
Hoare Logic for Realistically Modelled
Machine Code

Magnus O. Myreen, Michael J. C. Gordon

Computer Laboratory, University of Cambridge, Cambridge, UK

Abstract. This paper presents a mechanised Hoare-style programming
logic framework for assembly level programs. The framework has been
designed to fit on top of operational semantics of realistically modelled
machine code. Many ad hoc restrictions and features present in real
machine-code are handled, including finite memory, data and code in
the same memory space, the behavior of status registers and hazards
of corrupting special purpose registers (e.g. the program counter, proce-
dure return register and stack pointer). Despite accurately modeling such
low level details, the approach yields concise specifications for machine-
code programs without using common simplifying assumptions (like an
unbounded state space). The framework is based on a flexible state repre-
sentation in which functional and resource usage specifications are writ-
ten in a style inspired by separation logic. The presented work has been
formalised in higher-order logic, mechanised in the HOL4 system and is
currently being used to verify ARM machine-code implementations of
arithmetic and cryptographic operations.

1 Introduction

Computer programs execute on machines where stacks have limits, integers are
bounded and programs are stored in the same memory as data. However, ver-
ification of computer programs is almost without exception done using highly
simplified models, where stacks and memory are unbounded, integers are arbi-
trarily large and the compilers are trusted to keep code and data apart. Proving
properties of programs with respect to realistic models is generally avoided, since
many of the common simplifying assumptions made by high-level programming
logics tend to fit badly with realities of accurate low-level models. In this paper
we present a programming logic that has been designed to fit on top of accurate
models of machine languages.

We present a Hoare logic that has been carefully designed to accommodate
many of the ad hoc restrictions and features of machine code: finite memory, data
and code in the same memory space, the behaviour of status register, hazards
of corrupting special purpose registers and some details that arise from hard-
ware implementations. As an example of a restriction imposed by the underlying
hardware, consider the following two seemingly equivalent implementations of
the factorial program in ARM assembly. The example uses the ARM instruc-
tions "MOV b, #1" (set register b to 1), "MUL c, a, b" (put the product of

the contents of registers a and b into register c, but see restrictions discussed
shortly), "SUBS a, a, #1" (subtract 1 from register a and update status bits so
that status bit Z is assigned the boolean expression a-1=0) and "BNE L" (jump
to L if status bit Z is 0).

MOV b, #1 MOV b, #1
L: MUL b, a, b L: MUL b, b, a

SUBS a, a, #1 SUBS a, a, #1
BNE L BNE L

The first implementation terminates with the factorial of a (modulo 232) in b,
while the other one has an unpredictable outcome, "MUL b, b, a" is specified as
‘unpredictable’ for ARM in order to accommodate hardware optimisations [15].
Thus "MUL c, a, b" cannot be modelled as c := a× b without a side condition.

The judgments of our framework are total-correctness specifications that
state the functional behaviour and resource usage of machine-code programs.
We use a separating conjunction, similar to that of separation logic [13], in
order to write concise specifications about resource usage as well as to avoid
unwanted aliasing between special purpose registers (and normal registers as
motivated above). Our specifications allow multiple code segments and use po-
sitioning functions to enable reasoning about mixtures of position independent
code and position dependent code. As a result, procedures and procedural re-
cursion is readily handled (without assuming an unbounded stack).

The Hoare triples described in this paper have been defined in higher-order
logic. Rules for reasoning about them have been derived from the formal defini-
tions of the Hoare triples, using the HOL4 system [6] (thus the rules are sound).
We can reason about ARM machine code by instantiation of our framework’s
Hoare triples to a high-fidelity model of the ARM machine language. The spe-
cialisation of our framework to ARM machine code is presented in a companion
paper [10]. Here we concentrate on the core ideas of our approach.

This paper is not the first to address the problem of verifying realistically
modelled machine code. Some early work was done by Maurer [9], Clutterbuck
and Carré [5] and Bevier [3]. Boyer and Yu [4] did impressive pioneering work
on verifying machine code written for a commercial processor: they verified pro-
grams using the bare operational semantics of a model of the Motorola MC68020.
Projects on proof-carrying code (PCC) [11] and particularly foundation PCC [1]
have ignited new interest in verification of low-level code. Of work on PCC, Tan
and Appel’s work [16] is particularly relevant to this paper: they use a Hoare
logic to reason about a detailed model of the Sparc machine language. As for
most work on PCC, their aim is to address safety properties that can be proved
automatically (e.g. type safety). Tan and Appel’s approach is hampered by the
requirement of an extensive soundness proof. Hardin, Smith and Young [7] verify
machine code for Rockwell Collins AAMP7G using a form of symbolic simula-
tion. Work by Klein, Tuch and Norrish [8] has similar goal as ours, but they
reason at a higher level about realistically modelled C programs.

The remainder of this paper is organised as follows. Section 2 gives an
overview of how our specifications relate to those of standard Hoare-triples and

motivates our design decisions. Section 3 contains the bulk of the material: it
defines a Hoare triple for machine code, presents an example and shows how
rules can be derived for procedures and procedure calls. Section 4 demonstrates
how the framework can be instantiated to a given operational semantics of a
machine language. Section 5 concludes with a summary.

2 Approach

This section motivates some key design decisions informally and gives an overview
of the main ideas. The detailed definitions are given in the next section.

2.1 Basic Specifications

Our framework supports code specifications with multiple entries, multiple exits
and multiple code segments, but for simplicity we start by considering specifica-
tions having single entry, single exit and single code segment. The full generality
is described in Section 3.

Consider the ARM implementation of the factorial function given in the
introduction. In classical Hoare logic, its specification could be written as follows
with a side-condition:

{(a = x) ∧ (x 6= 0)}
FACTORIAL

{(a = 0) ∧ (b = x!)}

Side condition:
The registers associated with
a and b are distinct.

This specification is not satisfactory because it leaves many aspects unspecified.
For example, it does not say whether the code modifies the status bits or what
happens to the program counter.

We require specifications to mention each component of the state that might
be altered during execution. That way we can easily see what is changed and
what is not. Our approach is similar to that of separation logic [13, 12], which
assigns a memory footprint to each assertion. We make a stricter requirement:
every state component (e.g. register, memory location, status bit) must appear
in the footprint of an assertion. In our framework, the factorial program has the
following specification where, for now, informally read R a x as “register a has
value x”, S b as “the status bits have value b”, underscore () as “some value”
and P ∗Q, following separation logic, as “P and Q are true for disjoint parts of
the state” (precise definitions of these concepts are given later).

{R a x ∗ R b ∗ S ∗ 〈x 6= 0〉}
FACTORIAL

+4{R a 0 ∗ R b x! ∗ S }+4

The superscript +4 specifies that FACTORIAL increments the program counter
by 4. The separating conjunction ∗ avoids the need for the side-condition, since
the side condition is implied by the occurrence of ∗ between R a x and R b in
the precondition.

2.2 Heterogeneous Specifications

Machine-code programs depend on a variety of different resources. Even in a
simple setting we encounter registers, special registers, memory locations and
various status bits. For this reason we treat all types of resources uniformly.
Consider for instance the specification of the instructions str (store) and dstr
(decrement-and-store). Read M x y as “memory location x has value y”.

{R a x ∗R b y ∗M y }
str b a

{R a x ∗R b y ∗M y x}+1

{R a x ∗R b y ∗M (y−1) }
dstr b a

{R a x ∗R b (y−1) ∗M (y−1) x}+1

These specifications have a similar form to that of the factorial program, even
though they specify the behavior of different types of resources.

Hoare-style reasoning can be applied to specifications. For example, dstr
given above can implement a stack push for a descending stack. We can state
this with a specification stack(sp, xs, n) defined to assert that the stack pointer
(taken to be register 13) has value sp, that xs is on the stack and that there are
n unused slots on top of the stack. We will use the HOL list notation [x0; . . . ;xm]
and the cons function defined by cons x0 [x1; . . . ;xm] = [x0;x1; . . . ;xm]. In or-
der to define stack(sp, xs, n), recursively define ms(a, [x0;x1; . . . ;xm]) to mean
“M a x0 ∗M (a+1) x1 ∗ · · · ∗M (a+m) xm” and similarly blank(a, n) to mean
“M a ∗M (a−1) ∗ · · · ∗M (a−(n−1)) ”. The specification stack(sp, xs, n)
is then defined to be R 13 sp ∗ms(sp, xs) ∗ blank(sp−1, n).

Using this specification of a stack segment we are able to derive a specification
for stack push from the specification of dstr:

{R a x ∗ stack(sp, xs, n+1)}
dstr b a

{R a x ∗ stack(sp−1, cons x xs, n)}+1

2.3 Positioning Functions

We use positioning functions to make our Hoare triple general. These functions
are written as superscripts in our notation: {P}f cs g {Q}h. We omit superscripts
that are the identity function (λx.x). The positioning functions specify entry
points, exit points and code placement with respect to a variable base address.
More concretely, {P}f cs g {Q}h states the following: for any address p, if the
program counter points at address f(p), the code sequence cs is stored at address
g(p) and P holds, then some time later the program counter will reach address
h(p) in a state where Q holds.

The positioning functions can be used to make position-independent speci-
fications, position dependent specifications and mixtures of the two. A specifi-
cation is position independent if the positioning functions describe offsets: we
use +n to abbreviate λx.x+n, −k to abbreviate λx.x−k and write nothing to
mean a null offset, i.e. λx.x. A specification is position dependent if it ignores
its argument: e.g. λx.5 and λx.y.

sum: CMP a,#0 ; test: a = 0

MOVEQ r15,r14 ; return, if a = 0

STR a,[r13,#-4]! ; push a

STR r14,[r13,#-4]! ; push link-register

LDR r14,[a] ; temp := node value

ADD s,s,r14 ; s := s + temp

LDR a,[a,#4] ; a := address of left

BL sum ; s := s + sum of a

LDR a,[r13,#4] ; a := initial a

LDR a,[a,#8] ; a := address of right

BL sum ; s := s + sum of a

LDR r15,[r13],#8 ; pop two and return

Fig. 1. BINARY SUM: ARM code to sum the values at the nodes of a binary tree.

These positioning functions are useful as they can capture some of the non-
trivial control structures used in machine-code. For example, the control struc-
ture of a procedure is easy to define: procedures are given a return address to
which they must jump on completion. If we suppose that register 14 holds the
return address, then we have the following format for procedure specifications:

{P ∗R 14 y} cs {Q ∗R 14 }λx.y

The superscript λx.y specifies that the value of the program counter is y on exit
from cs no matter what it was on entry to cs. Section 3.6 presents a derivation
of a call rule that evaluates the effect of a call to such a procedure.

The call rule and stack assertion, from above, have been used in the verifi-
cation of recursive procedures in ARM code. An example of such a procedure is
the code called BINARY SUM shown in Figure 1. BINARY SUM calculates the sum of
values attached to the nodes of a binary tree. The trees we consider have nodes
consisting of a value and addresses of two subtrees. Address 0 refers to the empty
subtree. A predicate stating that tree t is stored with root at address x:

tree(x, Leaf) = 〈x = 0〉
tree(x,Node(z, l, r)) = ∃x1 x2. M x z ∗M (x+1) x1 ∗M (x+2) x2 ∗

tree(x1, l) ∗ tree(x2, r) ∗ 〈x 6= 0〉

The specification of BINARY SUM states that BINARY SUM adds to register s the
sum of the nodes of a tree that is addressed by register a. The specification also
states that no more than 2 × depth(t) words of stack space is required during
execution. ([] is the empty list and stack(sp, [], n) = R 13 sp ∗ blank(sp− 1, n)).

{R a x ∗R s z ∗ S ∗
tree(x, t) ∗ stack(sp, [], 2× depth(t)) ∗R 14 y}

BINARY SUM
{R a ∗R s (z + sum(t)) ∗ S ∗
tree(x, t) ∗ stack(sp, [], 2× depth(t)) ∗R 14 }λx.y

The formal ARM specification of BINARY SUM requires some of the entities to be
aligned addresses. Such details appear as slight variations of predicates M and
R, for details see the companion paper [10].

2.4 Excessive Separation

The separating conjunction ∗ is set up in such a way that an occurrence of
R a x ∗R b y in a precondition will always imply a 6= b. This is both a weakness
and a strength of our approach. It is a weakness since we will need many spec-
ifications for what seems to be special cases of a single operation. For instance,
binary operators are given 5 different specifications.

{R a x ∗R b y ∗R c }
mul c a b

{R a x ∗R b y ∗R c (x× y)}+1

{R a x}
mul a a a

{R a (x× x)}+1

{R a x ∗R b y}
mul b a b

{R a x ∗R b (x× y)}+1

{R a x ∗R b }
mul b a a

{R a x ∗R b (x× x)}+1

{R a x ∗R b y}
mul b b a

{R a x ∗R b (y × x)}+1

What appears to be an excessive use of ∗ is actually often a benefit. As mentioned
earlier, not all the specifications above are true in every case. Furthermore,
and particularly important, the separating conjunction makes the mechanisation
significantly easier, as technicalities concerning register name aliasing diminish.

3 Hoare Triple for Machine Code

This section defines a Hoare triple for machine code and formalises what was
informally presented in the previous section. This section ends with an example
of how proof rules can be derived for procedure calls.

3.1 State Representation

We assume that a state is represented as one large set of basic state elements,
where each element is an assertion specifying the state of a particular resource.
State sets are required to enumerate all the resources of the observable state. In
this presentation concrete states are enumerations of the following form:

{ Reg 0 820 , Reg 1 540 , Reg 2 412 , · · · , Reg 15 512 ,
Mem 0 34 , Mem 1 82 , Mem 2 11 , · · · , Mem (232 − 1) 40 ,
Status F }

Such sets contain 16 register elements Reg r x (register r holds value x), 232

memory elements Mem a y (memory address a holds value y) and one status bit
Status b (the status bit is b). No state is allowed to duplicate a basic state element,
e.g. register 3 must not occur, in any state, as both Reg 3 34 and Reg 3 45 . We

will denote the set of all well-formed states by Σ, thus members of Σ represent
states. Issues regarding restrictions on Σ are discussed further in Section 4.

The basic assertions described informally in the previous section can now be
defined as predicates on states.

R r x = λs. (s = {Reg r x})
M a y = λs. (s = {Mem a y})

S b = λs. (s = {Status b})

Let split s (u, v) mean that the pair of sets (u, v) partitions the set s, i.e.
split s (u, v) = (u ∪ v = s) ∧ (u ∩ v = ∅). Separating conjunction (∗) and the
notion of “some value” (written as a postfixed operator) are then defined by:

P ∗Q = λs. ∃u v. split s (u, v) ∧ P u ∧Q v

P = λs. ∃x. P x s

3.2 Execution Predicate

The judgments of our Hoare logic are based on assertions about processor execu-
tions. We define the execution assertion P ; Q to mean that execution starting
from any state which has a part satisfying P , will reach a state where only
the part initially satisfying P has been changed and satisfies Q. Note that this
incorporates a ‘frame assumption’. The formal definition assumes a next-state
function next : Σ → Σ and then uses run(s, n) to denote the state reached
after n steps starting from s (i.e. run is defined recursively by run(s, 0) = s and
run(s, n+1) = run(next(s), n)).

P ; Q = ∀s ∈ Σ. ∀F. (P ∗ F) s ⇒ ∃k. (Q ∗ F) (run(s, k))

The following frame-rule, similar to that of separation logic, easily follows.

P ; Q

∀F. (P ∗ F) ; (Q ∗ F)

3.3 Code Assertion

The basic execution predicate determines how the underlying processor executes
on a bare state. In order to specify how code executes we need first to specify
how code is located in memory and what the value of the program counter has.

Asserting the value of the program-counter is generally simple, say R 15 p
if register 15 is the program counter. Let pc(p) be such an assertion. Making a
general assertion about the code in memory is more difficult. The idea is to use
a kind of assertion we call a code-pool , which asserts that a union of possibly
overlapping code sequences are part of the memory. Our approach is similar to
that of Saabas and Uustalu [14] and Tan and Appel [16].

The definition of code-pool assertions uses a set-based separating conjunc-
tion operator ~ expressing the ∗-combination of the elements of an arbitrary

set. Informally: ~ {P1, · · · , Pn} = P1 ∗ · · · ∗ Pn (when P1 · · ·Pn are distinct).
The formal definition is based on a partial bijection between predicates Pi and
partitions of the state set. The definition is straightforward, but has a few subtle
details which are not particularly interesting. It is omitted due to lack of space.

A code pool is an assertion obtained by applying ~ to the union of sets
of basic instruction assertions M p c, where M p c specifies that instruction
c is executed if the program counter has value p (this is a special case of the
notion of basic instruction assertion that we actually use). If cs is a sequence
of instructions, then Mset(p, cs) denotes the set of assertions stating that the
sequence starts at position p and runs consecutively from there.

Mset(p, cs) = {M (p+ k) (cs[k]) | k < length(cs) }

A pair (cs, f) is a code sequence cs together with a specification f of where
to position it relative to a base address (see Section 2.3 for a discussion of
positioning functions). We use C to range over sets of such pairs, and then define:

mpool(p, C) = ~ (
⋃
{Mset(f(p), cs) | (cs, f) ∈ C })

The intuition is that mpool(p, {(cs1, f1), · · · , (csn, fn)}) is the same as the ex-
pansion of ms(f1(p), cs1) ∗ · · · ∗ms(fn(p), csn) with the duplicated M -assertions
removed by the set union. The benefit of using such a code pool is that it allows
code sequences to overlap and builds into the representation the removal of du-
plicate sequences. This benefit is particularly apparent in the rule for procedural
recursion, Section 3.6.

At the end of a verification of concrete code one can of course not have distinct
sequences of code that overlap. Such an arrangement makes the precondition(s)
of the machine-code Hoare-triple (defined in the next section) false and hence
the specification trivially true. The following two equivalences simplify a code-
pool into a simple sequence assertion.1 Note that in the equation below and later,
+length(cs) denotes the function that adds the length of cs, thus +length(cs)◦f
is the function λn. length(cs) + f(n).

mpool(p, {(cs, f)}) = ms(f(p), cs)
mpool(p, {(cs, f), (cs′,+length(cs) ◦ f)} ∪ C) = mpool(p, {(cs; cs′, f)} ∪ C)

3.4 Hoare Triple

In Section 2 we discussed a Hoare triple {P}f cs g {Q}h. We will shortly gen-
eralise this to have sets of preconditions, sets of code sequences and sets of
postconditions, but first we give a formal semantics of the simple case.

{P}f cs g {Q}h = ∀p. (P ∗ms(g(p), cs) ∗ pc(f(p))) ;

(Q ∗ms(g(p), cs) ∗ pc(h(p)))
1 The first of these equalities is only true under the assumption that the length of cs

does not exceed the length of the address space.

We can read {P}f cs g {Q}h as asserting that if the processor is started from
a state satisfying P and (for any p) if f(p) is in the program counter and the
code cs stored as a sequence from address g(p) onwards, then it will reach a
state satisfying Q. The specification also guarantees termination with the code
unchanged and the program counter updated to h(p). The functions f and g are
frequently the identity function, in which case the program counter points at the
first instruction in the sequence of instructions cs. Notice that the meaning of ∗
ensures that the precondition P ∗ms(g(p), cs)∗pc(f(p)) only holds when P does
not mention the program counter or any memory location where cs is stored.

We generalise the simple case to multiple preconditions, code segments and
postconditions, each with positioning functions fi, gi and hi, respectively:

{P1}f1 · · · {Pn}fn cs g1
1 · · · cs gm

m {Q1}h1 · · · {Qk}hk

The intuition is the following: if all the code segments are present in memory,
then whenever one of the preconditions {Pi}fi is true, some time later (at least)
one of the postconditions {Qj}hj will be true.

For the definition of the general Hoare-triple collect the preconditions, code
segments and postconditions into respective sets P = {(P1, f1), · · · , (Pn, fn)},
C = {(cs1, g1), · · · , (csm, gm)} and Q = {(Q1, h1), · · · , (Qk, hk)}. The machine-
code Hoare-triple, which is written here as P | C | Q , is defined using disjunction
over as set of predicates

∨
(formally:

∨
X = λs. ∃P ∈ X . P s).

P | C | Q = ∀p. (
∨
{ P ∗mpool(p, C) ∗ pc(f(p)) | (P, f) ∈ P }) ;

(
∨
{ Q ∗mpool(p, C) ∗ pc(f(p)) | (Q, f) ∈ Q })

A variety of rules have been derived from this definition of Hoare triple. Some
of the rules are presented in Figure 2. The rules for frame, shift and compose are
used when joining specifications (as illustrated in the next section). Strengthen,
weaken and merge are used when specifications are simplified. Contraction, ex-
tension and loop elimination add/remove entry points, exit points and code
segments. The rule for loop elimination removes any number of interconnected
exit points that match some set of entry point for a decreasing variant. The
equivalences are mainly used in derivations of new rules.

3.5 Example: Composition

The rule for composition given in Figure 2 is quite abstract. We demonstrate
its use by composing a specification of a decrement instruction and a branch
instruction (c.f. the instructions of the factorial program). The branch instruction
has two exit points, thus two postconditions. We illustrate the three possible
compositions below.

{R a x ∗ S }
subs a a 1

+1{R a (x−1) ∗ S (x−1 = 0)}+1

{S b}
bne k

+1{S T ∗ 〈b〉}+1

+k{S F ∗ 〈¬b〉}+k

Let “:” denote insertion into a set and “≺” denote any well-found relation.
Let P ∗̄F = { (P ∗ F, f) | (P, f) ∈ P } and P ◦̄ g = { (P, f ◦ g) | (P, f) ∈ P }.
Let 〈b〉 = λs. (s = ∅) ∧ b.

Frame, shift and compose.

P | C | Q
∀F. P ∗̄F | C | Q ∗̄F

P | C | Q
∀g. P ◦̄ g | C ◦̄ g | Q ◦̄ g

P | C | Q ∪M M∪P ′ | C′ | Q′

P ∪ P ′ | C ∪ C′ | Q ∪ Q′

Contract, extend, strengthen and weaken.

P ∪ P ′ | C | Q
P | C | Q

P | C | Q
P | C ∪ C′ | Q

P | C | Q
P | C | Q ∪ Q′

P ′ ⇒ P (P, f) : P | C | Q
(P ′, f) : P | C | Q

Q⇒ Q′ P | C | (Q, f) : Q
P | C | (Q′, f) : Q

Merge rules.

(P, f) : (P ′, f) : P | C | Q
(P ∨ P ′, f) : P | C | Q

P | C | (Q, f) : (Q′, f) : Q
P | C | (Q ∨Q′, f) : Q

P | (cs, f) : (cs′,+length(cs) ◦ f) : C | Q
P | (cs++ cs′, f) : C | Q

Loop elimination.

∀v. I(v) ∪ P | C | Q ∪ { i | i ∈ I(v′) ∧ v′ ≺ v }
∀v. I(v) ∪ P | C | Q

Various equivalences.

P | C | (∃x. Q(x) ∗ 〈b(x)〉, f) : Q = P | C | Q ∪ { (Q(x), f) | b(x) }

(∃x. P (x) ∗ 〈b(x)〉, f) : P | C | Q = { (P (x), f) | b(x) } ∪ P | C | Q

P | C | Q = ∀p. P ◦̄ (λx.p) | C ◦̄ (λx.p) | Q ◦̄ (λx.p)

Fig. 2. Rules for the machine-code Hoare triple.

Composition is commonly done in three stages: first the scope of the specifi-
cations is extended so that the footprints match, then the positioning functions
are made to match by a shift and finally the composition rule is applied followed
by an application of a code merge if applicable.

We start by constructing a specification for “ subs a a 1; bne k”. The frame
rule is used to extend the specification of bne and b is instantiated:

{R a (x−1) ∗ S (x−1 = 0)}
bne k

+1{R a (x−1) ∗ S T ∗ 〈x−1 = 0〉}+1

+k{R a (x−1) ∗ S F ∗ 〈x−1 6= 0〉}+k

A shift by +1 makes the precondition of bne match the postcondition of subs:

+1{R a (x−1) ∗ S (x−1 = 0)}+1

bne k +1

+2{R a (x−1) ∗ S T ∗ 〈x−1 = 0〉}+2

+(k+1){R a (x−1) ∗ S F ∗ 〈x−1 6= 0〉}+(k+1)

An application of the composition rule followed by a code merge yields:

{R a x ∗ S }
subs a a 1; bne k

+2{R a (x−1) ∗ S T ∗ 〈x−1 = 0〉}+2

+(k+1){R a (x−1) ∗ S F ∗ 〈x−1 6= 0〉}+(k+1)

Alternatively, the specification for subs can be tacked onto either branch
of bne. The compositions are done with shifts +1 and +k, respectively. The
composition with shift +k results in a specification with two code segments.

{R a x ∗ S b}
bne k; subs a a 1

{R a (x−1) ∗ S (x−1 = 0) ∗ 〈b〉}+2

{R a x ∗ S F ∗ 〈¬b〉}+k

{R a x ∗ S b}
subs a a 1 +k bne k
{R a x ∗ S T ∗ 〈b〉}+1

{R a (x−1) ∗ S (x−1 = 0) ∗ 〈¬b〉}+(k+1)

3.6 Example: Procedures and Procedural Recursion

This section illustrates how specifications for procedures and procedure calls fit
into our framework. We define the control-flow contract of a procedure and a
procedure call, derive a rule stating the effect of a procedure call and finally
present a rule that we have found useful when proving recursive procedures.

The standard contract of a procedure can be captured easily within our
framework. Commonly a procedure is given a return address to which it must
jump upon completion. Given a resource, say, lr that holds the return address
we can specify a reasonably general contract as follows:

proc(f, P, C, Q) = ∀p. {P ∗ lr p }f C {Q ∗ lr }λx.p

call(f, C, h, g)

∀p. {(lr , λx.h(p))} | C ◦̄ (λx.p) | {(lr(g(p)), λx.f(p))}
{(lr , λx.h(p))} | C ◦̄ (λx.p) | {(lr(g(p)), λx.f(p))}

{(P ∗ lr , λx.h(p))} | C ◦̄ (λx.p) | {(P ∗ lr(g(p)), λx.f(p))} (1)

proc(f, P, C′, Q)

∀p. {(P ∗ lr(p), f)} | C′ | {(Q ∗ lr , λx.p)}
{(P ∗ lr(g(p)), f)} | C′ | {(Q ∗ lr , λx.g(p))}

{(P ∗ lr(g(p)), f ◦ λx.p)} | C′ ◦̄ (λx.p) | {(Q ∗ lr , λx.g(p) ◦ λx.p)}
{(P ∗ lr(g(p)), λx.f(p))} | C′ ◦̄ (λx.p) | {(Q ∗ lr , λx.g(p))}

(2)

(1) (2)

{(P ∗ lr , λx.h(p))} | (C ◦̄ (λx.p)) ∪ (C′ ◦̄ (λx.p)) | {(Q ∗ lr , λx.g(p))}
{(P ∗ lr , h)} ◦̄ (λx.p) | (C ∪ C′) ◦̄ (λx.p) | {(Q ∗ lr , g)} ◦̄ (λx.p)

∀p. {(P ∗ lr , h)} ◦̄ (λx.p) | (C ∪ C′) ◦̄ (λx.p) | {(Q ∗ lr , g)} ◦̄ (λx.p)

{(P ∗ lr , h)} | C ∪ C′ | {(Q ∗ lr , g)}

Fig. 3. A derivation of the call rule.

Specifying a general procedure call is slightly more involved in our framework.
We define a call to be a jump that starts with the program counter set to h(p),
for any p, stores the address g(p) in lr and jumps to address f(p).

call(f, C, h, g) = ∀p. {lr }λx.h(p) (C ◦̄ (λx.p)) {lr(g(p))}λx.f(p)

The ARM instruction for branch-and-link BL satisfies a specification that is
essentially the same as call(+k, {(BL k,+0)},+0,+1).

The effect of executing a call call(f, C, h, g) to a procedure proc(f, P, C′, Q)
is described by the call rule, derived in Figure 3.

call(f, C, h, g) proc(f, P, C′, Q)
{P ∗ lr }h C ∪ C′ {Q ∗ lr }g

The call rule is quite general. It does not restrict the procedure body or
the call statement to be position dependent or independent. This was achieved
by the inclusion of positioning functions h, g and f . Of these functions f has
an artificial role when the procedure is position independent. Why should the
procedure specification have a positioning function in common with the call
specification, if the procedure specification is position independent?

In order to remove this oddity a special rule can be proved for calls to pro-
cedures that have the positioning function set to λx.x.

proc(λx.x, P, C′, Q)
∀p. {(P ∗ lr(p), λx.x)} | C′ | {(Q ∗ lr , λx.p)}

∀p. {(P ∗ lr(p), (λx.x) ◦ f)} | C′ ◦̄ f | {(Q ∗ lr , (λx.p) ◦ f)}
∀p. {(P ∗ lr(p), f)} | C′ ◦̄ f | {(Q ∗ lr , λx.p)}

proc(f, P, C′ ◦̄ f,Q)
(3)

call(f, C, h, g) (3)
{P ∗ lr }h C ∪ (C′ ◦̄ f) {Q ∗ lr }g

Informally this rule can be understood as follows: A call with jump function
f executes a position-independent procedure with code C′, if code C′ is placed
using function f .

Procedural recursion of one or more procedures is proved by induction over
a bounded variant function that decreases strictly on each recursive call. The
observation that each recursive call pushes at least one value (the return address)
onto the stack2, suggests that induction over the natural number is sufficient.
The remaining stack space3 is a natural number that decreases for each recursive
call. We have found the following induction rule useful in proofs of recursive
procedures. Let v be some variant function, < be less-than over the natural
numbers and ψ be any boolean-valued function.

∀x C′. (∀y. v(y) < v(x) ⇒ ψ(y, C′)) ⇒ ψ(x, C ∪ C′)
∀x. ψ(x, C)

The parameter C is intended to hold a set of code segments. Notice that C does
not occur in the assumption of the premise. The absence of C makes the rule
easier to use, as one does not need to assume the code one is constructing.

The definitions and theorems of this section were used in the verification of
BINARY SUM, Section 3.6. The verification of BINARY SUM was done as a case anal-
ysis over the structure of the tree. The case of a leaf was trivial as it exits on the
second instruction. The case of a branch required more work. For it we assumed
that there is some code C′ that performs the desired function for the subtrees.
We used the second version of the call rule to extract specifications for the BL
instructions that perform the recursive calls. The specifications for all twelve
instructions were then composed and the cases (leaf and branch) were merged.
The induction rule, from above, was specialised to trees by setting v to depth
(depth of a binary tree) and then used to eliminate the assumed specifications
and imaginary code C′. The same induction was also used in proving a variant
of BINARY SUM that has the last call replaced by a tail-recursive call. The details
of both proofs are given in [10].

4 Formalisation and Specialisation

Section 3.1 made restrictions on the format of the sets that are members of the
set of valid states Σ. Restrictions are needed in order to ensure the intended
meaning of separation for separating conjunction ∗. This section describes how
we avoid such issues in our formalisation of the general case and also how we
address them when the general theory is specialised and used.

2 We consider tail-recursive-call as a loop, not as a call.
3 We will not assume an infinite stack as we do not assume an infinite state space.

The general theory, which consists of the definition of the machine-code Hoare
triple and its rules, can be proved without any restrictions on the structure of
the state sets4. The machine-code Hoare triple can be defined and all its rules
proved for any set of state sets Σ, given a next-state function next : Σ → Σ 5,
a program-counter assertion pc : α → Σ → B and a basic instruction assertion
inst : α × β → Σ → B, for some set α of instruction addresses and some set β
of instructions. These abstractions ease the proof effort. All the definitions and
rules are parametrised by a 6-tuple (Σ,α, β, next, pc, inst).

When the general theory is instantiated and one wants to prove basic speci-
fications for the elementary operations of a specific language (examples of basic
specification: Section 2.2, 2.4 and 3.5), then one has to restrict the shape of Σ
so that ∗ has its intended meaning. We have found that a practical method for
restricting the shape of the state sets is to have them produced by a function.
We define Σ to be the range of a function tr, i.e. Σ = { tr(x) | any x }, for some
function tr that produces state sets of a specific form.

The function tr can be a translation function from a different state rep-
resentation. If this is the case and the translation is accurate enough to also
have an inverse t̄r (i.e. ∀x. t̄r(tr(x)) = x), then one can define the next-state
function for the set-based representation (next) using a next-state function over
the other state representation (say nextsem): next(s) = tr(nextsem(t̄r(s))). The
benefit of defining next according to a next-state function over a different state-
representation is a practical one. The detailed semantics of a machine-code lan-
guage might be more readily defined using a state-representation different from
the set-based representation that our approach requires. This is the case in the
application of our framework to the ARM processor: we generate members of Σ
formally from the representations of states used by the ARM model.

5 Summary

This paper has presented a Hoare logic that has been carefully designed to fit on
top of accurately modelled operational semantics of machine languages. Specifi-
cations are built on a separating conjunction, that allows concise resource usage
specifications and also helps avoid unwanted aliasing. Multiple code segments
and positioning functions make our specifications support control flow that al-
lows specifications of procedures and procedure calls, as well as general control
flow between position independent and position dependent code. We build on
previous work on separation logic [13] and unstructured control-flow [2, 16].

Our framework has been fully formalised in higher-order logic, mechanised
using the HOL4 system and has been applied to ARM machine-code using an
existing high-fidelity model of the ARM processor [10]. We have not yet applied
our framework to other architectures nor large case studies, but we think we

4 In the HOL mechanisation the type of a state element is parametrised by a type
variable. The type of a state set is “α set”.

5 Alternatively, one can use a next-state relation next : Σ × Σ, for this redefine ;.

have a methodology and implemented tools that will scale. Demonstrating this
is the next phase of our research.

Acknowledgments. We would like to thank Anthony Fox, Joe Hurd, Kon-
rad Slind, Thomas Tuerk, Matthew Parkinson, Josh Berdine, Nick Benton and
Richard Bornat for research discussions, comments and substantial constructive
criticism. The first author is funded by Osk.Huttusen Säätiö and EPSRC.

References

1. Andrew W. Appel. Foundational proof-carrying code. In Proc. 16th IEEE Sym-
posium on Logic in Computer Science (LICS). IEEE Computer Society, 2001.

2. Michael A. Arbib and Suad Alagic. Proof rules for gotos. Acta Informatica, 11:139–
148, 1979.

3. William R. Bevier. A verified operating system kernel. PhD thesis, University of
Texas at Austin, 1987.

4. Robert S. Boyer and Yuan Yu. Automated proofs of object code for a widely used
microprocessor. J. ACM, 43(1):166–192, 1996.

5. D. L. Clutterbuck and B. A. Carré. The verification of low-level code. Software
Engineering Journal, 3:97–111, 1988.

6. The HOL4 System (Description). http://hol.sourceforge.net/documentation.html.
7. David S. Hardin, Eric W. Smith, and William D. Young. A robust machine

code proof framework for highly secure applications. In Panagiotis Manolios and
Matthew Wilding, editors, Sixth International Workshop on the ACL2 Theorem
Prover and Its Applications, 2006.

8. Gerwin Klein, Harvey Tuch, and Michael Norrish. Types, bytes, and separation
logic. To appear in Martin Hofmann and Matthias Felleisen, editors, Proceedings
of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). Springer, 2007.

9. W. D. Maurer. Proving the correctness of a flight-director program for an airborne
minicomputer. In Proceedings of the ACM SIGMINI/SIGPLAN interface meeting
on Programming systems in the small processor environment. ACM Press, 1976.

10. Magnus O. Myreen, Anthony C. J. Fox, and Michael J. C. Gordon. Hoare logic for
ARM machine code. To appear in Proceedings of the IPM International Symposium
on Fundamentals of Software Engineering (FSEN). Springer, 2007.

11. George C. Necula. Proof-carrying code. In Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), 1997.

12. Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about pro-
grams that alter data structures. In Proceedings of Computer Science Logic, 2001.

13. John Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of 17th IEEE Symposium on Logic in Computer Science (LICS), 2002.

14. Ando Saabas and Tarmo Uustalu. A compositional natural semantics and hoare
logic for low-level languages. Electronic Notes in Theoretical Computer Science,
156(1):151–168, 2006.

15. David Seal. ARM Architecture Reference Manual. Addison-Wesley, 2000.
16. Gang Tan and Andrew W. Appel. A compositional logic for control flow. In

Proceedings of Verification, Model Checking and Abstract Interpretation (VMCAI),
volume 3855 of Lecture Notes in Computer Science. Springer, 2006.

