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Abstract. This paper shows how a machine-code Hoare logic is used
to lift reasoning from the tedious operational model of a machine lan-
guage to a manageable level of abstraction without making simplifying
assumptions. A Hoare logic is placed on top of a high-fidelity model of
the ARM instruction set. We show how the generality of ARM instruc-
tions is captured by specifications in the logic and how the logic can
be used to prove loops and procedures that traverse pointer-based data
structures. The presented work has been mechanised in the HOL4 the-
orem prover and is currently being used to verify ARM machine code
implementations of arithmetic and cryptographic operations.

1 Introduction

Although software runs on real machines like Intel, AMD, Sun, IBM, HP and
ARM processors, most current verification activity is performed using highly
simplified abstract models. For bug finding this is sensible, as simple models are
much more tractable than realistic models. However, the use of unrealistically
simple models is unsatisfactory for assurance of correctness, since correctness-
critical low level details will not have been taken into account. Details that are
frequently overlooked at the low levels include: finiteness of stacks and integers,
whether or not addresses need to be aligned and details of status bits.

Recently software verification based on realistically modelled software has
received an increasing amount of attention as tools become able to cope with
tedious operational models. Boyer and Yu [1] have done some impressive pio-
neering work on verification of programs for the Motorola MC68020, Tan and
Appel [7] verified memory safety of Sun’s SPARC machine code, and Hardin
et al. [4] verified machine code written for Rockwell Collins AAMP7G.

Curiously these efforts have made little use of advances in programming
logics, while efforts for proving programs written in realistically modelled low-
level programming languages such as C have [8]. The work of Tan and Appel is
– to the best of our knowledge – the only significant effort that places a general
programming logic on top of a realistically modelled machine language. Their
approach requires substantial effort to prove the soundness of applying the logic
to their SPARC model. Hardin et al. and Boyer and Yu verify machine-code
programs using a form of symbolic simulation of the bare operational semantics
of their respective processor models.

In an earlier paper we developed a general Hoare logic for realistically mod-
elled machine code [5]. In this paper the general logic is specialised to a detailed



model of ARM machine code. This paper shows how the logic captures the de-
tails of ARM instructions and uses examples to illustrate how programs can be
proved using the logic. The examples present proofs of loops and procedures that
traverse recursive data structures.

This paper avoids a lengthy proof of soundness by simply instantiating ab-
breviating definitions for which sound proof rules have been proved in an earlier
paper [5]. All specifications and proofs presented in this paper have been me-
chanically checked using the HOL4 system [3]. The detailed ARM model at the
base of this work has been extracted from a proof of correctness of the instruction
set architecture of an ARM processor [2].

The remainder of this paper is organised as follows. Section 2 gives a brief
overview of the ARM machine language and specialises a Hoare logic to reason
about ARM machine code. Section 3 presents how the details of ARM instruc-
tions are captured by specifications in the new logic. Section 4 illustrates the use
of the logic through examples. Section 5 presents the ARM model and Section 6
concludes with a summary.

2 Hoare Triples for ARM

This section instantiates a Hoare logic to ARM machine code. We start with
a brief overview of ARM machine code and then describe how a general Hoare
logic is specialised to reason about ARM code.

2.1 ARM Machine Code

ARM machine code runs on ARM processors. These are widely used commer-
cial RISC processors often found in mobile phones. The resources that ARM
instructions access are, from a birds-eye-view, the following:

1. 16 registers are visible at any time: register 15 is the program counter and
the others are general purpose registers each holding a 32-bit value (by con-
vention register 13 is the stack pointer and register 14 is the link register);

2. 4 status bits: negative, zero, carry and overflow;
3. a 32-bit addressable memory with entries of 8 bits (or equivalently, a 30-bit

addressable memory with 32-bit entries).

This high-level view is sufficient for all 32-bit ARM instructions that do not
require interaction between operation modes. In some sense these are the in-
structions of the “programmer’s model” of ARM. The Hoare logic presented in
this paper is restricted to the subset of 32-bit ARM instructions that can exe-
cute equally regardless of operation mode (user, supervisor, etc). However the
operational model at the base of this work considers also the instructions that
do depend on the operation mode, for more details see Section 5.

Some interesting features of the 32-bit ARM instructions that have required
special attention are listed below.



1. All instructions can be executed conditionally, i.e. instructions can be con-
figured to have no effect when the status bits fail to satisfy some condition.

2. All “data processing” instructions can update the status bits.

3. During execution, undefined instruction encodings or forbidden instruction
arguments can be encountered, in which case the subsequent behaviour is
implementation specific (modelled as unpredictable behaviour).

2.2 ARM Hoare Logic

This section specialises a general machine-code Hoare logic, presented earlier [5],
to ARM machine code. The general logic specifies the behaviour of collections of
code segments using Hoare triples that allow multiple entry points and multiple
exit points. In this paper we will mainly use specifications with a single entry
point and a single sequence of code:

{P} cs {Q1}h1 · · · {Qk}hk

Such specifications are to be read informally as follows: whenever P holds for the
current state and code sequence cs is executed, a state will be reached where one
of the postconditions Qi holds and the program counter will have been updated
by function hi.

Models of states usually consist of tuples of components. However, when
defining the semantics of our general Hoare logic, we have found it more conve-
nient to represent states as sets of basic state elements that separately specify the
values of single pieces of the state. This allows states to be split and partitioned
using elementary set operations (e.g. ∪, ∩, −). The elements we need for ARM
are: Reg i x (specifies register i has value x), Mem j y (specifies memory location
j has value y), Status (sn, sz, sc, sv) (specifies the values of the four status flags),
Undef b (specifies whether an ‘undefined’ instruction has been encountered) and
Rest z (specifies the remainder of the state). Thus for ARM, each state will be
a set of the form1:

{ Reg 0 x0 , Reg 1 x1 , Reg 2 x2 , · · · , Reg 15 x15 ,
Mem 0 y0 , Mem 1 y1 , Mem 2 y2 , · · · , Mem (230−1) y(230−1) ,
Status (sn, sz, sc, sv), Undef b, Rest z }

Fox’s ARM model uses a tuple-like state representation, thus in order to
specialise our general Hoare logic to his ARM model, we need a translation
function from Fox’s state representation to our set-based representation. Such
a translation is defined as follows. Let reg a s extract the value of register a
from state s, mem a s extract the value of memory location a from s and status
extract the value of the four status bits from s. Also let s.undefined indicate
whether s is considered as a state from which unpredictable behavior may occur

1 Numerals denote both bit strings and natural numbers. Type annotations in the
syntax of HOL4: Reg (i:word4) (x:word32) and Mem (j:word30) (y:word32).



and let hidden project the remaining part of an ARM state, i.e. the part that is
not observable by reg, mem, status and undefined. We can then define:

arm2set(s) = { Reg a (reg a s) | any a } ∪
{ Mem a (mem a s) | any a } ∪
{ Status (status s), Undef s.undefined, Rest (hidden s) }

The translation does not loose any information and therefore has an inverse
set2arm such that ∀s. set2arm(arm2set(s)) = s.

The general theory is formally specialised to reason about ARM machine code
by instantiating a 6-tuple (Σ,α, β, next, pc, inst) that parametrises the general
theory. Here Σ is the set of states, next is a next-state function next : Σ → Σ,
and pc : α→ Σ → B and inst : α× β → Σ → B are elementary assertions over
states. The general theory is instantiated to the ARM model by setting Σ to be
the range of arm2set, α to be the set of 30-bit addresses and β to be the set
of 32-bit words. The next-state function is defined using the next-state function
for the ARM model (next arm) and translations arm2set and set2arm.

next(s) = arm2set(next arm(set2arm(s)))

In what follows addr is a function that transforms a 30-bit address to a 32-
bit (word-aligned) address by appending two zeros as new least significant bits.
The program-counter assertion pc(p) is defined to check that a subset of a state
implies that the program counter is set to p and that the state is well-defined.
The instruction assertion inst(p, c) makes sure that instruction c is stored in
the location which is executed when the program counter has value p. These
assertions are predicates on sets of basic state elements: pc(p) is true of a set if it
is { Reg 15 (addr(p)),Undef F } and inst(p, c) is true of a set if it is { Mem p x }.
Thus:

pc(p) = λs. s = { Reg 15 (addr(p)),Undef F }
inst(p, x) = λs. s = { Mem p x }

3 Instruction Specifications

The previous section discussed how we instantiate our abstract Hoare logic to
ARM machine code. This section shows how the new Hoare triples capture the
behaviour of basic ARM instructions. We start by explaining how a simple speci-
fication relates to the ARM model and then go on to show how the full generality
of ARM instructions is captured by the new Hoare triples.

Consider the following specification of SUB a,a,#1 (subtract by one).

{R a x}
SUB a,a,#1

+1{R a (x−1)}+1

This specification states that register a is decremented by one and that the pro-
gram counter is incremented by one. Let R r x = λs. (s = {Reg r x}). In terms



of the set-based state representation the specification ought to be read as fol-
lows: whenever SUB a,a,#1 is executed, the part of the state corresponding to
{Reg a x} is updated to {Reg a (x−1)} and simultaneously the part correspond-
ing to the program counter is updated by function +1 (abbreviates λn. n+1),
i.e. the subset corresponding to {Reg 15 (addr(p)),Undef F}, for some value p,
becomes {Reg 15 (addr(p+1)),Undef F}.

In terms of the ARM model, the above specification is formally equivalent
to the following. Let run(k, s) be a function that applies next arm k times to
state s, and let b·c be a function that produces the 32-bit encoding of a given
ARM instruction. Also let frame = { Reg a x | any x } ∪ { Reg 15 x | any x }.

∀s p. (reg a s = x) ∧ (reg 15 s = addr(p)) ∧ (a 6= 15) ∧
(mem p s = bSUB a,a,#1c) ∧ ¬s.undefined⇒
∃k. let s′ = run(k, s) in

(reg a s′ = x−1) ∧ (reg 15 s′ = addr(p+1)) ∧ (a 6= 15) ∧
(mem p s′ = bSUB a,a,#1c) ∧ ¬s′.undefined ∧
(arm2set(s)− frame = arm2set(s′)− frame)

For most part this expansion contains no surprises: whenever registers a is x,
the program counter points at an encoding of SUB a,a,#1 and the state is well-
defined, then register a is decremented, the program counter is updated by func-
tion +1 and the state remains well-defined. The interesting part of the above
specification is the last line. The last line states that the initial state is the same
as the result state, if one removes registers a and 15 from both states. The last
line specifies what is left unchanged, i.e. the scope of the operation.

The Hoare triples satisfy a frame rule for extending the scope. The frame
rule is intuitively similar to that of separation logic [6]. The frame rule uses a
separating conjunction (∗). For ∗ define split s (u, v) to mean that the pair of
sets (u, v) partitions set s, i.e. split s (u, v) = (u ∪ v = s) ∧ (u ∩ v = ∅), and
then define P ∗Q to be true if P and Q are true for disjoint parts of the state:
P ∗Q = λs. ∃u v. split s (u, v) ∧ P u ∧Q v. The frame rule:

{P} c {Q}h

∀F. {P ∗ F} c {Q ∗ F}h

The frame rule can be used to expand the basic specification of SUB a,a,#1

to say that the value of register b stays constant, if b is distinct from a:

{R a x ∗R b y}
SUB a,a,#1

+1{R a (x−1) ∗R b y}+1

The expansion of the extended specification is equal to the above expansion with
the inclusion of (reg b s = y) ∧ (a 6= b) ∧ (b 6= 15) for both s and s′. The sep-
arating conjunction implies necessary inequalities as a result of its requirement
of disjointness. We use ∗ as a basic building block in all our specifications.

The remainder of this section describes the generalisations that are made in
order to accommodate the full features of real ARM instructions.



3.1 Conditional Execution

Every 32-bit ARM instruction can execute conditionally according to a condi-
tion code that is encoded in each instruction. The instruction is executed if the
condition associated with the given condition code is satisfied by the status bits.
If the condition is not satisfied then the instruction has no effect (other than
incrementing the program counter). The behavior of conditional execution is
captured by giving each instruction two specifications, one for the case when
it has an effect and one for the case when it has no effect. Let pass(c, z) as-
sert that bits z satisfy condition code c. Let ¬pass(c, z) be its negation. Let
S z = λs. (s = {Status z}).

{R a x ∗ S z ∗ pass(c, z)}
SUB c a,a,#1

+1{R a (x−1) ∗ S z}+1

{S z ∗ ¬pass(c, z)}
SUB c a,a,#1
+1{S z}+1

3.2 Status Bits

Most ARM instructions have a flag called the s-flag. When this flag is set,
executing the command will update the status bits. Let sub status(x, y) calculate
the value of the four status bits for the subtraction x−y.

{R a x ∗ S z ∗ pass(c, z)}
SUB c s a,a,#1

+1{R a (x−1) ∗ S (if s then sub status(x, 1) else z)}+1

3.3 Addressing Modes

The SUB instruction, used above, can of course do more than subtract by one.
It can subtract by any small (shifted/rotated) constant or a (shifted/rotated)
register value. The form of the second term in a subtraction is specified by
an addressing mode (for SUB: ARM Addressing Mode 1). Our specifications
parametrise the addressing mode as a variable m. The functions encode am1

and value am1 construct, respectively, the instruction encoding and second ar-
gument of an arithmetic operation for a given instance m of ARM Addressing
Mode 1. Examples:

{R a x}
SUB a,a,encode am1(m, a)

+1{R b (x−value am1(m,x))}+1

{R a x ∗R b y}
SUB b,b,encode am1(m, a)

+1{R a x ∗R b (y−value am1(m,x))}+1

Specifications, such as those shown below, can be produced, if we instantiate m
appropriately and rewrite using the definitions of encode am1 and value am1.

{R a x}
SUB a,a,#1

+1{R a (x−1)}+1

{R a x ∗R b y}
SUB b,b,a

+1{R a x ∗R b (y−x)}+1

{R a x ∗R b y}
SUB b,b,a,LSL #5

+1{R a x ∗R b (y−(x�5))}+1



3.4 Aligned Addresses

A 32-bit address is word aligned if it is divisible by four. On ARM, memory ac-
cesses to word-sized entities generally result in rotations of the accessed words,
if the accessed address is not word aligned. In order to avoid cluttering specifi-
cations with details of word rotations, we specify word-aligned memory accesses
separately from the general case. The specification for aligned load-word LDR

requires no rotations. Let R′ r x assert that register r holds a word-aligned
address x, i.e. R′ r x = R r (addr(x)), and let M a x = λs. (s = {Mem a x}).

{R a z ∗R′ b x ∗M (address am2(m,x)) y}
LDR a,encode am2(m, b)

+1{R a y ∗R′ b (writeback am2(m,x)) ∗M (address am2(m,x)) y}+1

The above can be specialised to the following by instantiation of m:

{R a z ∗R′ b x ∗M x y}
LDR a,[b]

+1{R a y ∗R′ b x ∗M x y}+1

{R a z ∗R′ b x ∗M (x−1) y}
LDR a,[b,#-4]!

+1{R a y ∗R′ b (x−1) ∗M (x−1) y}+1

3.5 Branch Instructions

Branch instructions are given one postcondition for each exit point. The speci-
fication of a conditional relative branch:

{S z}
B c #k

+(k+2){S z ∗ pass(c, z)}+(k+2)

+1{S z ∗ ¬pass(c, z)}+1

The intuition for multiple postconditions is that one of the postconditions will
be reached. Whenever B c #k is executed, there will either be a jump of k + 2
instructions or a jump to the next instruction. The formal semantics is based on
disjunction, for details see our earlier paper [5].

3.6 Automation

The above specifications are rather hard to use in practice if addressing modes
and condition codes have to be instantiated by hand. We found it useful to
write an ML function that maps string representations of the instructions to
their respective instantiations of the general specifications. The instantiating
ML function was connected to an ML function that calculates the composition
of a given list of instruction specifications using the composition rule from our
earlier paper [5], e.g. the input ["LDR a,[b,#16]!","SUBS a,a,1","BNE k"] gives:

{R a z ∗R′ b x ∗M x y ∗ S }
LDR a,[b,#16]!; SUBS a,a,#1; BNE #k

+(k+2){R a (y−1) ∗R′ b (x+4) ∗M x y ∗ S ∗ 〈y−1 6= 0〉}+(k+2)

+3{R a (y−1) ∗R′ b (x+4) ∗M x y ∗ S ∗ 〈y−1 = 0〉}+3



Here the ML function treats x as a word-aligned address and hides the initial and
final value of the status bits using an underscore ( ) which denotes ‘some-value’
(formally is a postfix function: P = λs. ∃x. P x).

4 Case Studies

This section demonstrates how specifications from the previous section can be
reformulated and combined in order to prove specifications for ARM code with
loops, procedures and pointer-based data structures.

4.1 Factorial Program

As an initial example, we will show how loop rules can be proved and used. A
loop rule will be proved for a count-down loop and then used in the proof of the
following factorial program:

MOV b, #1 ; b := 1

L: MUL b, a, b ; b := a× b

SUBS a, a, #1 ; decrement a and update status bits

BNE L ; if a is nonzero then jump to L

This program stores the factorial of register a (modulo 232) in register b, if a is
initially non-zero. It calculates the factorial by executing a count-down loop:

b := 1; repeat { b := a× b; a := a - 1 } until (a=0)

Loop. A specification for a loop of the form “L: body; SUBS a,a,#1; BNE L” can
be devised using the specification of the combined effect of SUBS and BNE. For the
proof we will require that body has a specification of the following form. Let m
be the length of the code sequence body.

{Inv(x) ∗R a x ∗ S ∗ 〈x 6= 0〉}
body

+m{Inv(x−1) ∗R a x ∗ S }+m
(1)

The technique described in Section 3.6 can be used to construct a specification
for “SUBS a,a,#1; BNE #k”, which can be composed with (1) to give:

{Inv(x) ∗R a x ∗ S ∗ 〈x 6= 0〉}
body; SUBS a,a,#1; BNE #k

+(m+k+3){Inv(x−1) ∗R a (x−1) ∗ S ∗ 〈x−1 6= 0〉}+(m+k+3)

+(m+2){Inv(x−1) ∗R a (x−1) ∗ S ∗ 〈x−1 = 0〉}+(m+2)

A loop is constructed if k is assigned value −(m+3), since the program counter
update is then +0, i.e. the program counter returns to its original value. With a



few other simplifications we can reveal that the precondition is satisfied by each
jump to the top of the loop. Let < denote less-than over unsigned 32-bit words.

{Inv(x) ∗R a x ∗ S ∗ 〈x 6= 0〉}
body; SUBS a,a,#1; BNE #-(m+3)

+0{∃z. Inv(z) ∗R a z ∗ S ∗ 〈z 6= 0〉 ∗ 〈z < x〉}+0

+(m+2){Inv(0) ∗R a 0 ∗ S }+(m+2)

Postconditions that describe a jump to a precondition, with some bounded
variant that decreases at each jump, can be removed since the loops they describe
will terminate and thus a different postconditions will eventually be reached [5].
The postcondition with update +0 is removed:

{Inv(x) ∗R a x ∗ S ∗ 〈x 6= 0〉}
body; SUBS a,a,#1; BNE #-(m+3)

+(m+2){Inv(0) ∗R a 0 ∗ S }+(m+2)
(2)

We have proved a loop rule: any code body and invariant Inv that satisfies
specification (1) will also satisfy specification (2).

Factorial. The factorial program is easily proved in case we can find a spec-
ification of MUL that fits specification (1) from above. Notions of factorials and
partial factorials are needed in order to create a suitable specification for MUL.
Let fac be the factorial function over natural numbers:

fac(n) =
{

1 if n = 0
n× fac(n−1) if n > 0

Let factorial and partial factorial (e.g. 5 × 4 × 3 = fac(5)/fac(2)) over 32-
bit words be defined using conversion to and from the natural numbers, w2n :
word32->num and n2w : num->word32.

x! = n2w(fac(w2n(x)))
y ·· x = n2w(fac(w2n(y))/fac(w2n(x)))

Notable features of the partial factorial (··) are that x ·· 0 = x! and y ·· y = 1
and (z ·· y)× y = z ·· (y−1), if y ≤ z and y 6= 0.

A specification for MUL can now be molded into the required form:

{R a x ∗R b (z ·· x) ∗ S ∗ 〈x 6= 0〉}
MUL b,a,b

+1{R a x ∗R b (z ·· (x−1)) ∗ S }+1

The loop rule from the previous section then gives the following result:

{R a x ∗R b (z ·· x) ∗ S ∗ 〈x 6= 0〉}
MUL b,a,b; SUBS a,a,#1; BNE #-4
+3{R a 0 ∗R b (z ·· 0) ∗ S }+3



sum: CMP a,#0 ; compare a with 0

MOVEQ r15,r14 ; return, if a = 0

STR a,[r13,#-4]! ; push a

STR r14,[r13,#-4]! ; push link-register

LDR r14,[a] ; temp := node value

ADD s,s,r14 ; s := s + temp

LDR a,[a,#4] ; a := address of left

BL sum ; s := s + sum of a

LDR a,[r13,#4] ; a := original a

LDR a,[a,#8] ; a := address of right

BL sum ; s := s + sum of a

LDR r15,[r13],#8 ; pop two and return

Fig. 1. BINARY SUM: ARM code to sum the values at the nodes of a binary tree.

Instantiating z to x and composing a specification for MOV at the front yields a
specification for the factorial program:

{R a x ∗R b ∗ S ∗ 〈x 6= 0〉}
MOV b,#1; MUL b,a,b; SUBS a,a,#1; BNE #-4

+4{R a 0 ∗R b x! ∗ S }+4

The final specification states that the program stores the factorial of register a
(modulo 232) in register b, if the initial value of register a was non-zero.

4.2 Sum of Nodes in Binary Tree

Next we illustrate the proof of a recursive procedure that sums the values stored
at the nodes of a binary tree. The implementation we prove is called BINARY SUM.
Its code is shown in Figure 1. BINARY SUM makes a depth-first pass through a
binary tree, where nodes are stored as blocks of three consecutive memory el-
ements: one 32-bit value and two aligned addresses pointing to the root of the
subtrees (called left and right). The procedure adds the sum of the tree with
root at address a into register s. When executing BINARY SUM on the tree de-
picted below, it adds the values 5, 2, 6, 1, 3, 8 to register s. The recursive calls
are realised by the BL instruction.

r r5

-

-

r r2

× ×6

× ×1

-

-

× r3

× ×8-



Binary Tree. The trees BINARY SUM traverses are modelled as trees that are
either empty (Leaf) or a branch (Node(x, l, r)). Each branch holds a 32-bit value x
and two subtrees l and r. The sum of such a tree is defined as follows:

sum(Leaf) = 0
sum(Node(x, l, r)) = x+ sum(l) + sum(r)

A predicate tree(x, t) is defined to assert that tree t is stored in memory
with its root at address x. For ease of presentation we require that subtrees are
stored in disjoint parts of the memory (which is implied by the occurrence of ∗
between the recursive assertions of tree). Here and throughout M ′ a x asserts
that memory location a holds aligned address x, i.e. M ′ a x = M a (addr(x)).

tree(a, Leaf) = 〈a = 0〉
tree(a,Node(x, l, r)) = ∃a1 a2. M a x ∗M ′ (a+1) a1 ∗M ′ (a+2) a2 ∗

tree(a1, l) ∗ tree(a2, r) ∗ 〈a 6= 0〉

The tree assertion allows us to prove that “LDR b,[a]; ADD s,s,b” adds the
value of a node, addressed by register a, to register s. Notice that the specification
must mention register b, since the value of register b is updated by this operation.

{R′ a x ∗R s z ∗ tree(x,Node(y, l, r)) ∗R b }
LDR b,[a]; ADD s,s,b

+2{R′ a x ∗R s (z+y) ∗ tree(x,Node(y, l, r)) ∗R b }+2

The above specification is a result of a composition of the specifications for LDR

and ADD, an application of the frame rule, and a reformulation that introduces
the existential quantifier hidden in tree(x,Node(y, l, r)).

Stack. BINARY SUM uses the stack to store local variables. In order to specify the
stack operations, a notion of a stack segment is formalised. On ARM processors
the stack is by convention descending, i.e. it grows towards lower addresses. The
stack pointer, register 13, holds the address of the top element of the stack.

A stack predicate is defined using two auxiliary definitions:ms(a, [x0; · · · ;xm])
specifies that the 32-bit words x0, · · · , xn are stored in sequence from address
a upwards in memory and blank(a, n) asserts that n memory locations from
address a downwards have ‘some value’. The stack predicate stack(sp, xs, n) is
defined to assert that the aligned address sp is stored in register 13, that xs is
the sequence of elements pushed onto the stack (above sp) and that there are n
unused slots on top of the descending stack (immediately beneath sp).

ms(a, [x0;x1; · · · ;xm]) = M a x0 ∗M (a+1) x1 ∗ · · · ∗M (a+m) xm

blank(a, n) = M a ∗M (a−1) ∗ · · · ∗M (a−(n−1))

stack(sp, xs, n) = R′ 13 sp ∗ms(sp, xs) ∗ blank(sp−1, n)

The predicate blank is needed in the above definition in order to state how
much stack space is allowed to be used. As an example, consider the specification



for a stack push given below. The push instruction consumes one slot of stack
space. Here cons is defined by cons x0 [x1; · · · ;xn] = [x0;x1; · · · ;xn].

{R a x ∗ stack(sp, xs, n+1)}
STR a,[r13,#-4]!

+1{R a x ∗ stack(sp−1, cons x xs, n)}+1

The verification of BINARY SUM requires the pushed elements to be separated
from the stack predicate at one point. The pushed elements can be extracted
using the following equivalence. Let [] denote an empty list.

stack(sp, xs, n) = ms(sp, xs) ∗ stack(sp, [], n)

Procedures. On ARM, procedures are by convention passed a return address
in register 14 to which they must jump on exit. The control-flow contract of a
procedure is enforced by a specification that requires the code to have a single
exit point that updates the program counter to the address passed in register 14.
If the program counter is initially p then the function λx.y updates the program
counter to y, since (λx.y) p = y.

{P ∗R′ 14 y} code {Q ∗R 14 }λx.y

BINARY SUM has the following procedure specification:

{R′ a x ∗R b ∗R s z ∗ S ∗
tree(x, t) ∗ stack(sp, [ ], 2× depth(t)) ∗R′ 14 y}

BINARY SUM

{R a ∗R b ∗R s (z + sum(t)) ∗ S ∗
tree(x, t) ∗ stack(sp, [ ], 2× depth(t)) ∗R 14 }λx.y

Let pre x t z y and post x t z be the pre- and postcondition from above.

Procedure Calls and Recursion. The specification for BINARY SUM is proved
using induction. We induct on depth(t) and assume that there is some code C
that executes recursive calls correctly for any t′ such that depth(t′) < depth(t).

∀t′. depth(t′) < depth(t) ⇒ ∀x z y. { pre x t′ z y } C { post x t′ z }λx.y

With this assumption we can derive specifications for the BL instruction which
perform the recursive calls in BINARY SUM. The specifications are constructed us-
ing the proof rule derived in our earlier paper [5]. The code in these specifications
is the union of the assumed code and the BL instruction:

{ pre x t′ z } BL #k ∪ C { post x t′ z }+1

The rest of the verification is simple: compose the specifications for each instruc-
tion of BINARY SUM in order to produce:

{ pre x t z y } BINARY SUM ∪ C { post x t z }λx.y



An application of the following instance of complete induction over the natural
numbers removes the imaginary code C and the assumption on t′.

∀t C. (∀t′. depth(t′) < depth(t) ⇒ ψ(t′, C)) ⇒ ψ(t, code ∪ C)
∀t. ψ(t, code)

Tail-Recursion. BINARY SUM, proved above, was constructed with clarity of
presentation in mind. A good implementation would make use of the fact that
the second recursive call can be made into a tail-recursive call. The last two
instructions of BINARY SUM are the following.

BL sum ; s := s + sum of a

LDR r15,[r13],#8 ; pop two and return

These are turned tail-recursive by reversing the order as follows:

LDR r14,[r13],#8 ; restore stack and link register

B sum ; s := s + sum of a

The new code copies the return address of the stack into the link register (regis-
ter 14) rather than the program counter (register 15). It then performs a normal
branch to the top of the procedure.

The optimised variant of BINARY SUM is no harder to prove than the original
version, normal composition is used instead of the rule for procedure calls. One
can prove that the tail-recursive version requires only 2× ldepth(t) slots of stack
space during execution. ldepth is defined as follows.

ldepth(Leaf) = 0
ldepth(Node(x, l, r)) = max(ldepth(l)+1, ldepth(r))

5 ARM Model

In Section 2.2, a Hoare logic for ARM machine code was constructed by placing
a general Hoare logic on top of an operational model of the ARM instruction
set. This section gives a brief overview of the ARM model that was used.

In the model underlying the Hoare triples, the state space is represented as a
concrete HOL type (as opposed to a set of sets). The HOL type is a record type
with four fields: registers (a mapping from register names to 32-bit words), psrs
(a mapping from names of program status registers to 32-bit words), memory (a
mapping from 30-bit words to 32-bit words) and undefined (a boolean indicating
whether implementation specific behaviour follows from the current state).

The ARM Hoare triples only have access to 16 registers. However, the un-
derlying model includes all 37 registers of an ARM processor. System modes
have their own copies of some of the general purpose registers, thus the large
number of register in total. The conceptual layout of the actual register bank



r13_und
r14_und

r13_irq
r14_irq

r13_abt
r14_abt

r13_svc
r14_svcr13_fiq

r14_fiq

r12_fiq
r11_fiq
r10_fiq

r9_fiq
r8_fiq

r13
r14

r12
r11
r10
r9
r8

r6
r7

r5
r4
r3
r2
r1
r0

r15 (PC)

usable in user mode

system modes only

SPSR_undSPSR_irqSPSR_abtSPSR_svcSPSR_fiqCPSR

user mode fiq
mode

svc
mode

abort
mode

irq
mode

undefined
mode

NZCV unused I F mode

31 28 27 8 7 5 4 0

T

6

Fig. 2. ARM register banks and format of the Program Status Registers (PSRs).

is illustrated in Figure 2. The ARM Hoare triples convey the image of only 16
registers by presenting only the registers usable by the instructions of the current
operation mode (for any mode, in case the Rest element is not mentioned in the
precondition). This view of the registers is achieved by defining the functions
reg, status and hidden (used in the definition of arm2set) to project the values
of registers and status bits as viewed by the current operation mode, e.g. when
operating in supervisor mode (svc), reg 14 s denotes the value of register r14 svc,
reg 2 s is the value of register r2 and reg 8 s is the value of register r8 fiq.

The memory model deserves a comment, since a simple memory model is
adopted: it is assumed that only data transfer instructions (memory stores) can
alter the state of the memory i.e. the memory cannot be updated by the en-
vironment ; when loading an instruction from memory, instruction pre-fetching
(pipelining) is not considered; pre-fetch and data aborts are never raised i.e. it
is assumed that one can always successfully access any memory address. Fur-
thermore, input from the environment is not modelled i.e. it is assumed that
there are no hardware interrupts. The Hoare logic that was instantiated in Sec-
tion 2.2 can handle a more realistic model of memory, provided that it behaves
as described above, for the part of memory mentioned in the precondition.

The ARM model used here is a conservative extension of a previously re-
ported ARM model [2]. A well-understood path (by virtue of HOL theorems)
exists between the ARM Hoare triples and a detailed register-transfer-level model
of the hardware of an ARM processor. The path can be depicted as follows.

Data and temporal
abstraction

Data
abstraction

Hoare triple 
model

ARM ISA model 
(with memory)

ARM ISA model 
(stream based)

ARM6 model 
(stream based)arm2set

set2arm



6 Summary

In this paper we have placed a general machine-code Hoare logic on top of a de-
tailed model of the ARM machine language. By doing this we have constructed
a framework that lifts reasoning from the tedious operational model to a man-
ageable level. We have illustrated how specifications capture the generality of
ARM instructions and demonstrated the use of the framework on examples that
include loops, stacks, pointer data structures, procedures, procedural recursion
and tail recursion. We have not yet applied the framework to large case studies,
but we believe we have a methodology and implemented tools that will scale.
Demonstrating this is the next phase of our research.
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