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Abstract— Invariant based programming is an approach to
program construction where we provide the program pre- and
postconditions as well as loop invariants before we construct the
code itself. This approach allows us to construct a program and its
correctness proof hand in hand. We describe here an extension to
an existing mathematics editor that supports this style of program
construction. The main help that the tool provides is automatic
simplification of verification conditions that are generated in the
programming process. The tool shows the user a check list of
those conditions that it was not able to prove automatically. The
user can use this check list to complete the proof (either manually
or using an interactive theorem prover) or to find errors in the
program.

I. INTRODUCTION

Invariant based programming is an approach to program
construction where the program invariants are written before
the code itself [1], [2]. This approach has been considered,
in a number of different forms and with different details by,
e.g., Dijkstra [3], [4], [5], Reynolds [6], Back [2], [7], [8]
and van Emden [9]. Formulating program invariants explicitly
increases our understanding of the program logic and makes
it much easier to verify the correctness of the program.
When invariants are produced as part of the programming
process, the main obstacle to program verification, finding
the appropriate class and loop invariants, simply disappear.
What remains, however, is how to prove the correctness of
the verification conditions for the program. A program proof
will generate a large number of lemmas to be proved. Most
of these are quite simple and shallow. Their proof can often
be automated.

We describe here a tool that supports both the construction
and the verification of invariant based program. The main
focus is on helping the programmer to prove the verification
conditions for the program. The tool integrates an automatic
simplifier with an existing tool for carrying out mathematical
derivations. Our aim is to give a proof of the concept that
coding and verification can be combined in a natural and
practical way.

We describe the idea of invariant based programs and how to
represent programs using them in Section II. In Section III we
give a brief account of the textual representation of invariant
based programs and of the programs that our tool uses. In
Section IV we present case studies on binary search, partition
and quick sort. We end with conclusions and some perspectives
on further work.

II. INVARIANT BASED PROGRAMS

The main idea in invariant based programming is to for-
mulate the program pre- and postconditions and the program
invariants before constructing the code. A general overview of
invariant based programming is given in [1]. Here we will be
content with an overview of the approach before presenting
how it can be used in practice, section IV.

The work flow for constructing a simple invariant based
program is essentially the following:

1) Start from an informal description of the programming
problem.

2) Analyze the problem and write down the precondition
and postcondition of the program to be written.

3) Work out a rough informal idea of the algorithmic
solution to the programming problem.

4) Identify the central repeating situations (invariants) in
the execution of the algorithm, and write down these
invariants.

5) Show how to move forward from each non-terminal sit-
uation (precondition or invariant) by executing program
statements (the transitions).

6) Verify that each transition preserves the correctness of
the program invariants and that there are no infinite
loops.

Invariant based programs are conveniently described using
invariant diagrams [1]. These are directed graphs such that
the nodes are predicates and the edges are transitions. The
predicates describe properties of the state of the program and
the transitions are updates of the state. The state updates are
simple program statements: assignments, procedure calls, if-
statements, assumptions and assertions. Loop constructs are
not allowed in transitions.

The programming problem is to devise a path of transitions
that lead from initial states to goal states. The disjunction of
the initial state predicates can be referred to as the precondition
of the program and the disjunction of the goal state predicates
can be considered to be the postcondition. The challenge is to
find intermediate predicates describing the stages the program
visits while making progress towards a predicate describing a
goal state.

Fig. 1 describes a small invariant diagram for calculating
the greatest common divisor of two positive integers m and
n. The rectangular boxes give the different stages that the
program can be in during execution and the arrows define the
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m0 = m
n0 = n
m > 0 ∧ n > 0

m, m0, n, n0 : Z

m, m0, n, n0 : Z

gcd(m0, n0) = gcd(m, n)
m ≥ n > 0

m := m − n

m, n := n, m − n

m ≥ n

m < n

m, n := n, m

m = n

r := m
m0, n0, r : Z

gcd(m0, n0) = r

m

m > n ∧ m − n ≥ n

m > n ∧ m − n < n

Fig. 1. An invariant diagram for computing the GCD of two positive integers.

m

m ≥ n
gcd(m0, n0) = gcd(m, n)

m, n := n, m − n

m = n

r := m

m := m − n

m, n := n, m

m < n

m ≥ n

m0 = m

gcd(m0, n0) = r

n0 = n

m > 0 ∧ n > 0

m, m0, n, n0, r : Z

m > n ∧ m − n ≥ n

m > n ∧ m − n < n

Fig. 2. A nested invariant diagram for computing the GCD as in Fig. 1.

transitions between the stages. The transitions can branch on
conditions. The condition of a branch is written above the line
of the arrow and the program statements that realise the state
update are written below the arrow. To avoid ambiguity, we
sometimes put the conditions between brackets, but these are
omitted in this diagram.

The invariant rectangles in the diagram can be nested. Fig. 2
shows an alternative invariant diagram for the algorithm in
Fig. 1. The predicate that restricts the types of the variables
and requires that m > 0 ∧ n > 0 has been taken out of
the rectangles and put in a rectangle that contains all the
other rectangles. The semantics of this nesting is simple:
the predicates associated with a rectangle are those that are

given explicitly in that rectangle together with the predicates
associated with all enclosing rectangles.

There is a close analogy between nested invariant diagrams
and Venn diagrams. We identify a predicate with the set of
states that satisfies the predicate. If we draw box A inside box
B, this means that every state in A is also a state in B. In
other words, the conditions of B also hold in predicate A.

The analogy cannot be taken much further because invariant
boxes cannot be overlapping. The boxes may only be drawn
completely inside one another or disjoint from each other.
However, disjoint boxes can still have states in common. For
instance the states where m = m0 = n = n0 = r is true
satisfies all of the predicates in all of the boxes in the figures
describing GCD.

To prove the correctness of a program described by an
invariant diagram, one needs to prove (1) the validity of the
transitions and (2) that the program cannot start an infinite
loop. A transition from predicate P1 to P2 using program
statements S is valid if and only if P1 ⇒ wp.S.P2 where wp
is Dijkstra’s weakest-precondition predicate transformer [5].
We show that a program terminates by providing a bounded
variant function, which is bounded from below and is decrease
by every cycle in the diagram. We refer to [1] for a more
detailed description of invariant based programming and the
notion of correctness for invariant based programs.

Invariant based programming really has two different as-
pects. The first aspect, emphasized above, is that we write
down the program invariants before the code. This forces
us to a new way of thinking about program execution, and
encourages a more careful and thorough style of programming.
Expressing the invariants explicitly requires that one really
understands the program behavior in detail. Expressing the
invariants before the code is thus very useful in itself.

The other aspect is that once the invariants have been pre-
cisely formulated, it becomes easier to check the correctness
of the program. The main obstacle to program verification
has traditionally been seen as finding the loop invariants for
a given program. This problem is taken care of in invariant
based programming. The remaining problem is to check that
the verification conditions are correct. In practice, the problem
is that there are very many conditions that need to be checked,
so the task is quite time consuming. Also, most of the checks
are mathematically quite trivial and hence boring. On the other
hand, this is the perfect place for machine automation.

There is a long tradition of using computers to prove
verification conditions. Our approach is probably closest to
the semantic checker that has been developed by Leino and
Nelson [10], [11], and it also uses the same proof engine,
Simplify, which has been developed by Nelson [12], [13].

We can use a computer to verify the verification conditions.
As the verification conditions are not in themselves interesting,
the computer should only show those conditions that it is not
able to verify. The computer can fail to prove a verification
condition because the verification condition is not true, i.e.,
there is an error in the program, or because it is too difficult
to prove. The latter can again be because the proof is mathe-

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05) 
0-7695-2465-6/05 $20.00 © 2005 IEEE 



matically too difficult, or because the computer does not know
enough about the underlying theory.

In any case, the programmer needs to take actions on
the verification conditions that are not proved automatically.
The action depends on the programmers understanding of
the situation. He can either try to correct an error in the
program, or he can try to prove the condition by hand, or
then he can provide additional information to the system and
then try to reverify the condition automatically. In case the
verification condition is wrong, then the error may either be
in the invariants or in the transitions. Either one, or both, have
to be adjusted in order to get a verification condition that is
actually true.

The tool that we have developed has proved to be capable of
proving the correctness of almost all the correctness conditions
in our tests, as well as pointing out mistakes the programmer
may have made when the proof has not succeeded. Many of
these errors being simple “off-by-one” index errors. We will
describe this tool in more detail next.

III. AN EDITOR FOR INVARIANT BASED PROGRAMS

We start with a brief description of the syntax used to
represent invariant based programmings in a textual form. We
refer to this representation as situation analysis [2], [7]. In
the textual representation the rectangles of the diagrams are
called situations or regions. The term “region” refers to the
interpretation that the rectangles are considered to be subsets
of the state space.

There is one feature in the textual representation that isn’t
covered in the diagrams, namely procedure definitions. Adding
procedures does not introduce a new concept, but restricts
the diagrams to a certain format. We make this restriction in
order to get clean interfaces between procedures. The diagrams
are presented in textual form as procedures with one region
defining the allowed initial states and one region for the final
states. These regions are called PRE and POST respectively.
This is in fact an unnecessary restriction, as multiple exit state-
ments form a much more natural interpretation for transitions
in refinement diagrams [7]. However, we make this restriction
here for simplicity.

The syntax for procedures is the following:

procedure name ( parameter declaration ) [ variant ]
preconditions
postconditions
local variables
initial transitions
region definitions

where each region definition has the form

region name [ variant ]
assertions
transitions
region definitions

All the lists, preconditions, postconditions, transitions, as-
sertions etc, are separated by new-line characters. The pre-
condition of the procedure is the conjunction of the lines

prefixed by PRE. The postcondition is the conjunction of lines
beginning with POST. Variables are declared on lines marked
by var and transitions on lines beginning with [] followed by
a condition and →. The notation for transitions is inspired
by Dijkstra’s notation for selection in the guarded commands
language [5]. A textual representation of the GCD program:

procedure GCD ( m, n: Int; result r: Int )
PRE m > 0 ∧ n > 0
PRE m = m0 ∧ n = n0

POST gcd(m0, n0) = r
[] m ≥ n → LOOP
[] m < n → m, n := n, m; LOOP
region LOOP [ m ]

• m ≥ n > 0
• gcd(m0, n0) = gcd(m, n)
[] m = n → r := m; POST
[] m > n ∧ m − n ≥ n → m := m − n; LOOP
[] m > n ∧ m − n < n → m, n := n, m − n; LOOP

Our tool for checking programs was built as part of
MathEdit [14]. MathEdit is a text editor for writing mathemat-
ical papers, implemented in Python [15]. It assists in writing
proofs in a derivational style that supports nesting. The user
defines the syntax and rules that are to be used. MathEdit can
then apply once or repeatedly rules to expressions. It verifies
that proofs are correct and highlights mistakes.

MathEdit has been extended to support verification of
programs written in the style described in this report. The
parser parses the expressions in the program statements as
normal MathEdit expressions and hence makes it possible to
define and use user-defined syntax and types from MathEdit in
the programs. It performs standard semantical checks before
producing the verification conditions. The verification condi-
tions are produced by applying the wp function to the program
statements in the transitions, as described in [1].

MathEdit uses Simplify [13] as an external validity checker.
The translation of the predefined syntax of expressions is
done in a straight-forward manner for the operators that
have corresponding operators in Simplify’s input language, for
example ¬, ∧ and ∀. Operators that do not translate straight
to Simplify’s input language are translated to functions where
the name of the function includes an encoding of its name and
type in MathEdit.1 Some operators cannot be translated, for
instance operators that introduce local scope (except ∀ and ∃).

The logical step after parsing, semantical checks and proof
of correctness is to compile the program into an executable.
Our tool is capable of compiling programs into Python code.
The compilation is a straight-forward translation.

IV. CASE STUDIES

We will demonstrate how our tool can be used in invariant
based programming by going through a few case studies:
binary search, partition and quick sort. The case study on
binary search is an introduction to our tool, the case study

1Variables and functions are not declared in Simplify’s input language.
Hence, the type name must be included in order to make a distinction between
f : A → A and f : B → B.
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on partitioning shows how partial implementations can be
checked and the case study on quick sort shows how unproved
verification conditions can be narrowed down to simpler
conditions.

A. Binary Search

Binary search is a simple algorithm that finds an element
x in a sorted array in O(log N) time where N is the length
of the array. Binary search achieves its fast running time by
cancelling out one half of the remaining segment on each
iteration. We choose to present a development of binary search
because it is an algorithm with a simple idea, but where
mistakes are easily made while writing an implementation.

1) Specification: The first step in implementing binary
search by invariant based programming is to decide what the
program should do. We need to define the parameters as well
as and the pre- and postcondition for the procedure. Binary
search can be specified as follows:

procedure BSearch ( const a: Int[0..N); const x: Int; result n: Int )
PRE (∀i : Int • 0 < i < N ⇒ a[i − 1] ≤ a[i])
POST (∀i : Int • 0 ≤ i ≤ n ⇒ a[i] ≤ x)
POST (∀i : Int • n < i < N ⇒ x < a[i])

Before tackling the problem of how to get from PRE
to POST, it is worth thinking twice about what problem
is be solved. Finding a program for the wrong pre- and
postconditions is a waste of time. By looking closely at the
conditions one might even be able to simplify them and maybe
solve a more general problem.

Now suppose the list has more than one element and that
a[0] ≤ x < a[N − 1], i.e. n has to lie in [0, N). Using
transitivity of ≤ and < we can then define the postcondition
as follows:

POST 0 ≤ n < N − 1
POST a[n] ≤ x < a[n + 1]

As Kaldewaij points out in [16], binary search doesn’t need
to assume a sorted list in order to reach this postcondition. In
fact, with a few changes to the postcondition, binary search
can be defined with no precondition at all. In order to avoid
cluttering the program with trivial cases we use the following
precondition:

PRE N > 1
PRE a[0] ≤ x < a[N − 1]

This means that we do not consider the situation when the
value x is less than the first element in the array or greater
or equal to the last element in the array. These cases can,
however, be taken care of by a direct test at the beginning of
the program.

2) Implementation: Using the simpler pre- and postcondi-
tion, a first approximation of the BSearch might look some-
thing like the program shown below.

procedure BSearch ( const a: Int[0..N); const x: Int; result n: Int )
PRE 1 < N
PRE a[0] ≤ x < a[N − 1]
POST 0 ≤ n < N − 1
POST a[n] ≤ x < a[n + 1]
var m, n, k : Int
[] � → n, m := 0, N ; SPLIT
region SPLIT [ m − n ]

• a[n] ≤ x < a[m]
• n < m
[] m − n = 1 → POST
[] m − n > 1 → k := (m + n) div 2;

if a[k] ≤ x → n := k; SPLIT
[] x < a[k] → m := k; SPLIT

At this point we would usually try to justify the implemen-
tation by informal reasoning or by testing a number of inputs.
However, we demonstrate the tool here by just plunging into
the verification task directly, and asking the tool to verify this
implementation.

3) Verification: When our tool is asked to prove the correct-
ness of BSearch it prints out four verification conditions that
need attention. The first condition is proved not to be valid.
Our tool shows us the part of the verification condition that it
cannot prove (or, as in this case, it can prove to be incorrect).
In this case, we get the following:

Condition: Case � in initial transitions (BSearch)
NB: This was proved false by a validity checker.
Assumptions:

1 < N
a[0] ≤ x < a[N − 1]

Imply:
N < N
a[0] ≤ x < a[N ]

The first condition comes from the array declaration. Each
array access has to have an index in the indicated array
range. From this condition we see immediately that there is
something inconsistent between our specification and imple-
mentation. The bug is easy to fix. The mistake was to initialise
m to N instead of N − 1.

Our tool is unable to determine whether the other three
verification conditions are valid or not. The first one of the
other three unproved verification conditions is:

Condition: Case m − n = 1 in SPLIT (BSearch)
Assumptions:

a[n] ≤ x < a[m]
n < m
m − n ≥ 0
0 ≤ N
m − n = 1

Imply:
0 ≤ n < N
0 ≤ n + 1 < N
0 ≤ n < N − 1

This condition indicates that our specification isn’t strong
enough. We allow n to have too wide a range of values. Our
intuition tells us that 0 ≤ n and n < N − 1. Rather than
writing n < N − 1, we will write m < N since n < m. This
correction is a correction of the two remaining verification
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conditions as well. Our tool is able to prove the updated binary
search program correct. The final program is shown below.

procedure BSearch ( const a: Int[0..N); const x: Int; result n: Int )
PRE 1 < N
PRE a[0] ≤ x < a[N − 1]
POST 0 ≤ n < N − 1
POST a[n] ≤ x < a[n + 1]
var m, n, k : Int
[] � → n, m := 0, N − 1; SPLIT
region SPLIT [ m − n ]

• a[n] ≤ x < a[m]
• 0 ≤ n < m < N
[] m − n = 1 → POST
[] m − n > 1 → k := (m + n) div 2;

if a[k] ≤ x → n := k; SPLIT
[] x < a[k] → m := k; SPLIT

Now suppose we made a worse mistake. Suppose we wrote
the conditions for the transitions from SPLIT as m − n = 0
and m−n > 0. This mistake makes all the transitions correct,
but it will not terminate. When we try to verify the program
with these mistakes, our tool brings this correctness condition
to our attention:

Condition: Variant decreases when leaving SPLIT (BSearch)
Assumptions:

a[n] ≤ x < a[m]
0 ≤ n < m < N
m − n ≥ 0
0 ≤ N
V = m − n
m − n > 0
a[(m + n) div 2] ≤ x

Imply:
m − (m + n) div 2 < V

With a little experience it becomes easy to spot the mistake
from unproved conditions like this.

4) The Verification Process: Our tool verifies the invariant
based program by generating the verification conditions and
uses a validity checker to attempt to prove the conditions either
valid or not valid. If the validity checker is unable to prove the
validity of a condition, the condition is split into a conjunction
of smaller conditions. For instance, a verification condition is
often of the form

A1 ∧ A2 ∧ . . . ∧ Am ⇒ B1 ∧ B2 ∧ . . . ∧ Bn

such conditions are split by distributing ⇒ over ∧
A1 ∧ A2 ∧ . . . ∧ Am ⇒ B1

A1 ∧ A2 ∧ . . . ∧ Am ⇒ B2

...

A1 ∧ A2 ∧ . . . ∧ Am ⇒ Bn

All of the new conditions are tested and the ones that were
not proved are shown to the user. The original conditions can
be very long and usually contain a lot of simple conditions on
bounds of variables. The amount of detail that the user has to
check is thus considerably less in this approach than what it
would be without the tool.

B. Partition

Next we show how the process of specification, implemen-
tation and verification can be combined into the single process
of developing a program using our tool.

1) Specification: A partitioning algorithm rearranges a list
so that the elements are split into groups. We consider a
procedure that splits the elements into two groups: one with
all elements ≤ x and the other one with all elements > x,
where x is the value of some element in the original list. A
straight-forward specification of such a partitioning program:

procedure Partition ( valres a: Int[0..N); result k: Int )
PRE 0 < N
PRE permutation(a0, a)
POST (∀i : Int • 0 ≤ i ≤ k ⇒ a[i] ≤ a[k])
POST (∀i : Int • k < i < N ⇒ a[k] < a[i])
POST 0 ≤ k < N
POST permutation(a0, a)

Again it is worth thinking carefully about the pre- and
postconditions before proceeding. The specification can be
made more general by only considering a segment of the
array. Here is a specification that partitions only the segment
a[m..n):

procedure Partition ( valres a: Int[0..N); value m, n: Int; result k: Int )
PRE 0 ≤ m < n ≤ N
PRE m = m0 ∧ n = n0

PRE permutation(a0, a)
POST permutation(a0, a)
POST (∀i : Int • m0 ≤ i ≤ k ⇒ a[i] ≤ a[k])
POST (∀i : Int • k < i < n0 ⇒ a[k] < a[i])
POST (∀i : Int • 0 ≤ i < m0 ⇒ a0[i] = a[i])
POST (∀i : Int • n0 ≤ i < N ⇒ a0[i] = a[i])
POST m0 ≤ k < n0

The identifiers with subscripted zeros are initial value con-
stants. They are handy to use in specifications. Even though
the above specification is not complicated, it is getting hard
to read. We will use the following syntactic abbreviations to
make the definition more readable.

x < a[m..n) = (∀i : Int • m ≤ i < n ⇒ x < a[i])

a[m..n) ≤ x = (∀i : Int • m ≤ i < n ⇒ a[i] ≤ x)

a[m..n) = b[m..n) = (∀i : Int • m ≤ i < n ⇒ a[i] = b[i])

Using these abbreviations the specification can be written as:

procedure Partition ( valres a: Int[0..N); value m, n: Int; result k: Int )
PRE 0 ≤ m < n ≤ N
PRE m = m0 ∧ n = n0

PRE permutation(a0, a)
POST permutation(a0, a)
POST a[m0..k + 1) ≤ a[k] ∧ a[k] < a[k + 1..n0)
POST a0[0..m0) = a[0..m0) ∧ a0[n0..N) = a[n0..N)
POST m0 ≤ k < n0

The abbreviations may not seem easier to read, but when
they start recurring, they are easier to pick out and understand.

a) Implementation and verification: The most intuitive
way of getting from PRE to POST in Partition is to choose
an element a[k] and then go through the remaining segment
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collecting the elements ≤ a[k] at the low end of the segment
and those > a[k] at the high end. Stated more precisely, choose
a k such that n0 ≤ k < m0 and maintain a[m0..m) ≤ a[k] ∧
a[k] < a[n..n0) whilst making progress towards a situation
where m = n. This presentation leads to following initial
transition and region if we take k = m:

[] � → LOOP
region LOOP [ n − m ]

• a[m0..m) ≤ a[m]
• a[m] < a[n..n0)
• m0 ≤ m < n ≤ n0

[] n − m ≤ 1 → k := m; POST
[] n − m > 1 → . . .

At this stage of writing the program it might be useful
to check whether it is correct so far. The correctness of
a partial implementation can be checked by inserting the
program statement magic at points that are to be ignored by
the correctness check. Hence we change the second transition
of the region LOOP to:

[] n − m > 1 → magic

It is now possible to check the correctness of the partial
implementation. When this is done our tool brings a long
condition to the users attention. Most of the unproved re-
quirements concern restrictions on i in a[m0..m) ≤ a[m] and
a[m] < a[n..n0). By adding the following assertion to LOOP,
we get rid of the unproved conditions:

• 0 ≤ m0 ∧ n0 ≤ N

If the correctness is checked again, the condition is short
and informative:

Condition: Case n − m ≤ 1 in LOOP (Partition)
Assumptions:

a[m0..m) ≤ a[m]
a[m] < a[n..n0)
0 ≤ m0 ≤ m < n ≤ n0 ≤ N
0 ≤ n − m
n − m ≤ 1

Imply:
permutation(a0, a)
a0[0..m0) = a[0..m0)
a0[n0..N) = a[n0..N)

We notice that our assertions at LOOP do not guarantee that
the array is untouched for indexes < m0 and ≥ n0 and that
the array is a permutation of the original one. We can easily
fix this by strengthening the assertions with

• permutation(a0, a)
• a0[0..m0) = a[0..m0)
• a0[n0..N) = a[n0..N)

It remains to replace magic with executable program state-
ments that give a transition back to LOOP. After some sketches
on paper one might suggest something similar to the following:

if a[m + 1] < a[m] → Swap(a, m, m + 1);
m := m + 1;
LOOP

[] a[m + 1] > a[m] → Swap(a, m + 1, n);
n := n − 1;
LOOP

[] a[m + 1] = a[m] → m := m + 1;
LOOP

We have assumed an implementation of Swap. The definition
of Swap is given below.

There is a bug in the code above. It is not easy to spot. By
trying to check the correctness we can use our tool to spot any
bugs in the code. It brings the following unproved verification
condition to the user’s attention:

Condition: Case n − m > 1 in LOOP (Partition)
Assumptions:

a[m0..m) ≤ a[m]
a[m] < a[n..n0)
permutation(a0, a)
a0[0..m0) = a[0..m0)
a0[n0..N) = a[n0..N)
0 ≤ m0 ≤ m < n ≤ n0 ≤ N
0 ≤ n − m
n − m > 1

Imply:
Assumptions:

a[m + 1] > a[m]
permutation(a, a2)
a[m + 1] = a2[n]
a[n] = a2[m + 1]
a[0..N) = a2[0..N) except m + 1, n

Imply:
a2[m] < a2[n − 1..n0)
a0[n0..N) = a2[n0..N)

Assumptions:
a[m + 1] > a[m]

Imply:
n < N

We can read that the validity checker is unable to prove
the case a[m + 1] > a[m] correct. It cannot prove that the
segment a[n0..N) satisfies the assertions. It also fails to prove
that n < N for the precondition of Swap. Hence the condition
tells us that there might be something wrong with the call to
Swap. By looking closer at it we can see that n ought to be
replaced by n − 1 in Swap(a,m + 1, n).

If we ask our tool to verify the implementation after
correcting the mistake we get assured that Partition is correct
with respect to its pre- and postcondition.

2) Implementing Swap: It remains to give a invariant based
program for Swap. A simple procedure for swapping two
elements of an array is shown below:

procedure Swap ( valres a: Int[0..N); const m, n: Int )
PRE 0 ≤ m < N ∧ 0 ≤ n < N
PRE premutation(a0, a)
POST premutation(a0, a)
POST (a0[m] = a[n]) ∧ (a0[n] = a[m])
POST a0[0..N) = a[0..N) except m, n
[] � → a := a[m 	→ a[n]][n 	→ a[m]]; POST

Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05) 
0-7695-2465-6/05 $20.00 © 2005 IEEE 



a0[0..N) = a[0..N) except m, n is an abbreviation of

(∀i : Int • i 
= n ∧ i 
= m ∧ 0 ≤ i < N ⇒ a0[i] = a[i])

In our language assignments to expressions are disallowed,
hence a[n] := x is not allowed. We use a := a[n 	→ x] instead,
where the expression a[n 	→ x] evaluates to an array exactly
the same as a except that index n maps to x.

Our tool has difficulties in proving the last part of the
postcondition of Swap. The reason is that the concept of
a permutation cannot be formalised in first-order logic. The
validity checker Simplify used by MathEdit cannot use a
definition of permutation(a, b).

Even though the validity checker cannot use a definition of
permutation we have supplied it with the property that it is
an equivalence relation:

� ⇒ partition(a, a)

partition(a, b) ⇒ partition(b, a)

parition(a, b) ∧ partition(b, c) ⇒ partition(a, c)

We can state that we believe a[m 	→ a[n]][n 	→ a[m]] is a
permutation of a by adding an assumption statement to the
initial transition:

[] � → a := a[m 	→ a[n]][n 	→ a[m]];
[permutation(a0, a)];
POST

MathEdit can prove it correct now, but prints a warning that
an assumption was made.

C. Quick Sort

Quick sort [17] is a sorting algorithm with an average
running time of O(N log N). We present a development of
an invariant based program for the purpose of showing how
recursion is supported by procedures in programs and how
assertions can be used to pinpoint problematic cases in the
verification conditions.

1) Specification: Quick sort has a standard sorting algo-
rithm contract:

procedure QSort ( valres a: Int[0..N); const m, n: Int )
PRE 0 ≤ m ≤ n ≤ N
PRE permutation(a0, a)
POST permutation(a0, a)
POST sorted a[m..n)
POST a0[0..m) = a[0..m) ∧ a0[n..N) = a[n..N)

where sorted a[m..n) is an abbreviation of

(∀i : Int • m < i < n ⇒ a[i − 1] ≤ a[i])

2) Implementation and Verification: The strategy of quick
sort is to partition the list around an element of the list and
then sort each partition through recursion. An implementation:

var p : Int
[] n − m ≤ 1 → POST
[] n − m > 1 →

Partition(a, m, n, p);
QSort(a, m, p);
QSort(a, p + 1, n);
POST

Before we can check the correctness of QSort it must have
a variant defined on its parameters. We use the variant n−m,
i.e. the length of the segment to be sorted. The first line of
the definition is now:

procedure QSort ( valres a: Int[0..N); const m, n: Int ) [ n − m ]

The correctness check proves everything correct except
sorted a[m..n). With an informed guess we can locate the
possible problematic point by adding two assertions just before
POST:

{ 0 < p < N ⇒ a[p − 1] ≤ a[p] };
{ 0 < p + 1 < N ⇒ a[p] ≤ a[p + 1] };
POST

The guess is that the joining points of the sorted seg-
ments are hard to prove. This guess is correct. The validity
checker can prove everything except these assertions. Actu-
ally the assertions cannot be proved without a definition of
permutation. Hence we cannot expect our tool to prove it.
The result is still useful since the problem has now been
pinpointed to a small proof that can be done by paper and
pen or in a theorem prover.

V. CONCLUSIONS AND FURTHER WORK

Implementation and verification can be combined naturally
if a detailed specification is written alongside the implemen-
tation. Modern validity checkers are strong enough to prove
most of the trivial cases where mistakes are made if a precise
enough specification is given. Hence our approach is practical
if a good representation of programs is used.

We have also shown that verification can be helpful even
when it fails. The programmers can focus their attention to the
unproved parts of the program. For instance, they can either
prove them correct using stronger tools than validity checkers
or convince themselves that the program is correct by extensive
testing of the parts that could not be verified.

A problem with developing programs using invariant based
programming is that it requires programmers to have a good
understanding of logical reasoning. This fact does not make
our approach impractical, but merely points to a problem in the
present day education of programmers and software engineers.

There is scope for a lot of work on this topic. The most
obvious feature to add is exporting the unproved conditions to
interactive theorem provers such as HOL [18] and PVS [19].
This way the user is given the opportunity to prove the
program formally correct even if the validity checkers are
unable to prove all the verification conditions valid. Other
possible improvements and extensions includes augmenting
the language with record and pointer types as well as object-
oriented features; and making the specifications and verifica-
tion conditions more structured and easier to read.
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