on
ARM, x86 and PowerPC

Magnus O. Myreen and Michael J. C. Gordon

Computer Laboratory, University of Cambridge, UK

Abstract. This paper reports on a case study, which we believe is the
first to produce a formally verified end-to-end implementation of a func-
tional programming language running on commercial processors. Inter-
preters for the core of McCarthy’s LISP 1.5 were implemented in ARM,
x86 and PowerPC machine code, and proved to correctly parse, evaluate
and print LISP s-expressions. The proof of evaluation required working
on top of verified implementations of memory allocation and garbage
collection. All proofs are mechanised in the HOL4 theorem prover.

1 Introduction

Explicit pointer manipulation is an endless source of errors in low-level programs.
Functional programming languages hide pointers and thereby achieve a more
abstract programming environment. The downside with functional programming
(and Java/C# programming) is that the programmer has to trust automatic
memory management routines built into run-time environments.

In this paper we report on a case study, which we believe is the first to
produce a formally verified end-to-end implementation of a functional program-
ming language. We have implemented, in ARM, x86 and PowerPC machine code,
a program which parses, evaluates and prints LISP; and furthermore formally
proved that our implementation respects a semantics of the core of LISP 1.5 [6].
Instead of assuming correctness of run-time routines, we build on a verified im-
plementation of allocation and garbage collection.

For a flavour of what we have implemented and proved consider an example:
if our implementation is supplied with the following call to pascal-triangle,

(pascal-triangle ’((1)) ’6)

it parses the string, evaluates the expression and prints a string,

((1 6 15 20 15 6 1)

(1 5 10 10 5 1)

(1 4 6 4 1)

(1 3 3 1)

(1 2 1)

(1 1)

(1))

where pascal-triangle had been supplied to it as

(label pascal-triangle

(lambda (rest n)

(cond ((equal n ’0) rest)

(’t (pascal-triangle

(cons (pascal-next ’0 (car rest)) rest) (- n ’1))))))

with auxiliary function:

(label pascal-next

(lambda (p xs)

(cond ((atomp xs) (cons p ’nil))

(’t (cons (+ p (car xs)) (pascal-next (car xs) (cdr xs)))))))

The theorem we have proved about our LISP implementation can be used to
show e.g. that running pascal-triangle will terminate and print the first n+ 1
rows of Pascal’s triangle, without a premature exit due to lack of heap space. One
can use our theorem to derive sufficient conditions on the inputs to guarantee
that there will be enough heap space.

We envision that our verified LISP interpreter will provide a platform on top
of which formally verified software can be produced with much greater ease than
at lower levels of abstraction, i.e. in languages where pointers are made explicit.

Why LISP? We chose to implement and verify a LISP interpreter since LISP
has a neat definition of both syntax and semantics [12] and is still a very powerful
language as one can see, for example, in the success of ACL2 [8]. By choosing
LISP we avoided verifying machine code which performs static type checking.

Our proofs [14] are mechanised in the HOL4 theorem prover [19].

2 Methodology

Instead of delving into the many detailed invariants developed for our proofs,
this paper will concentrate on describing the methodology we used:

. First, machine code for various LISP primitives, such as car, cdr, cons, was
written and verified (Section 3);

• The correctness of each code snippets is expressed as a machine-code
Hoare triple [15]: { pre ∗ pc p } p : code { post ∗ pc (p+ exit) }.

• For cons and equal we used previously developed proof automation [15],
which allows for proof reuse in between different machine languages.

. Second, the verified LISP primitives were input into a proof-producing com-
piler in such a way that the compiler can view the processors as a machine
with six registers containing LISP s-expressions (Section 4);

• The compiler [16] we use maps tail-recursive functions, defined in the
logic of HOL4, down to machine code and proves that the generated
code executes the original HOL4 functions.

• Theorems describing the LISP primitives were input into the compiler,
which can use them as building blocks when deriving new code/proofs.

. Third, LISP evaluation was defined as a (partially-specified) tail-recursive
function lisp eval, and then compiled into machine code using the compiler
mentioned above (Section 5).

• LISP evaluation was defined as a tail-recursive function which only uses
expressions/names for which the compiler has verified building blocks.

• lisp eval maintains a stack and a symbol-value list.

. Fourth, to gain confidence that lisp eval implements ‘LISP evaluation’, we
proved that lisp eval implements a semantics of LISP 1.5 [12] (Section 6).

• Our relational semantics of LISP [6] is a formalisation of a subset of
McCarthy’s original LISP 1.5 [12], with dynamic binding.

• The semantics abstracts the stack and certain evaluation orders.

. Finally, the verified LISP interpreters were sandwiched between a verified
parser and printer to produce string-to-string theorems describing the be-
haviour of the entire implementation (Section 7).
• The parser and printer code, respectively, sets up and tears down an

appropriate heap for s-expressions.

Sections 8 and 9 give quantitative data on the effort and discuss related work,
respectively. Some definitions and proofs are presented in the Appendixes.

3 LISP primitives

LISP programs are expressed in and operate over s-expressions, expressions that
are either a (natural) number, a symbol or a pair of s-expressions. In HOL,
s-expressions are readily modelled using a data-type with constructors:

Num : N→ SExp

Sym : string→ SExp

Dot : SExp→ SExp→ SExp

LISP programs and s-expressions are conventionally written in an abbreviated
string form. A few examples will illustrate the correspondence, which is given a
formal definition in Appendix D.

(car x) means Dot (Sym "car") (Dot (Sym "x") (Sym "nil"))
(1 2 3) means Dot (Num 1) (Dot (Num 2) (Dot (Num 3) (Sym "nil")))
’f means Dot (Sym "quote") (Dot (Sym "f") (Sym "nil"))
(4 . 5) means Dot (Num 4) (Num 5)

Some basic LISP primitives are defined over SExp as follows:

car (Dot x y) = x

cdr (Dot x y) = y

cons x y = Dot x y

plus (Num m) (Num n) = Num (m+ n)
minus (Num m) (Num n) = Num (m− n)
times (Num m) (Num n) = Num (m× n)

division (Num m) (Num n) = Num (m div n)
modulus (Num m) (Num n) = Num (m mod n)

equal x y = if x = y then Sym "t" else Sym "nil"

less (Num m) (Num n) = if m < n then Sym "t" else Sym "nil"

In the definition of equal, expression x = y tests standard structural equality.

3.1 Specification of primitive operations

Before writing and verifying the machine code implementing primitive LISP
operations, a decision had to be made how to represent Num, Sym and Dot on a
real machine. To keep memory usage to a minimum each Dot-pair is represented
as a block of two pointers stored consecutively on the heap, each Num n is
represented as a 32-bit word containing 4 × n + 2 (i.e. only natural numbers
0 ≤ n < 230 are representable), and each Sym s is represented as a 32-bit word
containing 4×i+3, where i is the row number of symbol s in a symbol table which,
in our implementation, is a linked-list kept outside of the garbage-collected heap.

Here ‘+2’ and ‘+3’ are used as tags to make sure that the garbage collector
can distinguish Num and Sym values from proper pointers. Pointers to Dot-pairs
are word-aligned, i.e. a mod 4 = 0, a condition the collector tests by computing
a & 3 = 0, where & is bitwise-and.

This simple and small representation of SExp allows most LISP primitives
from the previous section to be implemented in one or two machine instruc-
tions. For example, taking car of register 3 and storing the result in register 4 is
implemented on ARM as a load instruction:

E5934000 ldr r4,[r3] (* load into reg 4, memory at address reg 3 *)

Similarly, ARM code for performing LISP operation plus of register 3 and 4, and
storing the result into register 3 is implemented by:

E0833004 add r3,r3,r4 (* reg 3 is assigned value reg 3 + reg 4 *)

E2433002 sub r3,r3,#2 (* reg 3 is assigned value reg 3 - 2 *)

The intuition here is: (4×m+ 2) + (4× n+ 2)− 2 = 4× (m+ n) + 2.
The correctness of the above implementations of car and plus is expressed for-

mally by the two ARM Hoare triples [15] below. Here lisp (v1, v2, v3, v4, v5, v6, l)
is an assertion, defined below, which asserts that a heap with room for l Dot-
pairs is located in memory and that s-expressions v1...v6 (each of type SExp) are
stored in machine registers. This lisp assertion should be understood as lifting

the level of abstraction to a level where specific machine instructions make the
processor seem as if it has six1 registers containing s-expressions, of type SExp.

(∃x y. Dot x y = v1) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E5934000
{ lisp (v1, car v1, v3, v4, v5, v6, l) ∗ pc (p+ 4) }

(∃m n. Num m = v1 ∧ Num n = v2 ∧m+n < 230) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E0833004 E2433002

{ lisp (plus v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p+ 8) }

The new assertion is defined for ARM (lisp), x86 (lisp’), and PowerPC (lisp”)
as maintaining a relation lisp inv between the abstract state v1...v6 (each of type
SExp) and the concrete state x1...x6 (each of type 32-bit word). The details of
lisp inv (defined in Appendix A) and the separating conjunction ∗ (explained in
Myreen [14]) are unimportant for this presentation.

lisp (v1, v2, v3, v4, v5, v6, l) =
∃x1 x2 x3 x4 x5 x6 m1 m2 m3 a temp. m m1 ∗m m2 ∗m m3 ∗

r2 temp ∗ r3 x1 ∗ r4 x2 ∗ r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (x1, x2, x3, x4, x5, x6, a,m1,m2,m3)〉

lisp’ (v1, v2, v3, v4, v5, v6, l) =
∃x1 x2 x3 x4 x5 x6 m1 m2 m3 a. m m1 ∗m m2 ∗m m3 ∗

eax x1 ∗ ecx x2 ∗ edx x3 ∗ ebx x4 ∗ esi x5 ∗ edi x6 ∗ ebp a ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (x1, x2, x3, x4, x5, x6, a,m1,m2,m3)〉

lisp” (v1, v2, v3, v4, v5, v6, l) =
∃x1 x2 x3 x4 x5 x6 m1 m2 m3 a temp. m m1 ∗m m2 ∗m m3 ∗

r2 temp ∗ r3 x1 ∗ r4 x2 ∗ r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (x1, x2, x3, x4, x5, x6, a,m1,m2,m3)〉

The following examples will use only lisp defined for ARM.

3.2 Memory layout and specification of ‘cons’ and ‘equal’

Two LISP primitives required code longer than one or two machine instructions,
namely cons and equal. Memory allocation, i.e. cons, requires an allocation pro-
cedure combined with a garbage collector. However, the top-level specification,
which is explained next, hides these facts. Let size count the number of Dot-pairs
in an expression.

size (Num w) = 0
size (Sym s) = 0

size (Dot x y) = 1 + size x+ size y

1 Number six was chosen since six is sufficient and suits the x86 implementation best.

The specification of cons guarantees that its implementation will always succeed
as long as the number of reachable Dot-pairs is less than the capacity of the
heap, i.e. less than l. This precondition under approximates pointer aliasing.

size v1 + size v2 + size v3 + size v4 + size v5 + size v6 < l ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E50A3018 E50A4014 E50A5010 E50A600C ... E51A8004 E51A7008

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p+ 332) }

The implementation of cons includes a copying collector which implements
Cheney’s algorithm [2]. This copying collector requires the heap to be split into
two heap halves of equal size; only one of which is used for heap data at any
one point in time. When a collection request is issued, all live elements from the
currently used heap half are copied over to the currently unused heap half. The
proof of cons is outlined in the first author’s PhD thesis [14].

The fact that one half of the heap is left empty might seem to be a waste
of space. However, the other heap half need not be left completely unused, as
the implementation of equal can make use of it. The LISP primitive equal tests
whether two s-expressions are structurally identical by traversing the expression
tree as a normal recursive procedure. This recursive traversal requires a stack,
but the stack can in this case be built inside the unused heap half as the garbage
collector will not be called during the execution of equal. Thus, the implementa-
tion of equal uses no external stack and requires no conditions on the size of the
expressions v1 and v2, as their depths cannot exceed the length of a heap half.

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E1530004 03A0300F 0A000025 E50A4014 ... E51A7008 E51A8004

{ lisp (equal v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p+ 164) }

4 Compiling s-expression functions to machine code

The previous sections described the theorems which state that certain machine
instructions execute LISP primitives. These theorems can be used to augment
the input-language understood by a proof-producing compiler that we have de-
veloped [16]. The theorems mentioned above allow the compiler to accept:

let v2 = car v1 in ...
let v1 = plus v1 v2 in ...
let v1 = cons v1 v2 in ...
let v1 = equal v1 v2 in ...

Theorems for basic tests have also been proved in a similar manner, and can be
provided to the compiler. For example, the following theorem shows that ARM
instruction E3330003 assigns boolean value (v1 = Sym "nil") to status bit z.

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E3330003
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc (p+ 4) ∗ sz (v1 = Sym "nil") ∗
∃n c v. sn n ∗ sc c ∗ sv v }

The compiler can use such theorems to create branches on the expression as-
signed to status bits. The above theorem adds support for the if-statement:

if v1 = Sym "nil" then ... else ...

Once the compiler was given sufficient Hoare-triple theorems it could be used
to compile functions operating over s-expressions into machine code. An example
will illustrate the process. From the following function

sumlist(v1, v2, v3) = if v1 = Sym "nil" then (v1, v2, v3) else
let v3 = car v1 in
let v1 = cdr v1 in
let v2 = plus v2 v3 in

sumlist(v1, v2, v3)

the compiler produces the theorem below, containing the generated ARM ma-
chine code and a precondition sumlist pre(v1, v2, v3).

sumlist pre(v1, v2, v3) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E3330003 0A000004 E5935000 E5934004 E0844005 E2444002 EAFFFFF8

{ let (v1, v2, v3) = sumlist(v1, v2, v3) in
lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc (p+ 28) ∗ s }

The proof performed by the compiler is outlined in Appendix C, where the
precondition sumlist pre(v1, v2, v3) is also defined. The automatically generated
pre-functions collect side conditions that must be true for proper execution of
the code, e.g. when cons is used the pre-functions collect the requirements on
not exceeding the heap limit l.

5 Assembling the LISP evaluator

LISP evaluation was defined as a large tail-recursive function lisp eval and then
compiled, to ARM, PowerPC and x86, to produce theorems of the following
form. The theorem below states that the generated ARM code executes lisp eval
for inputs that do not violate any of the side conditions gathered in lisp eval pre.

lisp eval pre(v1, v2, v3, v4, v5, v6, l) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E3360003 1A0001D1 E3A0600F E3130001 0A000009 ... EAFFF85D

{ lisp (lisp eval(v1, v2, v3, v4, v5, v6, l)) ∗ pc (p+ 7816) ∗ s }

lisp eval evaluates the expression stored in v1, input v6 is a list of symbol-value
pairs against which symbols in v1 are evaluated, inputs v2, v3, v4 and v5 are
used as temporaries that are to be initialised with Sym "nil". The heap limit l
had to be passed into lisp eval due to an implementation restriction which re-
quires lisp eval pre to input the same variables as lisp eval. The side condition
lisp eval pre uses l to state restrictions on applications of cons.

6 Evaluator implements McCarthy’s LISP 1.5

The previous sections, and Appendix C, described how a function lisp eval was
compiled down to machine code. The compiler generated some code and derived
a theorem which states that the generated code correctly implements lisp eval.
However, the compiler does not (and cannot) give any evidence that lisp eval in
fact implements ‘LISP evaluation’. The definition of lisp eval is long and full of
tedious details of how the intermediate stack is maintained and used, and thus
it is far from obvious that lisp eval corresponds to ‘LISP evaluation’.

In order to gain confidence that the generated machine code actually imple-
ments LISP evaluation, we proved that lisp eval implements a clean relational
semantics of LISP 1.5 [6]. Our relational semantics of LISP 1.5 is defined in
terms of three mutually recursive relations →eval, →eval list and →app. Here
(fn, [arg1; · · · ; argn], ρ) →app s means that fn[arg1; · · · ; argn] = s if the free
variables in fn have values specified by an environment ρ; similarly (e, ρ)→eval s
holds if term e evaluates to s-expression s with respect to environment ρ; and
(el, ρ)→eval list sl holds if list el of expressions evaluates to list sl of expressions
with respect to ρ. Here k denotes built-in function names and c constants. For
details refer to Gordon [6] and Appendix A in Myreen [14].

ok name v

(v, ρ)→eval ρ(v) (c, ρ)→eval c ([], ρ)→eval nil

(p, ρ)→eval nil ∧ ([gl], ρ)→eval s

([p→ e; gl], ρ)→eval s

(p, ρ)→eval x ∧ x 6= nil ∧ (e, ρ)→eval s

([p→ e; gl], ρ)→eval s

can apply k args

(k, args, ρ)→app k args

(ρ(f), args, ρ)→app s ∧ ok name f

(f, args, ρ)→app s

(e, ρ[args/vars])→eval s

(λ[[vars]; e], args, ρ)→app s

(fn, args, ρ[fn/x])→app s

(label[[x]; fn], args, ρ)→app s

([], ρ)→eval list []

(e, ρ)→eval s ∧ ([el], ρ)→eval list sl

([e; el], ρ)→eval list [s; sl]

We have proved that whenever the relation for LISP 1.5 evaluation →eval

relates expression s under environment ρ to expression r, then lisp eval will do
the same. Here t and u are translation functions, from one form of s-expressions
to another. Let nil = Sym "nil" and fst (x, y, . . .) = x.

∀s ρ r. (s, ρ)→eval r ⇒ fst (lisp eval (t s, nil, nil, nil, u ρ, nil, l)) = t r

7 Verified parser and printer

Sections 4 and 5 explained how machine code was generated and proved to
implement a function called lisp eval. The precondition of the certificate theorem
requires the initial state to satisfy a complex heap invariant lisp. How do we know

that this precondition is not accidentally equivalent to false, making the theorem
vacuously true? To remedy this shortcoming, we have verified machine code that
will set-up an appropriate state from scratch.

The set-up and tear-down code includes a parser and printer that will, re-
spectively, read in an input s-expression and print out the resulting s-expression.
The development of the parser and printer started by first defining a function
sexp2string which lays down how s-expressions are to be represented in string
form (Appendix D). Then a function string2sexp was defined for which we proved:

∀s. sexp ok s ⇒ string2sexp (sexp2string s) = s

Here sexp ok s makes sure that s does not contain symbols that print ambigu-
ously, e.g. Sym "", Sym "(" and Sym "2". The parsing function was defined as a
composition of a lexer sexp lex and a token parser sexp parse (Appendix D).

string2sexp str = car (sexp parse (reverse (sexp lex str)) (Sym "nil") [])

Machine code was written and verified based on the high-level functions sexp lex,
sexp parse and sexp2string. Writing these high-level definitions first was a great
help when constructing the machine code (using the compiler from [16]).

The overall theorems about our LISP implementations are of the following
form. If→eval relates s with r under the empty environment (i.e. (s, [])→eval r),
no illegal symbols are used (i.e. sexp ok (t s)), running lisp eval on t s will not run
out of memory (i.e. lisp eval pre(t s, nil, nil, nil, nil, nil, l)), the string representation
of t s is in memory (i.e. string a (sexp2string (t s))), and there is enough space to
parse t s and set up a heap of size l (i.e. enough space (t s) l), then the code will
execute successfully and terminate with the string representation of t r stored
in memory (i.e. string a (sexp2string (t r))). The ARM code expects the address
of the input string to be in register 3, i.e. r3 a.

∀s r l p.
(s, [])→eval r ∧ sexp ok (t s) ∧ lisp eval pre(t s, nil, nil, nil, nil, nil, l)⇒
{ ∃a. r3 a ∗ string a (sexp2string (t s)) ∗ enough space (t s) l ∗ pc p }
p : ... code not shown ...
{ ∃a. r3 a ∗ string a (sexp2string (t r)) ∗ enough space’ (t s) l ∗ pc (p+10404) }

The input needs to be in register 3 for PowerPC and the eax register for x86.

8 Quantitative data

The idea for this project first arose approximately two years ago. Since then
a decompiler [15] and compiler [16] have been developed to aid this project,
which produced in total some 4,580 lines of proof automation and 16,130 lines
of interactive proofs and definitions, excluding the definitions of the instruction
set models [5, 9, 18]. Running through all of the proofs takes approximately 2.5
hours in HOL4 using PolyML.

The verified LISP implementations seem to have reasonable execution times:
the pascal-triangle example, from Section 1, executes on a 2.4 GHz x86 pro-
cessor in less than 1 millisecond and on a 67 MHz ARM processor in approxi-
mately 90 milliseconds. The PowerPC implementations have not yet been tested
on real hardware. The ARM implementation is 2,601 instructions long (10,404
bytes), x86 is 3,135 instructions (9,054 bytes) and the PowerPC implementation
consists of 2,929 instructions (11,716 bytes).

9 Discussion of related work

This project has produced trustworthy implementations of LISP. The VLISP
project by Guttman et al. [7] shared our goal, but differed in many other aspects.
For example, the VLISP project implemented a larger LISP dialect, namely
Scheme, and emphasised rigour, not full formality:

“ The verification was intended to be rigorous, but not completely formal,
much in the style of ordinary mathematical discourse. Our goal was to
verify the algorithms and data types used in the implementation, not
their embodiment in the code. ”

The VLISP project developed an implementation which translates Scheme pro-
grams into byte code that is then run on a rigorously verified interpreter. Much
like our project, the VLISP project developed their interpreter in a subset of
the source language: for them PreScheme, and for us, the input language of our
augmented compiler, Section 4.

Work that aims to implement functional languages, in a formally verified
manner, include Pike et al. [17] on a certifying compiler from Cryptol (a di-
alect of Haskell) to AAMP7 code; Dargaye and Leroy [4] on a certified compiler
from mini-ML to PowerPC assembly; Li and Slind’s work [10] on a certifying
compiler from a subset of HOL4 to ARM assembly; and also Chlipala’s certified
compiler [3] from the lambda calculus to an invented assembly language. The
above work either assumes that the environment implements run-time memory
management correctly [3, 4] or restricts the input language to a degree where
no run-time memory management is needed [10, 17]. It seems that none of the
above have made use of (the now large number of) verified garbage collectors
(e.g. McCreight et al. [13] have been performing correctness proofs for increas-
ingly sophisticated garbage collectors).

The parser and printer proofs, in Section 7, involved verifying implementa-
tions of string-copy, -length, -compare etc., bearing some resemblance to pio-
neering work by Boyer and Yu [1] on verification of machine code. They verified
Motorola MC68020 code implementing a library of string functions.

Acknowledgements. We thank Anthony Fox, Xavier Leroy and Susmit Sarkar
et al. for allowing us to use their processor models for this work [5, 9, 18]. We also
thank Thomas Tuerk, Joe Hurd, Konrad Slind and John Matthews for comments
and discussions. We are grateful for funding from EPSRC, UK.

References

1. Robert S. Boyer and Yuan Yu. Automated proofs of object code for a widely used
microprocessor. J. ACM, 43(1):166–192, 1996.

2. C. J. Cheney. A non-recursive list compacting algorithm. Commun. ACM,
13(11):677–678, 1970.

3. Adam J. Chlipala. A certified type-preserving compiler from lambda calculus to
assembly language. In Programming Language Design and Implementation (PLDI),
pages 54–65. ACM, 2007.

4. Zaynah Dargaye and Xavier Leroy. Mechanized verification of CPS transforma-
tions. In Logic for Programming, Artificial Intelligence and Reasoning, 14th Int.
Conf. LPAR 2007, volume 4790 of Lecture Notes in Artificial Intelligence, pages
211–225. Springer, 2007.

5. Anthony Fox. Formal specification and verification of ARM6. In David Basin and
Burkhart Wolff, editors, Proceedings of Theorem Proving in Higher Order Logics
(TPHOLs), volume 2758 of LNCS. Springer, 2003.

6. Mike Gordon. Defining a LISP interpreter in a logic of total functions. In the
ACL2 Theorem Prover and Its Applications (ACL2), 2007.

7. Joshua Guttman, John Ramsdell, and Mitchell Wand. VLISP: A verified imple-
mentation of scheme. Lisp and Symbolic Computation, 8(1/2):5–32, 1995.

8. Matt Kaufmann and J. Strother Moore. An ACL2 tutorial. In Otmane Aı̈t Mo-
hamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order
Logics (TPHOLs), LNCS, pages 17–21. Springer, 2008.

9. Xavier Leroy. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. In Principles of Programming Languages (POPL),
pages 42–54. ACM Press, 2006.

10. Guodong Li, Scott Owens, and Konrad Slind. A proof-producing software com-
piler for a subset of higher order logic. In European Symposium on Programming
(ESOP), LNCS, pages 205–219. Springer-Verlag, 2007.

11. Panagiotis Manolios and J. Strother Moore. Partial functions in ACL2. J. Autom.
Reasoning, 31(2):107–127, 2003.

12. John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and
Michael I. Levin. LISP 1.5 Programmer’s Manual. The MIT Press, 1966.

13. Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A general frame-
work for certifying garbage collectors and their mutators. In Jeanne Ferrante and
Kathryn S. McKinley, editors, Proceedings of the Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 468–479. ACM, 2007.

14. Magnus O. Myreen. Formal verification of machine-code programs. PhD thesis,
University of Cambridge, 2009.

15. Magnus O. Myreen, Konrad Slind, and Michael J. C. Gordon. Machine-code veri-
fication for multiple architectures – An application of decompilation into logic. In
Formal Methods in Computer Aided Design (FMCAD). IEEE, 2008.

16. Magnus O. Myreen, Konrad Slind, and Michael J.C. Gordon. Extensible proof-
producing compilation. In Compiler Construction (CC), LNCS. Springer, 2009.

17. Lee Pike, Mark Shields, and John Matthews. A verifying core for a cryptographic
language compiler. In Panagiotis Manolios and Matthew Wilding, editors, Pro-
ceedings of the Sixth International Workshop on the ACL2 Theorem Prover and
its Applications. HappyJack Books, 2006.

18. Susmit Sarkar, Pater Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,
Thomas Braibant Magnus O. Myreen, and Jade Alglave. The semantics of x86-CC

multiprocessor machine code. In Principles of Programming Languages (POPL).
ACM, 2009.

19. Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aı̈t
Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher
Order Logics (TPHOLs), LNCS, pages 28–32. Springer, 2008.

A Definition of lisp inv in HOL4

The definition of the main invariant of the LISP state.

ALIGNED a = (a && 3w = 0w)

string mem "" (a,m,dm) = T
string mem (STRING c s) (a,m,df) = a ∈ dm ∧

(m a = n2w (ORD c)) ∧ string mem s (a+1w,m,dm)

symbol table [] x (a,dm,m,dg,g) = (m a = 0w) ∧ a ∈ dm ∧ (x = {})
symbol table (s::xs) x (a,dm,m,dg,g) = (s 6= "") ∧ ¬ MEM s xs ∧

(m a = n2w (string size s)) ∧ {a; a+4w} ⊆ dm ∧ ((a,s) ∈ x) ∧
let a’ = a + n2w (8 + (string size s + 3) DIV 4 * 4) in

a < a’ ∧ (m (a+4w) = a’) ∧ string mem s (a+8w,g,dg) ∧
symbol table xs (x - {(a,s)}) (a’,dm,m,dg,g)

builtin =
["nil"; "t"; "quote"; "+"; "-"; "*"; "div"; "mod"; "<"; "car"; "cdr";
"cons"; "equal"; "cond"; "atomp"; "consp"; "numberp"; "symbolp"; "lambda"]

lisp symbol table sym (a,dm,m,dg,g) =
∃syms. symbol table (builtin ++ syms) { (b,s) | (b-a,s) ∈ sym } (a,dm,m,dg,g)

lisp x (Num k) (a,dm,m) sym = (a = n2w (k * 4 + 2)) ∧ k < 2 ** 30
lisp x (Sym s) (a,dm,m) sym = ALIGNED (a - 3w) ∧ (a - 3w,s) ∈ sym
lisp x (Dot x y) (a,dm,m) sym = lisp x x (m a,dm,m) sym ∧ a ∈ dm ∧ ALIGNED a ∧

lisp x y (m (a+4w),dm,m) sym

ref set a f = {a + 4w * n2w i | i < 2 * f + 4} ∪ {a - 4w * n2w i | i ≤ 8}

ch active set (a,i,e) = { a + 8w * n2w j | i ≤ j ∧ j < e }

ok data w d = if ALIGNED w then w ∈ d else ¬(ALIGNED (w - 1w))

lisp inv (t1,t2,t3,t4,t5,t6,l) (w1,w2,w3,w4,w5,w6,a,(dm,m),sym,(dh,h),(dg,g)) =
∃i u.

let v = if u then 1 + l else 1 in
let d = ch_active_set (a,v,i) in

32 ≤ w2n a ∧ w2n a + 2 * 8 * l + 20 < 2 ** 32 ∧ l 6= 0 ∧
(m a = a + n2w (8 * i)) ∧ ALIGNED a ∧ v ≤ i ∧ i ≤ v + l ∧
(m (a + 4w) = a + n2w (8 * (v + l))) ∧
(m (a - 28w) = if u then 0w else 1w) ∧
(m (a - 32w) = n2w (8 * l)) ∧ (dm = ref_set a (l + l + 1)) ∧
lisp_symbol_table sym (a + 16w * n2w l + 24w,dh,h,dg,g) ∧
lisp_x t1 (w1,d,m) sym ∧ lisp_x t2 (w2,d,m) sym ∧ lisp_x t3 (w3,d,m) sym ∧
lisp_x t4 (w4,d,m) sym ∧ lisp_x t5 (w5,d,m) sym ∧ lisp_x t6 (w6,d,m) sym ∧
∀w. w ∈ d ⇒ ok_data (m w) d ∧ ok_data (m (w + 4w)) d

B Sample verification proof of ‘car’ primitive

The verification proofs of the primitive LISP operations build on lemmas about
lisp inv. The following lemma is used in the proof of the theorem about car

described in Section 3.1. This lemma can be read as saying that, if lisp inv relates
x1 to Dot-pair v1, then x1 is a word-aligned address into memory segment m,
and an assignment of car v1 to v2 corresponds to replacing x2 with the value of
memory m at address x1, i.e. m(x1).

(∃x y. Dot x y = v1) ∧
lisp inv (v1, v2, v3, v4, v5, v6, l) (x1, x2, x3, x4, x5, x6, a,m,m2,m3) ⇒
(x1 & 3 = 0) ∧ x1 ∈ domain m ∧
lisp inv (v1, car v1, v3, v4, v5, v6, l) (x1,m(x1), x3, x4, x5, x6, a,m,m2,m3)

One of our tools derives the following Hoare triple theorem for the ARM instruc-
tion that is to be verified: ldr r4,[r3] (encoded as E5934000).

{r3 r3 ∗ r4 r4 ∗m m ∗ pc p ∗ 〈(r3 & 3 = 0) ∧ r3 ∈ domain m〉 }
p : E5934000
{r3 r3 ∗ r4 m(r3) ∗m m ∗ pc (p+4) }

Application of the frame rule (shown in Appendix C) produces:

{r3 r3 ∗ r4 r4 ∗m m ∗ pc p ∗ 〈(r3 & 3 = 0) ∧ r3 ∈ domain m〉 ∗
r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗m m2 ∗m m3 ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (r3, r4, x3, x4, x5, x6, a,m,m2,m3)〉}
p : E5934000
{r3 r3 ∗ r4 m(r3) ∗m m ∗ pc (p+4) ∗ 〈(r3 & 3 = 0) ∧ r3 ∈ domain m〉 ∗
r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗m m2 ∗m m3 ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (r3, r4, x3, x4, x5, x6, a,m,m2,m3)〉}

Now the postcondition can be weakened to the desired expression:

{r3 r3 ∗ r4 r4 ∗m m ∗ pc p ∗ 〈(r3 & 3 = 0) ∧ r3 ∈ domain m〉 ∗
r5 x3 ∗ r6 x4 ∗ r7 x5 ∗ r8 x6 ∗ r10 a ∗m m2 ∗m m3 ∗
〈lisp inv (v1, v2, v3, v4, v5, v6, l) (r3, r4, x3, x4, x5, x6, a,m,m2,m3)〉}
p : E5934000
{ lisp (v1, car v1, v3, v4, v5, v6, l) ∗ pc (p+ 4) }

Since variables r3, r4, x3, x4, x5, x6, m, m2, m3 do not appear in the post-
condition, they can be existentially quantified in the precondition, which then
strengthens as follows:

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ 〈∃x y. Dot x y = v1〉 }
p : E5934000
{ lisp (v1, car v1, v3, v4, v5, v6, l) ∗ pc (p+ 4) }

The specification for car follows by moving the boolean condition:

(∃x y. Dot x y = v1) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E5934000
{ lisp (v1, car v1, v3, v4, v5, v6, l) ∗ pc (p+ 4) }

All of the primitive LISP operations were verified in the same manner. For the
HOL4 implementation, a 50-line ML program was written to automate these
proofs given the appropriate lemmas about lisp inv.

C Proof performed by compiler

Internally the compiler runs through a short proof when constructing the the-
orem presented in Section 4. This proof makes use of the following five proof
rules derived from the definition of our machine-code Hoare triple, developed in
previous work [15]. Formal definitions and detailed explanations are given in the
first author’s PhD thesis [14]. Here ∪ is simply set union.

frame: {p} c {q} ⇒ ∀r. {p ∗ r} c {q ∗ r}

code extension: {p} c {q} ⇒ ∀d. {p} c∪ d {q}

composition: {p} c {q} ∧ {q} d {r} ⇒ {p} c∪ d {r}

move pure: {p ∗ 〈b〉} c {q} = (b⇒ {p} c {q})

tail recursion: (∀x. P (x) ∧G(x)⇒ {p(x)} c {p(F (x))}) ∧
(∀x. P (x) ∧ ¬G(x)⇒ {p(x)} c {q(D(x))}) ⇒
(∀x. pre(G,F, P)(x)⇒ {p(x)} c {q(tailrec(G,F,D)(x))})

The last rule mentions tailrec and pre, which are functions that satisfy:

∀x. tailrec(G,F,D)(x) = if G(x) then tailrec(G,F,D)(F (x)) else D(x)

∀x. pre(G,F, P)(x) = if G(x) then pre(G,F, P)(F (x)) ∧ P (x) else P (x)

Note that any tail-recursive function can be defined as an instance of tailrec, in-
troduced using a trick by Manolios and Moore [11]. Another noteworthy feature:
if pre(G,F, P)(x) is true then tailrec(G,F,D) terminates for input x.

The compiler starts its proof from the following theorems describing the test
v1 = Sym "nil" as well as operations car, cdr and plus.

1. { lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E3330003
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc (p+ 4) ∗ sz (v1 = Sym "nil") ∗
∃n c v. sn n ∗ sc c ∗ sv v }

2. (∃x y. Dot x y = v1) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E5935000
{ lisp (v1, v2, car v1, v4, v5, v6, l) ∗ pc (p+ 4) }

3. (∃x y. Dot x y = v1) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E5933004
{ lisp (cdr v1, v2, v3, v4, v5, v6, l) ∗ pc (p+ 4) }

4. (∃m n. Num m = v2 ∧ Num n = v3 ∧m+n < 230) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E0844005 E2444002

{ lisp (v1, plus v2 v3, v3, v4, v5, v6, l) ∗ pc (p+ 4) }

The compiler next generates two branches to glue the code together; the branch
instructions have the following specifications:

5. { pc p ∗ sz z ∗ 〈z〉 } p : 0A000004 { pc (p+ 24) ∗ sz z }

6. { pc p ∗ sz z ∗ 〈¬z〉 } p : 0A000004 { pc (p+ 4) ∗ sz z }

7. { pc p } p : EAFFFFF8 { pc (p− 24) }

The specifications above are collapsed into theorems describing one pass through
the code by composing 1,5 and 1,6,2,3,4,7, which results in:

8. { lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s ∗ 〈v1 = Sym "nil"〉 }
p : E3330003 0A000004

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc (p+ 28) ∗ s }

9. (∃x y. Dot x y = v1) ∧
(∃m n. Num m = v2 ∧ Num n = car v1 ∧m+n < 230) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s ∗ 〈v1 6= Sym "nil"〉 }
p : E3330003 0A000004 E5935000 E5934004 E0844005 E2444002 EAFFFFF8

{ lisp (cdr v1, plus v2 (car v1, l), car v1, v4, v5, v6) ∗ pc p ∗ s }

Code extension is applied to theorem 8, and then the rule for introducing a
tail-recursive function is applied. The compiler produces the following total-
correctness specification.

10. sumlist pre(v1, v2, v3) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s }
p : E3330003 0A000004 E5935000 E5934004 E0844005 E2444002 EAFFFFF8

{ let (v1, v2, v3) = sumlist(v1, v2, v3) in
lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc (p+ 28) ∗ s }

Here sumlist is defined as an instance of tailrec, and sumlist pre is an instance of
pre. The compiler exports sumlist pre as the following recursive function which
collects all of the side conditions that must hold for proper execution of the code:

sumlist pre(v1, v2, v3) =
if v1 = Sym "nil" then true else

let cond = (∃x y. Dot x y = v1) in
let v3 = car v1 in
let cond = cond ∧ (∃x y. Dot x y = v1) in
let v1 = cdr v1 in
let cond = cond ∧ (∃m n. Num m = v2 ∧ Num n = v3 ∧m+n < 230) in
let v2 = plus v2 v3 in

sumlist pre(v1, v2, v3) ∧ cond

When the loop rule is applied above, its parameters are assigned values:

p = λ(v1, v2, v3). lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p ∗ s

q = λ(v1, v2, v3). lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc (p+ 28) ∗ s

G = λ(v1, v2, v3). v1 6= Sym "nil"

F = λ(v1, v2, v3). (cdr v1, plus v2 (car v1, l), car v1)

D = λ(v1, v2, v3). (v1, v2, v3)

P = λ(v1, v2, v3). (v1 6= Sym "nil")⇒
(∃x y. Dot x y = v1) ∧
(∃m n. Num m = v2 ∧ Num n = car v1 ∧m+n < 230)

D Definition of s-expression printing and parsing

Our machine code for printing LISP s-expressions implements sexp2string.

sexp2string x = aux (x,T)

aux (Num n, b) = num2str n
aux (Sym s, b) = s

aux (Dot x y, b) = if isQuote (Dot x y) ∧ b then "’"++ aux (car y,T) else
let (a, e) = (if b then ("(", ")") else ("", "")) in

if y = Sym "nil" then a++ aux (x,T) ++ e else
if isDot y then a++ aux (x,T) ++ " "++ aux (y,F) ++ e

else a++ aux (x,T) ++ " . "++ aux (y,F) ++ e

isDot x = ∃y z. x = Dot y z
isQuote x = ∃y. x = Dot (Sym "quote") (Dot y (Sym "nil"))

Parsing is defined as the follows. Here reverse is normal list reversal.

string2sexp str = car (sexp parse (reverse (sexp lex str)) (Sym "nil") [])

The lexing function sexp lex splits a string into a list of strings, e.g.

sexp lex "(car (’23 . y))" = ["(", "car", "(", "’", "23", ".", "y", ")", ")"]

Token parsing is defined as:

sexp parse [] exp stack = exp
sexp parse (")" :: ts) exp stack = sexp parse ts (Sym "nil") (exp :: stack)
sexp parse ("(" :: ts) exp stack = sexp parse ts (Dot exp (head stack)) (tail stack)
sexp parse ("." :: ts) exp stack = sexp parse ts (car exp) stack
sexp parse ("’" :: ts) exp stack = sexp parse ts (Dot (Dot (Sym "quote")

(Dot (car exp) (Sym "nil"))) (cdr exp)) stack
sexp parse (t :: ts) exp stack = sexp parse ts (Dot (if is num t then

Num (str2num t) else Sym t) exp) stack

