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Why Mission Assurance Matters

Major General Richard Webber, Commander, 24th Air Force

• “Mission assurance is the number one goal in current cyber operations,
versus the old paradigm of information assurance.”

Definitions

• Mission Assurance: assuring that critical system capabilities necessary to
complete a mission successfully are available, correctly implemented, and
secure

• Information Assurance: measures that protect and defend information
and information systems by ensuring their availability, integrity,
authentication, confidentiality, and non-repudiation

Eugene Spafford

• “There are limits to how much you can fireproof a cardboard box.”
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Why Certified & Verified Mission Assurance Matters

Dr. Kamal Jabbour, ST, Senior Scientist for Information
Assurance, USAF

• “Modifying the cyberspace domain to eliminate vulnerabilities or make
them inaccessible to an adversary through sound hardware and software
development practices can eliminate beforehand vulnerabilities by
designing them out of a system.”

• “I want theorems!”

Need: A science & engineering for mission assurance
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Purpose & Preview

Purpose

• Describe some of our efforts to develop and apply
mathematical logic for mission assurance

• Show that the logic, proofs, and methods are well within the
capabilities of practicing engineers

Preview
• Introduction: intended audience, focus, & viewpoint

• Overview of the logic

• Representation of CONOPS & an example

• Conclusions
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Introduction

Intended audience
• Designers, builders, specifiers, buyers, and evaluators of secure

and trustworthy computer and information systems

Focus: access policies and concepts of operation

• Hardware, virtual machines, networks

• Credentials, authority, delegation

• Confidentiality & integrity policies

Logic is a means to an end

• Means of description

• Inference rules

• Theorem-based design & verification (proofs)
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Our Viewpoint

guardcommands

Policies

trust assumptions
credentials
jurisdiction
authority

protected
resource or
capability

yes or no?

When given a command/request, trust assumptions, credentials,
jurisdiction, authority, and policy

• Logically justify if the command/request is honored or not

• Anything less is regarded as a don’t know, don’t care, or
incompetence

No different for hardware designers and verifiers
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A Logical Approach to Access Control

Access-control logic as a tool

• Modification of multi-agent propositional modal logic created by Abadi,
Burrows, Lampson, and Plotkin

• Implemented as a conservative extension to the Cambridge Higher Order
Logic (HOL-4) Kananaskis 7 theorem prover (joint work with Lockwood
Morris)

• Routinely taught to SU graduate students in Principles of Distributed
Access Control course

• Used since 2003 by over 226 ROTC cadets from over 40 universities as
part of Air Force Research Lab’s Advanced Course in Engineering for
Cybersecurity Bootcamp

Methods usable by practicing engineers and provide assurance
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Our focus: Concept of Operations (CONOPS)

CONOPS definition

“The CONOPS clearly and concisely expresses what [is to be]
accomplish[ed] and how it will be done using available resources. It
describes how the actions of . . . components and supporting
organizations will be integrated, synchronized, and phased to
accomplish the mission . . .”

JP 5-0, Joint Operation Planning

Why focus on CONOPS?

• Reveals the thinking of commanders in terms of mission
requirements, critical capabilities, policies, jurisdiction, and
trust assumptions

• Mission assurance requires commanders and implementers
precisely and accurately agree on the CONOPS

9 / 18



Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Kripke structures

W = non-empty {worlds}
I = PropVar→ P(W )

J = PName→ P(W ×W )

M = 〈W , I , J〉

Semantics

EM[[p]] = I (p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W , if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}

EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P |Q says ϕ ⊃ Q says ϕ]]
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Access-Control Logic Syntax & Semantics

Syntax

• Principals (actors)

• Statements they
make

BNF

P ::= A / P &Q / P |Q
ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ
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Inference Rules

Rules

• Inconvenient to use
Kripke semantics

• Use inference rules
H1 · · ·Hn

C
instead

Soundness

H1 · · ·Hn

C
is sound if for

all Kripke structuresM and
each i ∈ {1, . . . , n}:

If all EM[[Hi ]] = W

then EM[[C ]] = W

• All rules are sound

• All verified in HOL-4
K-7 theorem prover

Core inference rules

Taut
ϕ

if ϕ is an instance of a prop-logic tau-
tology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′
Says

ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P |Q says ϕ ≡ P says Q says ϕ

& Says
P &Q says ϕ ≡ P says ϕ ∧ Q says ϕ

Idempotency of⇒
P ⇒ P

Monotonicity of |
P′ ⇒ P Q′ ⇒ Q

P′ |Q′ ⇒ P |Q

Associativity of |
P | (Q | R) says ϕ

(P |Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P |Q says ϕ ⊃ Q says ϕ
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Examples

A simple proof

1. P controls ϕ Assumption
2. P says ϕ Assumption
3. P says ϕ ⊃ ϕ 1 def’n controls
4. ϕ 2, 3 Modus Ponens

Derived inference rule

Controls
P controls ϕ P says ϕ

ϕ

All derived rules are sound

12 / 18



In HOL

Controls Proof

Controls Inference Rule
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General Form of CONOPS

“The CONOPS . . . describes how the actions of . . . components
and supporting organizations will be integrated, synchronized, and
phased to accomplish the mission . . .”

P1 says s1

Principal 2

P1 says s1
Jurisdiction statements

Policy statements
Trust assumptions

------------------------------
s2

P2 says s2

Principal 3

P2 says s2
Jurisdiction statements

Policy statements
Trust assumptions

------------------------------
s3

P3 says s3 ...

• Principals are actors

• Assumptions about jurisdiction, policy, and trust are explicit

• Each step in CONOPS is a derived inference rule

14 / 18



Example: A (Hypothetical) Kill Chain

⇐⇒
Joint Terminal Air Controller Airborne Early Warning & Control

m ↙↗ m

⇐⇒
Remotely Piloted Vehicle Air Operations Center
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Hypothetical CONOPS

All personnel, roles, requests, and commands authenticated by a
Mission Validation Appliance (MVA).

JTAC
MVA

Controller
MVA

Bob

Token

Alice

relay 1

request 1
authenticated

request 1

Controller
MVA

TCA
MVA

Carol

Token

Bob

relay 2

request 2

authenticated
request 2

Statement Formal Representation
request 1 (TokenAlice | JTAC) says 〈strike, target〉

relay 1 (KJTAC-MVA | JTAC) says 〈strike, target〉
authenticated request 1 JTAC says 〈strike, target〉

request 2 (TokenBob | Controller) says (JTAC says 〈strike, target〉)
relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)

authenticated request 2 Controller says (JTAC says 〈strike, target〉)
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relay 2 (KController-MVA | Controller) says (JTAC says 〈strike, target〉)

authenticated request 2 Controller says (JTAC says 〈strike, target〉)
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Repeated Pattern of Authentication and Trust

Common form of requests, delegations, key certificates,
jurisdiction, and trust assumptions

Input (Token or Key |Role) says ϕ

Delegation Cert KAuth says (Person or Object reps Role on ϕ)

Key Certificate KAuth says (Token or Key⇒ Person or Object)

Jurisdiction Auth controls (Person or Object reps Role on ϕ)

Jurisdiction Auth controls (Token or Key⇒ Person or Object)

Trust Assumption KAuth ⇒ Auth

Transmitting MVA:

MVA 1

(Token | Role) says ϕ
KAuth says (Person reps Role on ϕ)

KAuth says (Token ⇒ Person)

Auth controls (Person reps Role on ϕ)

Auth controls (Token ⇒ Person)
KAuth ⇒ Auth

KMVA1
| Role says ϕ

Receiving MVA
:

MVA 2

(KMVA1
| Role) says ϕ

KAuth says (MVA1 reps Role on ϕ)
KAuth says (KMVA1

⇒ MVA1)

Auth controls (MVA1 reps Role on ϕ)

Auth controls (KMVA1
⇒ MVA1)

KAuth ⇒ Auth

Role says ϕ
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Findings & Conclusions
226+ ACE cadets, captains, & lieutenants from 40+
universities

Formal approach to access control and CONOPS is
feasible (with adequate education)

• 21 hours of instruction

• Kripke semantics, basic & distributed access
control, delegation, hardware, and
confidentiality/integrity policies

Textbook based on access-
control logic taught in ACE

Increased their capabilities to design, specify, evaluate,
and procure critical systems
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