
The Semantics of x86-CC Multiprocessor Machine Code

Susmit Sarkar1 Peter Sewell1 Francesco Zappa Nardelli2

Scott Owens1 Tom Ridge1 Thomas Braibant2 Magnus O. Myreen1 Jade Alglave2

1University of Cambridge 2INRIA

http://www.cl.cam.ac.uk/users/pes20/weakmemory

Abstract

Multiprocessors are now dominant, but real multiprocessors
do not provide the sequentially consistent memory that is as-
sumed by most work on semantics and verification. Instead,
they have subtle relaxed (or weak) memory models, usually
described only in ambiguous prose, leading to widespread
confusion.

We develop a rigorous and accurate semantics for x86
multiprocessor programs, from instruction decoding to re-
laxed memory model, mechanised in HOL. We test the se-
mantics against actual processors and the vendor litmus-test
examples, and give an equivalent abstract-machine charac-
terisation of our axiomatic memory model. For programs
that are (in some precise sense) data-race free, we prove
in HOL that their behaviour is sequentially consistent. We
also contrast the x86 model with some aspects of Power and
ARM behaviour.

This provides a solid intuition for low-level programming,
and a sound foundation for future work on verification, static
analysis, and compilation of low-level concurrent code.

Categories and Subject Descriptors C.1.2 [Multiple
Data Stream Architectures (Multiprocessors)]: Parallel pro-
cessors; D.1.3 [Concurrent Programming ]: Parallel pro-
gramming; F.3.1 [Specifying and Verifying and Reasoning
about Programs]

General Terms Documentation, Reliability, Standardiza-
tion, Theory, Verification

Keywords Relaxed Memory Models, Semantics

1. Introduction

Problem Multiprocessor machines, with many processors
acting on a shared memory, have been developed since the
1960s, but have suddenly become dominant in the last few
years: laptops, desktops and servers now routinely have 2, 4,
or 16 cores, and the trend to even more concurrency is set
to continue. Meanwhile, the difficulty of programming con-
current systems has given rise to extensive research over the
last 40 years on semantics, program logics, and so forth. This
work has almost always assumed that concurrent processes
share a sequentially consistent memory [23], but in fact real
multiprocessors typically exhibit relaxed, or weak, mem-
ory models. Internally, they use sophisticated techniques to

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright © 2009 ACM 978-1-60558-379-2/09/01. . . $5.00

achieve high performance: hierarchies of local cache, write
buffers, speculative execution, etc. The visible manifestation
of these optimisations, at the assembly language level, is that
individual reads and writes to memory may be reordered
in surprising ways. For example, consider the following x86
program.

proc:0 proc:1
MOV [100]← $1 MOV [200]← $1
MOV EAX← [100] MOV ECX← [200]
MOV EBX← [200] MOV EDX← [100]

This consists of two straight-line programs running in par-
allel on two processors, proc:0 and proc:1. The instruction
MOV [100]← $1 writes value 1 to memory address 100; the
instruction MOV EAX← [100] reads a value from memory
address 100 into register EAX; and so on. There is a rare, but
possible, counter-intuitive execution, from an initial state
with register and memory values all 0, to a final state with
proc:0 EAX and proc:1 ECX both 1 (so each processor has
seen its own write), but the proc:0 EBX and proc:1 EDX
both 0, so each processor has seen the value that the respec-
tive memory location had before the other processor wrote
it. In other words, proc:0 and proc:1 saw the writes to 100
and 200 in opposite orders to each other.

This means that the read and write events cannot be
consistently embedded in a single linear order: x86 multi-
processors do not have a sequentially consistent semantics,
and low-level programmers cannot reason in terms of simple
notions of global time or causality.

To compound this difficulty, the reordering guarantees
that are provided by multiprocessors are often poorly spec-
ified, usually only in natural-language documentation that
leaves key questions ambiguous. This has led to, for example,
real uncertainty about the correctness of OS spinlock imple-
mentations [3]. There is a clear need for precise semantics of
real-world multiprocessors, both to inform the intuition of
low-level programmers, and to provide a sound foundation
for rigorous reasoning about multiprocessor programs.

Contribution In this paper we give a rigorous semantics
for x86 multiprocessor programs, with an accurate relaxed
memory model.

Section 2 develops an axiomatic definition of the memory
model. Given a collection of memory and register read and
write events, we define a valid execution to be a collection
of linear orders, one per processor, of the events that it sees,
subject to a number of axioms constraining the allowable
reorderings. We believe this to be the first such model for
x86, though there is an extensive literature on models for
other processors, discussed in Section 8.

To support reasoning about programs, the memory model
must be integrated with a semantics for machine instructions
(a problem which has usually been neglected in the memory



model literature). In Section 3 we describe a semantics
for core x86 instructions. We parameterise the instruction
semantics over an interface of combinators (analogous to a
monad), so a single definition, with all the intricacies of flag-
setting, addressing modes, etc., can be used to generate both
an event-based semantics integrated with the §2 memory
model, and a state-based semantics for sequential programs.
We also build an instruction decoding function, directly
from the vendor documentation, to support reasoning about
concrete machine code.

To develop confidence in the semantics, we test it, with
three tools described in Section 4. The first is an implemen-
tation of the axiomatic model, calculating and displaying the
sets of valid executions for small programs. This has been
invaluable in building intuition for the consequences of the
axioms. The second and third tools test the semantics em-
pirically against the behaviour of actual hardware: focussing
on the memory model and the instruction semantics respec-
tively; the latter uses the sequential state-based semantics.

An understanding of the memory model is critical for low-
level multiprocessor programming, e.g. for implementations
of locks, software transactional memory, non-locking data-
structures, garbage collectors, and compilers. For higher-
level programs that are race-free (or properly synchronised)
one would hope that it is sound to reason in terms of
a sequentially consistent model. In Section 5 we prove a
theorem to this effect, for an x86-specific notion of race.

The axiomatic style of definition is relatively easy to re-
late to the informal documentation, and a good basis for
some metatheory, but it can be hard to see the consequences
of the axioms with their global-time perspective. We there-
fore also develop an equivalent operational model, in Sec-
tion 6: an abstract machine of queues and buffers with step-
wise behaviour (at present without locked instructions).

In Section 7 we contrast the x86 behaviour with some as-
pects of Power and ARM behaviour, with their very different
memory models, and we conclude in Section 9. Our defini-
tions and proofs, except the §6 proofs, are mechanised in the
HOL proof assistant [21]. For lack of space only key extracts
are included here, but the full details are freely available on-
line [6], together with additional discussion of the examples,
our experimental data, and some of our toolset.

2. The x86-CC Axiomatic Memory Model

2.1 Scope, Criteria, and Sources

The intended scope of our semantics is typical user code:
using coherent write-back memory, without exceptions, mis-
aligned accesses, ‘non-temporal’ operations (e.g. MOVNTI),
self-modifying code, or page-table changes. Within that, we
deal with a reasonable range of instructions, as we describe
in Section 3, and there should be no fundamental difficulty
in covering the rest of the instruction set.

Within this scope, the semantics should be in some sense
accurate. Processor vendors document ‘architectures’, such
as Intel’s Intel 64 and IA-32 [5] and AMD’s AMD64 [4] (we
refer to the common core of these as ‘x86’). These are de-
scriptions of the behaviour that programmers may rely on
from a class of past and present (and perhaps future) pro-
cessor families, each of which may contain many particular
devices. They tend to vary slowly, and to be loose specifica-
tions of the device behaviour, in order to admit more rapid
variation in how the devices are actually implemented. Such
variations might well be observable by assembly programs,
but so long as they are within the architecture-allowable be-

haviour (and developers have in fact programmed to that),
they should be benign. Ideally, we would aim for our se-
mantics to be sound with respect to these architectures, and
hence with respect to a broad range of devices. In practice,
however, the architectures are described only in informal
prose and pseudocode, with a mixture of concepts from dif-
ferent levels of abstraction (mixing the programmer model
and microarchitectural notions). As we shall see, they leave
some key issues ambiguous. We can therefore only aim to
be consistent with the published documents and with the
behaviour of some sample devices. In the other direction,
the semantics should not be substantially looser than the
architecture, or it might be too weak to verify programs.

In addition to the documents cited above, our seman-
tics is based on the Intel 64 Architecture Memory Ordering
White Paper (IWP) [22], which states 8 one-sentence prin-
ciples, illustrated by 10 small litmus-test example programs
(which we label iwpNN), and the AMD documentation [4,
vol.2,p.164ff], which gives similar prose and 10 largely identi-
cal examples (which we label amdNN). The IWP examples
have been added to recent versions of the Intel SDM [5,
vol.3A, §7.2.3], unchanged except that the proc:1 part of
iwp2.3.b was removed. We have benefited also from a num-
ber of very helpful conversations with Intel staff, though of
course any errors remain ours. The semantics represents our
best understanding of the x86 architecture1; it is not a nor-
mative definition from any vendor.

2.2 Basic Types

The example in Section 1 shows that we cannot use a simple
interleaving semantics, with a single transition relation over
a global memory state, because different processors may see
writes in different orders. Instead, we axiomatise the possible
orders in which each processor sees the events of a complete
execution. The semantics must be at the level of individual
reads and writes, not instructions — a single x86 instruction,
such as INC [100] (which increments memory location 100)
may comprise multiple individual reads and writes, and it is
these that are the primitive atomic events of the semantics.
For example, given the program

inc-inc proc:0 proc:1
poi:0 INC [100] INC [100]

with initial state [100]=0, it is possible to reach a final
memory state [100]=1, after an execution in which both INC
instructions read 0 and wrote 1. Individual aligned memory
accesses are guaranteed atomic, however.

We also include explicit events for reads and writes of pro-
cessor registers (in contrast to most previous work on relaxed
memory) so that information flow dependencies through reg-
isters can be calculated instead of assumed. We take accesses
to the 32-bit registers and the 1-bit status flags to be atomic
(it should be routine also to cover 64, 16, and 8-bit opera-
tions). The registers are as follows:

Xreg = EAX | EBX | ECX | EDX | ESP | EBP | ESI | EDI

Xeflags = X CF | X PF | X AF | X ZF | X SF | X OF

reg = Reg32 of Xreg | Reg1 of Xeflags | RegEIP

We take types address and value to both be the 32-bit words,
and take a location to be either a memory address or a
register of a particular processor:

location = Location reg of proc reg

1 But see the addendum at the end of the paper, added in press.



| Location mem of address

These constructors are curried, so Location reg : proc→
reg → location. To identify an instance of an instruction
in an execution, we specify its processor and its index in
program order (i.e., in the program with an unfolding of all
branches):

iiid =〈[ proc : proc;
program order index : num]〉

An action is either a read or write of a value at some location:

dirn = R |W

action = Access of dirn location value

Finally, an event has an instruction instance id, an event id
(of type eiid = num, unique per iiid), and an action:

event =〈[ eiid : eiid;
iiid : iiid;
action : action]〉

The semantics of an instruction must also record any
intra-instruction causality relationships among its events,
e.g., for INC [100], between the read of a value from [100]
and the write of an incremented value. Furthermore, certain
x86 instructions can be prefixed with a ‘LOCK’ byte, which
guarantees that all the accesses of the instruction take place
atomically. Adding LOCK prefixes to the previous example:

proc:0 proc:1
LOCK; INC [100] LOCK; INC [100]

ensures that the only possible final state has [100]=2. We
therefore have to record which events belong to the same
locked instruction.

Collecting this together, we define an event structure E
to comprise a set of processors, a set of events, an intra-
instruction causality relation, and a partial equivalence rela-
tion (PER) capturing sets of events which must occur atom-
ically:

event structure =〈[ procs : proc set;
events : event set;
intra causality : event reln;
atomicity : event set set]〉

subject to various well-formedness conditions which we omit
here. Note that, while these event structures are loosely
inspired by those of Winskel [30], they are not exactly the
same structure.

The overall semantics will be factored into two parts:
the instruction semantics defines, for any program, a set
of candidate event structures, and the axiomatic memory
model defines, for each event structure, its valid executions
(if any). For example, given the program with two unlocked
INC’s above, one possible event structure is below.

inc-inc: (event structure 1)

eiid:0 (of INC [100])

iiid: 〈proc:0;po:0〉

R [100]=0

eiid:1 (of INC [100])

iiid: 〈proc:0;po:0〉

W [100]=1

eiid:2 (of INC [100])

iiid: 〈proc:1;po:0〉

R [100]=0

eiid:3 (of INC [100])

iiid: 〈proc:1;po:0〉

W [100]=1

iico iico

Note the intra-instruction causality (iico) edges, and the con-
crete values in the events. Here the atomicity PER is empty,
whereas, for the locked INC example, there would be two
atomicity equivalence classes, containing the events of the
two instructions respectively. The semantics also includes
a read and a write of the instruction pointer (or program
counter) EIP, and writes of the status flags, but we suppress
both in most diagrams for clarity.

2.3 View Orders

Given an event structure, a candidate execution witness
consists of an initial state constraint and a processor-indexed
family of view orders, together with other data that we
explain in the following subsections.

type abbrev state constraint = location→ value option

type abbrev view orders = proc→ event reln

execution witness =
〈[ initial state : state constraint;

vo : view orders;
write serialization : event reln;
lock serialization : event reln;
rfmap : event reln]〉

A well-formed view order for processor p is a linear order over
all of its events together with all the memory write events
of other processors (we write viewed events E p for that
union). The rest of this section is devoted to axiomatising
when an execution witness is valid. For example, one valid
execution for the previous event structure is shown below,
with the two view orders labelled vo:0 and vo:1 respectively
(we return to the edge labelled P6 later).

inc-inc: (event structure 1)

eiid:0 (of INC [100])

iiid: 〈proc:0;po:0〉

R [100]=0

eiid:1 (of INC [100])

iiid: 〈proc:0;po:0〉

W [100]=1

eiid:3 (of INC [100])

iiid: 〈proc:1;po:0〉

W [100]=1

eiid:2 (of INC [100])

iiid: 〈proc:1;po:0〉

R [100]=0

iico vo:0

vo:0vo:1 P6

vo:1

iico

vo:0vo:1

2.4 Preserved Program Order

Five of the eight IWP [22] principles (which we label P1–
8) have a similar, and relatively straightforward, character:
explicit assertions about what reorderings are or are not
allowed. To make this paper self-contained we recall them
here, together with their illustrative examples, before for-
malising them; we see how this definition is used in §2.7.

P1. Loads are not reordered with other loads.

P2. Stores are not reordered with other stores.

These are illustrated with a single example, which, instan-
tiating symbolic registers and addresses to give a concrete
program, and labelling with program order indices po:N, is:



iwp2.1/amd1 proc:0 proc:1
po:0 MOV [100]←$1 MOV EAX←[200]
po:1 MOV [200]←$1 MOV EBX←[100]
Required: (1:EAX=1)⇒(1:EBX=1)

This stores to two locations, 100 and 200, on processor 0, and
loads from those locations, in the other order, on processor
1. If the initial state is 0 everywhere (which we assume in
all examples unless otherwise stated), then in the final state
it is required that if 1:EAX=1 then 1:EBX=1. Hence, the
two proc:0 stores must have been seen by proc:1 in proc:0’s
program order, and the two proc:1 loads must have been
performed in its program order.

P3. Stores are not reordered with older loads.

iwp2.2/amd2 proc:0 proc:1
po:0 MOV EAX←[100] MOV EBX←[200]
po:1 MOV [200]←$1 MOV [100]←$1
Forbidden: 0:EAX=1 ∧ 1:EBX=1

This is very similar to the previous example: on processor 0,
the store to location 200 cannot be reordered before the load
from location 100, and, on processor 1, the write of location
100 cannot be reordered before the read of location 200.

P4. Loads may be reordered with older stores to
different locations but not with older stores to
the same location. There are two examples here. The
first is described as illustrating “the case in which a load
may be reordered with an older store, i.e. if the store and
load are to different non-overlapping locations”.

ipw2.3a/amd4 proc:0 proc:1
poi:0 MOV [100]←$1 MOV [200]←$1
poi:1 MOV EAX←[200] MOV EBX←[100]

Allowed: 0:EAX=0 ∧ 1:EBX=0

One can imagine a possible execution in which the proc:0
load from 200 is reordered before the proc:0 store to 100.

Interestingly, however, the reordering of loads with older
stores is not essential for this test to give the specified
outcome: in Fig. 1 we show a valid execution in which each
processor sees its own events in program order, and then
finally the memory write of the other processor. Below we
give a new test (n1) that does require this reordering.

proc:0 proc:1 proc:2
MOV [100]←$2 MOV [200]←$1 MOV EBX←[100]
MOV EAX←[200] MOV [100]←$1 MOV ECX←[100]
Allowed: 0:EAX=0 ∧ 2:EBX=1 ∧ 2:ECX=2

(Consider the proc:0 view order. By P1 the W [200] 1 is be-
fore the W [100] 1, and by P6 below and the proc:2 observa-
tions, that must be before the W [100] 2. Then the R [200] 0
can only be inserted at the start, otherwise the rfmap con-
ditions below are violated.)

The second example for P4 shows that “loads may not be
reordered with a prior store to the same location”.

iwp2.3.b proc:0 proc:1
po:0 MOV [100]←$1 MOV [200]←$1
po:1 MOV EAX←[100] MOV EBX←[200]
Required: 0:EAX=1 ∧ 1:EBX=1

P8. Loads and stores are not reordered with locked
instructions. Here there are two examples, for loads and

ipw2.3a/amd4: Litmus test (event structure 1)

eiid:0 (of MOV [100]←$1)

iiid: 〈proc:0;po:0〉

W [100]=1

eiid:1 (of MOV EAX←[200])

iiid: 〈proc:0;po:1〉

R [200]=0

eiid:2 (of MOV EAX←[200])

iiid: 〈proc:0;po:1〉

W 0:EAX=0

eiid:3 (of MOV [200]←$1)

iiid: 〈proc:1;po:0〉

W [200]=1

eiid:4 (of MOV EBX←[100])

iiid: 〈proc:1;po:1〉

R [100]=0

eiid:5 (of MOV EBX←[100])

iiid: 〈proc:1;po:1〉

W 1:EBX=0

vo:0

iico vo:0

vo:0

vo:1

iico vo:1

vo:1

vo:0

vo:1

Figure 1. An iwp2.3.a/amd4 execution without reordering

stores respectively. They use an XCHG instruction, which
exchanges two values and has an implicit LOCK prefix.

iwp2.8.a proc:0 proc:1
po:0 XCHG [100]←EAX XCHG [200]←ECX
po:1 MOV EBX←[200] MOV EDX←[100]
Initial state: 0:EAX= 1 ∧ 1:ECX= 1 (elsewhere 0)
Forbidden: 0:EBX=0 ∧ 1:EDX=0

iwp2.8.b proc:0 proc:1
po:0 XCHG [100]←EAX MOV EBX←[200]
po:1 MOV [200]←$1 MOV ECX←[100]
Initial state: 0:EAX= 1 (elsewhere 0)
Forbidden: 1:EBX=1 ∧ 1:ECX=0

Interestingly, it appears that P8 may be redundant. Ac-
cording to the Intel documentation [5, vol.3A, §7.1.2.2], the
LOCK prefix can only be prepended to particular instruc-
tions, all of which both read and write some memory lo-
cation. As those pairs of a read and write are atomic, no
event from any other instruction instance can come between
them. Hence, any third read or write is prevented from being
reordered with the locked pair by P1.

Formalising P1–4,8 We capture the above principles by
identifying the pairs of events (e1, e2) in program order, from
an event structure E , that must not be reordered:



iwp2.6 proc:0 proc:1 proc:2 proc:3
po:0 MOV [100]←$1 MOV [100]←$2 MOV EAX←[100] MOV ECX←[100]
po:1 MOV EBX←[100] MOV EDX←[100]
Forbidden: 2:EAX=1 ∧ 2:EBX=2 ∧ 3:ECX=2 ∧ 3:EDX=1

amd6 proc:0 proc:1 proc:2 proc:3
po:0 MOV [100]←$1 MOV [200]←$1 MOV EAX←[100] MOV ECX←[200]
po:1 MOV EBX←[200] MOV EDX←[100]
Allowed: 2:EAX=1 ∧ 2:EBX=0 ∧ 3:ECX=1 ∧ 3:EDX=0

iwp2.7/amd7 proc:0 proc:1 proc:2 proc:3
po:0 XCHG [100]←EAX XCHG [200]←EBX MOV ECX←[100] MOV ESI←[200]
po:1 MOV EDX←[200] MOV EDI←[100]
Initial state: 0:EAX= 1 ∧ 1:EBX= 1 (elsewhere 0)
Forbidden: 2:ECX=1 ∧ 2:EDX=0 ∧ 3:ESI=1 ∧ 3:EDI=0

n2 proc:0 proc:1 proc:2 proc:3
po:0 MOV [200]←$1 MOV [100]←$2 MOV EAX←[100] MOV ECX←[300]
po:1 MOV [100]←$1 MOV [300]←$1 MOV EBX←[100] MOV EDX←[200]
Forbidden: 2:EAX=1 ∧ 2:EBX=2 ∧ 3:ECX=1 ∧ 3:EDX=0

n3 proc:0 proc:1 proc:2 proc:3
po:0 XCHG [100]←EAX MOV [200]←$1 MOV EBX←[200] MOV ESI←[100]
po:1 MOV ECX←[100] MOV EDI←[200]
po:2 MOV EDX←[100] MOV EBP←[200]
Initial state: 0:EAX= 1 (elsewhere 0)
Allowed: 2:EBX=1 ∧ 2:ECX=0 ∧ 2:EDX=1 ∧ 3:ESI=1 ∧ 3:EDI=0 ∧ 3:EBP=1

Figure 2. Tests iwp2.6, amd6, iwp2.7/amd7, n2, and n3

preserved program order E =
{(e1, e2) | (e1, e2) ∈ (po strict E) ∧

((∃p r .(loc e1 = loc e2) ∧
(loc e1 = Some (Location reg p r))) ∨

(mem load e1 ∧mem load e2) ∨
(mem store e1 ∧mem store e2) ∨
(mem load e1 ∧mem store e2) ∨
(mem store e1 ∧mem load e2 ∧ (loc e1 = loc e2)) ∨
((mem load e1 ∨mem store e1) ∧ locked E e2) ∨
(locked E e1 ∧ (mem load e2 ∨mem store e2)))}

Here po strict relates two events on the same processor if
the first strictly precedes the second in program order. The
various auxiliary functions used should be clear; we refer the
reader to the HOL for their formal definitions. We also have
to constrain register read and write events. The first disjunct
prevents reordering of reads or writes to the same register,
which seems the most conservative reasonable choice.

2.5 Reads-from Information Flow

Our event structures do not constrain the values of memory
or register read events. Intuitively, one would expect the
value read to be that of the most recent write to the same
location, or that of the initial state if there is none —
where ‘recent’ is with respect to the relevant view order. It
turns out that to capture the appropriate notion of causality
(c.f. §2.7 below) we need to consider not just the values
but the intensional property of which write each read reads
from. We define the candidate reads-from maps for an event
structure E, each rfmap identifying, for some of the read
events, a write event to the same location with the same
value. Other read events are taken to read from the initial
state.

reads from map candidates E rfmap =
∀(ew , er) ∈ rfmap. er ∈ E .events ∧ ew ∈ E .events ∧
∃l v .(er .action = Access R l v) ∧

(ew .action = Access W l v)

Two conditions check that these are consistent with a view
order and initial state, ensuring that there are no intervening
writes to the same location between an (ew , er) reads-from
pair, or before an er that reads from the initial state:

check rfmap written E vo rfmap =
∀p ∈ (E .procs).
∀(ew , er) ∈ ( rfmap|(viewed events E p)).

∀ew ′ ∈ (writes E).
¬(ew = ew ′) ∧ (ew , ew ′) ∈ (vo p) ∧ (ew ′

, er) ∈ (vo p)
=⇒ ¬(loc ew = loc ew ′)

check rfmap initial E vo rfmap initial state =
∀p ∈ (E .procs).
∀er ∈ (((reads E) \ (range rfmap))

∩ viewed events E p).
∃l v .(er .action = Access R l v) ∧

(initial state l = Some v) ∧
∀ew ′ ∈ writes E .

(ew ′
, er) ∈ (vo p) =⇒ ¬(loc ew ′ = loc er)

2.6 Total Store and Lock Orders

The x86 has two global ordering properties, P6 and P7.

P6. In a multiprocessor system, stores to the same
location have a total order.

Test iwp2.6, in Fig. 2, illustrates the fact that writes by
two different processors to the same location must be seen
(by all processors) in the same order. This complements
P2, which required writes by a single processor to any
locations to be seen (by all processors) in program order.
However, in the remaining possibility, of writes by two
different processors to two different locations, these writes
can be seen in different orders. This is illustrated by the
example of Section 1 (which is Test iwp2.4/amd9) in the
special case where the writing and observing processors are
the same, and by Test amd6 in Fig. 2 (essentially Boehm
and Adve’s IRIW [13]), in the special case where they are



different. We formalise this by defining the candidate per-
location write serialisations:

write serialization candidates E cand =
(∀(e1, e2) ∈ cand .
∃l .e1 ∈ (get l stores E l) ∧ e2 ∈ (get l stores E l)) ∧

(∀l . strict linear order(cand |(get l stores E l))
(get l stores E l))

where get l stores E l gives the memory write events to
location l (and is empty if l is not a memory location), and
strict linear order R A iff R is a strict linear order over A.

P7. In a multiprocessor system, locked instructions
have a total order.

This is illustrated by Test iwp2.7/amd7, in Fig. 2, in
which proc:2 and proc:3 have to see the two locked XCHG
instructions in the same order. It is a property of instruc-
tions, not events, so we formalise it by defining the candi-
date orders based on arbitrary linearisations of the locked
instructions, projected down onto their events.

lock serialization candidates E =
let lin ec = strict linearisations E .atomicity in
{{(e1, e2) | ∃(es1, es2) ∈ lin.e1 ∈ es1 ∧ e2 ∈ es2}
| lin ∈ lin ec}

The following condition checks that locked instructions re-
ally are atomic, i.e. that there are no intervening events
within each in any view order.

check atomicity E vo =
∀p ∈ (E .procs).∀es ∈ (E .atomicity).
∀e1 e2 ∈ es.(e1, e2) ∈ (vo p) =⇒
∀e.(e1, e) ∈ (vo p) ∧ (e, e2) ∈ (vo p) =⇒ e ∈ es

The documentation is silent on the question of whether a
locked instruction and a write, on two different processors,
can be seen elsewhere in different orders, as illustrated in
Test n3 of Fig. 2, and we have received conflicting informal
opinions. We therefore opt for the more conservative (looser)
alternative, permitting it.

2.7 Causality

Treating causality correctly is the key issue in defining the
semantics: without some causal consistency constraint, the
semantics would be much too liberal, with the view orders
of different processors allowed to vary wildly. However, the
prose vendor documentation is particularly ambiguous on
this point. We have ([22]):

P5. In a multiprocessor system, memory order-
ing obeys causality (memory ordering respects
transitive visibility).

and ([4, vol.2,p.166]):

“Dependent stores between different processors appear
to occur in program order [...] A globally consistent
ordering is maintained for such stores.”

but what “causality”, “transitive visibility”, or “dependent
stores” mean is, a priori, unclear. Test iwp2.5/amd8 below
shows transitivity in one specific case, from a reads-from
relationship to a preserved-program-order relationship.

proc:0 proc:1 proc:2
MOV [100]←$1 MOV EAX←[100] MOV EBX←[200]

MOV [200]←$1 MOV ECX←[100]
Required: (1:EAX=1 ∧ 2:EBX=1)⇒(2:ECX=1)

After much discussion, we believe that x86 causality is also
transitive through the write serialisation and lock serialisa-

tion relations of §2.6. Test n2 of Fig. 2 illustrates the for-
mer: transitivity through preserved program order of the
proc:0 and proc:1 events and the write serialisation for [100]
(which has W [100] 1 before W [100] 2 by the proc:2 ob-
servations). We also include the intra-instruction causality
relation, e.g. to include the edge from an R [100] v to a
W [100] (v + 1) of an INC [100] instruction, the intensional
reads-from information flow of §2.5, and the preserved pro-
gram order of §2.4. We propose the following definition of
causality, for event structure E and execution witness X:

happens before E X =
E .intra causality ∪
(preserved program order E) ∪
X .write serialization ∪
X .lock serialization ∪
X .rfmap

This appears to match the vendors intentions. We require
that all view orders are consistent with happens-before (im-
plicitly transitively closed in the acyclic check):

check causality E vo (happens before E X ) =
∀p ∈ (E . procs).

acyclic((strict(vo p)) ∪ (happens before E X ))

Note that there is a single happens-before relation which
includes the preserved program order edges of all processors,
and it may constrain events in the view order of one pro-
cessor via a transitive path through other processor’s read
events, which do not occur in that view order.

Models of architectures with weaker orders sometimes
involve visibility of other processors’ reads [7, 11], but this
seems to be unnecessary for the fragment of x86 we consider.
Other models have sometimes also used the dual of our
reads-from edges (e.g. [9]): suppose there is a reads-from
edge from ew to er , and there is some later (in the write
serialisation order) ew ′ to the same location, then one could
think of a ‘from-read’ edge from er to ew ′ (with an eye
to the cache coherency protocol of some implementation,
in which cache-line ownership is transferred in a linear
order). However, adding such edges to happens-before is
inconsistent with the iwp2.4/amd9 test in §1.

2.8 Valid Executions

Finally, we can collect together these conditions, defining
the valid execution witnesses X for an event structure E:

valid execution E X =
view orders well formed E X .vo ∧
X .write serialization ∈ write serialization candidates E ∧
X .lock serialization ∈ lock serialization candidates E ∧
X .rfmap ∈ reads from map candidates E ∧
check causality E X .vo(happens before E X ) ∧
check rfmap written E X .vo X .rfmap ∧
check rfmap initial E X .vo X .rfmap X .initial state ∧
check atomicity E X .vo

We call this memory model x86 causal consistency, or
x86-CC for short. It gives the correct results for all the tests
that we have seen, and is, to the best of our knowledge,
consistent with all the published architecture documents.

For finite valid executions there is an unambiguous notion
of final state, with the final state for each memory location
determined by the last write in its write serialisation, and the
final state for each register determined by the last write in
the relevant view order. Note also that, in a valid execution,



the rfmap, write serialization, and lock serialization are
uniquely determined by the view orders.

2.9 Nice Executions

The axiomatic semantics was defined conservatively, taking
care not to impose restrictions absent from the documen-
tation. For example, register reads and writes on different
registers can be arbitrarily reordered, and also reordered ar-
bitrarily with memory reads and writes as long as the intra-
instruction causality is respected. However, we can prove
that some of this reordering is not observable to the pro-
grammer, showing that the architecture is tighter than a
naive reading would suggest, and providing a more conve-
nient model for future software verification.

One cannot require that all events of a processor are
always seen by itself in an order consistent with program
order, as Test n1 of §2.4 shows that read speculation is
observable, but one can require all events except memory
writes to be observed by the issuing processor in an order
consistent with program order.

nice execution E X = ∀p ∈ (E .procs).
(po strict E)|(viewed events E p \ mem store) ⊆ (X .vo p)

Theorem 1 (Valid executions can, w.l.g., be nice).
∀E X .(well formed event structure E ∧

valid execution E X ) =⇒
∃X ′

. valid execution E X ′ ∧ nice execution E X ′ ∧
(X ′ 〈[ vo :=(λp.{})]〉 = X 〈[ vo :=(λp.{})]〉)

HOL proof outline: For each processor, we construct a new view
order, which preserves the order of memory events and locked
events, and gathers register events into program order. The new
view order is constructed inductively. At stage n, all register
events or local memory reads with program order n or less are
ordered. Care must be taken to ensure that any local or foreign
writes that are not compelled to appear at any particular stage
appear somewhere in the new view order. All clauses of valid-
execution are checked inductively; to check compatibility with
happens-before it suffices to ensure there are no happens-before
reverse edges at each stage.

2.10 Instruction Pointer Events, Branches, and
Speculation

The semantics deals smoothly with control flow instructions
(jumps, conditional branches, call, and return) without any
special machinery. The axiomatic model treats the instruc-
tion pointer (EIP) like any other register, while the instruc-
tion semantics for a typical instruction gives event struc-
tures with an EIP read and a write of a suitably incre-
mented value. These are linked by the intra-causality re-
lation, but (except for CALL, RET, etc.) are unrelated to
other events of the instruction. A program-semantics con-
dition ensures that the values of any EIP reads of an in-
struction match its address. The x86 allows very little local
reordering (preserved program order is rather strong), but
this permits a load to be reordered before a store to a dif-
ferent address even across a branch, which we believe to be
accurate (the documentation is unclear on this point).

2.11 Alignment

The older Intel and AMD documents only discuss programs
that do not make unaligned accesses, and for the moment
that assumption is built into our model. But this means that
one cannot reason at all about incorrect or malicious code, so
a more complete (but loose) specification is highly desirable.
We believe that it would be sound w.r.t. current devices to

treat unaligned accesses as an unordered set of byte accesses,
and it would be straightforward to add this to our model.
The current Intel SDM [5, vol.3A, §7.1.1] appears to state
that, on P6 or later processors, unaligned 16-, 32-, and 64-
bit accesses within a cache line are atomic, but also [§7.2.3.1]
that unaligned instructions may be implemented with mul-
tiple accesses.

The documents are also silent about aligned accesses to
different addresses within a cache line. It may be that current
devices actually provide strong ordering for such accesses,
and exposing this would permit algorithms to save the high
cost of locked instructions in some circumstances. It could be
modelled by taking write serialisation orders per (minimal-
sized) cache line, rather than per location.

2.12 Fences

The x86 also includes fence instructions, or memory bar-
riers, LFENCE, SFENCE, and MFENCE. For the co-
herent write-back fragment that we consider, without non-
temporal operations, we understand the first two to be (per-
haps costly) no-ops. For MFENCE, the documentation is
less clear, and so we did not include it in our HOL model.
IWP [22] does not mention it, while the Intel SDM [5,
vol.2A,p3-624;vol.3A,§7.2.5] is ambiguous (the text could be
read as asserting that MFENCEs of different processors are
globally serialised). The most conservative (weakest) plausi-
ble semantics is that an MFENCE simply ensures that pro-
gram order is preserved around it, preventing the reordering
of a load before a store that we saw in Test iwp2.3.a/amd4 of
§2.4. Test amd5 (like iwp2.3.a/amd4 but with an MFENCE
after each store) confirms this holds on AMD64, and infor-
mal discussion suggests it also does on Intel 64/IA-32. It
would be easy to add this to the model, strengthening the
preserved program order definition of §2.4.

AMD64 [4] includes one final test, amd10 (an analogue
of iwp2.3.1/amd4) which shows a strictly stronger seman-
tics, but just how much stronger is unclear (consider, for
example, analogues of Test amd6 in Fig. 2 with one or more
MFENCEs).

amd10 proc:0 proc:1
po:0 MOV [100]←$1 MOV [200]←$1
po:1 MFENCE MFENCE
po:2 MOV EAX←[100] MOV ECX←[200]
po:3 MOV EBX←[200] MOV EDX←[100]
Forbidden: 0:EBX=0 ∧ 1:EDX=0

2.13 Recovering Sequential Consistency

In most cases, one would like to program in an idiom that
guarantees sequentially consistent behaviour, ensuring that
the reorderings that the memory model permits are not
observable. We return to this in §5, but mention two ex-
treme possibilities here. Contrary to what might be ex-
pected, adding an MFENCE between every instruction does
not suffice, according to the x86-CC semantics above: this
would still permit processors to see different store orders.
However, programming exclusively with locked instructions
would suffice, as the lock serialization order would deter-
mine an SC execution.

3. Instruction Semantics

We now give the other half of the semantics: we define
the possible event structures for a program; combining
this with the memory model to give the possible event



structures with their valid executions. At present we cover
the following instructions: data transfer MOV, CMOVE,
CMOVNE, XADD, XCHG, CMPXCHG, LEA; binary op-
erations ADD, AND, CMP, OR, SUB, TEST, XOR, SHR,
SAR, SHL; unary operations INC, DEC, NOT, NEG; stack
operations POP, PUSH, PUSHAD, POPAD; and control
transfers JUMP, CALL, RET, LOOP. We cover all the var-
ious 32-bit addressing modes, including indexing, scaling,
etc.

3.1 Decoding

The first step is to decode a machine code program, a
code memory containing bytes, of type program word8 =
address → word8 option, to an abstract syntax program,
giving the instructions Xinst (and their lengths) at each
address: program Xinst = (address → (Xinst ∗ num) option).
The vendor documentation includes tables with one to 50 or
so lines for each instruction, e.g.

" 8B /r | MOV r32, r/m32 ";
" B8+rd id | MOV r32, imm32 ";

giving symbolic expressions for their opcodes. For example,
B8+rd id represents an opcode with a first byte B8 added
to a code for the 32-bit register r32, followed by a 4-byte
immediate operand for the imm32. To make the semantics
scalable, without introducing many errors, we formalised
the interpretation of these encodings inside the HOL logic,
and built a HOL decoding function by directly copying the
relevant lines from the manual into the HOL script. (We
found one error in the Intel manual in the process: the id in
the second line shown is actually omitted there [5, vol.2A,p3-
640], highlighting the need for testing.)

3.2 Instructions

A single x86 instruction can involve a complex pattern of
register and memory accesses. In defining the possible event
structures for an instruction, with the right intra-instruction
causality relation among these accesses, we have to avoid
over-sequentialising them. For example, two independent
reads should be unrelated, whereas an [EAX] operand re-
solves into a register read of EAX followed by a memory
read of that address. Moreover, the pattern of accesses (not
just their values) can depend on the values read, and to keep
the semantics manageable we have to deal as uniformly as
possible with all the various addressing modes and with the
various binary and unary operations. We must also accom-
modate loose specification of values, for flag values that are
explicitly undefined in the architecture.

We express the semantics in terms of a small ‘microcode’
language of combinators, analogous to a monad for a type
constructor ′a M, but with both sequential and parallel
composition:

seqT : ′a M→ (′a → ′b M)→ ′b M
parT : ′a M→ ′b M→ (′a ∗ ′b)M
constT : ′a → ′a M
failureT : unit M
mapT : (′a → ′b)→ ′a M→ ′bM
lockT : unit M→ unit M
write reg : iiid→ Xreg→ word32→ unit M
read reg : iiid→ Xreg→ word32 M
write eip : iiid→ word32→ unit M
read eip : iiid→ word32 M
write eflag : iiid→ Xeflags→ bool option→ unit M
read eflag : iiid→ Xeflags→ bool M
write m32 : iiid→ word32→ word32→ unit M

read m32 : iiid→ word32→ word32 M

For example, for binary operation Xbinop binop name ds,
with destination and source ds, at instruction instance ii ,
and len bytes long, we have (using various auxiliaries):

x86 exec ii (Xbinop binop name ds) len = parT unit
(seqT (read eip ii) (λx . write eip ii (x + len)))
(seqT

(parT (read src ea ii ds) (read dest ea ii ds))
(λ((ea src, val src), (ea dest , val dest)).

write binop ii binop name val dest val src ea dest))

The event structure semantics implements the combinators
for ′a M below (threading through a gensym eiid state to
make eiid’s unique by construction). The seqT and parT
combinators both build the set of event-structure unions of
pairs of event structures from their arguments, with seqT
adding intra-causality edges.

′a M = eiid state→ ((eiid state ∗ ′a ∗ event structure)set)

3.3 Sequential Semantics

We also build a more directly executable semantics for se-
quential programs, simply re-implementing the combinators
for a state monad while keeping the body of the instruction
semantics unchanged:

′a M = x86 state→ (′a ∗ x86 state) option
x86 state = (Xreg→ word32)

∗(word32) (* EIP *)
∗(Xeflags→ bool option)
∗(word32→ word8 option)

3.4 Programs

Finally, to define the possible event structures for a decoded
program, we identify the well-formed run skeletons — se-
quences (finite or infinite, and downclosed) of addresses of
instructions for each processor:

proc→ (program order index→ address option)

For each run skeleton, we first calculate the sets of event
structures for each instruction instance it contains, then take
the event-structure union of each possible choice thereof.
Combining this with the axiomatic model to give valid exe-
cution witnesses, the overall semantics has the type below.

x86 semantics : program word8→ state constraint→
(run skeleton ∗ program Xinst
∗((event structure ∗ (execution witness set))set))set

This is significantly more involved than a typical sequen-
tially consistent interleaving semantics — largely because
the values read in a valid execution are constrained by the
axiomatic memory model, which is in terms of the possible
orderings of all the events of a putative execution, instead
of being values known at a particular time, that one could
simply provide to the instruction semantics. Additional com-
plexity arises from dealing with concrete located machine
code rather than assembly language, which is necessary to
build correct EIP values at call points.

Theorem 2. The event structures built above are all well-
formed. [Proof: HOL, with a large automated case analysis]



4. Testing the Semantics

4.1 Executing the axiomatic memory model

In developing the axiomatic memory model of §2, it was vital
to explore the consequences of the axioms for example pro-
grams. However, this quickly becomes too complex to do by
hand. The litmus tests in §2 have around 6–10 instructions
on p = 2–4 processors, which generate ne = 10–20 events,
and the naive number of candidate execution witnesses is
roughly (ne!)

p. We built a memevents tool to test the se-
mantics, which is efficient enough to run on all the examples
shown, and which confirms their stated behaviours in the
axiomatic model. It also produces pictorial representations
of the possible view orders and executions, as in the simple
example shown in Fig. 1. To test the impact of individual
conditions of the axiomatic model, selected checks can be
turned off one by one. The tool is written in OCaml. It is
heavily parameterised, both over the microcode language of
§3.2, which can be instantiated to produce an event structure
and a state monad semantics, and over the concrete archi-
tecture, which can be instantiated with the x86 structures
described here or with Power and ARM semantics, which
are under construction.

The OCaml code has been checked, by hand, to corre-
spond with the HOL definition. In future work, we plan to
instantiate the HOL definition with a third implementation
of the microcode language, for symbolic execution, and to
use the HOL code generation facilities to build the checker
core directly.

4.2 Validation of the memory model

To validate the memory-model semantics against actual
hardware, we built a litmus tool. Given a test specified with
a syntax similar to that used in this paper, this tool ini-
tialises the machine state (memory and registers), spawns
the threads that compose the test and compares the final
state with the constraint specified by the test. Care is taken
to use memory locations in different cache lines, to pre-fill
caches and write buffers, and to synchronise the threads, and
each test is repeated many times, to maximise the probabil-
ity of observing non-sequentially consistent behaviours.

We tested the litmus tests of §2 on several multiprocessor
machines2. In all cases, the results we observed were admit-
ted by our semantics. On all machines, we observed the non-
sequentially consistent behaviours of tests iwp2.3.a/amd4
and iwp2.4/amd9, e.g. between 5 and 5000 times out of
200000 runs for the latter. We did not find witnesses for the
reorderings of tests n1, amd6, and n3. It may be that these
tests were not repeated sufficiently, or that the tool does not
stress the memory subsystem properly to highlight these be-
haviours, but it may also be that the particular processors
we tested do not exploit these reorderings, even if they are al-
lowed by the architecture (we believe that many processors
actually provide a much stronger TSO-based model). The
gap between particular devices and the architecture means
that one can conclude little from an absence of witnesses.

4.3 Validation of the sequential semantics

To validate the details of the instruction semantics (decod-
ing, arithmetic details, etc.), which are largely orthogonal
to the memory model, we tested them against a Pentium 4
processor. For efficiency, this uses the sequential semantics of

2 One machine was equipped with two Intel Xeon CPUs, one
with four Quad-Core AMD Opteron CPUs, one with 4 Dual-Core
AMD Opteron CPUs, and one with an Intel Core 2 Quad CPU.

§3.3; the checking is done entirely within HOL, for high con-
fidence. We implemented an x86sem tool that, given an x86
instruction, builds a valid assembler program that dumps
the state of the machine (including registers, flags, stack,
and memory) immediately before and after the instruction
being tested. For a simple example, one instance of testing
the instruction MOV EAX←EBX generated the following
HOL conjecture:

(XREAD REG EBX s = 0x6F5BE65Bw) =⇒
(XREAD EIP s = 0x804848Bw) =⇒
(XREAD MEM 0x804848Bw s = Some 0x89w) =⇒
(XREAD MEM 0x804848Cw s = Some 0xD8w) =⇒
(XREAD REG EAX(the(X86 NEXT s)) = 0x6F5BE65Bw) ∧
(XREAD REG EBX(the(X86 NEXT s)) = 0x6F5BE65Bw) ∧
(XREAD EIP(the(X86 NEXT s)) = 0x804848Dw)

This states that, for all s : x86 state, if the memory
pointed by the instruction pointer contains the encoding of
MOV EAX←EBX, i.e. 89D8, and EBX has the given initial
state, the machine evolves in the §3.3 semantics (function
X86 NEXT) to a state where EAX contains the double
word from EBX. Such conjectures can then be automati-
cally proved by the HOL automation, using an appropriate
set of simplification rules.

The tool covers all the instructions defined in HOL (ex-
cept, at present, PUSHAD, POPAD, LEA, SHR, SAR,
SHL), including direct and indirect memory addressing
modes, and includes a random initialisation of the state
of the machine, chosen to prefer corner cases. The seman-
tics has been tested on 4600 random instruction instances,
also generated from the opcode tables (about 75 per line).
The tool highlighted several mistakes in the decoding func-
tions, but did not reveal inconsistencies between the HOL
sequential semantics and the behaviour of the processor.

5. Data-race-free Programs

To make a relaxed-memory architecture usable for large-
scale programming, it is highly desirable (perhaps essential)
to identify programming idioms which ensure that one need
only consider sequentially consistent executions. For exam-
ple, one can consider ‘properly synchronised’ programs, in
which shared accesses are protected by locks. Indeed, mem-
ory models have sometimes been defined in these terms [8].
For a processor ISA, we prefer to define a memory model
that is applicable to arbitrary programs, to support reason-
ing about low-level code (including implementations of locks,
for example), and have results about well-behaved programs
as theorems above it.

Say a valid sequential execution for an event structure E
is a linear ordering so on its events such that all instructions
in an atomic group appear uninterrupted, and such that
the unique execution witness built from that order is valid
according to the axiomatic memory model. Such behaviours
are manifestly sequentially consistent.

sequential execution E so =
linear order so E .events ∧
(∀(es ∈ (E .atomicity))(e1 ∈ es)(e2 ∈ es)e.

(e1, e) ∈ so ∧ (e, e2) ∈ so =⇒ e ∈ es)

valid sequential execution E initial state so =
sequential execution E so ∧
valid execution E(so to exec witness E initial state so)

The first step is to show that if an execution is valid in
the memory model then there is a similar valid sequential



execution, as long as the former has no data races (Theo-
rem 3 below). An execution has a data race if there is a pair
of memory access events to the same location that can com-
pete, i.e. that are unrelated by happens-before. This is an
intensional and x86-specific notion of data race: note that
one event must be a read and the other a write—two writes
to the same memory location can never be a data race be-
cause of the write serialization ordering. Note also that two
locked events from different instructions can never compete,
and a write followed by a read of the same memory address
in some view order must be related by happens-before, and
so do not compete.

competes E X =
{(e1, e2) | ¬(e1 = e2) ∧ (loc e1 = loc e2) ∧
((e1 ∈ writes E ∧mem store e1 ∧ e2 ∈ reads E) ∨

(e2 ∈ writes E ∧mem store e2 ∧ e1 ∈ reads E))}
\ ((happens before E X )+ ∪ ((happens before E X )+)−1)

race free E X = ∀e1 e2 ∈ (E .events).
¬((e1, e2) ∈ competes E X )

Theorem 3 (Sequential Order).
∀E X . well formed event structure E ∧ finite E .events ∧
race free E X ∧ valid execution E X
=⇒ ∃so.

valid sequential execution E X .initial state so ∧
(happens before E(so to exec witness E X .initial state so))
⊆ (strict so) ∧

(X .write serialization = so to write serialization so) ∧
(X .lock serialization = so to lock serialization E so) ∧
(X .rfmap = so to rfmap E so)

HOL proof outline: Induction on the size of E. We remove a
happens-before-maximal element e from E, inductively sequen-
tialise the rest as so

′, and add e to so
′ as the maximal element. We

rely on data-race freedom only in showing that the resulting rfmap
is unchanged (which in turn ensures that check rfmap written
and check rfmap initial pass). To ensure that atomic events ap-
pear contiguously, we choose for e an event that is in an atomicity
set if and only if that entire set is happens-before-maximal, with
respect to outside instructions—the lock serialization ordering
ensures that this condition can always be satisfied.

Two ways to strengthen Theorem 3 appear desirable at
first sight, but are not true. Consider first whether each
processor’s view order when restricted to local events (i.e.,
not including others’ memory writes) can have the same
order as the sequential order. Test iwp2.3.a/amd4 provides
a counter-example.

The sequential order also cannot be made to keep the
events of non-atomic instructions adjacent (the INC/INC
example of §2 shows that in a racy situation, but it remains
true even for race-free executions). In a situation similar to
iwp2.3.a/amd4, but where the both events of each processor
are in the same instruction, if neither read is to the initial
state, then it is easy to check that neither possible instruc-
tion atomic sequential execution preserves the rfmap (and
is hence invalid since the written and initial values differ).
One can set up such a situation in practice using PUSH
instructions after setting the ESP register.

Theorem 3 allows the existence of valid executions for an
event structure to be established using sequential reasoning
only after all data races have been ruled out with respect to
the weak memory model. Theorem 4 below shows that data-
race freedom can also be established using only sequential
reasoning. An event structure is sequentially data-race free if
all of its sequential executions are data-race free. Because we
are working in terms of a concrete event structure, we must

also consider prefixes of E. Otherwise, an event structure
with no sequential executions would be trivially sequentially
race free, and therefore by Theorem 4 sequentialisable, a
contradiction. Notice that the notion of sequential data-race
freedom does not depend on the view order of X.

prefixes E X = {E ′ | sub event structure E ′ E ∧ ∀e1 e2.

e2 ∈ E ′
.events ∧ (e1, e2) ∈ (happens before E X ) =⇒

e1 ∈ E ′
.events}

sequential race free E X = ∀(E ′ ∈ (prefixes E X ))so.

valid sequential execution E ′ X .initial state so =⇒
∀e1 e2.¬((e1, e2) ∈ competes E ′

(so to exec witness E ′ X .initial state so))

Theorem 4 (Data race freedom).
∀E X . well formed event structure E ∧ finite E .events ∧
sequential race free E X ∧ valid execution E X
=⇒

race free E X ∧ [the conclusion of Thm. 3]

HOL proof outline: Complete induction on the size of E, showing
that if E is sequentially data-race free it is data-race free, then
using Theorem 3. For the first part, assume for a contradiction
that there is a data race on two events e1 and e2 for a particular
execution witness. Consider the prefix of E that consists of only
those two events and those that precede them in the happens-
before order. Call it E

′, and assume w.l.o.g. that e1 is the write.
Remove e1 from E

′ and by induction sequentialise the remainder
as so

′ (here we use the fact that a prefix of a sequentially data-
race free program is still sequentially data-race free). Add e1 to
the end of so as above and check that this is a valid sequential
execution of E

′, with a data race between e1 and e2, contradicting
the assumption of sequential data-race freedom (again for prefixes
too). If e1 is in an atomicity set, it is necessary to ensure that no
other element of the set in E

′ happens before an element of E
′ not

in the set. This could fail if an instruction had some events inside
an atomicity set and others not inside an atomicity set. However,
in the x86 architecture no instructions are partially atomic.

Ultimately, this result should be lifted to an interleaving
transition-system semantics over the x86 state of §3.3, so
that race freedom can be determined without reference to
the event structures semantics at all. We have defined such
a semantics, as a further instantiation of the microcode
combinators, but leave the proof to future work.

6. The Abstract-Machine Memory Model

The global style of the axiomatic model, in terms of possible
orderings of events in a complete execution, fits well with the
informal statements of the vendor documentation, and with
most previous work on relaxed memory. However, it is dif-
ficult to relate it to operational intuitions of machines. We
therefore develop an alternative abstract-machine character-
isation of the axiomatic model, with the same set of possible
behaviours. At present this covers non-locked instructions
only, though we believe that the extension to cover them is
reasonably straightforward.

Given Theorem 1 and preserved program order, the only
reordering the machine must permit is of memory writes af-
ter independent reads. Memory writes from the same proces-
sor must be observed in program order, and memory writes
to the same location must be observed in the same write
serialisation order. We capture this in the machine with two
pieces of state: pending FIFO queues of write operations
F p q, for writes issued by processor p to be seen on proces-
sor q, and per-location write serialisations G a. On issuing a
write, processor p enqueues the writes on each queue F p .
The write is considered observed by q when it is dequeued



from F p q. Since there is a queue F p p, processor p may
choose to delay observing its own write. The FIFO nature of
the F p q queue ensures that writes issued by p are observed
in the same order as they are issued. Dequeueing is subject
to the constraint that all G a predecessors have already been
observed, and adds the current write to the global order G a
if it is not already present.

Unfortunately, this alone does not suffice to ensure that
the transitive closure of the happens-before relation is re-
spected. The easiest way to do so is to build up the happens-
before relation incrementally, and check that all happens-
before predecessor events have been observed as a precon-
dition of observing events. The machine is still operational,
in the sense that it enjoys the progress property below, and
so backtracking is not required. However, it would still be
fairly costly to implement, so this should be considered only
a first step.

Theorem 5 (Machine progress). For the transition system
defined by the machine for a program, either the machine has
a τ transition, or it can make a visible transition matching
the event structure of the program, or no processor has any
more events and the machine queues are empty.

It also matches the axiomatic model precisely.

Theorem 6 (Machine correctness). 1. For any finite nice
valid execution of the axiomatic semantics, there is a
corresponding trace of the machine.

2. The execution witnesses built from complete traces of the
machine, for finite well-formed E, are valid executions in
the axiomatic semantics.

The detailed operational semantics of the machine (in HOL),
and the (hand) proofs of the above results, are available [6].

Given such a machine, it should be feasible to build a
demonic x86 emulator, with aggressive reordering, so that
low-level code (e.g. lock-free datastructure implementations)
can be tested against the architecture, rather than just
against particular devices.

7. Power and ARM Contrasts

To give a flavour of the large design space in which the x86
relaxed memory model lies, we contrast it briefly with the
behaviour of the Power and ARM multiprocessors (which
have broadly similar memory models). Preliminary HOL
definitions of these memory models are available [6].

First, the Power and ARM have weaker program-order
preservation constraints. In the Power analogue of Test
ipw2.1/amd1, we can observe (using our litmus tool) that
a final outcome with the first register holding 1 and the
second 0 is possible. By adding dataflow dependencies to
one or other processor, we can confirm that both load/load
and store/store reorderings are possible. We can observe also
that loads from two addresses into the same register can be
reordered.

Second, transitivity, as in analogues of Test iwp2.5/amd8,
is explicitly not guaranteed for ARM, as noted by Chong and
Ishtiaq [16], and we believe also for Power.

Third, the existence of duplicate (or shadow) registers in
Power can be observed by the programmer. For example,
consider the test below, adapted from Adir et al. [7], with
read and written values annotated. On proc:1 there is (pre-
served) data dependency from each instruction to the next,
and similarly on proc:0 between the lwz and mr, and be-
tween the li and stw. Because the mr r2←r1 and li r1←1

both involve r1, one might expect a preserved program or-
der between them, which would lead to a cycle in the view
orders. In the architecture (though we have not yet observed
this), the r1 used in the lwz and mr, and the r1 used in the
li and stw, can be two different duplicates.

proc:0 proc:1
{x=2} lwz r1←[x] {r1=2} {y=1} lwz r3←[y] {r3=1}
{r1=2}mr r2←r1 {r2=2} {r3=1} addi r3←r3, 1 {r3=2}

li r1←1 {r1=1} {r3=2} stw r3→[x] {x=2}
{r1=1} stw r1→[y] {y=1}
Allowed: 0:r1=1 ∧ 0:r2 =2 ∧ 1:r3 =2 ∧ x = 2 ∧ y = 1

8. Related Work

Reasonably precise definitions of relaxed memory models
were first studied in the Computer Architecture community,
e.g. with the early work of Dubois et al. [18] and Collier [17],
and an extensive literature has developed since then. We
refer the reader to the surveys by Adve and Gharachorloo [8],
Luchango [26], and Higham, Kawash, and Verwaal [25] for an
overview; the latter relates several axiomatic and abstract-
machine (or operational) definitions.

Many of these models are rather idealised with respect to
actual processors: we are not aware of any other detailed x86
model, or a model integrated with a substantial instruction
semantics. The Itanium and SPARC have vendor specifi-
cations in informal mathematics [1, 2] leading to Itanium
work by Higham et al. [20] and Yang et al. [31], which
builds an oracle from an axiomatic model. Park and Dill
produced a specification for SPARC RMO which could be
executed on litmus test examples [28]. Adir et al. study the
PowerPC [7], and there is early work on a HOL model for
Alpha by Gordon [19]. More recently, several authors have
considered model-checking of programs above simple weak
memory models, e.g. in the work of Burckhardt and col-
leagues [15, 14], respectively above TSO and above a general
relaxed memory model. The latter is a conservative approx-
imation to several models, but does not admit the different
views of the x86.

Our x86 memory model is in a similar style to the causal
memories of Ahamad et al. [10], and our data-race freedom
theorem and proof have a similar structure to theirs. Their
causal memories are weaker than the x86 model, lacking a
(per memory address) global write serialisation and locked
instructions, although they do discuss the possibility of
adding additional causality edges to support synchronisation
constructs.

Another line of work addresses memory models for
high-level programming languages such as Java, X10, and
C++ [27, 12, 29, 13]. Here one must consider both the
underlying architecture models and compiler-optimisation
reorderings, and the lack of clear definitions of the former
has led to a need for documents such as Lea’s JSR-133
Cookbook for Compiler Writers [24]. Our x86-CC model
validates Boehm and Adve’s WRC write-to-read causality
property [13, Fig.5] (iwp2.5/amd8 is a fence-less x86 ana-
logue of their tests) and their CC property [13, Fig.7] (again
for a fence-less analogue). It does not validate their RWC
read-to-write causality test [13, Fig.6] without fences. We
believe it still would not do so with the MFENCE semantics
sketched in §2.12, but would if the fences were replaced by
LOCK’d instructions.

There is, of course, also a great deal of work on seman-
tics and architecture description for sequential processor be-
haviour; space precludes an overview here.



9. Conclusion

Our main contribution is a semantics for multiprocessor x86
programs, with integrated relaxed memory model, instruc-
tion semantics, and machine-code decoding. The key diffi-
culty was to go from the informal-prose vendor documenta-
tion, with its often-tantalising ambiguity, to a fully rigorous
definition (mechanised in HOL) that one can be reasonably
confident is an accurate reflection of the vendor architec-
tures (Intel 64 and IA-32, and AMD64). We made particular
choices, e.g. in the treatment of events and instructions, the
structure of view orders, reads-from maps, etc., the defini-
tion of happens-before, and the precise axioms of §2; based
on a combination of the prose documentation, discussions
with sources, and the testing of §4.

The model provides a necessary foundation for sound rea-
soning about low-level concurrent x86 code, in many con-
texts: program logics, algorithm verification, static analysis,
compilation, model-checking, proof-carrying code, and so on.
It should also provide a solid intuition for low-level program-
mers, and support the design of high-level language memory
models. In §5 and §6 we took the first steps in two directions,
with results on the behaviour of race-free programs and a
machine characterisation of the memory model, and men-
tioned some specific items of future work, but the existence
of a sound semantics opens up many more opportunities.

The architectures advertised by processor vendors are a
key interface, between them and programmers. They must
often be loose specifications, to permit processor implemen-
tations to change. It appears that the imprecision of infor-
mal prose has sometimes been used as a deliberate tool for
loose specification, making it extremely hard for low-level
programmers to understand the behaviour of their code. We
have taken care in our semantics not to over-specify: to the
best of our knowledge, the semantics does not commit to
anything that vendors should consider unreasonable, and
thus it demonstrates that it is feasible to have completely
precise, but sufficiently loose, specifications in this area. The
semantics also provide a vocabulary for discussing subtle
alternatives from the programmer’s point of view, without
reference to hardware implementation concepts.

Acknowledgements We thank Michael Fetterman, Andy Glew,

and Gil Neiger for invaluable discussions about Intel architec-
tures and devices; Nathan Chong and Samin Ishtiaq for discus-
sions about the ARM; and Kathryn Gray, Mike Hicks, Warren
Hunt, and Samin Ishtiaq for comments on drafts. We acknowl-
edge the support of a Royal Society University Research Fel-
lowship (Sewell), EPSRC grants GR/T11715, EP/C510712, and
EP/F036345, and ANR grant ANR-06-SETI-010-02.

References
[1] A formal specification of Intel Itanium processor family

memory ordering. http://developer.intel.com/design/
itanium/downloads/251429.htm.

[2] The SPARC architecture manual, v. 9. http://developers.
sun.com/solaris/articles/sparcv9.pdf.

[3] Linux kernel traffic, 1999. http://www.kernel-traffic.
org/kernel-traffic/kt19991220_47.txt.

[4] AMD64 Architecture Programmer’s Manual. Advanced
Micro Devices, Sept. 2007. (3 vols).

[5] Intel 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation, April (vol 1,2A,2B; rev.27),
Feb. (vol.3A,3B; rev.26) 2008.

[6] The semantics of multiprocessor machine code, 2008.
www.cl.cam.ac.uk/users/pes20/weakmemory.

[7] A. Adir, H. Attiya, and G. Shurek. Information-flow models
for shared memory with an application to the powerpc
architecture. IEEE Trans. Parallel Distrib. Syst., 14(5):502–
515, 2003.

[8] S. Adve and K. Gharachorloo. Shared memory consistency
models: A tutorial. IEEE Computer, 29(12):66–76, Dec
1996.

[9] M. Ahamad, R. A. Bazzi, R.John, P. Kohli, and G. Neiger.
The power of processor consistency. In Proc. SPAA ’93,
1993.

[10] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto.
Causal memory: Definitions, implementation, and program-
ming. Distributed Computing, 9(1):37–49, 1995.

[11] ARM. ARM Architecture Reference Manual (ARMv7-A
and ARMv7-R edition). 2008. Available from ARM.

[12] D. Aspinall and J. Sevcik. Formalising Java’s data race free
guarantee. In Proc. TPHOLs, LNCS, 2007.

[13] H.-J. Boehm and S. Adve. Foundations of the C++
concurrency memory model. SIGPLAN Not., 43(6):68–78,
2008.

[14] S. Burckhardt, R. Alur, and M. Martin. Checkfence: checking
consistency of concurrent data types on relaxed memory
models. In PLDI, 2007.

[15] S. Burckhardt and M. Musuvathi. Effective program
verification for relaxed memory models. In Proc. CAV,
LNCS 5123, 2008.

[16] N. Chong and S. Ishtiaq. Reasoning about the ARM weakly
consistent memory model. In Proc. MSPC, 2008.

[17] W. Collier. Reasoning about parallel architectures. Prentice-
Hall, Inc., 1992.

[18] M. Dubois, C. Scheurich, and F. Briggs. Memory access
buffering in multiprocessors. In ISCA, 1986.

[19] M. Gordon. Memory access semantics for a multiprocessor
instruction set. Unpublished note (c.1993) www.cl.cam.ac.
uk/ftp/hvg/papers/AlphaProg.ps.gz.

[20] L. Higham, L. A. Jackson, and J. Kawash. Programmer-
centric conditions for itanium memory consistency. In Proc.
ICDCN, 2006.

[21] The HOL 4 system. http://hol.sourceforge.net/.

[22] Intel. Intel 64 architecture memory ordering white paper,
2007. SKU 318147-001.

[23] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Trans.
Comput., C-28(9):690–691, 1979.

[24] D. Lea. The JSR-133 cookbook for compiler writers.
gee.cs.oswego.edu/dl/jmm/cookbook.html.

[25] L.Higham, J.Kawash, and N. Verwaal. Defining and
comparing memory consistency models. In PDCS, 1997.

[26] V. M. Luchangco. Memory consistency models for high-
performance distributed computing. PhD thesis, MIT, 2001.

[27] J. Manson, W. Pugh, and S. Adve. The Java memory model.
In Proc. POPL, 2005.

[28] S. Park and D. L. Dill. An executable specification, analyzer
and verifier for RMO (relaxed memory order). In Proc.
SPAA ’95, 1995.

[29] V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun.
A theory of memory models. In Proc. PPoPP, 2007.

[30] G. Winskel. Event structures. In Advances in Petri Nets,
LNCS 255, 1986.

[31] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind.
Nemos: A framework for axiomatic and executable specifi-
cations of memory consistency models. In IPDPS, 2004.



Addendum, added in press

This paper developed a formal model, x86-CC, which is
based on our understanding of the current published Intel
and AMD specifications:� the Intel 64 Architecture Memory Ordering White Paper

(IWP) [22];� recent versions of the Intel SDM [5, vol.3A, §7.2.3], both
revision 26 (Feb. 2008) and revision 28 (Sept. 2008),
which essentially incorporate IWP; and� the AMD documentation [4, vol.2,p.164ff].

To the best of our knowledge, it does accurately reflect these,
and the mathematical and empirical results in the paper
hold.

However, whether these specifications (in either formal
or informal versions) are useful descriptions of the actual
processors, suitable for reasoning about x86 software, is in
question.

In one direction, the specifications are arguably too weak
(with respect to actual processors). The difficulty of imple-
menting the Java Memory Model above these specifications
(recall the weak guarantees provided by MFENCE, as dis-
cussed in §2.12,2.13) seems to have motivated a change in
the Intel and AMD specifications: we are told that future
specifications by both Intel and AMD will exclude the amd6
(IRIW) example shown in Fig. 2. This would bring the model
much closer to TSO, but, complicating the issue still further,
a draft revised specification seems to admit some non-TSO
(indeed, non-coherent) behaviour.

In the other direction, the specifications appear not to
include some behaviour that actual processors may exhibit.
Consider the following example, due to Paul Loewenstein.

n6 proc:0 proc:1
poi:0 MOV [100]←$1 MOV [200]←$2
poi:1 MOV EAX←[100] MOV [100]←$2
poi:2 MOV EBX←[200]
Forbidden: 0:EAX=1 ∧ 0:EBX=0 ∧ [100]=1

The final state is:� disallowed by our x86-CC formal model;� disallowed by any reasonable interpretation, as far as
we can tell, of the current Intel and AMD published
specifications; but� according to our preliminary test results, allowed by
at least one Intel processor (we find approximately one
witness in 2 ∗ 106 executions, reproducibly, on an Intel
Core 2, with our litmus tool).

It is also allowed by TSO.
The situation is clearly unsatisfactory, and we hope to

produce a more useful revised formal model as soon as
possible. However, it does, ironically, illustrate the main
point of the paper very well: there is a clear need for
precise specifications of multiprocessor behaviour, and those
specifications must be exercised in some way — one should
have little confidence in a loose specification (even if precise)
that is not exercised by testing or verification with respect
to the hardware, proof of metatheory, and a large body of
concurrent programming.

We would like to thank David Christie, Dave Dice, Doug
Lea, Paul Loewenstein, and Gil Neiger for their helpful
remarks.


