
Credentials Management for High-Value
Transactions

Glenn Benson1, Shiu-Kai Chin2, Sean Croston1, Karthick Jayaraman2, and
Susan Older2

1 JP Morgan Chase {glenn.benson,sean.b.croston}@jpmchase.com
2 EECS Department, Syracuse University, Syracuse, New York 13244

{skchin,kjayaram,sbolder}@syr.edu

Abstract. Partner key management (PKM) is an interoperable cre-
dential management protocol for online commercial transactions of high
value. PKM reinterprets traditional public key infrastructure (PKI) for
use in high-value commercial transactions, which require additional con-
trols on the use of credentials for authentication and authorization. The
need for additional controls is met by the use of partner key practice
statements (PKPS), which are machine-readable policy statements pre-
cisely specifying a bank’s policy for accepting and processing payment
requests. As assurance is crucial for high-value transactions, we use an
access-control logic to: (1) describe the protocol, (2) assure the logical
consistency of the operations, and (3) to make the trust assumptions
explicit.
Keywords: authentication, authorization, protocols, trust, logic

1 Introduction

Authorizing online high-value commercial transactions requires a higher level of
diligence when compared to consumer or retail transactions. A single high-value
transaction may involve the transfer of hundreds of millions of dollars. The inher-
ent risk associated with wholesale online banking compels many banks to require
additional security beyond authenticating users at login time. Additional secu-
rity often takes the form of tighter controls and limits on the use of credentials.
Ultimately, each bank trusts itself more than any other entity. This naturally
leads to the practice of banks issuing their own credentials. Historically, a cash
manager of a corporation would hold separate credentials from each bank with
which he or she deals. While this serves the needs of commercial banks, as cor-
porations want to simultaneously hold accounts in multiple banks, the insistence
upon and proliferation of unique credentials is viewed by customers as poor ser-
vice. Hence, it is increasingly important for global financial services providers,
such as JP Morgan Chase, to offer credentials that: (1) are interoperable to
provide customer convenience, and (2) meet the needs of high-value commercial
transactions in terms of authentication, authorization, and liability.

Traditional Public Key Infrastructure (PKI) credentials while interoperable,
alone are insufficient to surmount the following obstacles inherent to the use of
interoperable credentials in high-value transactions:

1. Autonomy : Interoperability and autonomy are in tension with each other. An
implication of interoperability is the need to allow audits. For example, say
Second Bank is contemplating recognizing credentials issued by First Bank.
Second Bank would understandably want to audit First Bank’s practices
as a credential issuer against Second Bank’s policies. Understandably, First
Bank would be reluctant to agree to audits of its operations by competitors
such as Second Bank.

2. Liability : Non-bank issuers of PKI credentials neither want, nor are in a po-
sition to accept, liability for failed high-value transactions. One way around
this is for a bank to issue its own credentials to limit risk and to recognize
only the credentials it issues; however, the solution is not interoperable by
definition.

3. Expense: If commercial banks were to recognize non-bank certificate issuers
for high-value commercial transactions, then commercial banks would need
to be connected to the non-bank certificate issuers. This is an added oper-
ational expense for banks, which is another barrier to achieving interoper-
ability.

In this paper, we describe an interoperable certificate management protocol
called partner key management (PKM). PKM is designed to address the three
obstacles to interoperability of credentials in high-value transactions described
above. Under the PKM model, each bank publishes a partner key practice state-
ment (PKPS), which is a machine readable document that describes the bank’s
policy for accepting interoperable credentials. PKM enables each bank to avoid
liability on transactions executed at any other bank, while preserving creden-
tial interoperability. Furthermore, PKM supports a general validation model,
where each corporation need only connect to the credential issuers to which it
subscribes. Moreover, we describe the certificate management protocol using an
access-control logic to prove its logical consistency and also to make the under-
lying trust assumptions explicit.

The rest of this paper is organized as follows. Section 2 presents the PKM
model, PKPS, and sender validation. Section 3 defines the syntax, semantics, and
inference rules of the logic used to describe and reason about PKM. Section 4
is an overview of how key parts of PKPS are expressed in the logic. Section 5
provides an extended example describing and analyzing the operation of PKM.
Related work is briefly discussed in Section 6. We offer conclusions in Section 7.

2 Partner Key Management

2.1 Credentials Registration

The PKM model focuses on authorization to use a credential as opposed to secure
distribution of a credential. As an analogy, consider mobile phone distribution
logistics. A user may purchase a mobile phone from any distributor. At the time
that the user physically acquires the phone, the telecom operator does not know
the user’s identity and does not allow use of the phone. Subsequently, the user
and the telecom operator agree to terms of use; and the mobile phone operator
authorizes the phone’s connection to the telecom network. In the PKM model,

the credential plays the role of the phone, and the bank plays a similar role to
the telecom operator.

In PKM, the user first obtains a credential from a credential distributor. The
credential distributor has the responsibility to distribute ‘secure’ credentials un-
der a definition of security defined by the operator. For example, one operator
may only distribute certificates on secured USB devices, while another operator
may distribute software for self-signed certificates. After obtaining a credential,
the user submits a request to each of his or her banks to allow use of the cre-
dential. On this step, the bank has two responsibilities. First, the bank must
securely assure itself of the user’s true identity. Second, the bank must examine
the credential to determine if the credential meets the bank’s standards. For
example, some banks may prohibit credentials other than certificates that reside
in a secured hardware token. If the bank accepts the credential, then the bank
authorizes the credential to represent the user. The user may use the same cre-
dential with multiple banks by appropriately registering the credential with the
respective banks. The authorization process may vary between the banks. Each
bank may have its own operational policy governing the conditions in which it
accepts the credentials based upon the bank’s published operating rules.

In effect, the credentials are interoperable, and banks have the liberty to
follow their own procedure for accepting the credentials and allowing users to
employ those credentials. The result is an infrastructure that allows the possibil-
ity of interoperability without mandating interoperability. If two banks agree to
accept a single credential, then that credential would interoperate between the
two banks. No bank needs to rely upon any other bank or external credential
provider.

2.2 Partner Key Practice Statement

Banks participating in the PKM model publish an XML document called the
Partner Key Practice Statement (PKPS), which is written using WS-Policy [1].
A PKPS defines how a corporation and a bank agree to work together, as gov-
erned by their mutually agreed upon security procedures. The corporation and
the bank have the freedom to impose almost any conditions to which they mutu-
ally agree, provided that the conditions do not require unsupportable program-
ming logic. The list below presents some examples types of information that may
appear in a PKPS:

1. Credential Media: The definition of the credential media may mandate a
smart card, USB token, HSM, FIPS-140-2, or a software credential.

2. Credential Provider: This item contains the list of credential providers to
which the corporation and the bank mutually subscribe. Example providers
are third party trusted providers, self-signed certificates, the corporation’s,
or the bank’s own infrastructure.

3. Revocation: The revocation definition describes the type of permissible cre-
dential revocation mechanism, e.g., certificate revocation list (CRL), online
certificate status protocol (OCSP) [2], etc. The revocation definition also
describes the party responsible for enforcing credential revocation; and it
describes any specific usage practice. For example, the revocation mecha-
nism may mandate that the recipient of a signature validate a CRL signed
by a particular party.

4. Timestamp: The timestamp definition defines timestamp rules and the times-
tamp provider, if any. The timestamp definition may specify a real-time
threshold value. The recipient must ensure that it receives and validates a
signature before the threshold timelimit after the timestamp. For example, a
six hour threshold value means that the recipient must validate a signature
before six hours expires after the timestamp.

5. Signature Policy: The PKPS can specify the number of signatures required
for a specific type of transaction, and the roles of signatories. An example of
a signature policy is one which requires both an individual signature and a
corporate “system” signature in order to consider either signature as valid.

6. Credential Technology: A certificate that supports the X.509 standard is an
obvious choice for interoperability. However, additional technologies such as
the portable security transaction protocol (PSTP) [3] exist, and the PKPS
may specify alternative technologies.

The security requirements mutually agreed to by the bank and the corpora-
tion are reflected in a specific PKPS, or possibly a list of PKPSs. The security
requirements may mandate that the corporation must attach the PKPS on each
signed transaction in order to consider any signature valid.

2.3 Revocation

This paper presents three example validation models. A bank’s PKSP should
define the model that a particular bank allows.

1. Receiver validation: The receiver validation model is typically used in a
PKI model. First, Alice submits a signed transaction to the bank. Upon re-
ceipt, the bank validates Alice’s signature against a CRL or OCSP responder
managed by the certificate provider.

2. Sender validation without evidence: Alice submits signed transactions
to the bank, but the bank performs no revocation check. Alice’s company
and the bank manage Alice’s credential using mechanism outside the scope
of the signed transaction.

3. Sender validation with evidence: Alice submits her certificate to an
OCSP responder, and obtains a response signed by the OCSP responder.
Alice signs the transaction and the OCSP response, and then submits to the
bank. The bank validates both Alice’s signature and the OCSP responder’s
signature. If the bank finds no error, then the bank accepts the transaction.

Each bank has the opportunity to allow any of the three example models,
or build its own variant model. Multiple banks may all accept the same creden-
tial from Alice, while requiring different revocation models.The second model,
sender validation without evidence, merits further discussion. If Alice proves to
be an untrustworthy person, then Alice’s company reserves the right to disable
Alice’s credential. For example, if Alice has a gambling problem, then autho-
rized representatives of Alice’s company should contact each of its banks with
the instruction to stop allowing Alice’s credential. Another use case which also
results in credential disabling, is one where Alice contacts each bank because she
suspects that her own credential was lost or stolen.

An OCSP responder, or a certificate revocation list is merely a revocation
mechanism optimized for scalability. As opposed to requiring the Alice’s com-
pany to contact each of its banks, an OCSP responder or Certificate Revocation
List provides a centralized repository which handles certificate revocation. The
advantage of the OCSP responder or certificate revocation list is scalability as
opposed to security. If Alice were authorized to transact on accounts at hundreds
or thousands of banks, then the second model (sender validation without evi-
dence) would not be practical. However, in practice, wholesale banking does not
need such enormous scalability. Rather, Alice typically works with just a handful
of banks. Although Alice’s company may find the credential disabling process to
be relatively tedious because the company needs to contact each of the banks in
the handful, we normally find that corporations employ the credential disabling
process relatively infrequently.

In practice, corporations tend to contact each of their banks whenever a
user’s credential changes status, even if the bank happens to use the traditional
receiver validation model. In fact, some banks require immediate notification of
such events in their operating model. Intuitively, if the corporation ceases to
trust Alice to authorize high-value transactions, then the corporation probably
wants to contact each of its banks directly.

Both the second and the third models assume sender validation, as opposed to
receiver validation. An advantage of sender validation is that it better handles
expense. Suppose, for example, a corporation agrees to the services of a new
credential distributor. Credential interoperability encourages a dynamic market
by allowing the corporation the freedom to choose any acceptable credential
distributor. In the receiver validation model, the corporation could not use that
credential with its bank until the bank agrees to build an online connection to
the credential distributor’s OCSP responder or certificate revocation list. In the
sender validation models, on the other hand, the corporation may immediately
use the credential with the bank without waiting for the costly and possibly slow
technology development process.

3 An Access-Control Logic and Calculus

We use an access-control logic to describe and reason about the validity of acting
on payment instructions. This section introduces the syntax, semantics, and
inference rules of the logic we use.

3.1 Syntax

Principal Expressions Let P and Q range over a collection of principal expres-
sions. Let A range over a countable set of simple principal names. The abstract
syntax of principal expressions is:

P ::= A / P&Q / P | Q

The principal P&Q (“P in conjunction with Q”) is an abstract principal making
exactly those statements made by both P and Q; P | Q (“P quoting Q”) is an
abstract principal corresponding to principal P quoting principal Q.

Access Control Statements The abstract syntax of statements (ranged over by
ϕ) is defined as follows, where P and Q range over principal expressions and p
ranges over a countable set of propositional variables:

ϕ ::= p / ¬ϕ / ϕ1 ∧ ϕ2 / ϕ1 ∨ ϕ2 / ϕ1 ⊃ ϕ2 / ϕ1 ≡ ϕ2 /

P ⇒ Q / P says ϕ / P controls ϕ / P reps Q on ϕ

Informally, a formula P ⇒ Q (pronounced “P speaks for Q”) indicates that
every statement made by P can also be viewed as a statement from Q. A formula
P controls ϕ is syntactic sugar for the implication (P says ϕ) ⊃ ϕ: in effect, P is
a trusted authority with respect to the statement ϕ. P reps Q on ϕ denotes that
P is Q’s delegate on ϕ; it is syntactic sugar for (P says (Q says ϕ)) ⊃ Q says ϕ.
Notice that the definition of P reps Q on ϕ is a special case of controls and in
effect asserts that P is a trusted authority with respect to Q saying ϕ.

3.2 Semantics

Kripke structures define the semantics of formulas.

Definition 1. A Kripke structure M is a three-tuple 〈W, I, J〉, where:

– W is a nonempty set, whose elements are called worlds.
– I : PropVar → P(W) is an interpretation function that maps each propo-

sitional variable p to a set of worlds.
– J : PName → P(W ×W) is a function that maps each principal name A

to a relation on worlds (i.e., a subset of W ×W).

We extend J to work over arbitrary principal expressions using set union and
relational composition as follows:

J(P&Q) = J(P) ∪ J(Q)

J(P | Q) = J(P) ◦ J(Q),

where

J(P) ◦ J(Q) = {(w1, w2) | ∃w′
.(w1, w

′
) ∈ J(P) and (w

′
, w2) ∈ J(Q)}

Definition 2. Each Kripke structure M = 〈W, I, J〉 gives rise to a function

EM[[−]] : Form → P(W),

where EM[[ϕ]] is the set of worlds in which ϕ is considered true. EM[[ϕ]] is defined
inductively on the structure of ϕ, as shown in Figure 1.

Note that, in the definition of EM[[P says ϕ]], J(P)(w) is simply the image
of world w under the relation J(P).

3.3 Inference Rules

In practice, relying on the Kripke semantics alone to reason about policies and
behavior is inconvenient. Instead, inference rules are used to manipulate formulas
in the logic. All logical rules must be sound to maintain consistency.

Definition 3. A rule of form
H1 · · ·Hn

C
is sound if for all Kripke structures

M = 〈W, I, J〉, if EM[[Hi]] = W for each i ∈ {1, . . . , n}, then EM[[C]] = W .

The rules in Figures 2 and 3 are all sound. If sound rules are used throughout,
then the conclusions derived using the inference rules are sound, too.

EM[[p]] = I(p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = (W − EM[[ϕ1]]) ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P ⇒ Q]] =

{
W, if J(Q) ⊆ J(P)

∅, otherwise

EM[[P says ϕ]] = {w|J(P)(w) ⊆ EM[[ϕ]]}
EM[[P controls ϕ]] = EM[[(P says ϕ) ⊃ ϕ]]

EM[[P reps Q on ϕ]] = EM[[P | Q says ϕ ⊃ Q says ϕ]]

Fig. 1: Semantics

4 Expressing Statements and the PKPS in Logic

With the definition of the syntax and semantics of access-control logic, we pro-
vide an introduction to expressing actual payment instructions and the PKPS
in logic.

Statements and Certificates: Statements and requests are made by principals.
Requests are logical statements. For example, say Alice wants to transfer $106

dollars from acct1 to acct2. If 〈transfer 106, acct1, acct2〉 denotes the proposition
it is justifiable to transfer $106 from acct1 to acct2, then we can represent Alice’s
request as Alice says 〈transfer 106, acct1, acct2〉. Credentials or certificates are
statements, usually signed with a cryptographic key. For example, assume we
believe KCA is the key used by certificate authority CA. With this belief, we
would interpret a statement made by KCA to come from CA. In particular, if
KCA says (KAlice ⇒ Alice), we would interpret this public key certificate signed
by KCA as having come from CA.

Authority and Jurisdiction: Jurisdiction statements identify who or what
has authority, specific privileges, powers, or rights. In the logic, juris-
diction statements usually are controls statements. For example, if Al-
ice has the right to transfer a $106 dollars from acct1 to acct2, we
say Alice controls 〈transfer 106, acct1, acct2〉. If Alice has jurisdiction on
〈transfer 106, acct1, acct2〉 and Alice requests 〈transfer 106, acct1, acct2〉, then
the Controls inference rule in Figure 3 allows us to infer the soundness of
〈transfer 106, acct1, acct2〉.

Alice controls 〈transfer 106, acct1, acct2〉 Alice says 〈transfer 106, acct1, acct2〉
〈transfer 106, acct1, acct2〉.

Proxies and delegates Often, something or somebody makes the requests to the
guards protecting the resource on behalf of the actual principals, who are the
sources of the requests. In an electronic transaction, a cryptographic key is used
as a proxy for a principal. Recall that KCA says (KAlice ⇒ Alice) is a public
key certificate signed with the public key KCA of the certification authority.

Taut
ϕ

if ϕ is an instance of a prop-
logic tautology

Modus Ponens
ϕ ϕ ⊃ ϕ′

ϕ′ Says
ϕ

P says ϕ

MP Says
(P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

Speaks For
P ⇒ Q ⊃ (P says ϕ ⊃ Q says ϕ)

Quoting
P | Q says ϕ ≡ P says Q says ϕ

&Says
P&Q says ϕ ≡ P says ϕ ∧Q says ϕ

Idempotency of ⇒
P ⇒ P

Monotonicity of |
P ′ ⇒ P Q′ ⇒ Q

P ′ | Q′ ⇒ P | Q

Associativity of |
P | (Q | R) says ϕ

(P | Q) | R says ϕ

P controls ϕ
def
= (P says ϕ) ⊃ ϕ

P reps Q on ϕ
def
= P | Q says ϕ ⊃ Q says ϕ

Fig. 2: Core Inference Rules

Quoting (1)
P | Q says ϕ

P says Q says ϕ
Quoting (2)

P says Q says ϕ

P | Q says ϕ

Controls
P controls ϕ P says ϕ

ϕ
Derived Speaks For

P ⇒ Q P says ϕ

Q says ϕ

Reps
Q controls ϕ P reps Q on ϕ P | Q says ϕ

ϕ

Rep Says
P reps Q on ϕ P | Q says ϕ

Q says ϕ

Fig. 3: Derived Rules Used in this Paper

The certification authority’s key, KCA, is installed on the computer using a
trustworthy key distribution process, and the trust in the key is captured using
the statement KCA ⇒ CA. If we get a certificate signed using KCA, then we
would attribute the information in that certificate to CA. For example, using the
Derived Speaks For rule in Figure 3 we can conclude that certificate authority
CA vouches for KAlice being Alice’s public key:

KCA ⇒ CA KCA says (KAlice ⇒ Alice)

CA says (KAlice ⇒ Alice).

KAlice ⇒ Alice is a statement of trust on KAlice, where all statements
made by KAlice are attributed to Alice. However, in some situations, a prin-
cipal may be trusted only on specific statements. For example, KAlice may
be trusted on a statement requesting a transfer of a million dollars. However,

AliceAlice

First First
BankBank

Second Second
BankBank

Certificate Certificate
Authority Authority

(CA)(CA) 11

22

33

Obtain keyObtain key
from CAfrom CA

Register Register
withwith
First BankFirst Bank

Register Register
withwith
Second BankSecond Bank

Fig. 4: Partner key management

KAlice may not be trusted on a statement KBob ⇒ Bob. This notion of a con-
strained delegation, where a principal’s delegate is trusted on specific state-
ments, is described using reps formulas. For example, if KAlice is trusted to be
Alice’s delegate on the statement 〈transfer 106, acct1, acct2〉, we would write:
KAlice reps Alice on 〈transfer 106, acct1, acct2〉.

From the semantics of reps, if we recognize KAlice as Alice’s delegate, in effect
we are saying that KAlice is trusted on Alice stating that she wishes a million
dollars to be transferred from acct1 to acct2. If KAlice says Alice says transfer
a million dollars from acct1 to acct2, we will conclude that Alice has made the
request. Using the Rep Says rule in Figure 3 we can conclude:

KAlice reps Alice on 〈transfer 106, acct1, acct2〉
KAlice | Alice says 〈transfer 106, acct1, acct2〉

Alice says 〈transfer 106, acct1, acct2〉.

5 An Extended Example

In this section, we illustrate PKM with a hypothetical example. Suppose Alice
is a cash manager who works for the Widget Corporation. Further suppose that
Widget uses three banks: First, Second, and Third Bank. Suppose the three
banks use different procedures for authorizing credentials, which the Widget
corporate Treasurer finds acceptable. Both First and Second Banks use the PKM
model, while for explanatory purposes only, assume that Third Bank uses the
PKI model. Both First and Second Bank allow Alice to obtain a credential
from any provider, while Third Bank requires Alice to obtain a credential from
a specific certificate authority that we will refer to as (CA). Therefore, Alice
obtains a certificate from CA that can be used with all the Three banks. Because
First and Second Banks use PKM, Alice registers the certificate with both the
banks. First and Second Bank describe their procedure for accepting certificates
in a partner key practice statement (PKPS). Both First Bank and Second Bank
require Alice to submit a signed PKPS along with each transaction. First Bank
requires Widget to check for revocation prior to Alice sending the payment
instruction. There is a mutual agreement of sender liability if Widget does not
check for revocation before affixing the signature. Second Bank requires Alice

Payment Instruction:
1. KAlice says 〈transfer 106, acct1, acct2〉
2. KAlice says 〈First Bank PKPS, timestamp〉

Entitlement:
1. Alice controls 〈transfer 106, acct1, acct2〉

Mutually Agreed Operational Rules:
1. First controls (KAlice ⇒ Alice)
2. KAlice says 〈First Bank PKPS, timestamp〉
⊃ 〈KAliceV alidated, timestamp〉

3. 〈KAliceV alidated, timestamp〉
⊃ (First says KAlice ⇒ Alice)

Fig. 5: First Bank: Payment instruction,
entitlement, and operating rules

<pkps:pkps id = First>
 <wsp:policyattachment>
 <wsp:appliesto>

<pkps:requester>
 <pkps:any/>

 </pkps:requester>
 <pkps:receiver>
 First
 </pkps:receiver>
 </wsp:appliesto>
 <wsp:policy>
 <wsp:all>

 <pkps:validation-model>
 <pkps:sender-no-evidence/>
 </pkps:validation-model>
 </wsp:all>
 </wsp:policy>
 </wsp:policyattachment>
</pkps:pkps>

Fig. 6: First Bank’s PKPS

to sign an OCSP response obtained from the certificate provider, and Second
Bank will validate Alice’s certificate using the OCSP response. Third Bank uses
the traditional PKI model, so there is no PKPS involved. Also, Third Bank
uses a receiver validation model, so Third Bank will connect to the CA’s OCSP
responder to validate the certificates.

We will use the access-control logic (Section 3) to describe in detail the
operations of the three banks for a hypothetical transaction, in which Alice
requests a transfer for $106 from Widget’s account to a different account. For
each bank, we provide a derived inference for justifying the bank’s decision to
act on the payment instruction. The proof of these derived inference rules are a
direct application of the inference rules described in Section 3.3. Our objective
is to primarily show the differences between PKI and PKM with respect to how
the credentials are managed. We use the access-control logic to show the logical
consistency of the operations and also to make the mutually agreed operating
rules explicit.

Important note: In the hypothetical example, Alice requires an entitlement
to request a transaction. The methods commonly used by banks to issue such
entitlements to Alice are outside the scope of this paper. For the purpose of our
illustration, we will assume that Alice has the necessary entitlement.

5.1 First Bank

Figure 5 contains an example payment instruction for First Bank. The pay-
ment instruction comprises two statements, (1) a statement signed using KAlice

requesting transfer of $1 million, (2) First’s PKPS (Figure 6) and timestamp
signed using KAlice. As per the mutually agreed operational rules, First has the
authority for authorizing Alice to use KAlice, and First issues such an authoriza-
tion when KAlice is validated. According to First’s PKPS, the sender is expected
to validate KAlice prior to the transaction, and First assumes that the KAlice

is validated appropriately when Alice signs First’s PKPS with KAlice. The fol-
lowing derived inference rule justifies the bank’s decision to act on the payment
instruction.

Payment Instruction:
1. KAlice says 〈transfer 106, acct1, acct2〉
2. (KAlice | KCA) says 〈KAliceV alidated, timestamp〉
3. KAlice says 〈Second Bank PKPS, timestamp〉

Entitlement:
1. Alice controls 〈transfer 106, acct1, acct2〉

Mutually Agreed Operational Rules
1. Second controls KAlice ⇒ Alice
2. KCA ⇒ CA
3. KAlice says 〈Second Bank PKPS, timestamp〉 ⊃

CA controls 〈KAliceV alidated, timestamp〉∧
KAlice reps KCA on 〈KAliceV alidated, timestamp〉

4. 〈KAliceV alidated, timestamp〉 ⊃
Second says KAlice ⇒ Alice

Fig. 7: Second Bank: Payment instruction,
entitlement, and operating rules

<pkps:pkps id=Second>
 <wsp:policyattachment>
 <wsp:appliesto>

<pkps:requester>
 <pkps:any/>

 </pkps:requester>
 <pkps:receiver>
 Second
 </pkps:receiver>
 </wsp:appliesto>
 <wsp:policy>
 <wsp:all>

 <pkps:revocation>
 <pkps:sender-with-evidence/>
 </pkps:revocation>
 </wsp:all>
 </wsp:policy>
 </wsp:policyattachment>
</pkps:pkps>

Fig. 8: Second Bank’s PKPS

First Bank

KAlice says 〈transfer 106, acct1, acct2〉
KAlice says 〈First Bank PKPS, timestamp〉
Alice controls 〈transfer 106, acct1, acct2〉

First controls KAlice ⇒ Alice
KAlice says 〈First Bank PKPS, timestamp〉 ⊃ 〈KAliceV alidated, timestamp〉

〈KAliceV alidated, timestamp〉 ⊃ (First says KAlice ⇒ Alice)

〈transfer 106, acct1, acct2〉

5.2 Second Bank

The payment instruction for Second Bank, in Figure 7, comprises three state-
ments, (1) a statement signed using KAlice requesting transfer of $1 million, (2)
CA’s OCSP response for KAlice signed using KAlice, (3) PKPS (Figure 8) and
timestamp signed using KAlice. Second Bank has authority for authorizing Alice
to use KAlice, similar to the First Bank, but uses the sender-validation-with-
evidence model for validation. When KAlice signs Second’s PKPS, both parties
agree to two operating rules for validating KAlice. First, CA has authority for
validating KAlice. Second, KAlice is a recognized delegate of KCA for relaying
the OCSP response for KAlice. The following derived inference rule justifies the
bank’s decision to act on the payment instruction.

Second Bank

KAlice says 〈transfer 106, acct1, acct2〉
(KAlice | KCA) says 〈KAliceV alidated, timestamp〉

KAlice says 〈Second Bank PKPS, timestamp〉
Alice controls 〈transfer 106, acct1, acct2〉

Second controls KAlice ⇒ Alice
KCA ⇒ CA

KAlice says 〈Second Bank PKPS, timestamp〉 ⊃
{CA controls 〈KAliceV alidated, timestamp〉∧

KAlice reps KCA on 〈KAliceV alidated, timestamp〉}
〈KAliceV alidated, timestamp〉 ⊃ Second says KAlice ⇒ Alice

〈transfer 106, acct1, acct2〉

Payment Instruction:
1. KAlice says 〈transfer 106, acct1, acct2〉

Entitlement
1. Alice controls 〈transfer $106, acct1〉

Public Key Certificate
1. KCA says KAlice ⇒ Alice

Trust Assumptions:
1. KCA ⇒ CA
2. CA controls KAlice ⇒ Alice

Fig. 9: Third Bank: Payment instruction, entitlement, certificates, and trust as-
sumptions

5.3 Third Bank

The payment instruction for Third Bank, in Figure 9, is a statement signed us-
ing KAlice for requesting a transfer of $1 million. Third Bank believes in the
jurisdiction of the CA for identifying the Key of Alice. When Third Bank re-
ceives the public key certificate for KAlice, it validates it by connecting to CA’s
OCSP responder. On successful validation, Third Bank is convinced that KAlice

belongs to Alice. For the sake of brevity, we do not describe the actual validation
process in the logic. Moreover, doing so does not change the trust assumptions,
more specifically does not affect Third Bank’s belief in CA’s authority. The fol-
lowing derived inference rule justifies the bank’s decision to act on the payment
instruction.

Third Bank

KAlice says 〈transfer $106, acct1〉
Alice controls 〈transfer $106, acct1〉

KCA says KAlice ⇒ Alice
KCA ⇒ CA

CA controls KAlice ⇒ Alice

〈transfer 106, acct1, acct2〉

5.4 Analysis

The traditional PKI model is characterized by the following three statements:

1. KeyCA ⇒ CA Trust in the root key of the CA
2. CA controls (Key ⇒ Principal) CA’s Jurisdiction
3. KeyCA says (Key ⇒ Principal) Certificate

Users trust that the root key belongs to the CA. Trust in the key of the root
CA must be established by a trustworthy key distribution process. The CA has
jurisdiction over statements associating a key with a particular principal and
issues PKI certificates, each of which is a statement signed by the root key that
associates the key with a particular principal. The PKI model does not deal with
authorizations, and authorization is considered the responsibility of the relying
party (RP). Moreover, validation is also seen as the responsibility of the RP, and
does not involve the user.

The PKM model is characterized by the following two statements:

1. Bank controls (Key ⇒ Principal) Bank’s Jurisdiction
2. 〈Key, V alidated〉 ⊃ Bank says (Key ⇒ Principal) Bank issues authorization

The PKM model blends authentication with authorization, and Banks have
the authority for authenticating and authorizing the use of credentials. The user
has the freedom to obtain credentials from any provider, but the Banks reinter-
pret the credentials in constrained manner, which could vary between banks. In
contrast to the PKI model, the validation process for the credentials is explicit
and involves the user, supporting non-repudiation claims. In effect, PKPS maps
the common interpretation of PKI credentials into the more constrained and
controlled interpretation required by banks for high-value commercial transac-
tions.

6 Related Work

There are several XML schemas for specifying web service policies and privacy
policies. WS-Policy [1] is a W3C standard for specifying web service policies for
security, quality of service, messaging, etc. WSPL [4] has similar motivations,
but is not an accepted W3C standard. P3P enables a web site to publish its
privacy practice in a machine readable format, which all browsers can read and
warn their respective users if the privacy practice of a web site is incompatible
with a user’s personal preference [5]. Our work relates to existing XML schemas
for specifying web service and privacy policies by providing a formal semantics
with sound inference rules for describing policies. The benefit of our work is
banks can rigorously justify acting on payment instructions based on policies
and trust assumptions.

Jon Olnes [6] describes an approach that offers interoperability by using a
trusted third party called the validation authority (VA). The VA is trusted by
both the CAs and relying party (RP), which receives the credentials. Each VA
vouches for the CAs it handles, and the RP can validate all the credentials from
the CAs by connecting to a single VA. While this model provides interoperability
with respect to CAs vouched for by a particular VA, it limits the RP and its cus-
tomers to only those CAs. In contrast, PKM imposes no such restrictions; Banks
use any CAs they want. Moreover, the PKM model reinterprets the authority of
credentials in a constrained and controlled manner.

Fox and LaMacchia [7] describe an alternative to OCSP for online certificate
status checking. Any method similar to OCSP that requires the RP to connect
to the CA for validating the certificates, not only breaks interoperability, but
also imposes a significant cost on the RP. In contrast, PKM supports a general
validation model, including a sender validation model, which in conjunction with
the reinterpretation of authority, scales better, provides interoperability, and
reduces the cost for the RP.

Our work is related to several logical systems used for reasoning about access-
control that are summarized in [8]. The access-control logic we use is based on
Abadi and Plotkin’s work [9], with modifications described in [10].

7 Conclusion

The common interpretation of PKI credentials is problematic for banks en-
gaged in high-value commercial transactions. Partner key management (PKM),

through the use of partner key practice statements (PKPS), reinterprets PKI
credentials to address the problems of scope of authority, liability, and cost in-
herent to high-value commercial transactions. The failure of any single high-
value transaction can bring severe consequences to banks. Thus, it is essential
that the policies and requirements regarding the use of credentials in high-value
commercial transactions be as precise and accurate as possible. To meet this re-
quirement, we have expressed PKI, PKPS, and PKM policies and interpretations
in an access-control logic with formal semantics and sound inference rules. This
enables banks and their customers to know precisely what is required of them
and to justify acting on payment instructions. Our experience to date indicates
that using this logic is within the capabilities of practitioners and does in fact
clarify the underlying logic of credentials and their use in high-value commercial
transactions.

References

1. Vedamuthu, A.S., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez, T.,
Yalçinalp, Ü.: Web services policy 1.5 - framework. http://www.w3.org/TR/ws-
policy/ (September 2007)

2. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC 2560
(Proposed Standard) (June 1999)

3. Benson, G.: Portable security transaction protocol. Comput. Netw. 51(3) (2007)
751–766

4. Anderson, A.H.: An introduction to the web services policy language (wspl). In:
POLICY. (2004)

5. Cranor, L., Dobbs, B., Egelman, S., Hogben, G., Humphrey, J., Langheinrich, M.,
Marchiori, M., Presler-Marshall, M., Reagle, J., Schunter, M., Stampley, D.A.,
Wenning, R.: The platform for privacy preferences 1.1 (p3p1.1) specification.
http://www.w3.org/TR/P3P11/ (November 2006)

6. Olnes, J.: DNV VA white paper: PKI interoperability by an independent, trusted
validation authority. In: 5th Annual PKI R & D Workshop. (April 2006)

7. Fox, B., LaMacchia, B.A.: Online certificate status checking in financial transac-
tions: The case for re-issuance. In: FC. (1999)

8. Abadi, M.: Logic in access control (tutorial notes). (2009) 145–165
9. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A Calculus for Access Con-

trol in Distributed Systems. ACM Transactions on Programming Languages and
Systems 15(4) (September 1993) 706–734

10. Chin, S.K., Older, S.: Reasoning about delegation and account access in retail
payment systems. In: MMM-ACNS. (2007)

