Lecture 8



Pairs

e Representing pairs:

LET (FE1, Ey) = M\f. f Fy Fy
LET fst = Ap. p true

LET snd = Ap. p false

e (FE1, Fy) represents an ordered pair
e first component (i.e. F) is accessed with fst

e second component (i.e. F,) is accessed with snd

e The definitions work, e.g.:

fst (El,Eg) — ()\p p true) (El,Eg)
(El, E2> true

— ()\f f Eq E2> true
— true Fy E5

— El



Tuples

® n-tuples easily defined in terms of pairs:

LET (El, Eo, ... 7En> — (Ela <E27 ( " (En—lv En) " )))

o (Fy,...,E,) is an n-tuple
e with components FEy, ..., E, and length n

e pairs are 2-tuples

e Extracting components of n-tuples:

IET E|1=fst E
LET F E 2 =fst(snd F)

LET F E i = fst(snd(snd(---(snd F)---))

~~

2—1 sndS

N——

(if « < n)

LET F E n = snd(snd(...(snd F)...)))

~~

n—1 snds



Verifying tuple selection works

(B, (Ba, (-..)) L2
fst (snd (£, (£, (...))))

£5t (Fo, (...))
— B,

° (El,EQ,...,En>T/’I::EZ' all s such that 1 <:<n

e Usually write £ | ¢ instead of £ iz

e when n clear from context

e eg. (E1,....E,) ]t = E, (wherel<i<n
g. (Br,..., Ey)



Representing numbers

e (oal: define A-expression n representing n

e (oal: represent arithmetical operations

e e.g. need suc, pre, add and iszero representing:
the successor function (n +— n + 1),
the predecessor function (n — n—1),
addition,
test for zero

e Required properties:

suc n =n+1 (for all numbers n)

=n—1 (for all numbers n > 0)

pre

S

add m n=m+n (for all numbers m and n)

S

iszero ) = true

iszero (suc n) = false



Preliminary notation

e Define f" x to mean n applications of f to x

e For example, f° z = fUF 2))))

e By convention f’ z defined to mean =z

e More generally:

LET EV E' = FE'

LET " E' = E(E(;--(E E)--))

n Es

e Note that E"(E E') = E"' B/ = E(E" F)

o fla = f(f(f(f2) = f(fo) = f(f x)



Church’s numerals

e Representation below due to Church

e Church’s numerals:
LETO=Af z. x

LET 1=\ . fa
LET 2= \f 2. f(f o)

LETn=Afz. f"x

e Arithmetical operations

LET suc=Mn f x. n f(f x)
LETadd=XMmn fz.m f (n f x)

LET iszero = An. n (Ax. false) true



Properties (exercise)

o
n
c
O
[}
|
|—

o
)
c
o
[&x

|
[@p

® iszero (= true

® iszero H = false

® add

I

1 =

=

® add

(N)

3

I
&y

® suc n=n+l

® iszero (suc n) = false

o
)
Q.
Q.
I
S
|

n

®
O

o
S
(@)
|
S




Predecessor function pre

e pre n defined using \f z. f" x (i.e. n)
e goal: get a function that applies f only n—1 times

e trick: ‘throw away’ the first application of f in f"

e First define a function prefn on pairs:
e prefn f (true,x)= (false,x)
e prefn f (false,z)= (false, f 1)
From this it follows that:
o (prefn f)" (false,x) = (false, f" )
o (prefn f)" (true,z) = (false, [ ' z) (if n > 0)

e 1 applications of prefn to (true,z) result in n—1
applications of f to «

e Definition of prefn

LET prefn = Af p. (false, (fst p — snd p | (f(snd p))))



Properties of prefn

e prefn f (b,x)= (false,(b—> x| f x))

e prefn f (true,z)= (false,z)
e prefn f (false,x)= (false, [ z)
® (prefn f)" (false,z)= (false, f" x)

e (prefn f)" (true,z) = (false, /" ! 1)



Definition of pre

® LET pre = An f x. snd (n (prefn f) (true,x))

o Ifn>0

pren f x = snd (n (prefn f) (true,z)) (defn of pre)
snd ((prefn f)" (true,z)) (defn of n)
snd(false, " ! 1) (as above)
_ fn—l T

e hence by extensionality

pren = A z. f"l g
= n—1 (definition of n—1)

e Properties of pre
e pre (suc n) =n

e pre 0=0

10



Another numeral systems

e Numerals with simpler predecessor function

LET 0 = A\z.x
LET 1 = (false,0)
LET 2 = (false, 1)

LET n+1 = (false,n)

e Can define suc, iszero, pre such that

e suc . = n—+l1

iszero ) = true

iszero (stuc 7) = false

e pre (suc n) =1

11



Definition by recursion

e To represent multiplication would like to define
mult such that:

multmn:gddn(addn(--- (add n 0) ))
m adds

® Achieved if mult satisfies:

mult mn = (iszero m — 0| add n (mult (pre m)n))

e If this held then, for example,

mult 2 3 = (iszero 2 — 0 | add 3 (mult (pre 2) 3))
(by the equation)
= add 3 (mult 1 3)
(by properties of iszero, the conditional and pre)
= add 3 (iszero 1 — 0| add 3 (mult (pre 1) 3))
(by the equation)
= add 3 (add 3 (mult 0 3))
(by properties of iszero, the conditional and pre)
= add 3 (add 3 (iszero 0 — 0| add 3 (mult (pre 0) 3)))
(by the equation)
= add 3 (add 3 0)

(by properties of iszero and the conditional)

12



Recursion

e Equation above suggests mult be defined by:

mult = Am n. (iszero m — 0| add n (mult (pre m)n))

N.B.

e This cannot be used to define mult

e mult must already be defined for the A-expression to the
right of the equals to make sense

@ There is a technique for constructing M-
expressions that satisfy arbitrary equations

e applied to the equation above, this gives the desired
definition of mult.

13



Fixed points

® Y is such that, for any expression F:

YE=E (YE)

e Y F is unchanged when F is applied to it

o if ¥ ' = F’ then £’ is called a fized point of E

® A )-expression Fix with the property
Fix £ = F(Fix F)
(for any F) is called a fixed-point operator

e infinitely many different fixed-point operators

e Y is the most famous one

14



The fixed-point operator Y

® Definition of Y:
LETY=MAf. (Az. f(z z)) (M\z. f(z x))

® Y is a fixed-point operator:

YE=(\f. Ax. fl(x x)) Mz, f(rz)) E (defn of Y)

= (A\z. E(z x)) (Az. E(x x)) (S-conversion)
=F (A\x. E(z x)) (Ax. E(x x))) (0-conversion)
=F (Y F) (the line before last)

e Hence every E has a fixed point Y F

15




Defining mult

® Define multfn by:

LET multfn = Af mn. (iszero m — 0] add n (f (pre m)n))
T T

® Define mult by:
LET mult =Y multfn

e Then:
mult m n = (Y multfn) m n (defn of mult)
=multfn (Y multfn) m n (property of Y)
= multfn mult m n (defn of mult)

= (Af m n. (iszero m — 0| add n (f (pre m) n))) mult m n
(defn of multfn)

= (iszero m — 0| add n (mult (pre m) n)) (B-conversion)

16



Recursion in general

® An equation of the form
fa o a=E

is called recursive if f occurs free in E
e Y provides a way of solving such equations

e start with an equation:
f X1...Lp = .

where _f  is some \-expression containing f

e The following defines f so this holds:
LETf=Y (Af x1...2p. — f )

e Then:

fry...op,=Y A z1...0p. —f —) 21...2, (defn of f)

=Afzx1...mp. —f )Y ANfzy.ooxpye —f—)) 212y
(fixed-point property)

=Afzy...ep. —f—)fx...2p (defn of f)

= f (B-conversion)

17



Functions with several arguments

® )-expressions can only be applied to a single
argument

e However, this argument can be a tuple

e Thus can write:
E(Ey, ..., E,)
which actually abbreviates:

E(Ey, (Ey, (- (Bny, Bn) - -2)))

e Example: E(Ey, E,) abbreviates E(\f. f Fy FE»)

18



Currying

e Can encode multi-argument functions as:

(i) (f x1 ... z,), or
(ii) the application of f to n-tuple (z1,...,z,)

e In (i), f expects its arguments ‘one at a time’

e said to be curried

e after a logician called Curry

e actually invented by Schonfinkel
e and, or and add are curried

e Curried functions can be ‘partially applied’
e for example, add 1
e the result of partially applying add to 1

e denotes the function n — n+1

19



curry and uncurry

Consider:
LET curry = )\f r1 9. f (331,5132)
LET uncurry = Af p. f (£st p) (snd p)

If sum and prod are defined by:

sum — uncurry add
prod = uncurry mult

sum, prod are ‘uncurried’ versions of add, mult

For example:

sum (m,n) = uncurry add (m,n)
p

= (Af p. f (fst p) (sn
= add (fst (m,n)) (sn
—add m n

= m+n

20




curry and uncurry are inverses

e (Can show:

e Hence:

curry (uncurry F)=F

uncurry (curry F)=F

add = curry sum

mult = curry prod

21




n-ary currying and uncurrying

e For n > 0 define:

(xl,... n)

1) - (pln)

LET curry, = Af z1---xp. f
LET uncurry, = Af p. f (pi

e If F represents a function expecting an n-tuple
argument

e then curry, E represents the curried function which
takes its arguments one at a time

e If F represents a curried function of n argu-
ments

e then uncurry, E represents the uncurried version
which expects a single n-tuple as argument

e Can show:

curry, (uncurry, F)=
uncurry, (curry, F)=

E
E

22



Notation for uncurried functions

® (Generalized M-abstractions:

LET A\(V4,...,V,). F =uncurry, (A\V; ... V,. F)

e Example: A\(z,y). mult = y abbreviates:

uncurry, (Ar y. mult = y)
2

(M p F LD 0]12) Oy milt ¢ y)

= (Af p. f (fst p) (snd p)) (Az y. mult z y)
= Ap. mult (fst p)(snd p)

e Thus:

(Mz,y). mult = y) (Eq, E»)
= (Ap. mult (fst p) (snd p)) (F1, E5)
=mult (fst(Fy, Es)) (snd(Ey, Es))
—mult £y Ey

23



Generalized (#-conversion

e Can derive:
AV, Vo). B (BA, .. By) = ELEY, ... By Ve, oo V]
e E[Ey,...,E,/Vi,...,V,] is the simultaneous substitution
of Fy,..., E, for Vi,...,V,, respectively

e none of these variables occur free in any of £,... F,

e Can be derived from ordinary (-conversion
e and the definitions of tuples
e and generalized \-abstractions
e A tuple of arguments is passed to each argu-

ment position in the body of the generalized
abstraction

e then each individual argument can be extracted from
the tuple without affecting the others

24



More syntactic sugar for abstractions

Convenient to extend notation A\V; V5,...V,. E
e ecach V; can either be an identifier

e or a tuple of identifiers

M Vo V. E still A\Vi.(AVa.(--- (\V,. B)--+))

e if V; is a tuple of identifiers

e then the expression is a generalized abstraction

Example:
A o(zy). [y
means

Af- Mz, y). f xy)

which means
Af. uncurry (A\z y. f x y)

which equals

Af. (Ap. f (fst p) (snd p))

25




Mutual recursion

Consider the equations:

fi=F £f1---£f,
fo=Fy f;---f,

Solution is:

(1<i<n)

Works because if:

Then f; = f | i and hence:

£=Ofreoos S (B fieeefus oo JFu froee fa)E
— (F(EL1)-Fdn), o FaELD) - ELn)
= (Fy £1+ %0, ... Py £y £,)  (asfli=f1)

Hence: f,=F, f;---£f,

26




Extending the A-calculus

e Can represent data-objects and data-structures
with \-expressions

e often inefficient to do so

e computers have hardware for arithmetic

e why not use this, rather than A-conversion
e Can ‘interface’ computation rules to A-calculus

® Idea:
e add a set of new constants

e give rules for reducing applications involving these
constants

e such rules are called a d-rules

27



Example o-rules

®¢ Add numerals and + as new constants

e Possible d-rule:

+mn7>m+n

o [ — FE> means F, results by applying a J-rule to
some subexpression of F;

e Must be careful to keep properties of A-calculus

e e.g. the Church-Rosser property

28



Safe )-rules

e J)-rules are safe if they have the form:

C1 Co -+ Cn7>€

e where ¢y, ..., ¢, are constants

e and e is either a constant or a closed abstraction
(such \-expressions are sometimes called values)

e Example: add as constants Suc, Pre, IsZero, A,
A1, Ao, --- with the d-rules:

Suc A, T> JAVEIS]

Pre A, 7 A,
IsZero A — true
IsZero A\,q — false

e A, represents the number n,

e Suc, Pre, IsZero are new constants
(i.e. not defined A-expressions like suc, pre, iszero)

e true and false defined above (both are values)

29



30



