
Machine-code verification for multiple architectures
An application of decompilation into logic

Magnus O. Myreen, Michael J. C. Gordon
University of Cambridge

Computer Laboratory
William Gates Building, 15 JJ Thomson Avenue

Cambridge CB3 0FD, UK
Email: {magnus.myreen, mike.gordon}@cl.cam.ac.uk

Konrad Slind
University of Utah

School of Computing
50 South Central Campus Drive
Salt Lake City UT84112, USA

Email: slind@cs.utah.edu

Abstract— Realistic formal specifications of machine languages
for commercial processors consist of thousands of lines of
definitions. Current methods support trustworthy proofs of the
correctness of programs for one such specification. However, these
methods provide little or no support for reusing proofs of the
same algorithm implemented in different machine languages. We
describe an approach, based on proof-producing decompilation,
which both makes machine-code verification tractable and sup-
ports proof reuse between different languages. We briefly present
examples based on detailed models of machine code for ARM,
PowerPC and x86. The theories and tools have been implemented
in the HOL4 system.

I. INTRODUCTION

This paper concerns verification of programs written in
machine code of commercial processors whose semantics is
accurately specified. Such processors support a large number
of instructions and a multitude of features. Our aim is to be
able to verify machine code:

A: without introducing simplifying assumptions, and
B: not requiring expert knowledge of the models, while still
C: allowing reuse of proofs between different architectures.

Current approaches struggle to address challenge C, as they
either involve direct reasoning about the next-state function [1]
or are based on annotating the code with assertions [2], [3].
Annotating the code with assertions inevitably ties the proof to
the specific code and machine model as assertions are mixed
with the code and depend on machine-specific resource names.

Our contribution is a method for addressing challenges A, B
and C. Our approach adds a thin layer of abstraction to the ver-
ification process in order to make verification proofs tractable
and reuseable. A fully automatic decompiler is presented,
which translates machine code, via automatic deduction, into
tail-recursive functions defined in the language of a theorem
prover. Given a sequence of machine-code instructions, the
decompiler derives a tail-recursive function and proves a
theorem stating that the function accurately describes the
effect of the given machine code (addresses challenge A). The
user can concentrate on proving properties of the generated
function, which hides irrelevant details of the underlying ma-
chine language specification (challenge B). Properties proved

about the generated function are, via an automatically derived
theorem, related to the execution of the original machine code.
The function describes the executed low-level algorithm and is
likely to be very similar (illustrated in Section II-C) to another
function describing the same algorithm implemented in a
different machine language and thus can facilitate proof reuse
(challenge C). The decompiler and all examples, presented
in this paper, have been implemented in the HOL4 theorem
prover (our theories and tools are available from [4]).

Notation. We write program specifications as Hoare triples
{p} c {q}; informal meaning: if p holds for the current state
then code c will leave the process in a state satisfying q (formal
definition given in Section III-B).

II. EXAMPLE

This section shows how decompilation aids verification.
Subsequent sections describe the decompilation algorithm.

A. Running the automation
Consider the following ARM machine code (and assembly

code on the right) which calculates the length of a linked-list.
The code sets register 0 to zero; it then compares register 1
(the list pointer) with zero (nil), the last three instructions
execute conditionally based on the result of this comparison, if
register 1 is not zero, then the last three instructions increment
register 0, load register 1 from memory and jumps back to the
compare instruction, otherwise they do nothing.

0: E3A00000 mov r0, #0
4: E3510000 L: cmp r1, #0
8: 12800001 addne r0, r0, #1

12: 15911000 ldrne r1, [r1]
16: 1AFFFFFB bne L

Given the above list of hexadecimal numbers, our decom-
piler produces a function f describing the effect of the code.

f(r0, r1,m) = let r0 = 0 in g(r0, r1,m)

g(r0, r1,m) = if r1 = 0 then (r0, r1,m) else
let r0 = r0+1 in
let r1 = m(r1) in

g(r0, r1, m)

The decompiler also automatically proves the following theo-
rem relating the execution of the ARM code with the function
f (and an automatically generated precondition fpre, given in
Section IV-F). For now informally read the following Hoare-
triple specification as (defined in Section III-B): given a state
where register 0, register 1 and a part of memory is described
by (r0, r1,m), the program counter is p and precondition fpre

holds, then executing the code will leave the processor in a
state where register 0, register 1, a part of memory is described
by f(r0, r1,m) and the program counter is p+ 20.

{ (r0, r1,m) is (r0, r1,m) ∗ pc p ∗ fpre(r0, r1,m) }
p : E3A00000, p+4 : E3510000 . . . p+16 : 1AFFFFFB

{ (r0, r1,m) is f(r0, r1,m) ∗ pc (p+ 20) }

The precondition fpre(r0, r1,m) states the side-conditions
which must hold for f to execute properly.

B. Verifying the code

In order to verify that the above code computes the length of
a linked-list, we need to formalise the statement “the memory
holds a linked-list”. Let list(l, a,m) be a recursively-defined
predicate which states that an abstract list of 32-bit words l,
e.g. l = [4, 5] = 4::5::nil (we write ‘::’ for list cons), is
represented by a linked-list in memory m with its head at
address a. Each element of the list is represented by a word
for the next pointer and a word for the data. The words are
positioned 4 bytes apart, hence “+4” below.

list(nil, a,m) = a = 0
list(x::l, a,m) = ∃a′. m(a) = a′ ∧m(a+4) = x ∧ a 6= 0 ∧

list(l, a′,m) ∧ aligned(a)

Let length(l) be the length of an abstract list l, e.g.
length(4::5::nil) = 2. It is now easy (14 lines of HOL4) to
prove (by induction on the abstract list l) that function f from
above calculates the length of a linked list and also that list
implies the precondition fpre (which implies that f and the
machine code terminates).

∀x l am. list(l, a,m) ⇒ f(x, a,m) = (length(l), 0,m)
∀x l am. list(l, a,m) ⇒ fpre(x, a,m)

These lemmas about the generated function f can be given
to a proof tactic, which automatically proves (using the theo-
rem produced by the decompiler) that the original ARM code
calculates (length(l), 0,m), i.e. it proves a specification about
the original code which does not involve the automatically
generated function f or precondition fpre:

{ (r0, r1,m) is (r0, r1,m) ∗ pc p ∗ list(l, r1,m) }
p : E3A00000 . . . p+16 : 1AFFFFFB

{ (r0, r1,m) is (length(l), 0,m) ∗ pc (p+ 20) }

Hence by proving a property of the abstract function f we
have proved a property about the ARM code.

C. Reusing the proof
An interesting aspect of our approach (addressing chal-

lenge C from above) is that it facilitates reuse of proofs, even
between different architectures. To illustrate this point consider
the following x86 code,

0: 31C0 xor eax, eax
2: 85F6 L1: test esi, esi
4: 7405 jz L2
6: 40 inc eax
7: 8B36 mov esi, [esi]
9: EBF7 jmp L1

L2:

and also the following PowerPC code for calculating the length
of a linked-list.

0: 38A00000 addi 5,0,0
4: 2C140000 L1: cmpwi 20,0
8: 40820010 bc 4,2,L2

12: 7E80A02E lwzx 20,0(20)
16: 38A50001 addi 5,5,1
20: 4BFFFFF0 b L1

L2:

Since the functional behaviour of all three code examples
are essentially the same, the functions describing their be-
haviour are almost identical. f ′ is the function extracted for
the x86 code and f ′′ is the same for PowerPC. We write ‘⊗’
for bitwise xor and ‘&’ for bitwise and.
f ′(eax, esi,m) = let eax = eax ⊗ eax in g′(eax, esi,m)

g′(eax, esi,m) = if esi& esi = 0 then (eax, esi,m) else
let eax = eax+1 in
let esi = m(esi) in

g′(eax, esi, m)

f ′′(r5, r20,m) = let r5 = 0 in g′′(r5, r20,m)

g′′(r5, r20,m) = if r20 = 0 then (r5, r20,m) else
let r20 = m(r20) in
let r5 = r5+1 in

g′′(r5, r20, m)

Minor differences, such as register names, conditional ex-
ecution (ARM), variable instruction length (x86) and some
instruction reordering (PowerPC example has load before
increment), disappear in the functional description of the
behaviour of the code. As a result the extracted functions can
be proved equal by a short proof, in this case a three line
HOL4 proof, using facts w⊗w = 0 and w&w = w.

f = f ′ = f ′′ and fpre = f ′
pre = f ′′

pre

Thus, any result proved for f and fpre also describes the
x86 and PowerPC implementations. By applying an automatic
proof tactic we immediately obtain the same specification for
the x86 code:
{ (eax, esi,m) is (eax, esi,m) ∗ eip p ∗ list(l, esi,m) }

p : 31C0 . . . p+9 : EBF7
{ (eax, esi,m) is (length(l), 0,m) ∗ eip (p+ 11) }

and similarly for the PowerPC code:

{ (r5, r20,m) is (r5, r20,m) ∗ pc p ∗ list(l, r20,m) }
p : 38A00000 . . . p+20 : 4BFFFFF0

{ (r5, r20,m) is (length(l), 0,m) ∗ pc (p+ 24) }

The decompiler automates the machine-specific proofs and
delivers completely automatically to the user a recursive
function describing the code. The generated functions are
sufficiently abstract to be reusable while at the same time have
a strong connection with the original machine code enabling
properties of the function to carry over to properties proved
of the machine code.

D. Larger examples

Our decompilation technique has been applied to a number
of verification examples. The most significant are the veri-
fication of two copying garbage collectors (variants of the
Cheney garbage collector [5]). The largest examples consist
of approximately one hundred machine instructions.

Similar Cheney collectors have been verified by Birkedal
et al. [6] (on paper) and McCreight et al. [7] (using Coq).
The proofs by McCreight et al. (7775 lines) are much longer
than our (approximately 2000-line) proofs, which suggests that
decompilation aided our verification effort. Our decompiler
is currently implemented in 1123 lines of ML with approx-
imately 2300 lines of supporting proof scripts, and works
on top of models of x86, ARM and PowerPC whose HOL4
definitions total more than 10000 lines.

III. PRELIMINARIES

Before presenting the algorithm for decompilation into logic
(next section), we overview the models used in our examples,
the Hoare triples, and our approach to proving loops.

A. Mechanised models of x86, ARM and PowerPC

Our current implementation supports x86, ARM and Pow-
erPC machine code. The underlying operational models of the
machine languages are detailed descriptions of a next-state
function next : state→ state, which executes one instruction
for each next application.

The machine language models were not developed for use
with our tool. The ARM model is a specification of ARMv4
written by Fox [8], which he proved correct with respect to
a register-transfer-level specification of an ARM processor
(ARM6). The PowerPC model is a translation (manual trans-
lation of Coq to HOL4) of Leroy’s PowerPC specification,
which he used in a proof of an optimising C compiler [9]; we
attached an instruction decoder to it in order to transform his
assembly level model into a machine code model of PowerPC.
The x86 specification is a functional HOL4 version of Sarkar’s
x86 specification [10], developed originally in Twelf for use in
a applications of proof-carrying code. All the models we base
this work on are available with our HOL4 proof scripts [4].

B. Hoare triple specifications

This section defines, in higher-order logic, the Hoare triples
we use to make specifications concise and manageable. These
are a stream-lined version of previously presented Hoare
triples for machine code [11], [12].

The Hoare triples view states as sets of state elements. In
order to accommodate this view, we define translations from
the states used by the models to sets of state elements, e.g.
for PowerPC we define the type ppc elem of state elements
with the following type constructors:

pReg : ppc reg name × word32→ ppc elem
pMem : word32 × word8 option→ ppc elem
pStatus : ppc bit name × boolean option→ ppc elem

and define a translation function ppc2set, which translates
states from the processor model’s format to states in the
set-based representation. The following is an example of the
output from ppc2set: (GPR = general purpose register)

{ pReg (GPR 0) 5, pReg (GPR 1) 56, pReg (GPR 2) 89, ... ,
pMem 0 none, pMem 1 (some 67), pMem 2 (some 255), ... ,
pStatus (CPR0 0) (some true), pStatus (CPR0 1) none, ... }
The Hoare triple uses a separating conjunction ∗ inspired

by separation logic. Separation logic defines its ∗ over partial
functions; we define ours over sets:

(p ∗ q) s = ∃u v. p u ∧ q v ∧ (u ∪ v = s) ∧ (u ∩ v = {})

The separating conjunction splits the state into two disjoint
parts. Basic assertions access only part of the state, e.g.
asserting that GPR 0 has value x is defined as:

(r0 x) s = (s = {pReg (GPR 0) x})

Basic assertions together with the ∗-operator consume a part
of the state, e.g. (r0 x∗res) (ppc2set(s)) is false if res makes
an assertion about the value of GPR 0.

Let run(n, s) be a function which applies the next-function
n-times to s, i.e.

run(0, s) = s

run(n+1, s) = run(n, next(s))

The Hoare triple is defined to assert: for any state s for which
a portion satisfies p and a separate portion satisfies a code
assertion (defined, together with other memory assertion, in
Section IV-K), there exists some number of next applications
which will take the processor to a state where q satisfies a
portion of the state separate from the code.

{p} c {q} =
∀s r. (p ∗ code c ∗ r) (ppc2set(s)) ⇒

∃k. (q ∗ code c ∗ r) (ppc2set(run(k, s)))

Thus {p} c {q} is a total-correctness specification.
The frame rule can be derived from this definition: it allows

any assertion for a disjoint portion of the state to be added to
the specification:

{p} c {q} ⇒ ∀r. {p ∗ r} c {q ∗ r}

Other important rules are composition, which combines two
specifications and takes the set-union of their code elements:

{p} c1 {m} ∧ {m} c2 {q} ⇒ {p} c1 ∪ c2 {q}

and a rule for moving pure assertions g (an assertion g is ‘pure’
if it consumes no resources, i.e. ∀p s. (p ∗ g) s = p s∧ g) out
of the precondition:

{p ∗ (g)} c {q} = (g ⇒ {p} c {q})

Note that these rules are just theorems of higher-order logic
proved from the definitions of Hoare triples and separating
conjunction given above.

C. Proving loops

When proving specifications for code with loops our de-
compilation algorithm instantiates a special loop-rule for tail-
recursive functions. This rule assumes the existence of a
termination proof for the tail-recursive function and uses the
induction arising from the termination proof in proving the
specification for the code implementing the tail-recursion.

Decompilation only generates tail-recursive functions, i.e.
functions tailrec with instantiations of G, F and D, where:

tailrec(x) = if G(x) then tailrec(F (x)) else D(x)

tailrec can be defined directly (without a termination proof
in HOL4) using a trick by Manolios and Moore [13].

However, the decompiler requires tailrec to terminate for
certain inputs. Tail-recursions defined by tailrec terminate for
input x if and only if some number of applications of F to x
make G false, i.e. ∃n. ¬G(pow(n, F, x)) with pow as:

pow(0, F, x) = x

pow(n+1, F, x) = pow(n, F, F (x))

We define pre(x) to state that tailrec(x) terminates and
also that side-condition P is true for each call to tailrec
(Section IV-E illustrates an instantiation of P).

pre(x) = ∃n. ¬G (pow(n, F, x))∧
∀k. (∀m. m < k ⇒ G (pow(m,F, x)))⇒

P (pow(k, F, x))

pre satisfies two desirable properties: pre can be unrolled by
a rewrite (particularly useful in proofs by induction):

pre(x) = P (x) ∧ (G(x)⇒ pre(F (x)))

and the following induction can be derived from its definition:

∀ϕ. (∀x. pre(x) ∧G(x) ∧ ϕ(F (x))⇒ ϕ(x))∧
(∀x. pre(x) ∧ ¬G(x)⇒ ϕ(x))⇒
(∀x. pre(x)⇒ ϕ(x))

This induction rule leads to the following loop rule, which
the decompiler instantiates whenever it encounters a loop (an
example instantiation is given in Section IV-E).

∀res res’ c. (∀x. P (x) ∧G(x)⇒ {res x} c {res F (x)}) ∧
(∀x. P (x) ∧ ¬G(x)⇒ {res x} c {res’ D(x)})⇒
(∀x. pre(x)⇒ {res x} c {res’ tailrec(x)})

For the proof of this rule, instantiate ϕ in the induction
principle above with λx. {res x} c {res’ tailrec(x)} and use
the composition rule and the inductive hypothesis together
with c ∪ c = c and G(x)⇒ tailrec(F (x)) = tailrec(x).

IV. ALGORITHM

This section outlines our algorithm for decompiling machine
code into logic. There are six steps:

1) calculate the behaviour of each individual instruction;
2) prove a specification for each instruction;
3) discover the control flow by analysing the specifications;
4) split the code according to the control-flow graph;
5) for each code segment:

a) derive a specification for one pass through the code,
b) generate a function describing the code;
c) for loops, instantiate a loop rule.

6) compose the top-level specifications and repeat step 5
until all of the code is described by one specification.

The following subsections explain these steps when applied
to the linked-list example from Section II. Later subsections
describe support for procedure calls as well as non-nested
loops. Restrictions of our approach are outlined in Section V.

A. Behaviour of instructions

As a first step, each instruction’s effect on the underlying
machine-language model is evaluated. We use standard tech-
niques from symbolic simulation to construct statements about
the next-state function. As an example: the x86 instruction 40,
which is the hexadecimal encoding of inc eax (increment
the EAX register), produces the following theorem. Here eip is
the instruction pointer, a.k.a. program counter, and AF, SF, ZF
etc. are status bits called “eflags”. Here and throughout option-
types1 are used for values that may hold unpredictable or
unmodelled values, e.g. the theorem shows that eflag OF gets
an unmodelled value, while eflag ZF is assigned the boolean
result of the comparison eax+ 1 = 0.

x86 read reg EAX s = eax ∧
x86 read eip s = eip ∧
x86 read mem eip s = some 0x40⇒
x86 next s =

some (x86 write reg EAX (eax+ 1)
(x86 write eip (eip+ 1)
(x86 write eflag AF none
(x86 write eflag SF (some (sign of(eax+ 1)))
(x86 write eflag ZF (some (eax+ 1 = 0))
(x86 write eflag PF (some (parity(eax+ 1)))
(x86 write eflag OF none s)))))))

1something of type option is either ‘some x’, meaning ‘has value x’, or
‘none’ meaning ‘has an unmodelled or unpredictable value’.

B. Instruction specifications

As a second step we derive Hoare-triple specifications
for each instruction in the given program, e.g. the move-
instruction from the ARM code for length-of-linked-list has
the following specification:

{ r0 r0 ∗ pc p } p : 0000A0E3 { r0 0 ∗ pc (p+4) }

Two specifications are produced for instructions that execute
conditionally, e.g. the ARM instruction for branch-if-not-
equal: (sz asserts the value of status bit ‘z’)

{ sz z ∗ pc (p+16) ∗ ¬z } p : FBFFFF1A { sz z ∗ pc (p+4) }

{ sz z ∗ pc (p+16) ∗ z } p : FBFFFF1A { sz z ∗ pc (p+20) }

C. Control-flow discovery

A heuristic reads the pc assertions in the postconditions and
builds a summary of how control can flow. The linked-list
example results in the following description:

0→ 4, 4→ 8, 8→ 12, 12→ 16, 16→ 20, 16→ 4

The heuristic searches for loops by analysing this graph. It
finds that instructions 4, 8, 12, 16 constitute a loop.

D. Finding the function

Once loops have been detected in the control-flow graph,
we start by proving a specification for the inner-most loop.
We compose specifications for individual instructions in order
to get a specification for one pass of execution through the
code. Composing the specifications for the loop in the ARM
code of the linked-list example results in two specifications23;
one for the case r1 = 0:

{ r0 r0 ∗ r1 r1 ∗m m ∗ pc (p+4) }
... the arm code ...

{ r0 r0 ∗ r1 r1 ∗m m ∗ pc (p+20) }

and one for the case r1 6= 0, if r1 ∈ dom(m) ∧ aligned(r1):

{ r0 r0 ∗ r1 r1 ∗m m ∗ pc (p+4) }
... the arm code ...

{ r0 (r0+1) ∗ r1 (m(r1)) ∗m m ∗ pc (p+4) }

Notice that the program counter is returned to p+4 in case
r1 6= 0, indicating that the function describing the code is to
loop when r1 6= 0. The generated function is constructed to
mimic the effect of the code:

g(r0, r1,m) = if r1 = 0 then (r0, r1, m) else g(r0+1, m(r1), m)

2Our implementation inserts let-expressions at this stage but we avoid them
in our illustrations in order to reduce the size of expressions.

3To be completely accurate, from this point onwards all pre- and postcon-
ditions in this paper should end in “... ∗ s}”. Here s existentially quantifies
the values of the status bits, i.e. the Hoare triples abstract the values of the
status bits: they state “... and the status bits have some value before and after
execution”. One can turn off this abstraction and keep track of the exact value
of the status bits just as for any other resource.

E. Proving the specification

The generated function is always a tail-recursion (if recur-
sive at all). This means that the function can be defined as an
instance of tailrec from Section III-C. Function g from above
is defined as tailrec with F , G and D as:

G = λ(r0, r1,m). r1 6= 0
F = λ(r0, r1,m). (r0+1,m(r1),m)
D = λ(r0, r1,m). (r0, r1,m)

and the precondition gpre is defined as pre (also from Section
III-C) with the same instantiations, and parameter P as:

P = λ(r0, r1,m). r1 6= 0⇒ r1 ∈ dom(m) ∧ aligned(r1)

P is defined as such in order for gpre(r0, r1,m) to imply the
side condition appearing in case r1 6= 0 of Section IV-D.

Let resource assertions res and res’ be:

res = λ(r0, r1,m). (r0, r1,m) is (r0, r1,m) ∗ pc (p+4)
res′ = λ(r0, r1,m). (r0, r1,m) is (r0, r1,m) ∗ pc (p+20)

With these instantiations the conclusion of the loop-rule from
Section III-C is exactly the desired result for the loop:

{ (r0, r1,m) is (r0, r1,m) ∗ pc (p+4) ∗ gpre(r0, r1,m) }
... the arm code ...

{ (r0, r1,m) is g(r0, r1,m) ∗ pc (p+20) }

The premises of the loop-rule are trivial consequences (by
simple rewriting in HOL4) of the theorems describing one
pass through the code, given in Section IV-D.

F. Merging cases recursively

Sections IV-D and IV-E showed how tail-recursive functions
tailrec and specifications of the form

{res x ∗ pc (...) ∗ pre(x)} c {res’ tailrec(x) ∗ pc (...)}

can be constructed and proved for code with at most one top-
level loop, given specifications for each individual instruction
of the code c, obtained in Sections IV-A and IV-B.

Specification for nested loops and code around loops can
be proved by recursively repeating the above procedure for
code enclosing the inner loops. For the linked-list example the
decompilation algorithm will repeat Sections IV-D and IV-E
based on the specification of the move-instruction (at the top
of Section IV-B) and the above specification proved for g (at
the end of Section IV-E), which then defines f and proves the
theorem shown in Section II-A. The generated fpre is defined
as an instance of pre, but returned as the following theorem.

fpre(r0, r1,m) = gpre(0, r1,m)

gpre(r0, r1,m) = (r1 6= 0)⇒
r1 ∈ dom(m) ∧ aligned(r1)∧
gpre(r0+1,m(r1),m)

G. Non-nested loops

The examples above have considered machine-code pro-
grams that start executing at the top of the code and exit at the
end of the code, with all intermediate loops properly nested.
More general forms of control flow are handled by treating
the program counter as any other resource, i.e. the program
counter becomes part of the function ‘(..., pc) is f(...)’, just
as any other register value. In such cases, the position q of the
code needs to be passed in to the generated function f . As an
example, when the following non-nested loops are processed

0: E2800001 L: add r0,r0,#1
4: E3100001 M: tst r0,#1
8: 1AFFFFFC bne L ;; may goto L

12: E2500002 subs r0,r0,#2
16: 1AFFFFFB bne M ;; may goto M

the generated function compares the value of the program
counter p with the position of the code q:

f(r0, p, q) =
if p = q then

let r0 = r0 + 1 in f(r0, q+4, q)

else if r0 & 1 6= 0 then
f(r0, q, q)

else
let r0 = r0 − 2 in

if r0 = 0 then (r0, q+20) else f(r0, q+4, q)

The resulting theorem is:

{ (r0, pc) is (r0, p) ∗ p ∈ {q, q+4} }
q : ... code ...

{ (r0, pc) is f(r0, p, q) }

The decompiler instantiates q with p before using the above
Hoare triple specification in subsequent proofs.

H. Procedure calls

Procedure calls are, in machine code, implemented using
branch-and-link instructions. These branch instructions per-
form a normal branch and at the same time save a return
address, e.g. on ARM the branch-and-link instruction stores
the return address in register 14:

{r14 x ∗ pc p} p : EB000009 {r14 (p+4) ∗ pc (p+48)}

Given the following specification for the procedure’s code,

{ (pc, r14, res) is (p, r14, x) ∗ tpre(p, r14, x) }
p : procedure code

{ (pc, r14, res) is t(p, r14, x) }
we can compose the call with the procedure’s specification,

{ (pc, r14, res) is (p, r14, x) ∗ tpre(p+48, p+4, x) }
p : EB000009 ∪ p+48 : procedure code
{ (pc, r14, res) is t(p+48, p+4, x) }

and by strengthening the precondition tpre to assume that
control returns to the callee, let fst(x, y) = x,

t′pre(p, q, x) = tpre(p, q, x) ∧ (fst(t(p, q, x)) = q)

we have a specification for the procedure which has the shape
of a normal instruction specification (enters at pc p and exits
at pc (p+4)). Thus specifications for procedure calls can be
derived from the specification of the called procedure. The
function generated by the decompiler includes a reference to
function t generated for the procedures body.

let (, r14, x) = t(p+48, p+4, x) in ...

Procedural recursion poses a challenge as an induction is
required. In principle, it is possible to support procedural
induction by regarding the program counter as any other
resource, as was done in the previous section. However, the
generated function is far less intuitive using that technique.

I. Support for user-defined resource assertions

Notice that the operations of the decompiler do not depend
on the particular properties of the basic resource assertions
(r0, r1, m etc.). As a result, specifications involving com-
pletely different, user-defined, assertions can be fed into the
decompiler for use instead of automatically proved instruction
specifications.

As an example consider this Hoare triple describing the
alloc routine of one the garbage collectors we have ver-
ified using decompilation (see Section II-D). Here heap is
predicate stating that a garbage collected heap is present
in memory. The alloc function’s precondition states that the
number of (#) reachable elements in the abstract heap h from
roots v1, v2, v3, v4 must be less than the heap limit l. The post
condition state that the abstract heap modelling function h is
updated with a new element fresh h, which points at a cons
cell containing (v1, v2). The address of the new element is
stored in the place of root variable v1.4

{ pc p ∗#reachable(v1, v2, v3, v4, h) < l ∗
heap (a, v1, v2, v3, v4, h, l) }
... collector code ...

{ pc (p+332) ∗
heap (a, fresh h, v2, v3, v4, h[fresh h 7→ (v1, v2)], l) }

When such specifications can be given as input to the
decompiler, in our implementation using a special keyword
‘insert ...’ in the given code, the decompiler can look-up
and use this specification. The resulting generated function
contains the roots v1, v2, v3, v4 and heap h as variables:

let (v1, h) = (fresh h, h[fresh h 7→ (v1, v2)]) in ...

the theorem contains ‘(heap, r0, ...) is ...’, and the generated
precondition will keep track of a sufficient condition under
which the heap limit is not exceeded.

J. Code and memory assertions

The code and memory assertions are defined in this section.
The code assertion for ARM is the simplest one: it states that

4Details of this specification for alloc and its proof will be part of the
first author’s forth coming PhD thesis.

the memory hold a set of (p, w) instructions, where p is the
address and w is the 32-bit word (the instruction).

code set s = (s = { aMem p (some w) | (p, w) ∈ set })

The memory assertion m m states that memory location a
has value m(a) if a ∈ dom(m) and a is word-aligned (two
least significant bits are zero, i.e. a& 3 = 0).

m m = code { (a,m(a)) | a ∈ dom(m) ∧ a& 3 = 0 }

The code assertions for PowerPC and x86 are slightly
more complicated due to the fact that their set representation
(and the underlying model) considers the memory as byte-
addressed, i.e. a 32-bit word consists of four bytes. The code
assertion for PowerPC (which is a big-endian architecture):

word(p, w) = { pMem (p+0) (some (w[31−24])),

pMem (p+1) (some (w[23−16])),

pMem (p+2) (some (w[15−08])),

pMem (p+3) (some (w[07−00])) }

code set s = (s =
⋃
{word(p, w) | (p, w) ∈ set })

The definition of m for PowerPC uses code just as ARM.
The code assertion for x86 is defined recursively, since x86

instructions are lists of bytes:

x86 list(p, []) = {}
x86 list(p, c::cs) = { xMem p (some c) } ∪ ia list(p+1, cs)

code set s = (s =
⋃
{ ia list(p, cs) | (p, cs) ∈ set })

x86’s memory assertion takes into account that the architecture
is little-endian:

word(p, w) = { xMem (p+0) (some (w[07−00])),

xMem (p+1) (some (w[15−08])),

xMem (p+2) (some (w[23−16])),

xMem (p+3) (some (w[31−24])) }

m m s = (s =
⋃
{word(a,m(a)) | a ∈ dom(m)∧

a& 3 = 0 })

These assertions act as a thin layer of additional abstraction.

K. Memory separation

The examples presented so far have only used a single
memory assertion m m at a time. However, it is often useful to
separate memory into logical segments, e.g. one for the stack
s and one for the heap h:

{m s ∗m h ∗ ...} p : ... {...}

Notice that this specification implicitly assumes that s and h
describe disjoint parts of memory, since ‘∗’ makes assertions
‘consume’ memory (Section III-B). The functions produced by
the decompiler will then use two memory modelling functions
s and h, and most importantly an update to the stack s will
not affect the heap h (and vice versa). This feature is used

heavily in some of the garbage collector proofs in order to
avoid some proof obligations that arise from possible pointer
aliasing between the stack and the heap (in case the stack and
the heap happened to overlap, a case we rule out).

Memory separation can easily be implemented by modify-
ing the output from the routines that derive Hoare triple spec-
ifications (Section IV-B). A heuristic is fed in to that routine
which renames memory modelling functions depending on the
registers that access them, e.g. our default heuristic renames
memory modelling functions to s, if the stack pointer is used,
while all other accesses are to memory called m.

V. RESTRICTIONS

Our method is completely automatic and is reasonably
light-weight to implement. Restrictions of our approach are
discussed below.

A. Deterministic behaviour required

The method is only applicable to programs that have de-
terministic behaviour, for otherwise the code is not a function
of its inputs and the decompiler could not produce a function
describing the code.

B. Heuristics used for control flow discovery

The decompiler uses heuristics to discover the possible
execution paths in the code. The heuristics work well for
code where all branches are made to offsets of the current
program counter. Branch-and-link instructions are considered
to be procedure calls and any instruction moving an address
into the program counter from a register or stack location is
assumed to perform a procedure return. As a result, our simple
heuristic is easily confused by computed branches and calls
to code pointers.

VI. DISCUSSION OF RELATED WORK

Different techniques for program verification, with respect
to accurate models of machine code, are discussed below.

Symbolic simulation is a technique applicable to machine
code modelled by an operational semantics. The approach is
based on executing the next-state function on states where
registers and memory location have been assigned symbolic
values (logical variables, e.g. x, y); the result is a new state
where resources hold expressions (e.g. x+y), for which the
verifier is to prove properties. This method is emphasised and
successfully applied by the ACL2 community [14], [15], e.g.
Boyer and Yu used symbolic simulation in pioneering work
on verification of the GNU string library compiled by GCC
for the Motorola MC68020 [1], and similar techniques were
used by Liu and Moore in proofs of Java bytecode programs
with respect to an extensive model of the Java Virtual Machine
(JVM) [16]. Symbolic simulation has the disadvantages that
the expressions produced by simulation, directly on top of
the operation semantics, can become fiendishly complex, and
loops reqiure user interaction. However, Currie et al. [17]
have developed automatic tools, based on symbolic simulation,
which prove equivalence between snippets of machine code for
embedded devices.

Using a programming logic directly on top of the definition
of the semantics of the machine code is an approach which
lends itself well to reasoning about loops and control flow
that is problematic for symbolic simulation. Shao’s group
at Yale [18] have used programming logics (inspired by
separation logic and rely-guarantee) in verification of (slightly
idealised) assembly programs. Foundational proof checking
[19] and Typed Assembly Language [20], [21] also belong
to this category. However, they aim to check relatively weak
safety properties – while this paper’s techniques are concerned
with proving complete functional correctness.

Using verification condition generators (VCGs) one anno-
tates the code with assertions for which the VCGs calculates
verification conditions that imply consistency of the assertions
with respect to some programming logic. The integrity of the
VCG is a concern, as practical VCGs tend to be complex [22],
[23]. However, Homeier and Martin [24] showed that VCGs
can be verified and Matthews et al. [3] has showed that
off-the-shelf theorem provers can be used in a way which
gives the benefits of a VCG without actually constructing
a full VCG. Hardin et al. [2] have applied the technique
described by Matthews et al. to machine code of Rockwell
Collins AAMP7G. The main disadvantage of annotating the
code with assertions is that the assertions become tied to
the specific machine language and/or the particular definition
of the semantics and, thus, do not provide the appropriate
abstractions required for proof reuse.

Decompilation automatically reverse-engineers an abstrac-
tion of machine code. Decompilation is most often used to
reverse compilation from a language such as C [25], but
can, as we have shown in this paper, be used to produce
abstractions in higher-order logic – a language much more
amenable to formal reasoning than C. There is generally little
work in this area, but work by Filliâtre [26] and Katsumata and
Ohori [27] is related to ours. Filliâtre shows how imperative
loops can, in type theory, be turned into recursive functions
for purposes of verification. Unlike our approach his requires
the code to be annotated with invariants and does not apply
the method to low-level languages. Katsumata and Ohori have
developed a decompiler, from a small subset of idealised Java
bytecode to recursive functions, based on ideas from type
theory. The decompiler implementing their methodology has
not been verified. It seems that the decompiler would need
to be trusted, if its output were to be used in verification. In
contrast our approach is to produce a proof for each run, hence
the decompiler need not be trusted.

ACKNOWLEDGMENTS

We would like to thank Thomas Tuerk, Anthony Fox,
Boris Feigin, Max Bolingbroke and John Regehr for research
discussions. The first author is grateful for funding from
Osk. Huttusen säätiö, Finland, and EPSRC, UK.

REFERENCES

[1] R. S. Boyer and Y. Yu, “Automated proofs of object code for a widely
used microprocessor,” J. ACM, vol. 43, no. 1, pp. 166–192, 1996.

[2] D. S. Hardin, E. W. Smith, and W. D. Young, “A robust machine code
proof framework for highly secure applications,” in Proceedings of the
Sixth International Workshop on the ACL2 Theorem Prover and Its
Applications, P. Manolios and M. Wilding, Eds., 2006.

[3] J. Matthews, J. S. Moore, S. Ray, and D. Vroon, “Verification condition
generation via theorem proving,” in Logic for Programming Artificial
Intelligence and Reasoning (LPAR), ser. LNCS, M. Hermann and
A. Voronkov, Eds., vol. 4246. Springer, 2006, pp. 362–376.

[4] Project sources files available under ‘HOL/examples/mc-logic’ in the
HOL4 distribution at SourceForge: http://hol.sourceforge.net/. 2008.

[5] C. J. Cheney, “A non-recursive list compacting algorithm,” Commun.
ACM, vol. 13, no. 11, pp. 677–678, 1970.

[6] L. Birkedal, N. Torp-Smith, and J. Reynolds, “Local reasoning about
a copying garbage collector,” in Principles of programming languages
(POPL). ACM Press, 2004, pp. 220–231.

[7] A. McCreight, Z. Shao, C. Lin, and L. Li, “A general framework
for certifying garbage collectors and their mutators,” in Programming
Language Design and Implementation (PLDI), J. Ferrante and K. S.
McKinley, Eds. ACM, 2007, pp. 468–479.

[8] A. Fox, “Formal specification and verification of ARM6,” in Theorem
Proving in Higher Order Logics (TPHOLs), ser. LNCS, D. Basin and
B. Wolff, Eds., vol. 2758. Springer, 2003.

[9] X. Leroy, “Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant,” in 33rd symposium Principles of
Programming Languages POPL. ACM Press, 2006, pp. 42–54.

[10] K. Crary and S. Sarkar, “Foundational certified code in a metalogical
framework,” Carnegie Mellon University, Tech. Rep. CMU-CS-03-108,
2003.

[11] M. O. Myreen and M. J. Gordon, “A Hoare logic for realistically
modelled machine code,” in Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), ser. LNCS. Springer-Verlag, 2007.

[12] M. O. Myreen, A. C. Fox, and M. J. Gordon, “A Hoare logic for
ARM machine code,” in International Symposium on Fundamentals of
Software Engineering (FSEN), ser. LNCS. Springer-Verlag, 2007.

[13] P. Manolios and J. S. Moore, “Partial functions in ACL2,” J. Autom.
Reasoning, vol. 31, no. 2, pp. 107–127, 2003.

[14] R. S. Boyer and J. S. Moore, “Proving theorems about pure LISP
fucntions,” JACM, vol. 22, no. 1, pp. 129–144, 1975.

[15] J. S. Moore, “Symbolic simulation: An ACL2 approach,” in Formal
Methods in Computer-Aided Design (FMCAD), 1998, pp. 334–350.

[16] H. Liu and J. S. Moore, “Java program verification via a JVM deep
embedding in ACL2,” in Theorem Proving in Higher Order Logics
(TPHOLs), ser. Lecture Notes in Computer Science, K. Slind, A. Bunker,
and G. Gopalakrishnan, Eds., vol. 3223. Springer, 2004, pp. 184–200.

[17] D. Currie, X. Feng, M. Fujita, M. Kwan, S. Rajan, A. J. Hu, and
A. J. Hu, “Embedded software verification using symbolic execution and
uninterpreted functions,” International Journal of Parallel Programming,
vol. 34, 2006.

[18] The FLINT Group. Yale University. http://flint.cs.yale.edu/.
[19] A. Chlipala, “Modular development of certified program verifiers with

a proof assistant,” in International Conference on Functional Program-
ming (ICFP). New York, NY, USA: ACM, 2006, pp. 160–171.

[20] J. G. Morrisett, D. Walker, K. Crary, and N. Glew, “From system F
to typed assembly language,” in Principles of Programming Languages
(POPL), 1998, pp. 85–97.

[21] J. Chen, D. Wu, A. W. Appel, and H. Fang, “A provably sound TAL
for back-end optimization,” in Programming Language Design and
Implementation (PLDI). New York, NY, USA: ACM, 2003, pp. 208–
219.

[22] C. Flanagan and J. B. Saxe, “Avoiding exponential explosion: gener-
ating compact verification conditions,” in Principles of Programming
Languages (POPL), 2001, pp. 193–205.

[23] K. R. M. Leino, “Efficient weakest preconditions,” Inf. Process. Lett.,
vol. 93, no. 6, pp. 281–288, 2005.

[24] P. V. Homeier and D. F. Martin, “A mechanically verified verification
condition generator,” Comput. J., vol. 38, no. 2, pp. 131–141, 1995.

[25] Proceedings of the Working Conference on Reverse Engineering. IEEE.
1995–.

[26] J.-C. Filliâtre, “Verification of non-functional programs using interpre-
tations in type theory,” J. Funct. Program., vol. 13, no. 4, pp. 709–745,
2003.

[27] S. Katsumata and A. Ohori, “Proof-directed de-compilation of low-level
code,” in European Symposium on Programming (ESOP). Springer-
Verlag, 2001, pp. 352–366.

